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a b s t r a c t

NC machining of a nonzero genus triangular mesh surface is being more widely confronted than before
in the manufacturing field. At present, due to the complexity of geometry computation related to tool
path generation, only one path pattern of iso-planar type is adopted in real machining of such surface. To
improve significantly 5-axis machining of the nonzero genus mesh surface, it is necessary to develop a
more efficient and robust tool path generation method. In this paper, a new method of generating spiral
or contour-parallel tool path is proposed, which is inspired by the cylindrical helix or circlewhich are a set
of parallel lines on the rectangular region obtained by unwrapping the cylinder. According to this idea,
the effective data structure and algorithm are first designed to transform a nonzero genus surface into
a genus-0 surface such that the conformal map method can be used to build the bidirectional mapping
between the genus-0 surface and the rectangular region. In this rectangular region, the issues of spiral or
contour-parallel tool path generation fall into the category of simple straight path planning. Accordingly,
the formula for calculating the parameter increment for the guide line is derived by the difference
scheme on the mesh surface and an accuracy improvement method is proposed based on the edge curve
interpolation for determining the cutter contact (CC) point. These guarantee that the generated tool path
canmeet nicely themachining requirement. To improve further the kinematic and dynamic performance
of 5-axis machine tool, a method for optimizing tool orientation is also preliminarily investigated. Finally,
the experiments are performed to demonstrate the proposed method and show that it can generate
nicely the spiral tool path or contour-parallel tool path on the nonzero genus mesh surface and also can
guarantee the smooth change of tool orientation.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Triangularmesh is commonly used in the fields ofNCmachining
and rapid prototyping, etc., especially after the STL format has
become a de facto standard data input in many commercial
CAD/CAM system [1]. Compared with the parametric model,
triangular mesh is more flexible to approximate the sculptured
surface with complex shapes and easy of gouge/collision checking
in NC machining. However, triangular mesh machining is still
confronted with many difficulties due to the lack of the feasible
tool path methods. At present, most existing tool path generation
methods are only suitable to the parametric surface, and as a
result, iso-planar tool path, which is obtained by slicing the mesh
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model by using a series of parallel planes, is sometimes the first
choice for machining the triangular mesh even at the expense
of machining quality and efficiency [2,3]. Though iso-planar path
method is simple and robust, it has inherently the disadvantage of
the excessive short paths resulted from the irregular boundaries
which can usually increase the number of interruptions or
rapid traversals during the machining process and decrease the
machining efficiency [4], especially when machining the nonzero
genus triangular mesh surface. Actually, in NC machining of the
sculptured surfaces, the surfaces with holes, concave cavities or
convex platforms that all can be viewed as nonzero genus surfaces
are being more widely confronted than before. Particularly, in
industries of consumer products, automotive and aerospace, etc.
when machining a complex part on NC machine tool, tool path
is often conducted on a nonzero genus surface. To realize high
efficiency machining of the triangular mesh surface of this type,
a flexible and efficient tool path, which includes continuous
and smooth tool trajectory (also referred to as CC path) and
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gradually changing tool orientation that can improve significantly
the kinematic and dynamic performance of 5-axis machine, is
desired and is also the objective of this paper. In the context that
follows, some background and past works will be first reviewed
on tool trajectory planning and tool orientation optimization for
5-axis machining of the triangular mesh surface.

1.1. Tool trajectory planning

To enrich the path patterns suitable for the triangular mesh
machining and improve the machining efficiency, some different
strategies of planning tool trajectory have been proposed. Kim
et al. [5] gave a cutter location (CL) surface deformation-based
method. This method deforms the CL surface to a new surface and
then inversely maps the curves obtained by slicing the surface into
iso-scallop tool path. After extending the concepts of the guide
plane and drive surface, Lee et al. [6] also obtained iso-scallop tool
path using a series of planes driven by the side-steps to slice the
CL surface. An iso-parameter tool path planning method on the
triangular mesh is proposed by Sun et al. [7]. On the basis of this
work, boundary-conformed and contour-parallel path methods
have been also developed sequentially by Sun et al. [8,9] by means
of the conformal map. Based on the built mapping relationship
between the surface to be machined and 2D mapping domain,
the complicated task of generating tool path is reduced from the
surface to a plane so that the geometry computation related to tool
path planning is greatly simplified and tool trajectories of different
patterns can be designed conveniently. In the following sections,
new spiral and contour-parallel tool trajectories methods which
also benefit from this idea will be presented in detail.

Recently, some notable works have been also done for
triangular mesh machining due to the increasing requirements
in the real industry applications. Bolaños et al. [10] proposed
a method for generating three-axis tool path on a sculptured
surface represented by the triangular mesh, which focuses mainly
on construction of the mesh offsets. Their method avoids the
requirement for the topology of triangular mesh when offsetting
the triangular mesh, thus speeding up the tool path generation.
In the tool-adaptive offset tool path generation method proposed
by Kout and Müller [11], the direction- and contour-parallel tool
paths are generated as a family of iso-curves of an anisotropic
distance function of a seed curve on the triangular mesh. Their
method is based on an implicit path representation with emphasis
on metric tensor for the adaptation of the scallop height or path
interval, and the central work is to improve the path adaptation to
various production processes, such as milling and spray coating.
Zhang and Tang [12] developed an efficient greedy strategy for
5-axis tool path generation on a dense triangular mesh. In their
method, the kinematic characteristics of the machine tool are
considered, and the cutting strip width and themaximum feedrate
at each mesh vertex are analyzed. The sequence of CC points is
then determined using a greedy searching strategy from the mesh
vertices. The generated tool paths can increase the efficiency of the
finalmachining, but the resulting path patterns are uncontrollable.

The ultimate goal of tool path planning is to fulfill themachining
requirements with the most suitable tool path pattern in an
acceptable machining time. As Lee pointed out in [13], the best
possible way to machine a sculptured surface would be to do in a
continuous fashion, reducing the number of interruptions or rapid
traversals during the machining operation. Zhang and Tang also
mentioned in their conclusion [12], in 5-axis machining, especially
in the stage of finishmachining, smooth tool path patternswithout
sharp turning, such as the spiral path, are usually desirable. To
generate the spiral tool paths for cutting the triangular mesh,
Makhanov and Ivanenko [14] adopted grid generation technique
in the tool path optimization to construct the spiral tool paths
embedded into the zigzag tool paths on the complex surface. By the
conformal map, Sun et al. [15] proposed a spiral cutting strategy
which can realize cutting of mesh surface without tool retractions.
In [16], Hernández et al. also presented a spiral tool path generation
method by the non-deterministic technique. In their method, the
first 2D profile is created by projecting the part boundary on the
z-plane and offset continuously toward inside, subsequently a 2D
spiral path is constructed as a diagonal curve between two adjacent
parallel profiles which is then projected onto the triangular mesh
to form the spiral tool path. However, these methods above are
only applicable to the genus-0 mesh surface and their extensions
to the spiral tool path on the nonzero genus triangular mesh are
not obvious. By far, smooth tool path, such as spiral tool path,
method on the mesh surface with nonzero genus has not been still
sufficiently addressed.

1.2. Tool orientation optimization

Tool orientation optimization is usually performed by optimiz-
ing the two angles, i.e. tilt angle α and yaw angle β , that define the
tool orientation in 5-axis tool path. By far,most of existingmethods
of determining tool orientation are focused mainly on eliminating
the local gouging and global collision in 5-axis machining, and the
state of the art review can be referred to [17]. In addition, some
works attempt to optimize the tool orientation at each CC point by
matching the curvatures of the cutter swept envelope surface and
the part surface [18],maximizing themachining stripwidth [19] or
the material removal volume [20], minimizing the deflection cut-
ting force [21] and considering process mechanics [22], etc. Since
these methods optimize the tool orientation only at the vicinity
of CC point, sometimes in order to reach the above optimal ob-
jectives or to avoid the local gouging and the obstacles, tool has
to make a dramatic change in its tool orientation along CC path.
Such an extreme change is not allowed in realmachining due to the
physical limitations such as the kinematical capacities of machine
tools [23]. Thus,when optimizing the tool orientation, smooth con-
tinuous changes of tool orientation must be taken into account.

