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a b s t r a c t

The use of virtual prototypes and digital models containing thousands of individual objects is
commonplace in complex industrial applications like the cooperative design of huge ships. Designers are
interested in selecting and editing specific sets of objects during the interactive inspection sessions. This
is however not supported by standard visualization systems for huge models. In this paper we discuss
in detail the concept of rendering front in multiresolution trees, their properties and the algorithms that
construct the hierarchy and efficiently render it, applied to very complex CAD models, so that the model
structure and the identities of objects are preserved. We also propose an algorithm for the interactive
inspection of huge models which uses a rendering budget and supports selection of individual objects
and sets of objects, displacement of the selected objects and real-time collision detection during these
displacements. Our solution – based on the analysis of several existing view-dependent visualization
schemes – uses a Hybrid Multiresolution Tree that mixes layers of exact geometry, simplified models
and impostors, together with a time-critical, view-dependent algorithm and a Constrained Front. The
algorithmhas been successfully tested in real industrial environments; themodels involved are presented
and discussed in the paper.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

A number of algorithms for real-time visualization of huge dig-
ital 3D models have been proposed. While they are well suited for
many applications, they donotmeet the present user requirements
in some industrial applications. Complex virtual prototypes are es-
sential in many industrial endeavors involving large models, like
in the automotive, aeronautic and ship-building industries. More-
over, the high cost of many of these designs, sometimes destined
to be built only once, makes the use of physical prototypes unfeasi-
ble. Also, these models contain thousands of individual objects. In-
stead of relying only on standard visualization systems, designers
are interested in addressing individual objects and specific sets of
objects. We have identified these requirements for inspection ap-
plications in industrial design of complexmulti-object assemblies:

• The View-Dependent Visualization algorithm should guarantee
a certain frame-rate with good image quality.
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• The System must support the selection of individual objects
and of hierarchies of objects, during the navigation, to access
information of these objects or to annotate and modify them.

• Limited scene editing (including displacement of the selected
objects) and real-time collision detection during scene editing
must be supported.

As far as we know, no present algorithm fulfills all of the above
requirements. Furthermore, previous solutions often resort to sub-
stitutions, modifications or simplifications of the geometry that
blur the scene structure and the individual objects. Instead, we are
interested in preserving the design intent, and the structure of the
design tree of the original CAD model, that is meaningful to the
users. We show that we can achieve these goals while maintain-
ing sustained frame rates for very large models. Fig. 1 shows the
edition and annotation of such a model. These editions and anno-
tations are saved for later incorporation into the CAD model if ap-
propriate. Building on previous contributions in the literature, we
propose a solution that preserves CAD hierarchies and object iden-
tities while allowing simple interactions. The main contributions
of this paper are:

• A formal discussion of the front concept in multiresolution
trees, and the characterization of the properties required for
time-critical rendering.

• An object-aware scene simplification and multiresolution
scheme that results in a multilayered, multiresolution tree
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Fig. 1. The model used in the tests. The top image shows a portion of the hull
selected by the user in gray. In the middle image the user has moved the selected
portion of the hull, partially revealing the complexity of the model inside. The
bottom image shows data associated to an object, that the user may annotate.
Notice the ships in the background, which are rendered using omnidirectional relief
impostors.

with cost and benefit functions per node, which is monotonic
by construction. Layers mix geometry and impostors. The
layered scheme is based on the results of an evaluation of user
perception of several hierarchical representations.

• Support for the selection of individual objects and sets of
objects, displacement of the selected objects and real-time
collision detection during these displacements while in the
interactive navigation, thanks to the object-aware nature of the
representation.

• A time-critical, view-dependent visualization algorithm with
constrained front update based on a greedy optimization per
frame, usable in commodity hardware.

The rest of the paper is organized as follows. Section 2 reviews
prior work. After an analysis of front-based rendering algorithms
in Section 3, an overview of the algorithm is presented in
Section 4,whereas Sections 5 and 6 detail the scene tree generation
algorithm and its visualization. Section 7 discusses several results
on an example scene, and Section 8 presents the main conclusions
and outlines future research directions.

2. Previous work

In this sectionwediscuss only a selection of the algorithmsmost
relevant to our work. For an extensive survey, the reader can refer
to [1] or [2]. These algorithms are usually based on the generation,
in a preprocess step, of a scene data structure which represents
the scene model at different levels of detail. During the interactive
visualization, a suboptimal set of nodes is computed and rendered
at each frame.

Multiresolution Trees are well-known data structures that rep-
resent scenes and assemblies at multiple resolutions. Multiresolu-
tion Trees can be binary [3], quaternary [4] or octal [5], and based
on either a spatial subdivision [6] or a scene subdivision [4]. Bi-
nary subdivision structures like Kd-trees have been widely used
because of their splitting flexibility [7].

Multiresolution Trees creation algorithms work in two steps. In
the first step, the Tree structure is generated in a top-down way
by recursively distributing the scene geometry from parent to son
nodes. At the end of this first step, the algorithm has distributed
the scene geometry among all tree leaf nodes, and leaf nodes have
a size not exceeding a predefined value. The second step operates
bottom-up bymerging node information and simplifying the union
of the informations in their son nodes in away such that all internal
nodes have a size again within the chosen limit.

The paper from Funkhouser and Sequin [8] was seminal in this
area. Their scene structure consisted of a simple list (or array) of
objects, which sufficed for scenes of only moderate complexity.
The preprocess consisted in the computation of a 2D array of object
representations, storing each of the N objects atM different levels
of detail. Standard simplification algorithms were used for this
purpose. In the kernel of the visualization scheme, cost and benefit
functions were defined and computed for each object and for each
of its M LODs. The cost (time to render the atomic object) was
considered to be constant, and computed in the preprocess step.
Benefit, however, was dynamic, depending on the camera position
and on how the object was projected on the viewport. Funkhouser
and Sequin further defined a constrained optimization problemper
frame: the goal was to maximize the total benefit per frame, with
the constraint that the total cost of the rendered primitives did not
exceed the rendering budget. For this purpose, they proposed a
greedy front update algorithm, applied at each frame. The object
with the maximum benefit to cost ratio was refined, while one
or more objects having the lowest ratio were coarsened to keep
the total cost below the budget. Based on this work, Gobbetti
and Bouvier [9] proposed a solution for this optimization using
Lagrange multipliers.

The term view-dependent visualization algorithms was coined
to refer to algorithms based on a hierarchy of objects (the mul-
tiresolution tree) and a dynamic rendering front that adapts it-
self during the visualization. View-dependent algorithms include
FarVoxels, LayeredPointClouds, TetraPuzzles, Quick-VDR and oth-
ers. We briefly review these algorithms in the next paragraphs. In
them, the front update is based on a suitable benefit function, but
in all these algorithms no information about the frame computing
and rendering time is taken into account.

