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a b s t r a c t

We introduce a new method that approximates free-form surfaces by envelopes of one-parameter
motions of surfaces of revolution. In the context of 5-axis computer numerically controlled (CNC)
machining, we propose a flank machining methodology which is a preferable scallop-free scenario when
themilling tool and themachined free-form surfacemeet tangentially along a smooth curve.We seek both
an optimal shape of the milling tool as well as its optimal path in 3D space and propose an optimization
based framework where these entities are the unknowns. We propose two initialization strategies where
the first one requires a user’s intervention only by setting the initial position of the milling tool while
the second one enables to prescribe a preferable tool-path. We present several examples showing that
the proposed method recovers exact envelopes, including semi-envelopes and incomplete data, and for
general free-form objects it detects envelope sub-patches.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction & motivation

Free-form, aka sculptured, objects appear in our daily life rang-
ing from small coffeemugs, over car cockpits, to modern free-form
buildings. These curved objects are aesthetically pleasing and a
result of combined efforts of designers and engineers, the latter
being responsible for optimal functionality. The production of free-
form shapes often involves computer numerically controlled (CNC)
machining, which can follow various strategies of different effi-
ciency. The choice of machining strategy is related to the shape
to be produced. To find the most efficient CNC machining strategy
for a given free-form object is still an open and very challenging
task [1,2].

Our work is a step into this direction. We derive new com-
putational methodology for manufacturing that reduces the time
and cost and increases the quality of fabrication processes, partic-
ularly for free-form (NURBS) objects. The technology we have in
mind is 5-axis CNC machining (milling) because it is the leading
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manufacturing technology [2]. A revolvingmilling tool is navigated
along a workpiece, removing the undesired material and produc-
ing the desired shape. In particular, we consider the case of flank
milling [3,4], i.e., the case when the milling tool touches the work-
piece along a whole curve, in contrast to conventional multi-axis
milling, where the designed surface and themilling tool share only
a single contact point. Flank machining is more efficient because
themachining strips are usuallymuchwider since the cutting strip
width is not bounded by the tool’s diameter [5]. However, it is
a more complicated task to generate toolpaths for flank milling
in which the milling tool is aligned to and tangentially movable
through the whole design surface without gouging.

Geometrically, the problem considered in this work is to
approximate the given free-form object by a set of manufacturable
patches. The object is represented by a free-form surface Φ and
the patches are required to approximate it within a fine user-
predefined tolerance. Each manufacturable patch is an envelope
of a one-parameter motion of a surface of revolution. Our goal
is to find both the optimal shape of the milling tool (surface of
revolution) as well as its motion in 3D.

2. Previous work and contributions

The research presented in this work belongs to the flank
category [5] of 5-axis CNC milling, i.e., the milling tool moves
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Fig. 1. Scallop cusps. (a) Ball-endmilling is shown. A design surface (dark gray) and
machined surface (light blue), consisting of several machined strips, are shown. (b)
A zoom-in of themachined strips. The intersection of twoneighbor strips introduces
a sharp edge (cusp) and its distance from the design surface is known as the scallop
height. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

tangentially along the input (designed) free-form surface, staying
with it in a tangential contact along a 3D curve.

Typically, the shape and size of the milling tool is given as
an input (mostly cylindrical or conical) [2,6]. A lot of research is
devoted to ruled surfaces [7–15] and references cited in [5]. Using
a truncated conical milling tool, Elber and Fish [7] approximate
a general free-form surface using piece-wise ruled surfaces. For
a general shape, however, a large number of patches is obtained
and each of these ruled patches requires its own conical milling
tool. Redonnet et al. [8] consider a cylindrical cutter for machining
ruled surfaces and optimize its position such that it possesses
a tangential contact to three particular lines: one ruling of the
surface and two tangent lines of the rail curves of the ruled surface.
This reduces the machining error by order of magnitude when
compared with standard two-tangential arrangements. Gong and
Wang [12] optimize the tool axis trajectory to minimize the error
along the surface normal directions. However, the milling tool is
an input as well as the initial axis trajectory (ruled surface). In
contrast, in thiswork,we also initialize the ruled surface and search
for the optimal milling tool.

The proximity of the designed and machined surfaces need not
to be necessarily the only objective. The smoothness of the motion
of the milling tool is equally important for machining efficiency
[16–18]. Lavernhe et al. [16] optimize the tool axis orientation
to satisfy certain kinematic constraints which results in a higher
speed of the tool and consequently in shorter machining time.
Pechard et al. [17]minimize thedistance between thedesigned and
machined surfaces while preserving the smoothness of the tool’s
trajectory. Zheng et al. [18] use the strain energy of the tool axis
trajectory to describe the geometric smoothness and formulate
it as a multi-objective programming problem. All three works,
however, define a milling tool as the input and do not consider its
optimization.