Initially, tool orientation smoothing is conducted in part
coordinate system (PCS). For example, in the method proposed by
Morishige et al. [24], 3D C-space which describes precisely the tool
orientations without collision is first constructed in PCS and then
a smoother curve in the 3D C-space is defined to the machining
conditions to avoid the drastic angle changes. Jun et al. [25]
also proposed a method based on C-space. Their method uses
both forward and backward searching to find two paths from the
boundaries of the feasible C-space region and the one with smaller
change of angle is taken as the smooth tool orientations. Lauwers
et al. [26] controlled the drastic changes of tool orientation by
limiting the change of angle per unit distance. Wang and Tang [27]
took into account the angular velocity limitation of tool and first
generated the gouge-free and angular-velocity-compliant five-
axis tool orientation, though also in PCS. To guarantee a constant
cutting speed of tool edge, Farouki and Li [28] and Han [29]
proposed, respectively, the methods optimizing tool orientation
which can minimize the actuation of the rotary axes that orient
the part relative to the tool. All the above works are done with
respect to PCS, owing to the nonlinearity of the inverse kinematics
(IK) from PCS to machine coordinate system (MCS), smooth tool
orientation in PCS does not necessarily corresponds to smooth
rotary axis movement in MCS, thus sometimes heavy dynamic
loading on the rotary axes of 5-axis machine tools can occur yet,
such as severe angular velocity and angular acceleration which are
imposed on the A, B or C axis of a specific 5-axis machine tool [30].

It has been confirmed by Castagnetti et al. [31] that, the kine-
matic behavior of 5-axis machine tool can be further improved by
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Fig. 1. Tree structure of the mesh surface boundaries. Br_BG denotes a bridge between the outer boundary and the interior boundary, and Br_GG denotes a bridge that
connects two interior boundaries.
smoothing the rotary axis coordinates that define the tool orien-
tation in MCS, in contrast with the methods optimizing the tool
orientation in PCS. In their method [31], the changes of tool ori-
entation in MCS are constrained in a DAO (Domain of Admissible
Orientation) without local gouging and global collision and then a
constrained optimization, which minimizes the angular difference
between two CC points, is developed and solved by the gradient-
based method in Matlab. The method proposed by Lavernhe et al.
in [32] is to optimize the tool orientation under the kinematic con-
strains of machine tool in MCS, which also involves a complicated
constraint optimization. Wang and Tang [23] presented a so called
iso-conic concept, in which a special tool direction is selected such
that the angular velocity and angular acceleration of the A-axis of a
spindle-tiltingmachine is reduced to zero, but it only applies to the
proposed path pattern by them. On the basis of the works [23,27],
Hu and Tang [30] improved further the kinematics and dynamics of
5-axis machining by optimizing workpiece setup and tool orienta-
tion. In their method, as done in [23,31,32], the feasible tool orien-
tation in PCS is first transformed into MCS by IK of 5-axis machine
tool, after that, three objectives ofminimizing angular acceleration
constrained by feasible tool orientation, are presented and then are
solved by the constraint optimization function inMatlab. It is noted
that, the tool orientation optimization constrained by the machin-
ing interference or other limitations is not a trivial issue. Heavy
computational time and less robustness are both the problems that
the algorithms have to face. Also, themachine components, surface
shapes and obstacles, etc. appear probably in various forms so that
the feasible tool orientation region will has complex shape and ir-
regular boundaries [33] which lead to that the constraints are diffi-
cult to be expressed analytically. In the situation, it is often not easy
to solve the constrained optimization and even produce a proper
initial solution to ensure the convergence to the optimization.

Decoupling the optimization problem solving from the con-
straints, as done by Ho et al. [34], may be an effective method to
solve the above problems. The initial representative tool orienta-
tions at crucial areas are assigned and then the tool orientations
at general areas are obtained by using the smoothing method to
join those representative tool orientations. Of course, the machin-
ing interferences of the new generated tool orientations need to
be checked. Compared with the complicated constraint optimiza-
tion process, the idea of first smoothing and then checking is more
simple and clear. Although the proposedmethod is similar in spirit
with Ho’s method, it is an overall least-squared optimization that
performs directly on the rotary axis coordinates in MCS, not a lo-
cally linear interpolation between two assigned tool orientations
in PCS as [34], so the proposed optimization model and solving
method is quite different.

1.3. Contributions and organization of the paper

In this paper, a new method which can nicely generate smooth
spiral or contour-parallel tool trajectory on the triangular mesh
with nonzero genus is first proposed. This method reduces the
complicated task of generating tool path on the surface to the
simple straight line planning on the plane and derives the formula
of calculating the parameter increment for guide line such that the
path interval can be limited strictly as well as the scallop height.
Themodel of tool orientation optimization is also proposed, which
is performed by smoothing directly the rotary axis coordinates
in MCS, not the tool orientation traditionally in PCS, to minimize
the angular velocity and angular acceleration in 5-axis machining
and improve the kinematics and dynamics performance of 5-axis
machine tool.

This paper is organized as follows. The genus-0 mesh surface
construction, the basic theory of conformal map and its realization
are first discussed respectively in Sections 2 and 3. Section 4
presents the methods of designing the path guide line and
calculating its parameter increment, then CC path is generated in
Section 5. Tool orientation is optimized subsequently in Section 6.
Section 7 discusses the experiments. The concluding remarks and
the future works are given in Section 8.

2. Construction of genus-0 mesh surface

In the proposed method, the nonzero genus mesh surface
needs to be first transformed into a simply-connected surface by
introducing a concept of branch cut in the physical region such
that the following conformal mapping which applies to the genus-
0 mesh surface can be used to generate the spiral or contour-
parallel tool paths. In pocket machining, we have already noticed
that PowerMill R⃝ and [35] adopt the line to bridge the islands and
the outer boundary, however our bridge is constructed on the
physical surface and the bridging algorithm is also different. Here,
we assume that the outer and interior boundaries of mesh surface
have been stored in a boundary set in which the 0th element is
the outer boundary in the counterclockwise direction and the other
elements are the interior boundaries in the clockwise direction, as
shown in Fig. 1.

2.1. Tree structure of the boundaries

The branch cut in the physical region is realized by constructing
the branch bridges between the outer boundary and one interior
boundary and between the interior boundaries. The basic require-
ment for constructing the bridges is that only one interior bound-
ary can be connected to the outer boundary and the other bridges
are constructed between the interior boundaries. According to this
rule, the outer and interior boundaries of the mesh surface can be
well organized using a tree structure as shown in Fig. 1. This layout
begins with the outer boundary C0, called the root node of the tree
structure. Its child node can be specified by the interactive oper-
ation from the interior boundaries or select one interior boundary
which canmaximize orminimize the distance from C0. Specially, if
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Fig. 2. Bridge curve obtained by slicing the machined surface.

the number of the interior boundaries (or holes) is more than two,
all parent nodes, except the root node, have the equal opportunity
to be linked to one potential interior boundary. Right of Fig. 1 gives
the tree structure of left boundaries.

2.2. Constructing bridge

According to the above tree structure, it is easy to set a bridge
between two nodes. For the convenience of explanation, the
definition of the bridge and its data structure is first given as
follows.

Definition 1. A bridge is a PS (point-sequence) curve on the
machined surfaces that connects the parent node and its child node
and is stored in thedata structureOBridge {Bcurve1, Bcurve2, Pset}.

In OBridge, Bcurve1 and Bcurve2 are the indices of two nodes
connected by the bridge, at the same time they also determine
the direction of the bridge which is from Bcurve1 to Bcurve2,
and Pset stores sequentially the bridge points according to this
direction. According to two end points of the bridge, the bridge can
be constructed by slicing the mesh surface using a plane through
these two end points by the following method.