Far Voxels [3] uses hybrid multiresolution Kd-trees, with trian-
gle strips of the original scene model in leaf nodes and approxi-
mates volume representations in internal tree nodes. These nodes
are discretized into a fixed number of around 16K voxels. Voxels
contain parameterized direction-dependentmaterial models, gen-
erated by sampling the geometry in the node along rays emanat-
ing from 256K viewpoints around it. The rendering algorithm uses



50 O. Argudo et al. / Computer-Aided Design 79 (2016) 48–59
a front update algorithm based on the size of the projection of the
nodes in the viewport, performing reasonably well for inspection
tasks in complex environments.

The Quick-VDR algorithm [6] uses a Cluster Hierarchy of
progressive meshes (CHPM) organized in a tree. The algorithm
is aimed at the interactive inspection of huge triangular meshes.
Tree nodes contain progressivemeshes, the least simplified version
of the mesh in a node is the union of the best representations
in its children. Dependencies between nodes are used to avoid
artifacts between neighbor nodes with different levels of detail
in the viewport. Apart from using dependencies, the dynamic
front management is based on the standard view-dependent
scheme. A related work is [10]. In this paper, the authors discuss
an optimization algorithm to compute coherent mesh layouts,
and use them to improve the efficiency of the view-dependent
rendering and collision detection algorithms in [6].

The Tetra Puzzles approach [11] is an efficient technique for
out-of-core construction and accurate view-dependent visualiza-
tion of very large surface mesh models. The method uses a reg-
ular conformal hierarchy of tetrahedra (organized in diamonds)
to spatially partition the model. Each tetrahedral cell contains a
precomputed simplified version of the original model, represented
using cache coherent indexed strips for fast rendering. The view-
dependent algorithmuses out-of-core and batched rendering tech-
niques, withmetrics based on the visual quality butwith no budget
for the frame rendering time.

Gobbetti et al. proposed a suggestive approach in [12]. Layered
Point Clouds is an efficient multiresolution structure for rendering
very large point sampled models on consumer graphics platforms.
Tree nodes contain partial point clouds that are combined to
produce the rendered primitives per frame. Sample densities are
locally and dynamically adapted, according to their projected size
on the viewport. The progressive block-based refinement nature
of the rendering traversal uses prefetching, view frustum and
occlusion culling, as well as compression and view-dependent
progressive transmission. Remarkably, the authors recognize that,
for interactive applications, it is often useful to have a direct control
on rendering time, instead of being only based on metrics and
tolerances on the rendering quality. Lacking an a priori estimate
of the cost as in [8], their proposed solution iterates tree-traversals
while adjusting the threshold to meet the budget.

Giga Voxels, as proposed by Crassin et al. [13], is an algorithm
to efficiently render large volume datasets. The solution is based
on an adaptive data representation depending on the current
view and occlusion information, coupled to an efficient ray-casting
rendering algorithm. Filtering, occlusion culling, procedural data
creation, and level of detail mechanisms are integrated in an
efficient GPU voxel engine. Data production and streaming is
guided from information extracted during rendering.

A view-dependent approach for the interactive rendering of
large-scale urban models has recently been proposed in [4], based
on the Omni-Directional Relief Impostors (ORIs, see [14]). The
approach is oriented to medium-range distance visualization of
massively photo-textured cities. The authors use an image-based
approach in the multiresolution tree. For each node of the tree,
a set of relief maps that provide a multiresolution representation
of the urban scene is stored. The rendering algorithm combines
relief mapping with projective texture mapping, using only a
subset of the precomputed relief maps, and wavelet compression
to simulate two additional levels of the tree. The scheme is claimed
to run considerably faster than polygonal-based approaches. Our
approach is related to this method, using nodes with relief
impostors in one of the tree layers, but improves it by considering
a cost function besides the benefit function in an optimization
framework.

Other proposals to visualize very largemodels have beenmade,
including [15,16] and [17], for example, but like the schemes
above, they cannot distinguish the different objects that make up
the scene. Moreover, we observe that Funkhouser’s paper (which
was focused on moderately large scenes) contained some key
ideas that have not been used, nor adapted to scene trees. Most
present algorithms do not consider view-dependent rendering as
a constrained problem with an upper bound in the rendering cost
of the primitives. Of the solutions discussed above, notice that only
Far Voxels and themethod in [4] lend themselves to treatmultiple,
distinct objects.

3. View-dependent, front-based rendering

In this section we propose a taxonomy of algorithms using ren-
dering fronts in Multiresolution Trees by sorting the existing algo-
rithms into two categories: those using visual contribution fronts
and those adopting more advanced fronts. We then introduce new
concepts: tree monotonicity – an extension of Funkhouser’s list
monotonicity – and constrained fronts, and discuss the properties
and advantages of fronts fulfilling these conditions, and show how
to achieve them.

Multiresolution geometric models supporting view-dependent
rendering must encode the steps performed by a simplification
or coarsening process in a compact data structure from which
a virtually continuous set of variable-resolution models can
be efficiently extracted, [11]. Multiresolution Trees are a well-
established data structure for this purpose.

A Multiresolution Tree is a hierarchical scene representation
which encodes parts of the scene at a full range of different res-
olutions. The leafs of any subtree constitute a representation of a
portion of the scene, with possibly mixed resolution levels. Mul-
tiresolution Trees have been extensively used for the representa-
tion of huge triangular mesh models [11], huge assemblies [3] and
volume models [5]. They can encode scenes with multiple objects
or highly complex meshes.

We define the following concepts concerning Multiresolution
Trees:

The Visual Contribution v(n, C) ≥ 0 of a tree node n viewed
with camera C measures the benefit of rendering node nwith that
camera in terms of the final visual quality. Authors often define
v(n, C) as an empirical function of the complexity of the geometric
information in n and a number of view-dependent parameters like
the size of the node projection in display coordinates. See the next
section for our choice of v(n, C). The visual contribution of nodes
outside the visualization frustum is zero.

Tree Monotonicity with respect to a function f (n) is an
essential property in Multiresolution Trees. A Multiresolution
Tree is said to be monotonic with respect to the function f (n)
if, for any node n and for any rendering conditions, f (n) ≤

m∈sons(n) f (m). For example, tree monotonicity with respect to
v(n, C) ensures that we will get better visual qualities when we
render deeper tree levels with camera C, a strongly desirable
property for Multiresolution Trees. Of course, the maximum visual
quality is reachedwhen all tree leaves with unsimplified geometry
are rendered.

A Staircase Subtree is a subtree such that if a node is in the
subtree, all its siblings are also included. Notice this implies that
this subtree is rooted at the root of the original tree.