In the direction of selecting an optimal general cutter, to the best
of our knowledge, it is very little known so far. Senatore et al. [6]
provide analysis with respect to the size of a cylindrical tool. In
order to cover large patches, a maximum radius is computedwhile
keeping the predefined geometric error between themachined and
designed surface. Thework of Zhu et al. [19] is the closest one to our
research as it also deals with flank milling and the simultaneous
optimization for tool’s motion and shape. This approach has been
extended in [20], considering additional constraints such as conical
tools and their stiffness. In both cases, the primary objective is
to improve the machining process by reducing deflection and
vibrations of the cutter. The shape of the cutter is optimized
towards higher stiffness, while the trajectory surface is computed
by interpolating the cutter axes. In our work, we take into account
mainly geometric objectives (the forces applied to the cutter are
not considered). We present an alternative formulation of the
optimization where the cutter and its trajectory are both the
unknowns, and a new way for quickly deciding whether a given
Fig. 2. Approximation of free-form skin of the Heydar Aliev cultural center, Baku,
by a set of planar sweeps [29]. (a) For one large detected patch, the corresponding
motion of a planar profile is shown. (b) Several larger patches together with their
generating planar profiles.

position of the tool axis possesses a good tangential movability
with respect to the reference geometry or not.

Optimization-based approaches that subdivide the design
surface into sub-patches have been proposed recently [13,21]. On
each such a patch, Liu et al. [21] apply a rank-two tensor field to
compute the machining strip width and the optimal machining
direction. Wang and Elber [13] use multi-dimensional dynamic
programming to find optimal subdivisions and fit a ruled surface
to each subdivided patch.

The research proposed here aims at the finishing stage of ma-
chining when the motion of the milling tool completes the desired
shape of the workpiece. Typically, this is a very time demanding
process because small-radii milling tools are used to eliminate or
reduce the remaining scallop cusps, see Fig. 1. To optimize per-
formance of this operation, various approaches varying tool orien-
tation have been developed. The idea is to adapt the milling tool,
usually a torus or a cylinder, such that the contact circle possesses
higher order contact with the surface. This technique is known
as curvature matched machining, see [22–27] and other references
cited in [26]. However, it is possible to consider non-traditional
shapes of the milling tool [28,29] to approximate Φ by a smaller
number of larger, geometrically simpler, but yet-sufficiently com-
plex patches. Conceptually, our research belongs to this modern
family of techniques.

In Fig. 2 we show one of our recent results [29] where the
idea of representing a complex shape by several large simpler
patches was realized on a large scale, mainly for real architectural
models. The patches are kinematic surfaces generated by motions
of planar profiles. For purposes of CNC machining, however, we
cannot in general move a planar profile so that it carves out a
desired shape. We need to work with a rotary cutting tool and
thus consider envelopes of rotational surfaces instead of sweeps
of planar profiles.
Contributions. We investigate a class of surfaces, namely envelopes,
generated by one-parameter motions of surfaces of revolution.
By definition, these envelopes have a tangential contact with
their generating surfaces of revolution at any time instant. In
other words, the surface of revolution glides tangentially along its
envelope. This fact makes envelopes perfect candidates for flank
CNC machining and thus we propose an algorithm that seeks a set
of envelopes that well approximate the input free-form shape. This is
the main contribution of our paper and is presented in Section 4.
In particular, we do the following:
⋆ Given a line l in space and a design surface Φ , this uniquely

defines a rotational surface Ψ with l as its axis, as well as
it defines the contact curve between Ψ and Φ . We seek an
envelope Ω , that is, Ψ and its rigid body motion, such that Ω
well approximates Φ . Therefore a good candidate line l yields a
surface Ψ which is tangentially movable along Φ . We consider
this tangential motion up to first order and explore the space
of lines for those which lead to good tangential movability.
Alternatively, a user defines a preferable trajectory of the tool
axis.
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Fig. 3. A one-parameter motion of a surface of revolution. A surface of revolution
Ψ moves from its starting position t = 0 to the end configuration t = 1, generating
an envelope Ω (blue). At each time instant t, Ψ (t) touches Ω along a characteristic
curve ch(t) (red). The ruled surface R swept by the axis ofΨ is shown in yellow. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

⋆ The initial guess described above is optimized towards the
proximity objective between the cutter and the designed
surfaceΦ during thewholemotion. In this step, both the cutting
tool (surface of revolution) and its motion are optimized.

⋆ We show that our algorithm reproduces exact envelopes and
discuss to what extent the desired shape can deviate from an
exact envelope to be still well approximated.