2.2.1. Calculating intersection point
As shown in Fig. 2, no and ng are the normal of mesh surface

at the end points of bridge, po and pg . According to the geometry
relationship shown in Fig. 2, the equation of the slicing plane can
be written as
(p − po) · nP = 0
nP = nOG × nA

(1)

wherep is a point on the slicing plane,nP is the normal of the slicing
plane,nA = (pg−p0)/∥pg−p0∥, andnOG = (no+ng)/∥no+ng∥. To
calculate conveniently the intersection of the slicing plane and an
edge of the triangularmesh, the line equation of the edge is given in
the form of vector p = ps + t(pe −ps)where ps and pe are the start
point and the end point of the edge, respectively, then substituting
it for p in Eq. (1) can obtain the intersection of the slicing plane and
the edge:

p =
(po − ps) · nP

(pe − ps) · nP
(pe − ps)+ ps. (2)

2.2.2. Tracing bridge point
The process of calculating the bridge can start from arbitrary

one of its two end points, the subsequent points of the bridge can
be efficiently calculated using Eq. (2). To speed up this process, the
topology of the mesh surface is combined in the calculation of the
bridge, so that not all edges are required to intersect the slicing
plane. In this process, two cases for the intersection need to be
addressed.
Fig. 3. Bridges, boundary curve segments divided by bridges and boundary curves
connection.

Case 1. If the calculated point of bridge is just a vertex of mesh, for
example, po and pv in Fig. 2, then the next point of bridge
needs to be calculated by Eq. (2) from the edge set of the
1-ring neighbor triangles of this vertex.

Case 2. If the calculated point of bridge is on an edge of mesh
(exclude the end points of this edge), for example, pe in
Fig. 2, the next point of bridge must be on the other edges
of the triangle which shares this edge and does not contain
the previous bridge point.

The obtained intersection points are stored sequentially in
OBridge.Pset. When one boundary curve is bridged to another one,
two bridges with opposite directions are created, one bridge in
and the other out, which are then used to connect the boundary
curves. For a bridge, its opposite bridge can be easily created by
exchanging the values of BcIndex1 and BcIndex2 and reversing the
storage order of the bridge points in Pset.

2.3. Connecting boundary curves

From Fig. 3, it is seen that the boundaries are cut by the bridges
into segments and each segment is enclosedby apair of bridgewith
opposite directions, the inward bridge and the outward bridge.
These segments and bridgeswill be used to connect into a PS curve,
namely the boundary of the new genus-0 mesh surface. Before
connecting, the data structure of the segment is first defined.

Definition 2. OSegment {Bcurve, Epoint1, Epoint2}.

In OSegment, Bcurve is the index of the boundary curve to
which the segment belongs, Epoint1 and Epoint2 is the start point
and the end point of this segment along the direction of the
boundary curve. Using the three parameters, the inward bridge
and the outward bridge of the segment can be efficiently identified
from the bridge set.

The boundary curve connecting process can start fromanypoint
in the outer boundary and then proceed along the direction of
the current boundary. If an end point of a bridge is reached, the
PS curve turns into its child node connected by this bridge and
continues the traverse along the boundary of this node. If the
node being traversed has also a child node, its child node will be
first traversed. According to this rule, i.e., the child node is first
traversed, all boundary curves can be connected rapidly as a whole
to form a PS curve without any traverse breaks. This PS curve
becomes the only outer boundary of the new mesh surface with
genus-0. For example, the outer and interior boundaries in Fig. 3
can be connected into a PS curve by using thismethod, p0 → p1 →

Br1 → Cs1 → Br2 → Cs4 → Br3 → C3 → Br4 → Cs5 → Br5 →

Cs2 → Br6 → C4 → Br7 → Cs3 → Br8 → p1 → p0.
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3. Boundary-conforming mapping

The purpose of introducing boundary-conforming mapping is
to transform the genus-0 mesh surface obtained in Section 2 into
a rectangle region so that the operation of generating tool path
can be performed conveniently on the rectangle regardless of the
surface boundary shape.

3.1. Mathematical model

Here, for integrality of the method, the essential theory of
boundary-conforming mapping is first reviewed briefly. Mathe-
matically, given a physical surface Ω and a planar region Ω ′, the
unique mapping ψ: Ω → Ω ′ that satisfies the following Laplace
equation [36]
1ψ = 0 (3)
subject to the Dirichlet boundary condition b : ∂Ω → ∂Ω ′, is
called as harmonic mapping, also a bijective boundary mapping,
where∆ is Laplacian andψ is a mapping over the physical surface
Ω to the planar regionΩ ′.

For the discrete triangular mesh, boundary-conforming map-
ping can be realized by constructing a piece-wise linear approxi-
mation. Assume that the mesh surface composes of many elastic,
triangular rubber sheets sewn together along their edges. In the
process of mapping it into a rectangle, the produced deforming en-
ergy, also called the harmonic energy [36], can be calculated by

Φ =


{pi,pj}∈E(Ω)

wi,j
ψ(pi)− ψ(pj)

2
=


{qi,qj}∈E(Ω ′)

wi,j
qi − qj

2 (4)

where E(Ω), E(Ω ′) denotes the set of edges of Ω and Ω ′,
respectively, qi is the corresponding point of pi in Ω ′, and wi,j
serves as elastic coefficient of the edge {pi, pj}. Now, boundary-
conformingmapping becomes tominimize Eq. (4) by arranging the
positions of all vertices ofΩ inΩ ′.

3.2. Solving method

In this paper, boundary-conformingmapping is realized by two
steps, namely first specifying the planar region boundary and then
arranging the positions of the interior vertices of Ω in Ω ′. In the
first step, in order to map the new boundary obtained in Section 2
into a rectangle, it is first divided into four segments which are
consistent with the four sides of the rectangle, as shown in Fig. 4.
Assume that the lengths of the four boundary segments are L1, L2, L3
and L4, then the lower left point and the upper right point, i.e. point
1′ and point 3′ in Fig. 4, are set

point 1′
⇒ (0, 0) and point 3′

⇒


L1 + L3

2
,
L2 + L4

2


. (5)

Then, the boundary points of each segment can be mapped
onto the rectangle boundary according to the chord length
parameterization. Taking segment 1–2 in Fig. 4 as an example, the
boundary points on it can be mapped onto the bottom side of the
rectangle by

b : pi →


τi ·

L1 + L3
2

, 0

, pi ∈ the first segment of ∂Ω (6)

where τi is the normalized chord parameter with τ0 = 0 and for
the remaining points on the first segment of ∂Ω ,

τi =

i
j=1

pj − pj−1


L1
(7)
and the remaining three segments of ∂Ω can be processedwith the
same way.

Now, the rest of the task, i.e. the second step, is to distribute the
positions of the interior vertices ofΩ inΩ ′ to minimize Eq. (4) by
solving the following linear system.

∂Φ

∂q
= 0 ⇒


A1
r×rA

2
r×(n−r)

A3
(n−r)×n

 
XB
r×2

X I
(n−r)×2


= 0 (8)

where A1, A2, A3 are the coefficient matrices of ∂E/∂q = 0, and
XB

= [q1, . . . , qr ]
T, X I

= [qr+1 , . . . , qn]
T. Since the boundary

mapping, b : ∂Ω → ∂Ω ′, is known, the rows associated with the
boundary points can be moved to the right side of Eq. (8), and then
it can be rewritten as

qi


qj∈N(qi)

wi,j −


qj∈S(qi)


wi,jqj


=


qj∈B(qi)


wi,jqj


,

i = r + 1, . . . , n (9)

where qi = [ui, vi]
T,N(qi) is the 1-ring neighbor vertices of qi, S(qi)

is the set of vertex in N(qi) except for the vertices in ∂Ω ′, and B(qi)
the set of vertex simultaneously in both N(qi) and ∂Ω ′. Eq. (9) is
solved for u and v coordinates of the unknown interior vertices in
Ω ′, respectively.

4. Guide line planning

4.1. Basic idea of designing guide line

Generating tool paths on the nonzero genus mesh surface is
inspired by the cylindrical helix and cylindrical circle. As shown in
Fig. 5, if cutting a cylinder along one of its rectilinear generatrix, the
helix becomes a set of parallel straight lines which keep a constant
angle with the u-axis on the rectangle and the cylindrical circles
become a set of u-parameter lines. Based on this observation,
comparing Fig. 4with Fig. 5, it is seen that if themachined surface’s
outer boundary and interior boundary, shown in yellow and green
respectively in Fig. 4, are viewed as the bottom and top circles of
the cylinder respectively in Fig. 5, then the cylindrical circle and
cylindrical helix can be extended to the machined surface with
nonzero genus to become the contour-parallel tool path and the
spiral tool path. Their guide lines on this rectangle are respectively
u-parameter lines and a set of parallel lines which keep a constant
angle with the u-axis.