A Front F is the set of leafs of a Staircase Subtree SF . In what
follows, we will note nF the number of nodes in F . Any front
partitions the multiresolution tree. From the point of view of
rendering quality, one wishes the trimmed subtree SF to have
interior nodes with insufficient visual contribution, while the
multiresolution tree nodes trimmedout – thosewith an ancestor in
the subtree – have unnecessarily high quality for the frame being
rendered. Any front F is a representation of the scene for certain
choice of resolution at each portion of the scene. Observe that
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any multiresolution tree can generate a huge combinatorial set of
potential view-dependent fronts F .

Two different approaches appear in the literature to prune the
scene tree at rendering time. We call them Visual-Contribution
Fronts and Constrained Fronts, which we define next.

Visual-Contribution Fronts Fv are based on the visual contri-
bution function v(n, C) and a quality threshold Qv . The visual con-
tribution front Fv is the set of leaves of a staircase subtree such
that all the interior nodes have a visual contribution smaller than
Qv , and where the leaves have a visual contribution larger than or
equal to Qv , or are leaves of the complete tree. Usually, the front
Fv is computed at each frame through a top-down tree traver-
sal clipped by the frustum. At each frame, the new front is usu-
ally computed in the CPU and sent to the GPU for rendering, but
avoiding sending informationwhich is already residing in the GPU.
Therefore algorithms using this approach do not take the frame-
rendering time into consideration.

For time-critical rendering, we need to have an estimation of
the cost of rendering a given node, which we shall denote by c(n).
We consequently call c() the Cost Function. The cost of rendering
a given front F is then c(F) =


n∈F c(n). In polygonal models,

for example, the rendering cost is proportional to the number of
polygons in the geometry of n, so the cost in this case can be
measured as the number of polygons. It could also be measured in
Bytes, as the memory size of the geometry in n is also proportional
to the number of polygons.

Constrained Fronts Fc have a bounded cost


n∈Fc (c(n)) ≤

MaxCost. They are required by time-critical visualization algo-
rithms, which guarantee a predefined minimum frame rate.

At each frame, the time-critical algorithm must solve a con-
strained optimization problem, i.e. finding the constrained front
which maximizes the total visual contribution:

argmax
Fc


n∈Fc

v(n, C)


. (1)

As observed by [8] this is a knapsack-type problem, and subopti-
mal solutionsmust be considered. A good option is the greedy front
update scheme already proposed in [8].

To use Constrained Fronts, Multiresolution Trees benefit from
being cost-monotonic (monotonic w.r.t. the cost function), to
guarantee that the total cost can be decreased by moving up
the tree. Cost monotonicity is usually ensured by the bottom-up
construction process of internal nodes.

Several properties follow easily from these definitions:
Property 1. Visual-Contribution Fronts can guarantee a cer-

tain image quality, but cannot guarantee a given frame rate. Con-
strained Fronts, on the contrary, can guarantee a frame-rate, but at
a variable image quality.

Notice that the property that characterizes a Constrained Front
is a global one, and therefore Constrained Fronts cannot be
computed by a top-down tree traversal, since the information
about a node (given by the pair (v(n, C), c(n)) is insufficient to
ascertain if it needs to be refined or not. Thus, the constrained
optimization transforms the problem into a global one, whichmay
be solved using tree monotonicity with respect to cost and visual
contribution, with a greedy front update per frame [8]:

Property 2. Constrained fronts Fc must be computed by
updating the front of the previous frame. They cannot be obtained
by a top-down tree traversal.

When the cameramoves suddenly and drastically, an algorithm
computing Fv faces the same task as in any other case: it
will traverse the tree, starting from the root and collecting the
necessary nodes in the front. It may be hindered only by the need
to exchange more information with the GPU. On the other hand,
an algorithm computing a Constrained Front Fc will usually face, in
Table 1
Classification of the papers discussed in Section 2 according to the kind of front they
use, and whether the objects are distinguishable in the rendering data structures.

Object identifiability
No Yes

Fv [4], [11], [13,12], [3], [6], [15] and [17] –
Fc [9] [8], Our proposal

this case, an exceedingly large number of necessary front-update
operations,which cannot bemetwithin the budget. For this reason,
rendering algorithms which use constrained fronts rely on lazy
updates and CPU–GPU transmission algorithms. At each frame,
only a few updates are performed and sent to the GPU:

Property 3. Confronted with drastic camera movements, an
algorithm computing Fc will still comply with the frame-rate, but
will need several frames to maximize the image quality.

Because fronts Fv are usually computed at each frame from the
root of the tree,whenever a node is occludedor outside the frustum
it can be discarded, along with all of its progeny. In the case of a
front Fc , however, oneneeds to keep in it a complete representation
of the scene, to be able to perform incremental updates even when
some new nodes of the tree become unoccluded or enter the view-
frustum:

Property 4. Time-critical rendering algorithms require specific
data structures to manage visibility; see for example Section 6, for
our approach to this problem.

Summarizing, the four properties discussed above show that
time-critical visualization with a rendering budget requires a
monotonic Multiresolution Tree with respect to both c(n) and
v(n, C), and should be based on a constrained front Fc , with local,
incremental front updates at each frame, lazy transmission and up-
dates, and visibility management. As Table 1 shows, the literature
is lacking in contributions addressing all of these requirements.
However, a sustained frame rate is desirable in many applications,
and generally improves perceived responsiveness of the applica-
tion, in spite of isolated decays in image quality when the camera
is changed drastically. The approach presented in this paper is in-
tended to address this need.

4. Hybrid multiresolution trees (HMT s)

To meet the requirements discussed in the introduction, we
have developed a visualization algorithm based on a specific
scene binary tree, a Hybrid Multiresolution Kd-tree (HMT in
what follows). HMTs contain three different layers of nodes and
associated object data. Tree leaves contain the exact geometry
of the objects, and constitute the Exact-layer. Nodes above them,
but at depths larger than three make up the SP-layer, and contain
simplified polygonal representations of the portion of the scene
described by all the leaves that are descendants of them. The
nodes in the upper levels of the tree form the RI-layer, and contain
the most aggressive simplifications of their subtrees. Based on
our experiments, we observed that setting the RI-layer to the top
three or four levels yielded a fair compromise between speed and
image quality. To choose how to populate them, we studied the
behavior of some of the existing algorithms for the visualization of
complex scenes with many differentiated objects, we performed a
set of tests to experimentally compare the direct visualization of
the polygonal scene with the main alternatives. From the results
of our tests (detailed in Section 7.1) we conclude that image-
based representations (specially, ORIs, see [14]) are well behaved
in nodes with extremely complex geometry, presenting a better
efficiency (measured in frames per second) and a good perceptual
visual quality. Because of their better behavior, we adopt ORIs as
the representation for the RI-layer.
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HMTs can support selection of objects and groups of objects by
clicking anytime on any of their triangles, as discussed in Section 5,
making HMTs object-aware.