⋆ The main goal of this research is to detect large parts of free-
form surfaces that are manufacturable by a single sweep of
a rotary cutter. We emphasize here again that such a patch
is scallop-free, cf. Fig. 1, because of the tangential contact
between the two surfaces (the cutter and the material block),
and therefore is desirable for CNC machining because it does
not require any post-process smoothing.

3. Basic facts from geometry and kinematics

We now briefly recall a few preliminaries on surfaces of revolu-
tion and their envelopes under a Euclidean rigid body motion. We
also discuss the velocity vector fields attached to moving lines.

3.1. Envelopes of surfaces of revolution

Consider a surface of revolution Ψ with an axis l under a one-
parameter motion in space. Denote by Ω its envelope, see Fig. 3,
and consider Ψ as a function of time (or pseudo-time), Ψ (t), t ∈

[0, 1], Ψ (0)being the start andΨ (1) the endposition, respectively.
The contact curve ch(t) shared by Ψ (t) and Ω is called a

characteristic. By definition, since Ω envelopes the set of Ψ s, Ω

andΨ (t) share also the tangent planes along ch(t).Ω has typically
two disconnected components (upper and lower envelopes);
we consider only one of its components in our application
scenario. Moreover, we also assume that ch(t) associated to the
lower (upper) envelope consists of a single continuous branch.
As explained later in Remark 1, ch(t) with more components
restricts movability and therefore is not desirable for machining
considerations.

Remark 1. We recall that ch is the locus of footpoints (closest
points) of all p, p ∈ l, on Φ . In the case when ch has more than
one branch (continuous component) while Ψ moves along Φ , the
discontinuity implies the existence of a point pd, pd ∈ l, which
has two different closest points on Φ , see Fig. 4. That is, the sphere
centered at pd touches Φ at these two footpoints which decreases
its movability along Φ . Whereas a sphere with a single contact
point has two degrees of freedom (DoF) to tangentially glide along
Φ , the double tangential contact demands (up to scaling) a unique
moving direction. This is a strong movability restriction and, since
we look for lines with good movability, these configurations are, if
detected, ignored.
Fig. 4. Double-tangential contact. The footpoints of a line (yellow) form a
characteristic (red) which, in complex geometries, may be discontinuous. Such a
scenario is inappropriate formachining purposes because the tangential movability
of l along the reference geometry Φ is limited by the sphere (transparent) that
possess a double-tangential contact (blue) with Φ . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

3.2. Lines in 3D

Exploring the space of surfaces of revolution that possess tan-
gential contact with Φ is equivalent to searching among all pos-
sible axes, that is, lines. The space of 3D lines is of dimension
four (with the structure of a quadric in 5-dimensional projective
space [30]). However, this is the space of infinite lines, while here
we have to consider also the start and end points of finite lines.
This results in a 6-dimensional search space. To explore exhaus-
tively this huge space would not be possible, particularly because
comparison and ordering of good candidates (surfaces of revolu-
tion) grows exponentially with the problem dimension. Therefore,
a strategy analogous to our previous work [29, Section 2.1] is not
expected to be efficient. Thus, we introduce a different approach
which does not require shape matching of the tool profiles.

3.3. Velocity vector fields attached to lines

A rigid bodymotion in 3D-space has six DoFs. Becausewemove
a surface of revolution Ψ and thus can ignore rotations about its
axis l, we only need to consider the motion of the straight line l,
which reduces the number of DoFs to five.We consider the velocity
vectors of points on a line lwhich is spanned by points a and b, see
Fig. 6. During the motion, these points run along their trajectories
a(t), b(t) so that their distance d = ∥a(t)−b(t)∥ remains constant.
Differentiating this condition leads to the well known projection
rule for their velocity vectors va = ȧ(t), vb = ḃ(t),

⟨va, b − a⟩ = ⟨vb, b − a⟩ . (1)

The vector field is linear along l, i.e., for any point p ∈ l, p =

(1 − s)a + sb, we have

vp = (1 − s)va + s vb, s ∈ [0, 1]. (2)

To define the vector field, and therefore to prescribe the
instantaneous motion of l, one has to determine five parameters:
the three coordinates of the vector at line’s start point va =

(va
x , v

a
y , v

a
z ) and two additional parameters λ1 and λ2 which

control the position of vb, satisfying the projection rule Eq. (1). In
particular, we write

vb = va + λ1n1 + λ2n2, (3)

where n1 and n2 span the space perpendicular to l, see Fig. 6.
Since any non-zero scalar multiple of the vector field gives the

same instantaneous motion of l, we normalize the field so that at
the midpoint m = (a + b)/2 of l we have ∥vm∥ = 1. After this
normalization, the number of free parameters that control the in-
stantaneous motion of l is four.
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Fig. 5. Algorithm overview.
Fig. 6. Projection rule. The instantaneous motion of a line l = ab is determined by
the velocity vectors (green) associated to the endpoints. The oriented projections of
va and vb onto l are equal (red). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