4.2. Guide line and its parameter increment

According to Section 4.1, the guide lines for contour-parallel
tool path and spiral tool path can be presented by the following
equations. Iso-parameter guide lines:

vi = vsi = i1δ, vsi ≤
L2 + L4

2
(10)

and spiral guide lines:
vsi = i1δ, vsi ≤

L2 + L4
2

vi = vsi +
21δ

L1 + L3
u, 0 ≤ u ≤

L1 + L3
2

(11)

where 1δ is the parameter increment for the guide line and vsi is
the start point of the ith guide line at u = 0. For the convenience of
tool path calculation, 1δ is usually taken as a constant value. But,
due to the nonlinearity of themapping between the surface and the
planar region, a fixed parameter increment does not necessarily
correspond to a constant path interval as well as the scallop
height. To generate a desired tool path, the parameter increment
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Fig. 4. Boundary-conforming mapping between the machined surface and the planar region. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 5. The basic idea of generating tool paths on the nonzero genus surface. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
for the guide line has to be strictly limited so that the scallop
height between two adjacent paths does not exceed themachining
requirement hs. According to Appendix, the parameter increment
at CC point is calculated by
1u =

Lw1vf
∥ru∥21ub1vf − ∥ru∥21vb1uf

1v =
−Lw1uf

∥rv∥21ub1vf − ∥rv∥21vb1uf
.

(12)

The final parameter increment,1δ, for the guide line is selected as
the minimum parameter increment:

1δ = min {1v1, . . . ,1vn} (13)

which is thenused to plan the guide lines in the rectangle according
to Eq. (10) or (11).

5. CC path generation

In most CAD/CAM systems, the approximation error of the
triangularmesh to the nominal surface can be specified by the user
such that a desirable triangulation to be adequate forNCmachining
is obtained conveniently. If the approximation error is equal to
or less than an allowable chordal error for the step length, the
interpolation tolerance of the CCpath can be controlled reasonably.
In this scenario, only the intersections qi(ui, vi) of the guide lines
and the planar mesh edges are selected to calculate the CC points
pi on the nominal surface by

pi = ψ−1
:

Ω ′

→ Ω

qi (14)

where ψ−1: Ω ′
→ Ω is the inverse mapping of ψ . Using this

way, the accuracy and smoothness of the machined surface are
subjected to be compromised to some extent since CC points are
not necessarily on the nominal surface although they are exactly
on the edges of the mesh surface. To avoid this problem, a method
calculating CC points is proposed, which requires reconstructing
the curve related to the edge instead of using the edge itself. This
cannot only approximate better the local nominal surface, which
can reduce the machining error, but also increase the flexibility to
add easily the smoothing constraint.

5.1. Calculating CC point

For an edge {pi, pi+1} of the triangular mesh, its approximated
curve can be described as a cubic Bézier curve

r(t) =

3
j=0

vjBj,3(t), 0 ≤ t ≤ 1 (15)

where Bj,3(t) is a cubic Bernstein polynomial. If given the normal
vectors associatedwith two end points of this edge, ni and ni+1, the
point normal interpolationmethod [37] can be used to fit this edge
curve whose control vertices {vj} are as follows

v0 = pi

v1 =
2pi + pi+1 − 2ηni − µn′

i+1

3

v2 =
2pi+1 + pi − 2µn′

i+1 − ηni

3
v3 = pi+1

and



η = −
2b · ni + ab · n′

i+1

4 − a2

µ = −
2b · n′

i+1 + ab · ni

4 − a2
a = ni · n′

i+1
b = pi+1 − pi

(16)

where n′

i+1 is the unit vector of the projection of ni+1 on the normal
section, as shown in Fig. 6. Assume the intersection of the guide
line and edge {qi, qi+1} of the planar mesh is (u0, v0), then the
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Fig. 6. Edge curve construction using point normal interpolation.
Fig. 7. CC point on the machined surface.

parameter value t0 of CC point in this edge Bézier curve can be
calculated by

t0 =


(ui − u0)2 + (vi − v0)2

(ui+1 − ui)2 + (vi+1 − vi)2
. (17)

Submitting t0 into Eq. (15) can obtain the CC point on the nominal
surface.

5.2. Calculating normal of CC point

After obtaining all CC points, the discrete CC path can be
replaced with a twice continuously differentiable spline curve that
is fit to the discrete path. It not only reduces theNC file size, but also
smoothens the discrete CC path. By assigning a parameter value for
each CC point using a quasi-arc length parameterization, the CC
points can be fitted into a cubic B-spline curve.

c(σ ) =

n
s=0

dsNs,3(σ ), 0 ≤ σ ≤ 1 (18)

where {ds} are the control points of B-spline curve and Ns,3(σ ) is
the normalized B-spline basis. From Fig. 7, it is seen that the edge
curve and the path curve both pass through the obtained CC point
c . According to this condition, the normal at the CC point can be
determined by

n =
r ′(t)× c ′(σ )

∥r ′(t)× c ′(σ )∥
. (19)

5.3. Calculating path interval

Path interval, which corresponds to the parameter increment in
the rectangle, is defined as the distance between two adjacent CC
points and is expressed as

Lw =


8hsrρ
ρ + r

, hs ≪ ρ (20)
where hs is the scallop height, r is the cutter radius for a ball nose
cutter or the effective cutting radius for a flatend cutters, and ρ
is the radius of curvature of the machined surface in the plane
perpendicular to feed direction, with a positive value for a convex
surface and a negative value for a concave surface. From Fig. 7, it is
seen that on the right-hand side of the CC path, the normal plane,
which comprised of the path interval direction b and the normal
n at the CC point, must intersect one of the other two edges of the
triangle onwhich one edge the CC point is located. Assume that the
intersection point of the normal plane and the edge curve is c0, the
normal curvature along the c0 − c direction can be approximated
by [38]

k =
1
ρ

=
2 (c(σ )− c0) · n
∥c(σ )− c0∥2 . (21)

Submitting ρ into Eq. (20) can obtain the path interval Lw .

6. Tool orientation optimization

Tool orientation optimization not only requires guaranteeing
interference-free in 5-axis machining, but also must be able to
minimize the dynamic loading on the rotary axes of machine tool
and avoid the drastic change in the tool orientation between two
neighboring CC points to improve the kinematic and dynamic
performance of 5-axis NC machine tool. In the following context,
a simple and efficient method is investigated to optimize the tool
orientations along the tool path.

6.1. Procedures for tool orientation optimization

As shown in the dashed block in Fig. 8, the proposed method
of optimizing tool orientation consists mainly of three steps. The
first step is to assign the feasible tool orientations to the critical CC
points. Generally, the critical points should include the first and
the end points of the tool path, the points entering and leaving
the interference area, and a point in the interference area, as
shown in Fig. 9. Before processing this step, the feasible space of
the tool orientation has to be constructed in advance for 5-axis
machining without interference, which can be completed by some
famous interference avoidance algorithms described in [25,27].
The second step which is also the emphasis of discussion in
this section is to calculate the smooth tool orientations at other
CC points from the assigned tool orientations by the proposed
algorithm of optimizing tool orientation. Next, the third step is
to check if the optimized tool orientation at the noncritical CC
point is in its feasible space or not. If interferences appear, the tool
orientation at the CC point needs be reassigned from its feasible
space, and back to the second step to continue smoothing the tool
orientation. The above procedures are performed repeatedly until
all tool orientations pass the interference check. From the above
procedures, it is seen that ourmethod involvesmainly interference
check and tool orientation optimization. Since the former has been
studied extensively and many effective algorithms which are easy
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Fig. 8. The procedures for tool orientation optimization.