Our algorithm to render HMTs implements a constrained front
to address the requirement of a guaranteed frame-rate. Each
tree node n has an associated cost c(n) and an associated visual
contribution v(n, C). The cost and visual contribution satisfy these
monotonicity properties:

• For any non-leaf node in the tree, its cost is lower than the sum
of the costs of its direct children.

• For any non-leaf node in the tree, its visual contribution is lower
than the sum of the visual contributions of its direct children,
regardless of the camera location.

We generalize Funkhouser’s algorithm to render the HMT
data structure, and try to (suboptimally) solve a constrained
optimization problem at each frame. In what follows we discuss
our choices to define the cost and visual contribution of the nodes
in theHMT. Readers already familiar with [8]may find it preferable
to skip to Section 5 first, and return to these details later.

The cost is static, and is computed for each node during the
tree generation. The cost of nodes in SP and Exact layers is
defined as the number of triangles in the corresponding node
representation. Therefore, in these nodes, the rendering time is
roughly proportional to their cost. Cost in the RI layer is computed
as an equivalent triangle count, based on their rendering time.

The visual contribution of a certain node is a function which
estimates its contribution to the overall perceived image quality.
It is dynamic, depending on some intrinsic node information
and on the camera parameters during the navigation. The visual
contribution v(n, C) is defined as a base term v0(n, C) which
is modulated by several other camera-depending functions. For
a given node n that passes the frustum culling, we define the
dynamic visual contribution function v(n, C) by the following
expression, inspired on the ideas from [8]:

v(n, C) = v0(n, C) ∗ Centered(n) ∗ Change(n) ∗ Vis(n).

The base visual contribution function v0(n, C) for a node n is
a function of its projected size p(n, C) and of its level in the tree
l(n) (where the root sits at level 0). It measures the contribution
of the node to the overall visual quality of the image, when n is
projected and remains in the center of the viewport. The projected
size p(n, C) is the surface area (in pixels) of the screen projection
of the axis-aligned bounding box of n, AABB(n). We define the base
contribution as,

v0(n, C) = p(n, C) ∗ Quality(l(n)).

v0(n, C) models the fact that nodes with a large projection size
will have a greater visual contribution to the final result. Moreover,
nodes in deeper tree levels present a higher visual quality, as
modeled by the increasing functionQuality. In our implementation
we have used Quality(k) =

√
k + 1, for which we show below

that it results in monotonic visual contributions. Other increasing
functions for which a monotonical contribution could be proved
would be suitable replacements, but we have found that this gives
good results.

The remaining three factors in the definition of v(n, C) modify
v0(n, C) by taking into account the camera parameters and
their variation over time. They are controlled by coefficients set
experimentally. For the first two, we have found that limiting
their influence to a maximum reduction of 20% gives good results.
This represents a compromise between the two extremes. If these
functions are given much larger strength, then they may reduce
the value of a nodes’ contribution excessively, inducing in turn a
simplification much larger than really necessary, and ultimately
increasing the number of artifacts. If they are given to little
Fig. 2. Base Visual contribution ismonotonic. The Split operation increases it, while
the Collapse operation decreases it.

influence, the result will be that nodes that are moving fast, or
near the boundaries of the viewport, will be excessively detailed,
producing an increase in cost, and sincewe run on a limited budget,
inducing a decrease in quality somewhere.

The first one is the Centered function:

Centered(n) = 0.2

1 −

dist

vpsize


+ 0.8

which decreases with the distance dist from the center of the
viewport to the projection of AABB(n) onto the viewport (here
vpsize is half the diagonal of the viewport). Thus, Centered(n) is one
if the projection contains the center of the viewport, and if not,
it decreases down to 0.8 near the boundary of the viewport. This
factor attempts to capture the loss of visual acuity in the viewport
periphery.

Change(n) is a decreasing function, measuring the rate of
change in the projected position of the node. The main idea is
that we have a reduced visual acuity for objects (nodes) presenting
apparent movement in the viewport. In our implementation, we
have found that a good compromise is to define

Change(n) = 0.2max


1 −

Cn
− Cn

prevframe


0.4 ∗ vpsize

, 0


+ 0.8

where Cn is the center of the projection of the AABB of node n.
Finally, Vis(n) takes occlusions into account. For efficiency

reasons, we use information from occlusion queries from the
previous frame. We define Vis(n) = VisPixels/TotalPixels, where
TotalPixels is the projected size p(n, C) and VisPixels is the number
of visible pixels of AABB(n), both in the previous frame.

Let us prove now that base visual contributions are monotonic.
To this end, let us now consider the base visual contributions of
node n and of its two children. To simplify the notation, assume
that p is the surface area of the screen projection of n, and p1 and
p2 the areas corresponding to its children nodes n1 and n2. We do
not indicate explicitly from here on the dependency on C of these
surface areas, in the interest of more compact equations. To see
that the base visual contribution is locally monotonic (see Fig. 2),
notice that p ≤ p1 + p2, so

v0(n, C) =


l(n) + 1


p ≤


l(n) + 1


(p1 + p2)

<


l(n) + 1 + 1

p1 +


l(n) + 1 + 1


p2

= v0(n1, C) + v0(n2, C).

So

v0(n, C) < v0(n1, C) + v0(n2, C)

no matter what camera C we are using.
The (approximate) optimization performed during rendering

generalizes [8] to hierarchical data structures and is detailed in
Section 6.
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Fig. 3. Node simplification: The leftmost image shows the exact geometry corresponding to one of the nodes in the Kd-tree. In the center image, some of this geometry
has been removed by the visibility culling (which is conducted including geometry from neighboring nodes, since the simplified versions are not meant to be used from
close-up). The rightmost image shows the result of the simplification of this node. Notice that there are large holes in the front wall; they happen because those portions of
the wall are occluded by geometry in the neighboring node, and will therefore never be visible when this simplification is used.
Monotonicity of dynamic visual contributions comes from the
fact that the Centered, Change and Vis functions are not significantly
different between anynoden and its children.Moreover, the cost of
HMT nodes is monotone by construction, as shown in next section.
We can therefore conclude that HMTs are monotonic and support
constrained fronts Fc . We now turn to the details involved in the
construction of an HMT.