4. Fitting envelopes to free-form shapes

In this section, we show how to detect parts of a free-form sur-
face Φ that can be approximated by an envelope Ω . Our algo-
rithm consists of the following steps, see also Fig. 5 for a detailed
overview of the algorithm:

⋆ Line-driven initialization. We explore the space of lines and
quickly detect candidate lines with good local tangential
movability with respect to Φ . Consequently, we evolve a
candidate line along Φ to generate an initial motion of the axis.
The surface swept by the moving axis is a ruled surface R.

⋆ Surface-driven initialization. Alternatively, we initialize the
ruled surface R directly. The reason is to avoid an exhaustive
search of lines and to better control the motion.

⋆ Optimization. Since themeridian (profile) of the cutting tool still
varies along R, an optimization scheme is proposed to unify
the meridian’s shape and to minimize the error between the
envelope Ω and the given surface Φ .

4.1. Tangential movability along surface

Given a free-form surface Φ , we seek finite lines that possess
the property of local tangential movability along Φ . We call a line
l tangentially movable if any point pi ∈ l has a velocity vector
vi which is parallel to the tangent plane of its footpoint p⊥

i , see
Fig. 7.

Given a line l, we have to quickly test how tangentially movable
l is with respect to Φ . Denoting by

x := (va
x , v

a
y , v

a
z , λ1, λ2) (4)
Fig. 7. The reference geometry Φ is approximated by a set of footpoints p⊥

i and
tangent planes τi . A line l = ab is required to move as parallel as possible to the
set of tangent planes. The sought-after vector field (green) is computed from Eq.
(5). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the five parameters that define a velocity field associated with l,
we formulate the search for a tangentially movable vector field as
a constrained least squares problem,

F(x) =
1
n

n
i=1


vi,

pi − p⊥

i

∥pi − p⊥

i ∥

2
= xAxT

→ min, (5)

with the constraint

vmvT
m = 1, (6)

where n is the number of sample points on l. With this setting, the
projection rule (1) is automatically satisfied. Note that vi is linear
in x and therefore Eq. (5) is a quadratic form in x with a trivial
minimizer x = 0. Constraint (6) is used to demand a non-trivial
solution. It is well known that this amounts to the solution of a
generalized eigenvalue problem.

Once the best tangential vector field is computed from (5), we
take the function value F(x∗) at the minimizer x∗ as a movability
measure of l and denote it by Fl. Observe that for the cases when
Φ is an exact envelope, Φ ≡ Ω , Fl ≡ 0 at every time instant.
Therefore we search for lines with good movability by looking for
low values of Fl.

4.2. User-driven exploration of the space of movable lines

We conduct a user-driven exploration of the space of lines.
Recall that the space of finite lines is 6-dimensional (4 DoFs for
an infinite line and 2 DoFs for the positions of the endpoints).
Typically, there is a preferable region to start the machining
process and the user’s intervention at this stage is usual. The user
sets an initial finite line by selecting its endpoints. By sampling
and computing the corresponding footpoints on Φ , see Fig. 7, the
line defines a characteristic and simultaneously Ψ . However, such
a line is not in general tangentiallymovable alongΦ . Therefore, we
repeatedly sample the neighborhood of both endpoints and select
a line l with the best tangential movability energy Fl, see Fig. 8.
This adaptive sampling improves the initial linewhich sequentially
serves as an input of the ruled surface generation.
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Fig. 8. Local exploration of linemovability. A user-defined line l (blue endpoints) is
evaluated by the tangential movability Fl . At the normal planes passing through the
line endpoints, their alternations are randomly sampled in a certain neighborhood
(yellow circles) to form candidate lines (here 15 × 15 lines are shown). These lines
are color coded according to Fl and the minimizer is taken as an input in Section 4.3
to generate an initial ruled surface. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Generation of initial ruled surfaces. Top: a line with a low tangential
movability energy Fl (green) is propagated along Φ in the as-tangential-as-possible
manner, i.e., by iteratively computing the best tangential vector field using Eq. (5).
The initial ruled surface Rini (yellow) is generated by integrating the best tangential
vector fields. The propagation is terminated either when a numerical threshold on
Fl is reached or, like in this case, when the surface boundary is encountered. Note
that Ψ varies in time; several non-congruent positions are shown. Bottom: the
histogram displays the distribution of tangential movability energy Fl of Rini . (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

4.3. Initialization from lines with good movability

At this stage of the algorithm, we have a set of locally movable
finite lines. Each such line is propagated tangentially along Φ to
uniquely define a ruled surface, see Fig. 9. The initial position
of the line determines a characteristic and therefore an initial
surface of revolutionΨ (0). The line ismoved alongΦ by iteratively
computing the best tangential vector field with respect to Φ using
(5), while preserving its length L. The stepsize is set 0.001 for the
normalized velocity vector of the line’s midpoint. At each time
instant, the movability value Fl is computed and the propagation
terminates if Fl exceeds a predefined threshold ε, see Fig. 9 bottom.