Fig. 9. Critical tool orientations.

to check the interference have been proposed, it is not included in
this paper, the discussion is focused on how to optimize the tool
orientations at these general CC points according to those assigned
tool orientations.

6.2. Inverse kinematics of 5-axis machine tool

Different from the traditional methods which optimize the
tool orientation in PCS, the proposed method works directly on
the rotary axis coordinate in MCS. To do this, the assigned tool
orientation at the critical CC point needs to be transformed into
the rotary axis order in MCS by the IK of 5-axis machine tool. Here
we focus exclusively on a 5-axis machine tool of dual rotary heads
type which IK is shown in Fig. 10.

In MCS, tool orientation can be represented by

A(m) =

a(m)x , a(m)y , a(m)z

T
=

sinΦC sinΦA,− cosΦC sinΦA, cosΦAT (22)

where ΦA and ΦC are respectively the angles of A and C axis. In
PCS, tool orientation is expressed as

A(w) =

a(w)x , a(w)y , a(w)z

T
= T (s) sinα(s) cosβ(s)

+ B(s) sinα(s) sinβ(s)+ N(s) cosα(s). (23)
In Eq. (23), α(s) and β(s) are the tilt angle and the yaw angle of
the tool in LCS, respectively, T (s) is the feed direction, N(s) is the
normal of the surface at CC point O(L) and B(s) is the cross product
of T (s) and N(s). For the dual rotary heads type machine tool, MCS
and PCShave the same initial direction. According to this condition,
we have
sinΦC sinΦA,− cosΦC sinΦA, cosΦAT
=

a(w)x , a(w)y , a(w)z

T
. (24)

Regardless of the singularity of the solutions, of course, which is
also an important topic for NC machining; the inverse solutions of
Eq. (24) can be calculated by
ΦA

= arccos(a(w)z )

ΦC
= atan2(a(w)x , a(w)y ).

(25)

6.3. Tool orientation optimization in MCS

Generally, it is difficult to optimize simultaneously the two
rotary axes. But, if A-axis and C-axis can be considered individually
in the optimization, this problem can be simplified. Based on this
idea, the models of minimizing the angular velocities and angular
accelerations of the rotary axes will be discussed respectively in
detail. Here, it is assumed that the cutter moves along the CC path
with a constant feedrate f such that the arc length L between
two neighboring CC points is proportional to the machining
time t . For the convenience of the calculation, the numerical
difference is adopted to approximate the angular velocity and
angular acceleration instead of using the complicated first and
second derivatives of Eq. (25).

6.3.1. Model of minimizing the angular velocity
In the section, only the angular velocities of two rotary axes are

considered and A-axis and C-axis are processed individually. For
A-axis, its angular velocity can be approximated by the numerical
difference as

ωA =
ΦA

i+1 − ΦA
i

Li
f . (26)

To improve the kinematics and dynamics performance of machine
tool, it is desirable to decrease as much as possible the change
of A-axis rotary angle between two neighboring points. Thus, the
optimization objective function minimizing the changes ofΦA can
be written as

Θ =


i


ΦA

i+1 − ΦA
i

Li
f

2

. (27)

The condition that the least-square (LS) problem has the extremes
is ∂Θ/∂ΦA

i = 0. Omitting the specific derivation, ∂Θ/∂ΦA
i = 0

can be restated as

∂Θ

∂ΦA
i

= L2i−1Φ
A
i+1 − (L2i + L2i−1)Φ

A
i + L2i Φ

A
i−1 = 0 (28)

Eq. (28) has n unknowns, ΦA
i , i = 1, 2, . . . , n, but there are only

n−2 equations. For the optimization problem having a non-trivial
solution, some of ΦA

i must be set to a priori values. Once the tool
orientations at m critical CC points are pinned, Eq. (28) can be
rewritten in form of matrix as

MA,ω8
A,ω
f = BA,ω (29)

where MA,ω is a (n − m) × (n − m) coefficient matrix, BA,ω and
8

A,ω
f are vectors consisting respectively ofm pinnedΦA

i and n−m
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Fig. 10. 5-axis machine tool with dual rotary heads and kinematics transformation.
unknown, ΦA
i . In the same way, for C-axis, we can also derive a

similar matrix equation as follows

MC,ω8
C,ω
f = BC,ω. (30)

The solution of the minimization problem (Eqs. (29) and (30)) can
be given by the following unified formula

8f = GT(GGT)−1(HTH)HTB (31)

where M represents MA,ω or MC,ω and M = GH where G is a
(n − m) × s matrix and H is a s × (n − m) matrix and they both
have rank s.

6.3.2. Model of minimizing the angular acceleration
The angular acceleration of A-axis can be approximated by the

numerical difference as

aA = 2f 2


ΦA
i+1 − ΦA

i

Qi−1Li


−


ΦA

i − ΦA
i−1

Qi−1Li−1


(32)

where Qi−1 = Li + Li−1. Here, it has been assumed that the dy-
namics of A-axis is described only by the angular acceleration, then
for A-axis the least-square objective function, whichminimizes the
change of the angular acceleration of A-axis, can be written as

Ω =


i


2f 2


ΦA

i+1 − ΦA
i

Qi−1Li


−


ΦA

i − ΦA
i−1

Qi−1Li−1

2

. (33)

The condition, ∂Ω/∂ΦA
i = 0, that Eq. (33) can achieve the

extremes, can be derived as
∂Ω

∂ΦA
i

= Ki−2Φ
A
i−2 + Ki−1Φ

A
i−1

+ KiΦ
A
i + Ki+1Φ

A
i+1 + Ki+2Φ

A
i+2 (34)

where


Ki−2 = A
Ki−1 = −A − B − C
Ki = B + C + D + E
Ki+1 = −D − E − F
Ki+2 = F

and



A = Q 2
i−2Qi−1Li−2L2i−1Li

B = Q 2
i−2Qi−1Li−2L2i−1Li+1

C = Q 2
i−2Q

2
i Li−2Li−1Li+1

D = Q 2
i−2Q

2
i Li−2LiLi+1

E = Qi−1Q 2
i Li−2L2i Li+1

F = Qi−1Q 2
i Li−1L2i Li+1.

Similar to the processing of angular velocity, Eq. (34) can be also
restated in form of matrix as

MA,α8
A,α
f = BA,α (35)
where MA,α is a (n − m) × (n − m) coefficient matrix, BA,α and
8

A,α
f are vectors consisting respectively ofm pinnedΦA

i and n−m
unknownΦA

i . And for C-axis, we also have

MC,α8
C,α
f = BC,α. (36)

Eqs. (35) and (36) can be solved using the same way as Eq. (31).

7. Experimental results

The methods involved in the paper have been coded in C++
language and implemented on a PC with an Intel 3.4 GHz and
8.0G physical memory. In the following, several examples will be
presented and discussed in detail. All examples are modeled in
Unigraphics NX 7.5 and the surfaces for test are then saved by STL
format. When using our codes to read the STL files, the topological
relations between the elements, such as vertex, edge and facet, are
also constructed and the redundant vertices are removed for the
convenience of the following processing.

7.1. Feasibility of the proposed tool path method

Three tested parts are shown respectively in Figs. 11(a), 12(a)
and 13(a), and the surfaces for test are shown in yellow and have
one genus, two genera and three genera, respectively. According
to the discussion of Section 2, regardless of the genus number,
our method views them as whole, i.e. a new genus, by bridging
the interior boundaries so that the surface to be machined is
homeomorphic topologically to a cylindrical surface, the outer
boundary is corresponding to the bottom circle of the cylinder and
the inner boundary formed by bridging the interior boundaries
to the top circle. According to Sections 4 and 5, the spiral tool
path and the contour-parallel tool path can be easily generated.
The generated spiral paths and contour-parallel paths are shown
in Figs. 11–13. From these figures, it is seen that the generated
paths have no sharp turning and can be conformed to the surface
boundary, thus when the nonzero genus surface needs to be
machined using a smooth and continuous tool path, the proposed
method is feasible and applicable.