5. Generation of the HMT

HMTs can handle hugemodels distributed among several input
files. These files contain triangles with color per vertex and data is
structured in objects that point to triangle lists. Objects in the input
files are assigned sequential integer labels, and a single triangle
soup is created and stored in external memory. Triangles in this
soup contain their object index as an attribute. The next step is
the creation of the Kd-tree structure. This is done by a standard
recursive space splitting algorithm. Every node in the Kd-tree
represents an axis-aligned box and all triangles contained in it. The
box of the root corresponds to the scene’s bounding box. At each
step, the recursive algorithm tests the three coordinate directions
and chooses the best (most centered) orthogonal plane that splits
the set of triangles in the father node into two sets with similar
cardinality. Long triangles – whose extent into both sub-nodes is
substantial – that are stabbed by the splitting plane are subdivided,
whereas the rest of stabbed triangles are simply assigned to one of
the two new regions. In practice, very few triangles need to be split,
and at any rate this only impacts the pre-processing of the scene.
Subdivision is repeated until nodes contain less than 50K triangles
each (this number has been experimentally determined to be the
size for VBOs that achieves goodperformance across diverseGPUs).
At the end of this step, the Kd-tree structure has been generated
and leaf nodes (the Exact-layer of the tree) already contain their
final geometry.

Nodes in the SP-layer are computed by bottom-up simplifi-
cation, starting by the parents of the already defined Exact-layer
nodes. After many experiments and tests, we concluded that stan-
dard simplification algorithms were not adapted to huge assem-
blieswith a large number of objects andmany disjointmeshes. Our
simplification scheme uses volumetric techniques with surface re-
construction per node, and proceeds as follows:

1. Visibility culling. The node is enlarged with one layer of
neighbor leaf nodes, and it is then rendered from 320 directions
around its center. Triangles which do not appear in any of the
renders are marked as invisible. Invisible triangles in the node
can be removed, as objects close to the camera will be always
rendered as Exact-layer nodes, while nodes in the SP-layer will
be used in medium distances (see Fig. 3, middle).

2. Complexity test. If the node, after visibility culling, has less than
50K triangles, we are done. If not, we proceed with the next
steps:

3. Node voxelization. We extend each node’s box by a 5% in
each direction to avoid cracks between nodes, we fill it with
geometry from neighbor nodes, and voxelize it. We denote by
Nv the number of voxels in the longest extended box direction.
The number of voxels in the other directions is computed to
guarantee almost cubic cells. Voxels can be either void or full.
We initialize Nv = 200.

4. Surface simplification. Our algorithm is based on [18] and
on [19]. For every voxel v, we classify all vertices of the initial
model in v. Vertex labels are assigned according to the index
of their object and to the direction of their normal vector. We
consider eight direction classes by packing the signs of the three
normal components. Triangles having two or three vertices
with the same label are considered dangling and removed.
Then, all vertices in v having the same label are collapsed into
their centroid, which becomes their representative vertex.

5. Clipping. The resulting geometry is clipped inside the box of the
node (see Fig. 3, right).

6. Cost computation. The resulting number of polygons in the
node (cost) is tested for monotonicity. If the cost is not lower
than the sum of the children’s costs, Nv is decreased by a 10%
and steps 3... 6 are repeated.

The upper tree layer (the RI-layer) is computed with an
algorithm based on [14], but modified for our purposes. For
each node in the RI-layer, we render its geometry on a 300 ×

300 viewport, from 102 almost isotropic directions and using
orthogonal projection. Color, depth and normals per pixel are
stored in one relief impostor per view direction (relief impostors
are implemented as two textures). Neighbor nodes are also
rendered, to complete the information in the impostors.We derive
the 102 viewing directions from the regular subdivision of an
octahedron, as axis-aligned viewing directions are relevant in
industrial design. In our implementation, the RI-layer fills levels
0 . . . 2 of the HMT, and each node in this layer is represented by 30
or less relief impostors. A node-dependent rendering simulation is
performed in order to discard poor impostors and find a set with
(at most) 30 best impostors. This rendering step is based on [14].
It renders the node from 320 equally-distributed viewpoints,
derived from the subdivision of an icosahedron. For each one
of them, it tests different subsets of the eight relief impostors
which are closest to the viewing direction. For each subset, the
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rendered image of the node is obtained and a visual error metric
is computed as the mean squared error in the per pixel perceptual
comparison between this image and a polygonal rendering of the
node geometry from the same viewpoint. The best subset for a
certain viewpoint direction is the one giving the lowest error
value. Errors are also accumulated in the contributing impostors.
Impostors are not used in the rendering subset for any of the
tested directions, and impostors with high accumulated errors are
removed from the initial set, until the target of 30 RIs is reached.
In short, we use 102 renders per node to compute candidate
impostors, and 320 extra RI-renders per node to discard non-
informative impostors. Nodes in the RI-layer are assigned a cost
which is constant (because of the uniformnumber of impostors per
node). Cost monotonicity is therefore guaranteed by construction.
The cost value is computed as an equivalent triangle count, based
on the node rendering time.

As a last test, cost monotonicity is checked between the upper
SP layer and the lowest RI layer of the tree. If necessary, the
parameterNv of the upper SP layer nodes is further decreased until
the whole tree is monotonic with respect to the cost. This update
has never been necessary in the examples we have tested.

In order to make the HMT object-aware, we store for each
triangle an integer identifier of the object it belongs to. In order
to efficiently access material properties we store them in an N ×N
Object Texture, with N such that N2 is greater than or equal to the
total number of objects in the scene. Observe that a texture size
of 1024 × 1024 supports more than 106 differentiated objects,
which is sufficient for large current-day industrial assemblies. In
our implementationwe use one RGBA texture storing the color and
transparency attributes of each object. Given an object index oiwe
use the equations u = oi mod N and v = oi div N to compute
the (u, v) coordinates of the texel storing the color attribute.
Extra attributes could be stored, but if they do not participate
in rendering, they can be directly accessed through other data
structures in the application.

6. Visualization and interactive scene editing

The visualization algorithm is based on a dynamic constrained
front. The front Fk is the list of HMT nodes to be rendered at frame
k, together with the device coordinates of the center of AABB(n) for
each front node. The front also includes upper tree representations
of regions outside the current frustum, to support efficient update
in fast camera movements. The front structure is CPU-based, but
front nodes are cached in the GPU as Vertex Buffer Objects when
appropriate.

The rendering algorithm solves the constrained optimization
problem in Eq. (1) at each frame, trying tomaximize the total visual
quality of the rendered image while ensuring that the total cost is
not greater thanMaxCost.

The optimization starts with the front at the previous frame
and updates it. Front update is based on two operations, node split
and node collapse (see Fig. 2). A node split refines a certain node
n and increases the cardinality of Fk by one, increasing also the
total cost and the total visual contribution of the front (because of
the monotonicity property). Collapse acts on a pair of siblings and
replaces them by their common parent node, decreasing the front
cardinality by one, decreasing by the same token the front cost and
visual contribution.