Such an initialization aims at finding the best tangential motion
of a rigid line. Its trajectory, a ruled surface Rini, provides an initial
guess for the optimization stage, explained later in Section 4.5. The
Fig. 10. Line propagation. (a) A line with good movability (red) is moved along
the design surface (green) by iteratively computing the best tangential vector field
(yellow), see (5). Its rigid body motion generates an initial ruled surface (blue). (b)
The blue ruled surface is used as an input for the optimization, see Section 4.5,
resulting in the final shape of the machining tool as well as its optimized motion
(yellow). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

reason is that by now, the surfaces of revolution associated to l
vary over time and the optimization seeks for congruent surfaces
of revolution, see Fig. 10.

4.4. Surface-driven initialization

An exploration of the space of lines is time demanding and
one usually desires to get a fast feedback whether there exists a
part of Φ that can be well approximated by some Ω . Moreover,
in many situations of CNC machining, there are preferable paths
of the milling tool and, for such a case, a surface-driven instead
of line-driven initialization is typically desirable. In our interface,
a user can specify several lines which roughly correspond to the
preferable positions of the axis of the milling tool. This ordered
sequence of lines determines the initial ruled surface that enters
the optimization stage, see Section 4.5. In our implementation, the
endpoints of the lines serve as control polygons of two boundary
cubic B-spline curves. The user specifies then one boundary curve
as a trajectory of one end-point of the ruling (finite line), and also
prescribes the ruling’s length L. With this setting, the initial ruled
surface corresponds to a rigid body motion of a rigid finite line.

4.5. Final optimization

During the motion of a rigid rotary cutting tool, each point of
the moving cutter axis l must keep its distance to Φ . This implies
that velocities of all points on l have to be parallel to the tangent
planes at their footpoints, and this has to hold for all time instances.
For a general Φ (that is not an exact envelope), each position of l
leads to a differentmilling toolΨ .We nowpresent an optimization
algorithm which simultaneously improves the tool axis motion,
and unifies the milling tool shape.

Let us consider the initial ruled surface

R(t, s) = (1 − s)a(t) + s b(t), [t, s] ∈ [0, 1] × [0, 1]. (7)

Here, we represent the two boundary curves a(t) and b(t) as
cubic B-spline curves. Further, we equidistantly sample s ∈ [0, 1]
and thus obtain trajectories R(t, sj), j = 1, . . . , n, of n uniformly
sampled points on l (see Fig. 11). We denote these trajectories by
Cj(t) and the vector of unknown distances by d := (d1, . . . , dn).
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Fig. 11. Optimization settings. The initial ruled surface R(t, s), see (7), is uniformly
discretized along the rulings (s-direction) with n = 7 samples (green dots). Their
footpoints on the reference surface Φ are shown in blue. For a fixed s-value (j =

const), a distance dj (d1 shown in red) between R(ti, sj) and Φ is required to be
constant along Cj(t). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Our objective is that each curve Cj(t) lies at a constant distance dj
from Φ . We discretize also the t-space (position of rulings in time)
by m samples and thus arrive at the problem to minimize

Fprox(a, b, d) =
1
mn

n
j=1

m
i=1

(dist(R(ti, sj), Φ) − dj)2 → min (8)

subject to the rigidity constraints

Frigid(a, b) = ⟨a(ti) − b(ti), a(ti) − b(ti)⟩ − L2 = 0, (9)

where dist(,) is a point–surface distance function. The free
parameters are the control points of the two B-spline curves a(t)
and b(t), and also the distances d. We further denote pij :=

R(si, tj), p⊥

ij their footpoints on Φ , and nij the unit normals at p⊥

ij
oriented towards pij. The proximity objective has two components

Fpoint(a, b, d) =
1
mn

n
j=1

m
i=1

∥pij − (p⊥

ij + djnij)∥
2,

Fplane(a, b, d) =
1
mn

n
j=1

m
i=1

(⟨pij − p⊥

ij ,nij⟩ − dj)2,
(10)

which correspond to a point–point and point–plane distance
constraints, respectively.