7.2. Machining strategy for model with discontinuities

In this example, the tool path planning is conducted on a
compound surface with multi-patches. The test surfaces, shown in
Fig. 14(a), are retrieved from a football model, and for the need of
demonstration a hole is made on the right patch, thus becoming
a genus-one surface. Different from the machined surfaces used
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Fig. 11. Tool paths generated by the proposedmethod on the genus-1surface. (a) The genus-1 surface; (b) Spiral tool paths; (c) Contour-parallel tool paths. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Tool paths generated by the proposedmethodon the genus-2 surface. (a) The genus-2 surface; (b) Spiral tool paths; (c) Contour-parallel tool paths. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Tool paths generated by the proposed method on the genus-3 surface. (a) The genus-3 surface; (b) Spiral tool paths; (c) Contour-parallel tool paths.
Fig. 14. The spiral tool path generation strategy on the model with discontinuities. (a) The model surfaces; (b) Spiral tool paths: the left is the spiral tool paths generated
on the surface without genus by the method in Ref. [15] and the right is the spiral tool paths generated on the genus-1 surface with by the proposed method.
in the above examples, the discontinuities appear on the model
surface, which is also often confronted for the complex model. In
order to realize the high efficiency machining of such model, the
surface patches of different types canbeprocessed individually and
adopt different machining strategy. Since the left patch that has
none holes is a nonzero genus surface, it is suitable to bemachined
by the spiral tool path of Ref. [15], but the proposed method in
this paper is more applicable to machine the right surface patch
with genus-one. Using this machining strategy, the surfaces with
discontinuities, shown in Fig. 14(a), can be machined efficiently
using the spiral tool paths in Fig. 14(b).

7.3. Machining and comparisons of tool paths

In order to evaluate the benefits bought by our method, the
comparisons and real machining experiments of three kinds of
tool paths are carried out on the genus-2 surface in Fig. 15(a) and
the real mouse surface in Fig. 16(a). In addition to our tool path,
denoted by Proposed in Table 2, the other two kinds of tool paths
are also representative, which are the contour-parallel tool path
used widely in practice and the spiral tool path, similar to ours,
generated by the famous UG/CAM software and are denoted by CP
path and SP path in Table 2, respectively. The parameters used in
tool path generation and real machining are listed in Table 1.

The generated three kinds of tool paths on the genus-2 surface
are shown respectively in Fig. 15(b), (c) and (d), and Fig. 16(b), (c)
and (d) give the tool paths on the mouse surface. Tool paths are
first compared by analyzing the characteristics closely associated
with the kinematics performance of tool path, such as rapid
traversal or interruption, lifting cutter, path linking and sharp
corner. From Table 2, it is seen that the proposed tool path holds
the best performance and nicely conforms to the criterion of the
high performance tool path mentioned in [12,13], i.e., the least
number of interruptions or rapid traversals and smooth continuous
tool paths without sharp corners. This point is also observed in
Figs. 15(d) and 16(d).

The actual kinematic performance of tool path, in this
experiment, is chartered by the real feed rate and the loss of feed
rate which are defined, respectively, as follows

factual =
Length of tool path

Actual machining time
(37)

1floss =
factual − fprogrammed

fprogrammed
× 100 (38)
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Fig. 15. Three kinds of tool paths on a genus-2 surface; (a) The genus-2 model surface for test. (b) Contour-parallel tool paths generated by UG/CAM; (c) Spiral tool paths
generated by UG/CAM; and (d) Spiral tool paths generated by the proposed method in this paper.
Fig. 16. Three kinds of tool paths on the mouse surfaces; (a) The surfaces of a mouse model for test; (b) Contour-parallel tool paths generated by UG/CAM; (c) Spiral tool
paths generated by UG/CAM; and (d) Spiral tool paths generated by the proposed method in this paper.
Table 1
The parameters of tool path generation and real machining experiments.

Model surface Cutter radius (mm) Scallop height (mm) Tolerance (mm) Spindle speed (rpm) Feed rate (mm/min)

Fig. 15(a) R3 0.200 0.010 3000 300
Fig. 16(a) R1 0.100 0.010 5000 250
where factual is the real feed rate, fprogrammed is the programmed
one and 1floss is the loss of feed rate. It is well known that
excessive path interruptions and sharp corners will cause frequent
decelerations and accelerations when the cutter moves into and
out of such area such that the actual feed rate cannot almost
match the programmed one. This point is also confirmed by our
experiments. From Table 2, it is seen that there are 94 and 24
sharp corners in CP paths on the genus-2 surface in Fig. 15(b) and
the mouse surface in Fig. 16(b), respectively. As expected, these
sharp corners make the cutter difficult to achieve the specified
speed and lead to −7.47% and −3.40% loss of programmed feed
rate, respectively. In SP paths in Figs. 15(c) and 16(c), the path
interruptions are dominant, but the paths entering the cutting
area may be optimized by UG/CAM, they only lead to −3.27% and
−7.04% loss of feed rate although the times of lifting cutter are
up to 94 and 520. In contrast with CP paths and SP paths, the
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Fig. 17. Machining experiments of the genus-2 surface using three kinds of tool paths; (a) Machining of the proposed spiral tool paths; (b) Machining of contour-parallel
tool paths generated by UG/CAM; (c) Machining of spiral tool paths generated by UG/CAM; and (d) The magnified views of the machining areas. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Comparisons of characteristics and machining results of three kinds of tool path.

Model surface Tool path generation
method

Number of
rapid traversal

Number of
lifting

Number of
linking

Number of
sharp corner

Have uncut
material or not

Actual feed rate
(mm/min)

Loss of feed
rate

Fig. 15(a) CP path 1 4 26 92 Y 277.6 −7.47%
SP path 46 94 0 0 N 290.2 −3.27%
Proposed 0 2 0 0 N 298.9 −0.37%

Fig. 16(a) CP path 1 4 22 24 Y 241.5 −3.40%
SP path 259 520 0 0 Y 232.4 −7.04%
Proposed 0 2 0 0 N 249.1 −0.36%
proposed spiral tool paths not only have no sharp corners but
also the changes of its curvature along the generated tool path
are very smooth so that the cutter presents a more continuous,
fast and smooth movement. This has been also confirmed by our
experimental results, in Table 2, that the proposed paths maintain
almost the programmed feed rate in the overall machining.

Sharp corners in CP paths not only decrease the actual feed rate,
but also lead to the occurrence of uncut phenomenon, reducing
the machined surface quality, when the path angle at the sharp
corner reaches the uncut condition [9]. From Fig. 17(b) and (d)
and Fig. 18(b) and (d), it is seen that the uncut materials occur
at the sharp corner region enclosed by the blue line. Uncut is the
inherent drawback of CP path and is difficult to be removed by
itself. Under the case, the transition arcs or other smooth curves
have to be added into CP paths to remove the uncut material
and round the sharp corners. For SP paths in Fig. 15(c), though
the paths cutting into and out of the machined area have already
optimized by UG/CAM, the lifting cutter marks at these areas are
still apparent, as shown in the blow local magnified view enclosed
by green line in Fig. 17(d). Also, it is noted that, when using SP
paths in Fig. 16(c) to machine the mouse surface, the marks of
lifting cutter and the uncut materials remain on the machined
surface at the same time, as shown in the blow localmagnified view
enclosed by greed line in Fig. 18(d). These uncut materials on the
machined mouse surface are resulted from a distinct disadvantage
of UG/CAM’s spiral tool path generationmethod. Since themethod
is to project the Archimedean spiral onto the designed surface
to generate the spiral paths, when the slope of surface increase,
the distance between two adjacent paths will increase. In our
experiments, the normal of the mouse surface is almost vertical
to the projection direction at some machining area, thus the path
interval between two adjacent paths at these regions are larger
than the specified one. This results in the appearance of uncut
materials. In contrast with CP path and SP path, when using the
proposed spiral tool paths to cut the mouse surface, no uncut
materials remain on the machined surface, which can be observed
from Figs. 17(a) and 18(a). This also indicates the proposedmethod
can gain a better machining quality.