Front nodes are labeled as nodes outside the present frustum,
occluded nodes or visible nodes. Occluded nodes are nodes that were
completely occluded in the previous frame. Visible nodes are nodes
neither occluded nor completely outside the frustum. In what
follows, we will use the term invisible nodes for the union set of
occluded nodes and nodes outside the frustum.
The front update implements a greedy suboptimal optimization
and transforms Fk into F u

k . This is achieved in three substeps. First,
pairs of siblings such that both of them are invisible nodes are
collapsed. This is repeated until no pair of invisible siblings exists.
Then, the dynamic visual contribution of every visible node in Fk
is computed. Afterwards, the visible node n with the maximum
dynamic visual contribution vd(n) is detected and refined, being
substituted in Fk by its two children, which become visible. Finally,
candidates to collapse are computed and collapsed. Candidates
to collapse are pairs of brother nodes, both in Fk, with at least
one of them being visible. The candidate pair (n1, n2) with the
lowest v(n1, C)+v(n2, C) is collapsed (both nodes are substituted
by their parent, which is labeled as visible), and this collapse is
repeated (with the next remaining candidate pair with the lowest
joint visual contribution) until the total front cost is lower than
MaxCost. The resulting updated front is named F u

k . Next, the GPU
cache is updated by transmitting the (few) changed nodes that
have a visible label.

Finally, the front F u
k becomes Fk+1 by updating the occlusion

labels. Occlusion queries are sent by all nodes in F u
k intersecting

the frustum. In the case of visible nodes, one query per node is sent,
but in the case of occluded queries, they are sent in groups (we use
four nodes per group) to reduce the total number of queries and
the frame update time.

In our implementation, the number of polygons per node is
fairly constant by construction. Therefore, constraining the total
cost to be lower thanMaxCost is basically equivalent to constrain-
ing the maximum front cardinality. Our experimental results have
shown a stable number of nodes in the front. Furthermore (see Sec-
tion 7, especially Fig. 10),wehave seen that inmost cases, the num-
bers of splits and of collapses of visible nodes per frame are similar.

Our experiments show (see Section 7, Fig. 11)) that the
increments in visual contribution due to the splits are always
greater than the decreases produced by the collapses, empirically
validating our greedy optimization. Nonetheless, the total visual
contribution remains bounded because of the visibility changes
and because of nodes leaving the frustum.

This lazy algorithm with suboptimal constrained optimization
shows a good performance and user acceptance, as will be
discussed. Since time-critical requirements disappear when users
stop the navigating camera, we detect these cases, save the current
front and temporarily increase the value of MaxCost, but allow
only splits, to avoid oscillations. When the camera starts again
the navigation, we retrieve the previous front and MaxCost and
continue the standard per-frame optimization.

While this rendering strategy successfully brings together
and extends several different techniques to produce quality
navigations of very complex models, its true singularity rests in
doing sowhile preserving each and every object in the original CAD
model, which makes these navigations meaningful in the middle
of the design loop, and better supporting collaborative design
discussions. Operations on sets of selected objects – optionally
selected directly in the CAD design tree – use the Object Texture.
Selection feedback is performed via a change of the objects
material color. Previous attributes in the texel corresponding to
the selected objects are saved, and a temporary selection color is
assigned to them. Upon the end of selection, original colors and
attributes are retrieved and restored. Interactive dragging of the set
of selected objects is possible, in sets of moderate cardinality. After
the selection, a temporary Vertex Buffer Object is constructed and
transferred to the GPU with the triangles of the selected objects.
Edition in this case is performed bymaking the objects transparent
in the HMT (temporarily modifying the Object Texture) and
rendering and dragging this additional VBO of the selected objects.
The overhead of rendering twice the set of selected objects is
negligible in practical editing operations. Edition results are saved
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Fig. 4. The top snapshot shows apartial viewof the fleet scene.Herewehavedrawn
the AABB’s of the nodes, color-coding their nature: green nodes are ORIs, red nodes
contain simplified geometry, and blue nodes are leaves (with the exact geometry).
The middle image shows a portion of the inside of the ship, with part of the hull
removed. The image at the bottom shows the result of selecting and displacing three
pipe elbows (in gray). Notice the red highlighting where the elbows interfere with
other geometry. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

in a log file for ulterior batch update of the design and HMT trees.
Selected objects can be made transparent in the same way, but
in this case the Alpha component of the corresponding texel is
modified. Unique global indices allow to log also other sorts of user
annotations or modifications to the selected objects. Approximate
collision detection is supported during edition and dragging of the
selected objects in a hierarchical way (see Fig. 4, bottom). This is
reminiscent of [20] in that bounding boxes are rotated with the
objects. However, we deal with relatively simple objects and are
therefore able to construct the collision hierarchy for the selected
objects on the fly, instead of requiring a long pre-process. This is
done at the leaf level only, since the user is assumed to focus his
attention on these parts. To this end, we compute on the fly a six-
level octree of the selected objects, and use it to check for collisions
with a six-level octree of the leaf (which is computed during
the pre-process and stored in each leaf of the HMT ). The octree
representation of the selected objects is computed in a second
Fig. 5. Two frames from a navigation inside the Boeing 777-200. The top frame
shows a view near the top of the cabin, where sight extends all the way to the rear
end of the airplane. Notice that upon careful inspection, far elements, rendered as
ORIs, can be distinguished as slightly more blurred. Nodes at a mid-distance are
simplified, and geometry close to the camera is exact. The bottom figure shows a
frame where we see that the model has preserved intact the details of the original
for close inspection.

thread, while their polygonal representation is being transferred to
the temporary VBO in the GPU. These two black-and-white octrees
are stored in a compact, pointer-less depth-first representation,
with two bits per node. They are bounding octrees: any point in
the model is in the set of black nodes and any black node contains
points of the model. This octree is transformed following the user
interaction, so that the collisions are actually tested between an
axis aligned octree (of the leaf-node geometry) and the resulting
rotated octree. Obviously, the collisions are detected with an error
up to the length of the diagonal of the leaf nodes of these octrees,
which is sufficient for the applications considered. Changing the
model would require a new pre-processing of the scene, so these
changes are kept only as annotations that allow their reproduction,
and may be afterwards processed in the CAD system if so desired.

7. Results

We have tested the performance of our algorithms using
real models from the ship industry, which was our main focal
application. The most complex ship model we were able to use in
these tests – due to confidentiality restrictions – corresponds to a
cargo ship of 219.124 m length overall, consists of some 14.4 ×

106 polygons, and is shown in Fig. 1. This model contains some
imperfections, where geometry interpenetrates other geometry,
causing some artifacts, but our algorithm performs without any
special repair, albeit displaying, of course, the same artifacts.

In order to test our algorithm under more stressing conditions,
we have run it on a scenemade up of a fleet of sixteen copies of this
same shipmodel.We have also tested our resultswith themodel of
a Boeing 777-200 (see Fig. 5 and the second accompanying video).
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Fig. 6. Comparative speeds in different rendering techniques for large datasets in a
200×200 viewport (top), a 150×150 viewport (middle) and a 100×100 viewport.
The test was run on a machine with a 4-core Intel i7 at 3.2 Ghz, with 12 Mb of
memory and a GeForce GTX570 graphics card with 1.25 Gb of DDR5memory, using
Windows 7 Professional 64bits.