To achieve a fairmotion, we aim at fairness of the two boundary
curves, expressed by

Ffair(a, b) =
1
m

m−1
i=2

(a(ti−1) − 2a(ti) + a(ti+1))
2

+
1
m

m−1
i=2

(b(ti−1) − 2b(ti) + b(ti+1))
2. (11)

The final objective function is

Fmotion(a, b, d) = µ1Fplane(a, b, d) + µ2Ffair(a, b)

+ µ3Fpoint(a, b, d) + µ4Frigid(a, b), (12)

adding the rulings rigidity (9) as a soft-constraint. We emphasize
that distances dj are updated in every iteration and therefore
are also considered as unknowns. We set the optimization such
that all three types of unknowns a and b (ruled surface) and d
(surface of revolution) are optimized simultaneously. One could
eventually split the optimization loop into two separate steps,
and optimize interchangeably (a, b) and d. This would result
in only quadratic objective function (12), however, alternating
optimizations often suffer with slow convergence, and therefore
we optimize all unknowns simultaneously.We did not experiment
with various optimization techniques; the optimization problem is
Fig. 12. Optimization. Top: four iterations of the optimization tested on an exact
envelope surface are shown. In every iteration, the optimized milling tool (framed)
and its motion (yellow) are displayed. The actual envelopes are color-coded by the
absolute value of the one-sided distance to the designed surface which shows a fast
convergence to the exact solution. Bottom: a histogram of the length of the axis l
during one round of optimization is shown. The distance between two neighboring
horizontal lines corresponds to ε = 10−5 . (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

solved using the Gauss–Newton method in all examples shown in
the paper.

If not stated differently in Section 5, we use the default values
µ1 = 1, µ2 = µ4 = 0.1, and µ3 = 0.001. Four iterations of the
optimization cycle are shown in Fig. 12.
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Fig. 13. Half-meridian update. From the optimized distances djs, an updated half-meridian is computed (red). The axis of revolution is shown in yellow. The blue points
correspond to the footpoints computed in the optimization stage, cf. Figs. 7 and 11, and mapped to a common plane. Four iterations of the half-meridian update are shown.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Meridian update. The distances dj change in every iteration of the
optimization loop. Their initial values are obtained from the initial
smoothmeridian which is the least squares fit to all the footpoints,
mapped to a common plane, see Fig. 13 left. We use a cubic spline
curve with ten control points, uniformly sample the axis by 30
points, and obtain the initial dj’s by computing their footpoints on
the meridian.

As the ruled surface R is changed, the surface of revolution Ψ is
also updated by recomputing its meridian. In our discrete setting,
the optimization returns the actual values of djs and therefore
the meridian is also treated in a discrete fashion as a polyline by
computing a planar envelope of a set of circles centered along l
having djs as radii. Fig. 13 shows four iterations of thehalf-meridian
update.

4.6. Additional constraints

One can incorporate additional constraints on both the shape
of the milling tool and its motion. We considered two categories
of the milling tools: a general one where the half-meridian is a
general spline curve (no constraint) and a conical one where the
half-meridian is constrained to a straight line. This linear constraint
is applied when the half-meridian is updated, see Section 4.5,
by setting the polynomial degree to one and requiring only two
control points. An example with conical cutters is shown in Fig. 14.
If needed, one could consider, e.g., hyperbolic cutters by requiring
a proper rational quadratic half-meridian, or to set additional
constraints on the meridian curve like preventing high curvature
or concavity.

In our approach, the smoothness of the motion is controlled
by the fairness term (11) applied on the trajectories of the
endpoints of the ruling. If the objective is to perform a high-speed
milling as in [16], (11) could be eventually modified to comfort
the proper velocity constraints. Since our primary objective was
the approximation quality in terms of the minimum one-sided
distance between Φ and Ω , we did not experiment with high-
speed performance.

5. Results and discussion

In this section, we present several examples of envelope
detection. An example with an exact envelope as the input surface
is shown in Fig. 15 top. The color-coding reflects the one-sided
absolute error ε between the machined (Ω) and the designed (Φ)
surfaces, i.e.,

ε = min
i,j

|dist(R(ti, sj), Φ) − dj|, (13)

considered over a discrete set of samples of the ruled surface R, see
also Fig. 11 as a reference for this sampling. If not stated differently,
the design surface Φ is normalized such that the diagonal of its
bounding box is one. Additionally in Fig. 15, an exact envelope was
deformed by locally destroying the exact envelope property. The
results show that our algorithm still detects a dominant sub-patch
of the exact envelope, but optimizes the surface of revolution and
its trajectory accordingly.
Fig. 14. Conical cutters. Unlike themilling tools of general shapes shown in Fig. 20,
one may prefer simpler ones with linear meridians, i.e., conical milling tools. Two
optimal milling tools with their penetration-free trajectories are shown.