7.4. Effectiveness of tool orientation optimization

This example is used to demonstrate the proposed method
of optimizing tool orientation in Section 6. Fig. 19(a) shows
the traditional tool orientations that only avoid the possible
interferences occurring in 5-axis machining. It is seen, to avoid the
collision between the obstacle and the cutter, the cutter appears
an abrupt swing when being close to the obstacle, which will lead
to sudden increase of angular velocities and angular accelerations
for A-axis and C-axis. In our experiments, the cutter feed rate is
set 500 mm/min. When the cutter closes to the interference area,
the angular velocity and angular acceleration of A-axis suddenly
increase to 1.48 rad/s and 7.95 rad/s2, respectively, subsequently
the drastic fluctuations appear until the cutter avoids the collision
and enters completely the interference area. When the cutter
leaves the interference area, the similar phenomenon appears
again. For C-axis, there is also the same problem. These are fully
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Fig. 18. Machining experiments of the mouse surface using three kinds of tool paths; (a) Machining of the proposed spiral tool paths; (b) Machining of contour-parallel
tool paths generated by UG/CAM; (c) Machining of spiral tool paths generated by UG/CAM; and (d) The magnified views of the machining areas. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 19. Tool orientation optimization. (a) Tool orientation before optimization; (b) Critical tool orientations; (c) Result of tool orientation optimization minimizing the
changes of angular velocity; (d) Result of tool orientation optimization minimizing the changes of angular acceleration.
reflected in Fig. 20. The sudden changes of the angular velocity and
the angular acceleration will lead to a bad dynamic performance
of machine tool and even damage possibly the components of
machine tool.

To improve the dynamics of 5-axis machining, the proposed
method in Section 6 is used to minimize the changes of the
rotation angles of A-axis and C-axis. In our experiments, the
tool orientations at 5 (m = 5) critical CC points, as shown in
Fig. 19(b), are pinned in advance, at which the cutter has to be
guaranteed to be interference-free. The tool orientations at other
CC points are then determined by using the optimization models
in Section 6.3. Fig. 19(c) shows the optimized tool orientations
by using the method described in Section 6.3.1. It can be seen
that the changes of tool orientation after optimization is more
continuous than that before optimization. In spite of this, from
Fig. 20, it is noted that only optimizing the angular velocity cannot
still avoid some small fluctuations of the angular velocity or
the angular acceleration. Tool orientation needs to be smoothed
further by the method given in Section 6.3.2. Fig. 19(d) gives
the optimization result of tool orientation of minimizing the
changes of angular acceleration. Compared with Fig. 19(c), tool
orientation in Fig. 19(d) becomes smoother and is no longer a
simple approximately linear interpolation. Fig. 20 also shows,
after optimizing the angular acceleration, the angular velocity and
angular acceleration of either A-axis or C-axis does not appear a
sudden change, thus improving further the kinematic and dynamic
performance of machine tool. In addition, it is worth noting, since
the proposed method only involves solving a sparse linear system,
the calculation of optimal tool orientation in each step is very
efficient, and for this example, the running times of these two
methods described in Section 6, are both within 0.05 s, which also
demonstrates our algorithm is very efficient.

8. Conclusion and future works

This paper proposes a novel method of generating tool path
for 5-axis machining of the mesh surface with nonzero genus,
including the continuous CC tool path and the smooth tool
orientation. The proposed tool path method reduces the task of
generating the spiral or contour-parallel tool path to the planning
of much simple guide line in a rectangle, thus avoiding the
complicated geometry computation, such as curve offsetting and
self-intersection elimination involved in the traditional methods,
etc. The analytical formula of computing CC point and parameter
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Fig. 20. The optimization results of tool orientation, TTOM stands for traditional tool orientation method, VTOM for angular velocity based tool orientation optimization
method, ATOM for angular acceleration based tool orientation optimization method. (a) Angular velocity of A-axis before and after optimization; (b) Angular velocity of
C-axis before and after optimization; (c) Angular acceleration of A-axis before and after optimization; (d) Angular acceleration of C-axis before and after optimization.
increments for the guide line are first derived on the discrete
mesh. This makes the users can control more easily the machining
accuracy than before. The real machining experiments are also
performed to demonstrate the superiority to other methods.
Another point worth mentioning is a simple and efficient method
of optimizing tool orientation is also proposed which works
directly on the rotary axis coordinate in MCS and can guarantee
the motions of rotary axes of 5-axis machine tool as smooth as
possible and the improvement on the kinematic and dynamic
performance of 5-axis machine tool has been confirmed by the
experimental results. Moreover, since the proposed algorithm only
involves solving a linear equation system, it is also very efficient,
which has been also already demonstrated by our experiments. In
our experiments, it is also found that the benefits of our method
may decrease with the increase of genus and holes distribution
becoming more complicated. Although it can be nicely applicable
to the industrial part like mouse, how to further enhance the
adaptability of our method still needs more researches to be done
in the future works. In addition, the experiment of tool orientation
optimization validates the feasibility of the proposed method, but
the influences of adjusting tool orientation on the motion of three
translational axes, X-, Y - and Z-axis, of machine tool and the
federate and how to reposition the tool according to the optimized
tool orientation are also worth being further explored.
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Appendix. Parameter increment for guide line

Assume ca is the adjacent CC point of the current CC point c ,
then they satisfy the following equation.
(ca(u, v)− c(σ )) · c ′(σ ) = 0
∥ca(u, v)− c(σ )∥ = Lw

(A.1)

where σ = (uc, vc) is the parameter of CC path c(σ ) and Lw is the
path interval. The first equation guarantees that the path interval
direction, b, is perpendicular to the feed direction and the second
one guarantees that the distance between ca and c is equal to the
path interval Lw . ca(u, v) is extended as one-order Taylor series:

ca(u, v) = c(uc, vc)+ ru(uc, vc)1u + rv(uc, vc)1v. (A.2)

With the condition of Eq. (A.2), Eq. (A.1) is rewritten as
(ca(u, v)− c(uc, vc)) · c ′(uc, vc) = 0
(ca(u, v)− c(uc, vc)) · b = Lw

(A.3)

c ′ (σ ) and b are expressed as
c ′(uc, vc) = ru(uc, vc)1uf + rv(uc, vc)1vf
b = ru(uc, vc)1ub + rv(uc, vc)1vb.

(A.4)

It is known that, when the mapping from the mesh surface to the
rectangle is conformal, ru and rv are orthogonal on the surface.
Under this condition, submitting Eqs. (A.2) and (A.4) into Eq. (A.3)
can rewrite Eq. (A.3) as

∥ru∥21uf1u + ∥rv∥21vf1v = 0
∥ru∥21ub1u + ∥rv∥21vb1v = Lw.

(A.5)
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Fig. A.1. Calculation of the first order partial derivatives of the mesh surface.
The solution of Eq. (A.5) is
1u =

Lw1vf
∥ru∥21ub1vf − ∥ru∥21vb1uf

1v =
−Lw1uf

∥rv∥21ub1vf − ∥rv∥21vb1uf
.

(A.6)

In Eq. (A.6), only the first order partial derivatives of the nominal
surface with respect to parameter u and v are unknown, which can
be approximated by the difference scheme. As shown in Fig. A.1, for
a given planar point q0, q1 and q2 are inserted in v parameter line
through point q0. Their corresponding points, p0, p1 and p2, on the
nominal surface can be obtained using the method in Section 5.1.
Extend p1 and p2 as Taylor series at p0.
p1 = r(u0 −1u1, v0) = r(u0, v0)− ru(u0, v0)1u1 + O(1u2

1)

p2 = r(u0 +1u2, v0) = r(u0, v0)+ ru(u0, v0)1u2 + O(1u2
2).

(A.7)

Omitting the second order small quantity, we have

ru(u0, v0) =
p2 − p1

1u2 +1u1
, and similarly

rv(u0, v0) =
p4 − p3

1u4 +1u3
.

Submitting them into Eq. (A.7) can obtain the parameter incre-
ments (1u,1v) at CC point c .

References

[1] Wu T, Cheung EHM. Enhanced stl. Int J Adv Manuf Technol 2006;29(11–12):
1143–50.

[2] Kiswanto G, Lauwers B, Kruth JP. Gouging elimination through tool lifting in
tool path generation for five-axis milling based on faceted models. Int J Adv
Manuf Technol 2007;32(3–4):293–309.