7.1. User-perceived visual quality in ORIs and far voxels

To understand the behavior of some of the existing algorithms
in the visualization of complex scenes with many differentiated
objects, we prepared a set of tests to experimentally compare the
direct visualization of the polygonal scene with the Far Voxels
approach [3] andwithORIs [14].We selected these two approaches
because of their ability to visualize huge scenes with distinct
objects.We implemented a testing platformwith different variants
of these approaches and designed a suitable interface for the
experiments.

Our first testwas on rendering efficiency.We rendered different
parts of a ship model with the previously mentioned visualization
algorithms. Since we intend to use these algorithms to render
nodes that are far from the camera, whose projection onto the
viewport has a diameter of notmore than 200pixels,weperformed
three tests with viewport sizes of 100 × 100, 150 × 150 and
200 × 200 pixels. In each case, we rendered parts of the model
of increasing complexity, see Fig. 6. The plots in this figure show
the frame rates in four different cases: a polygonal rendering of
the original geometry (no hardware occlusion culling); a polygonal
rendering of the original geometry with internal, non-visible
geometry removed; an ORI rendering; and finally, a Far Voxels
rendering. The ORI consisted of 32 relief impostors from equally
distributed directions, each of them having a 300×300 resolution.
Far Voxelswas implemented at a higher resolution thanusual,with
five million voxels per tree node to achieve similar visual quality
at this resolution; five million rays were used for computing voxel
material properties in each tree node.

From the results shown in Fig. 6, we can conclude that in
our platform, rendering raw geometry is less efficient when the
polygon count is larger thanonemillion polygons, the consequence
being a decrease in the frame rate. Moreover, the efficiency of ORIs
is always higher than the corresponding one for the Far Voxels
scheme. This is true independently of the viewport size.

To test the visual quality, we implemented a platform to
visualize a chosen tree node simultaneously in six viewports,
each one having 200 × 200 pixels. As we shall see in Section 7
(especially Fig. 12), nodes with ORIs are very rarely used at larger
projection sizes. Users interact with the model and see exactly the
same camera changes in all viewports. Users can load any tree
node and experiment with it. The platform manager prepares the
experiment by assigning different visualization schemes to each
of the viewports. Fig. 7 shows the layout of the interface for this
experiment.

The comparison of visual quality was performed by 20 users,
in the aforementioned test platform. Each user could interact with
eight randomly-chosen nodes from the full tree; for each node,
the user could change the camera, and was shown simultaneously
six viewports for 30 s with different algorithms (see Fig. 7). The
six viewports displayed, from left to right, the reference polygonal
model (ground truth), three ORI renderings obtained using 32
viewing directions and textures of 300×300 pixels (the leftmost is
the original ORI algorithm, the next viewport is a blending between
the original ORI render and a down-sampled version, and the
third is upsampled with 4 rays per fragment). The fifth viewport
displayed a repeat of the reference model in the first viewport,
and the last viewport displayed a high resolution rendering with
Far Voxels (with nodes of 5 million voxels, computed using 5
million rays). Each user was asked to grade the visual quality of
each viewport with respect to the ground truth of the first one.
The conclusion was that users clearly preferred the ORI rendering
with respect to Far Voxels. Users gave the maximum grade to
viewport 5, which they did not know was a repetition of viewport
one, confirming their reliability in running the test.

We also compared the images themselves at a resolution of
200 × 200 pixels (the maximum resolution intended for them in
our application). Given the images of the same node from the same
viewpoint using Far Voxels (with the parameters above) and ORIs,
we computed the RMS value of the deviations from the ground
truth (represented by the exact geometry),measured for each pixel
as the euclidean distance between the colors of the pixels in RGB
space. The averagewas taken over the relevant pixels for each view,
defined as those that were not background-colored in at least one
of the three images. The results for some representative nodes are
given in Table 2.

Two conclusions can be derived from the results of our
tests. Nodes containing polygonal representations have a better
performance when their cardinality is well below 1M polygons.
Moreover, image-based representations (specially, ORIs) are well
behaved in nodes with extremely complex geometry, presenting
a better efficiency (measured in frames per second) and a good
perceptual visual quality.
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Fig. 7. Interface for the user perception study.
Table 2
Comparison of image quality for several nodes and random cameras. The rootmean
square averages are computed with respect to the relevant pixels, i.e. those that are
not background.

Node Relevant pxls rmsE(ORI) rmsE(FV)

1 4419 0.1324 0.2657
2 10019 0.1177 0.2434
6 9048 0.1682 0.3141

740 13653 0.2063 0.4340

7.2. Results analysis and discussion

Our algorithm applied to the model in Fig. 1 resulted in an
HMT of 993 nodes and depth ten. Notice that a balanced tree of
this size would have nine levels, so the HMT is close to balanced.
This is a consequence of our Kd-tree construction algorithm,which
enforces an as-balanced-as-possible distribution of primitives
between siblings. The construction time for this Kd-tree took in this
case just 58.84 s. In thisHMT, the first three levels form the RI-layer.
Each of the ORIs in this tree took between 3.59 Mb and 9.98 Mb.
The simplified nodes occupied anywhere from 0.62Mb to 4.47Mb,
and the leaf nodes with the exact geometry weighed in the range
of 1.29 and 2.64 Mb. The pre-processing time for computing the
ORIs was 3192 s and the simplified nodes took 8011 s to compute.
The total number of triangles at the leafs of the resulting HMT was
17.5 × 106, due to the splitting of triangles at node boundaries.
These timings correspond to running the pre-processing algorithm
on a PC with an Intel Core Duo E7600 CPU at 3.06 GHz, with 8 Gb
of RAM, and an nVidia geForce GTX280 graphics card, running
Windows Vista Enterprise 64 bits.

The rest of the results with this model were run on the scene
made up of sixteen copies of this model (each with distinct colors
to distinguish them). Since the scene is, however, sparse, we
represented it internally with a forest of sixteen HMTs, totaling
208 × 106 triangles in their leaf nodes. We have recorded a real-
time execution of our application exploring this scene, which is
shown in the first of the accompanying videos. The numbers given
hereunder correspond to this execution on a PC with an Intel Core
i7with 4 cores, running at 3.2 GHz, and having 12Gb of DDR3 RAM.
The graphics card was an nVidia geForce GTX 570 with 1.25 Gb of
dedicated memory.