The results of another test conducted on the exact envelope are
shown in Fig. 16 where a random noise was applied on the exact
envelope. The optimized solution differs marginally (ε < 0.1%)
from the onewithout noise, cf. Fig. 15 top,which shows a very good
stability of our algorithm.

Fig. 17 shows another reconstruction fromdistorted datawhere
an exact, yet incomplete, envelope Φ is given as the input. Our
method recovers the exact solution within a very fine threshold
on the distance error, see Eq. (13); ε < 0.1% of the bounding box
of Φ .

An example testing our algorithm on industrial data is shown
in Fig. 18. The depicted geometry is a reference surface that
is used for benchmarking toolpath generation and material
removal simulation algorithms in industrial settings. A single
sweep approximation is compared with an approach using several
patches. A surface-driven initialization was used and the direction
of the rulingswas set roughly parallel to the long edge of the design
surface. A linear constraint on the meridian of the milling tool was
applied, see Section 4.6, resulting in optimized milling tool of a
semi-cylindrical shape.

Another example with industrial data is shown in Fig. 19. The
initialization was surface-driven and the shape of the tool was
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Fig. 15. Stability. Left: an exact envelope Φex (top-left) was continuously deformed, destroying the exact envelope property. The color coding shows the error between
the exact envelope, with normalized diameter of its bounding box, and the deformed surfaces. Middle: the solutions obtained by our algorithm for the exact (top) and the
distorted surfaces. A few positions of the milling tools together with their axes trajectories (yellow) are shown. Right: the resulting (machined) envelopes Ω . These patches
are sub-patches of those shown in the left column, and are the envelopes of the cutters’ motion shown in themiddle column. The color-coding reflects the absolute one-sided
error, see (13), to the corresponding designed surfaces Φ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 16. Noisy data. Left: A random noise was applied on the vertices of themesh (an exact envelope) shown Fig. 15. Themagnitude of the noise is relative to the normalized
bounding box of Φ . The solution obtained by our algorithm (middle) and the machined envelope color-coded by the absolute one-sided error to the designed surface are
shown.
Fig. 17. Detection of envelopes from incomplete data. (a) The input surfaceΦ is an exact envelope, corrupted by two trimmed holes. (b) The optimized ruled surface (yellow)
and the surface of revolution, Ψ , are shown. (c) The recovered exact solution Ω (green) is shown; it approximates the original surface Φ within the one-sided distance error
ε < 0.1% of the bounding box of Φ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
constrained to be linear. Two envelopes of the optimal conical
cutters that approximate the input geometry within a very fine
threshold ε = 0.00045 are shown.

Another example with linear constraints is shown in Fig. 14.
In this experiment, a surface-driven initialization was used, now
requiring the axis direction to be roughly perpendicular to the
dominant edge of the reference surface. The optimal conical cutters
and their motions derived by our algorithm are displayed.

A comparison of our two initialization strategies is shown
in Fig. 21: the line-driven (Section 4.3) and the surface-driven
(Section 4.4) initialization of the motion of the milling axis. An
example of the approximation of a free-form blade using a conical
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Fig. 18. Number of patches vs. accuracy. Left: the designed surface Φ is approximated by a single patch, compared to the case when three smaller initial patches were
assigned (right). The optimized ruled surfaces R are shown in yellow. Themeridians of all the milling tools were constrained to be linear, resulting in semi-cylindrical shapes
(conical, with the slope close to zero). The color coding visualizes the one-sided error between Φ and Ω , see (13), and shows the trade off between the errors vs. the number
of patches. The approximation error is worse for the large patch (left) when compared to the smaller patches, obtained by threemutually different cutters. The smaller patch
with the worst error is the middle patch Ω2 .
Fig. 19. Industrial data. (a) A ‘‘blisk’’ model is used for benchmarking toolpath generation and material removal simulation algorithms in industrial settings. The machined
patch under consideration is shown in green. (b, c) Two penetration-free solutions using different conical cutters are shown. The device to carry the milling tool is visualized
as a blue cone. (d) The machined strips, color-coded by the signed distance between the machined envelope Ω and the design surface Φ , are shown. The negative values
correspond to overcutting (red), while the maximum error ε = 4.5e−4 is attained in subregions where undercutting occurs (blue). The values are relative to the normalized
bounding box of the design surface Φ (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
a b c