[3] Park SC, ChangM. Tool path generation for surfacemodelwith defects. Comput
Ind 2010;61(1):75–82.

[4] Xu JT, Sun YW, Wang SK. Tool path generation by offsetting curves on
polyhedral surfaces based on mesh flattening. Int J Adv Manuf Technol 2013;
64(9–12):1201–12.

[5] KimSJ, YangMYA. CL surface deformation approach for constant scallop height
tool path generation from triangular mesh. Int J Adv Manuf Technol 2006;
28(3–4):314–20.

[6] Lee SC, Kim HC, Yang MY. Mesh-based tool path generation for constant
scallop-height machining. Int J Adv Manuf Technol 2008;37(1–2):15–22.

[7] Sun YW, Guo DM, Jia ZY, et al. Iso-parametric tool path generation from
triangular meshes for free-form surface machining. Int J Adv Manuf Technol
2006;28(7–8):721–6.

[8] Sun YW, Ren F, Zhu XH, et al. Contour-parallel offset machining for trimmed
surfaces based on conformal mapping with free boundary. Int J Adv Manuf
Technol 2012;60(1–4):261–71.

[9] Xu JT, Sun YW, Zhang L. A mapping-based approach to eliminating self-
intersection of offset paths on mesh surfaces for CNC machining. Comput
Aided Des 2015;62:131–42.

[10] Bolaños GS, Bedi S, Mann S. A topological-free method for three-axis tool path
planning for generalized radiused end milled cutting of a triangular mesh
surface. Int J Adv Manuf Technol 2014;70(9–12):1813–25.
[11] Kout A, Müller H. Tool-adaptive offset paths on triangular mesh workpiece
surfaces. Comput Aided Des 2014;50:61–73.

[12] Zhang K, Tang K. An efficient greedy strategy for five-axis tool path generation
on dense triangular mesh. Int J Adv Manuf Technol 2014;74(9–12):1539–50.

[13] Lee EK. Contour offset approach to spiral toolpath generation with constant
scallop height. Comput Aided Des 2003;35(6):511–8.

[14] Makhanov SS, Ivanenko SA. Grid generation as applied to optimize cutting
operations of the five-axis milling machine. Appl Numer Math 2003;46(3–4):
331–51.

[15] Sun YW, Guo DM, Jia ZY. Spiral cutting operation strategy for machining of
sculptured surfaces by conformal map approach. J Mater Process Technol
2006;180(1–3):74–82.

[16] Huertas-Talón JL, García-Hernández C, Berges-Muro L, et al. Obtaining a spiral
path for machining STL surfaces using non-deterministic techniques and
spherical tool. Comput Aided Des 2014;50:41–50.

[17] Tang TD. Algorithms for collision detection and avoidance for five-axis NC
machining: a state of the art review. Comput Aided Des 2014;51:1–17.

[18] Chiou JC, Lee YS. Optimal tool orientation for five-axis tool-end machining by
swept envelope approach. ASME J Manuf Sci Eng 2005;127(4):810–8.

[19] Fard MJB, Feng HY. Effective determination of feed direction and tool
orientation in five-axis flat-end milling. ASME J Manuf Sci Eng 2005;132(6):
061011.

[20] FardMJB, Feng HY. New criteria for tool orientation determination in five-axis
sculptured surface machining. Int J Prod Res 2011;49(20):5999–6015.

[21] De Lacalle LL, Lamikiz A, Sanchez JA, Salgado MA. Toolpath selection based
on the minimum deflection cutting forces in the programming of complex
surfaces milling. Int J Mach Tools Manuf 2007;47(2):388–400.

[22] Yigit IE, Lazoglu I. Analysis of tool orientation for 5-axis ball-end milling of
flexible parts. CIRP Ann Manuf Technol 2015;64(1):97–100.

[23] Wang N, Tang K. Five-axis tool path generation for a flat-end tool based on
iso-conic partitioning. Comput Aided Des 2008;40(10):1067–79.

[24] Morishige K, Takeuchi Y, Kase K. Tool path generation using C-space for 5-axis
control machining. ASME J Manuf Sci Eng 1999;121(1):144–9.

[25] Jun CS, Cha K, Lee YS. Optimizing tool orientations for 5-axis machining by
configuration-space search method. Comput Aided Des 2003;35(6):549–66.

[26] Lauwers B, Dejonghe P, Kruth JP. Optimal and collision free tool posture in
five-axis machining through the tight integration of tool path generation and
machine simulation. Comput Aided Des 2003;35(5):421–32.

[27] Wang N, Tang K. Automatic generation of gouge-free and angular-velocity-
compliant five-axis toolpath. Comput Aided Des 2007;39(8):841–52.

[28] Farouki RT, Li SQ. Optimal tool orientation control for 5-axis CNC milling with
ball-end cutters. Comput Aided Geom Design 2013;30(2):226–39.

[29] Han CY. Tractrix-based tool orientation control for 5-axis CNCmachining. Appl
Math Comput 2016;272:92–9.

[30] Hu PC, Tang K. Improving the dynamics of five-axis machining through
optimization of workpiece setup and tool orientations. Comput Aided Des
2011;43(12):1693–706.

[31] Castagnetti C, Duc E, Ray P. The domain of admissible orientation concept:
a new method for five-axis tool path optimization. Comput Aided Des 2008;
40(9):938–50.

[32] Lavernhe S, Tournier C, Lartigue C. Optimization of 5-axis high-speed
machining using a surface based approach. Comput Aided Des 2008;40(10):
1015–23.

[33] Chen L, Xu K, Tang K. Collision-free tool orientation optimization in five-axis
machining of bladed disk. J Comput Des Eng 2015;2(4):197–205.

[34] Ho MC, Hwang YR, Hu CH. Five-axis tool orientation smoothing using
quaternion interpolation algorithm. Int J Mach Tools Manuf 2003;43(12):
1259–67.

[35] Lin ZW, Fu JZ, He Y, Gan WF. A robust 2D point- sequence curve offset
algorithm with multiple islands for contour-parallel tool path. Comput Aided
Des 2013;45(3):657–70.

[36] Gu X. Parameterization for surfaces with arbitrary topologies (Ph.D. thesis),
Cambridge: Harvard University; 2002.

[37] Walton DJ, Meek DS. A triangular G1 patch from boundary curves. Comput
Aided Des 1996;28(2):113–23.

[38] Meyer M, Desbrun M, Schröder P, et al. Discrete differential-geometry
operators for triangulated 2-manifolds. Vis Math 2002;3(2):52–8.

http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref1
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref2
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref3
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref4
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref5
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref6
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref7
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref8
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref9
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref10
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref11
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref12
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref13
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref14
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref15
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref16
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref17
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref18
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref19
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref20
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref21
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref22
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref23
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref24
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref25
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref26
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref27
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref28
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref29
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref30
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref31
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref32
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref33
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref34
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref35
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref36
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref37
http://refhub.elsevier.com/S0010-4485(16)30050-1/sbref38

	Smooth tool path generation for 5-axis machining of triangular mesh surface with nonzero genus
	Introduction
	Tool trajectory planning
	Tool orientation optimization
	Contributions and organization of the paper

	Construction of genus-0 mesh surface
	Tree structure of the boundaries
	Constructing bridge
	Calculating intersection point
	Tracing bridge point

	Connecting boundary curves

	Boundary-conforming mapping
	Mathematical model
	Solving method

	Guide line planning
	Basic idea of designing guide line
	Guide line and its parameter increment

	CC path generation
	Calculating CC point
	Calculating normal of CC point
	Calculating path interval

	Tool orientation optimization
	Procedures for tool orientation optimization
	Inverse kinematics of 5-axis machine tool
	Tool orientation optimization in MCS
	Model of minimizing the angular velocity
	Model of minimizing the angular acceleration


	Experimental results
	Feasibility of the proposed tool path method
	Machining strategy for model with discontinuities
	Machining and comparisons of tool paths
	Effectiveness of tool orientation optimization

	Conclusion and future works
	Acknowledgments
	Parameter increment for guide line
	References