We have attempted to use trajectories and operations that
display the real potential of our proposal. Fig. 4 shows three
Table 3
Size of each level of the HMT for the model in Fig. 5. The third column shows the
number of nodes that contain ORIs, simplified geometry or full geometry. The last
three columns show the minimum, average and maximum number of triangles
per node for that level, and provide a coarse measure of the extent to which our
algorithm produces a reasonably balanced tree.

Level Num.
Nodes

Num.
ORIs/simp./leafs

Min Avg Max

0 1 1/0/0
1 2 2/0/0
2 4 4/0/0
3 8 8/0/0
4 16 0/16/0 43360 63243 78565
5 32 0/32/0 53036 68793 96291
6 64 0/64/0 28004 60765 79155
7 128 0/128/0 51649 66157 89414
8 256 0/256/0 30878 62802 76425
9 512 0/512/0 39886 65408 74954

10 1024 0/1024/0 22325 57707 74969
11 2048 0/2045/3 29906 64150 89841
12 4090 0/3489/601 23079 61932 91321
13 6978 0/118/6860 21909 48572 78094
14 236 0/0/236 33454 44190 69893

snapshots from this video, presenting operations at the object
level. Objects can also be annotated (see Fig. 1) as required in
cooperative design.

The model of the Boeing 777 in Fig. 5 consists of more than
180 × 106 faces of different arity, and equivalent to more than
330 × 106 triangles. Table 3 details the sizes and characteristics of
the resulting HMT. Notice that for this larger model we have used
four levels for the RI-layer. Notice that in this case the first four
levels are occupied by ORIs, levels four through thirteen contain
simplified geometry, and leaves with exact geometry appear from
level eleven onwards.

Fig. 8 shows the time spent in each of the frames of the first
video. Notice that the vast majority of the frames are under 40ms,
since we chose the cost to achieve a minimum frame rate of 25fps.
This budget is only exceeded for isolated frames where drastic
changes in the image content, and thus in the rendering front, occur
(for example when the camera goes through a wall).

Next, we show in Fig. 9 the cost, as computed by the algorithm,
of rendering each front. Notice that the plot reproduces the shape
of the frame rate in Fig. 8, validating experimentally – in this case
– our computation of the cost.
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Fig. 8. Fleet scene: time for each frame.

Fig. 9. The cost computed for rendering the front at each frame for the fleet scene.

Fig. 10. The evolution of the front (top) and the effort to update the cache (bottom)
in the video of the fleet scene. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 11. Fleet scene: evolution of the total visual contribution of the front. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

In Fig. 10 we show at the top a plot of the size of the front at
each frame. The curves show the number of nodes of each kind:
total number of nodes in the front (in blue), visible nodes (in red),
culled by the frustum (in green) and culled by the occlusion test (in
purple). Notice this total is consistently below roughly 120 nodes.
The plot at the bottom of the figure shows the number of nodes
updated in the GPU cache at each frame, which is almost always
eight or less. Blue bars correspond to nodes uploaded to the GPU
due to split and merge operations. The green bars show nodes
uploaded due to changes in the visibility of nodes. The few isolated
spikes correspond again to instances where this visibility changes
abruptly.

Next, we show in Fig. 11 the evolution of the visual contribution
of the nodes in the front. In this plot, the blue bars represent incre-
ments in visual contribution due to splits, whereas the red plot rep-
resents (in negative values) the losses of visual contribution due to
collapses. Notice that increases are predominant, thus validating,
again at an experimental level, our heuristics.
Fig. 12. Fleet scene: sizes of the projections of theORIs onto the viewport per frame
in the first test video of the fleet scene. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Comparison of time spent per frame by drawing visibility-culled polygons
(in red) and by our algorithm (in blue) along a test trajectory in our fleet scene. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 14. Time to render each frame for a navigation inside the Boeing 777. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 12 shows themaximum (blue), minimum (red) and average
(green) size of the nodes in the RI-layer (rendered using ORIs) that
appear in each frame. While the maximum undergoes some sharp
spikes, notice that average values (and even maximum values for
most frames) roughly stay under the threshold of 200 pixels. Notice
that these plots represent the size of the projection of the whole
node. In most cases, large ORIs, in the few instances that occur,
correspond to large nodes in the HMT that are almost completely
occluded.

Fig. 13 offers a comparison of the time spent per frame at
different points in the first accompanying video (the fleet) by two
different algorithms. The abscissae in this case represent seconds
of video. The red curve plots the time spent when drawing the
full polygonal model using Coherent Hierarchical Culling [21]
(culling polygons that are not visible, which accounts for the
reasonable speed at certain points along the video). The blue line
represents the time per frame spent by our algorithm, which
remains downright flat.

The tests on the Boeing 777 model were run on a single-
threaded application in a PC with an i7-5820K CPU and 32 Gb of
RAM, and rendered using a GeForce 980Ti GPU. Fig. 14 shows the
time it took to render each frame in a navigation inside this model.
The first frames aremuch slower until data are updated to the GPU,
and then sustain good frame rate. A slight decrease in frame rate
near frame 800 corresponds to a sudden increase in the number of
visible nodes after going through awall. Finally, Fig. 15 shows,with
the same color codes as the top graphic in Fig. 10, the evolution
of the number of nodes in the front during the same navigation
reported in Fig. 14. Notice that, despite themuchhigher complexity
of the model, a very large proportion of it becomes culled by
the frustum culling, as seen from the approximately constant gap
between the total number of nodes and the number of nodes culled
(blue and green curves).
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Fig. 15. Evolution of the front for the same navigation shown in Fig. 14.

8. Conclusions and future work

The paper contributes to the field by proposing a formalization
of the front concept and a new object-aware algorithm for the
interactive inspection of huge models which uses a rendering
budget and supports selection of individual objects and sets
of objects, displacement of the selected objects and real-time
collision detection during these displacements.

As far as we know, no present algorithm addresses rendering
such huge sets of objects with guaranteed frame rates, while
allowing for the modification of individual objects during the
inspection and attempting to optimize image quality. Our proposal
addresses these needs, and is also able to verify on the fly possible
collisions when moving objects around. The proposed algorithm
hasproved to successfully solve a precise need in thedesign of huge
assemblies and is nowbeing used in real ship design environments.

In our tests, we have not perceived differences between the
quality of the images rendered by our algorithm with respect
to the ground truth represented by the input models. Isolated
frames may present transient artifacts when the visibility changes
abruptly, since the updates exceed the budget, but they very
quickly disappear.

Although we have not discussed it here, our current imple-
mentation supports textured polygons and selection through at-
tributes. To be able to fully support textured models, however, we
need to further improve the ORIs to handle them. This is intended
as future work.

Because of the locality in space afforded by the Kd-trees, the
whole pre-processing is amenable to being done out-of-core, and
hence our approach should scale well for even larger models and
modest hardware. Another avenue of improvement is therefore the
implementation of this out-of-core approach in a fully automatic
way.
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