Fig. 20. Collision detection. (a) An optimal tool shape (framed top) is derived together with its motion (yellow ruled surface). Our results are tested a-posteriori if the
designed motion is feasible in terms of accessibility. The extended half-axis (yellow) is required to be penetration-free with Φ . The patch showed in (a) failed the collision
detection test (red), while in (b, c) the derived motion is feasible. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
envelope is shown in Fig. 22. The initialization was surface-driven;
the result satisfies a very fine tolerance (ε < 0.03%).
Implementation. The current implementation supports meshes,
however, it can be easily adapted to smooth input. The reasons
for choosing discretized input were mainly computational issues.
For example, the closest point computation that is used very
frequently (see Sections 4.1 and 4.5) is for a mesh (provided by
a volume hierarchy in a preprocessing stage) significantly less
expensive than in the smooth setting. We summarize all the
statistics of the examples shown in the paper in Table 1. Timings
refer to a desktop PC with 4G RAMmemory, 4-core CPU, 3.4 GHz.
Collision detection. The machining device that carries the tool must
not penetrate the designed surface. Therefore the corresponding
half-axis and its sufficient offset (typically a cylinder or cone)
must be penetration-free with Φ . Since our objective was to
approximate Φ with one, or several, large patches of the size
ideally equal the designed surface,we did not consider the collision
detection in our optimization framework. We conduct collision
detection as a post-process, by testing penetration of the half-axes,
provided by some thickness, with Φ . Fig. 20 shows two results of
our algorithmwhere one solution passed this test whilst the other
failed.

6. Conclusion and future work

We have investigated a problem of approximating free-form
surfaces by a set of envelopes of surfaces of revolution. The
proposed algorithm is intended for the finishing stage of CNC flank
machining where large scallop-free parts of the machined surface
can be generated by a single sweep of the milling tool.

The tangential movability analysis of a 3D line with respect
to a free-form surface has been conducted to detect candidate
lines with good movability from which initial ruled surfaces arise.
Alternatively, we support also a surface-driven initialization to
prescribe directly a preferable motion of the machining tool.
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Table 1
A summary of our results. The first columns show the number of mesh vertices used to represent the reference surfaces and the preprocessing time needed to build the
hierarchy structure (KD-tree). In the ‘‘Initialization’’ columns, we show the type of initialization; whether it was line-driven (L-D) or surface-driven (S-D). The error εini refers
to the one sided distance between the initial envelope and the reference surface, see (13). In the ‘‘Optimization’’, we show the number of points p sampled on the ruled
surfaces in the s and t-parameter directions, respectively, and the errors after optimization. Finally, the timings of both main stages of our algorithm are displayed.

Reference shape Prep. [s] Initialization Optimization Time [s]
Fig. No. #vertices type εini #p εopt T ini T opt

15 top 13,234 0.8 L-D 1.1e−2 30 × 100 1.7e−3 25 21
15 bottom 13,234 0.8 S-D 3.5e−2 30 × 100 3.3e−3 50 24
17 12,921 0.7 L-D 8.1e−3 30 × 100 2.1e−3 25 25
19(b) 3,132 0.2 S-D 7.0e−3 30 × 100 3.5e−4 61 4
19(c) 3,132 0.2 S-D 8.1e−3 30 × 100 4.5e−4 70 4
21(a) 3,592 0.2 L-D 1.3e−3 30 × 100 1.6e−4 30 3
21(b) 3,592 0.2 S-D 1.1e−3 30 × 100 6.5e−4 65 13
22 228 0.1 S-D 8.0e−3 30 × 100 2.7e−4 90 25
Fig. 21. Different initialization strategies. The optimal shape of the milling tool (white) and its optimal tangential motion (yellow) along Φ are shown. (a) The initial ruled
surface was generated by the line-driven strategy, introduced in Section 4.2, while in (b) the initialization is surface-driven, see Section 4.4. The resulting envelopes Ωl and
ΩR are color-coded by the one-sided distance error, see (13), from Φ . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 22. Impeller. (a) The CAD model of an impeller and its free-form blade
(green) to be milled are shown. (b) The optimized motion of the milling tool along
the reference surface is displayed. The machining device that carries the tool is
visualized as a blue cone. Themaximum error of the machined strip is ε = 0.00027
for the reference surface (green)with normalized bounding box. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

We have introduced an optimization framework which im-
proves both the toolpaths and the shape of the milling tool itself.
The initial motion of the tool axis and the meridian curve of the
surface of revolution are iteratively updated to minimize the one-
sided distance between the designed and machined surfaces.

We have validated our algorithm on exact envelopes as well as
on real industrial data andhave shown that the proposed algorithm
detects large parts of the input surfaces by a single motion of the
milling tool, while satisfying fine distance thresholds. We believe
the presented paper shows the possibilities towards ‘‘custom-
tools’’ computer-aided modeling, where an analysis of the design
surface reveals a suitable set of machining tools.

As a future research, we point out that currently the initializa-
tion is in both cases user-driven and it is still very challenging to
set up the initialization fully automatically.
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