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a b s t r a c t

Multidisciplinary global shape optimization requires a geometric parameterization method that keeps
the shape generality while lowering the number of free variables. This paper presents a reduced param-
eter set parameterization method based on integral B-spline surface capable of both shape and topology
variations and suitable for global multidisciplinary optimization. The objective of the paper is to illustrate
the advantages of the proposed method in comparison to standard parameterization and to prove that
the proposed method can be used in an integrated multidisciplinary workflow. Non-linear fitting is used
to test the proposed parameterization performance before the actual optimization. The parameterization
method can in this way be tested and pre-selected based on previously existing geometries. Fitting tests
were conducted on three shapes with dissimilar geometrical features, and great improvement in shape
generality while reducing the number of shape parameters was achieved. The best results are obtained
for a small number (up to 50) of optimization variables, where a classical applying of parameterization
method requires about two times as many optimization variables to obtain the same fitting capacity.

The proposed shape parameterizationmethodwas tested in amultidisciplinary ship hull optimization
workflow to confirm that it can actually be used in multiobjective optimization problems. The workflow
integrates shape parameterization with hydrodynamic, structural and geometry analysis tools. In com-
parison to classical local and global optimization methods, the evolutionary algorithm allows for fully
autonomous design with an ability to generate a wide Pareto front without a need for an initial solution.

© 2016 Published by Elsevier Ltd.

1. Introduction

Multidisciplinary numerical shape optimization workflows for
various technical objects have been developed in recent times. Ef-
ficiency of any shape optimization problem can be increased sig-
nificantly by application of an appropriate shape parameterization
method that keeps the shape generality while lowering the num-
ber of shape parameters. The optimization problem is furthermore
difficult if global optimum is desired. Much research regarding
global andmultiobjective optimization in ship designs exists [1–9].
Various shape parameterizationmethods are applied, and it can be
concluded that no superior shape parameterization exists [10].

Ship design problems normally include several objectives. For
instance, the goals of the design process include single or multi
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speed resistance reduction, construction cost, reduced ampli-
tude and acceleration of particular motions, particular quantities
related to maintenance costs, etc. Most used objective in the ship
design numerical workflows is hydrodynamic resistance mini-
mization hence the application of trustworthy computational fluid
dynamics (CFD) solvers is necessary and this is becoming a com-
mon practice in advanced ship design process [11,12]. Although
computationally more efficient methods for resistance prediction
exist, CFD is more flexible [12,13] as it can more accurately predict
resistance of unusual shapes that can be created by the optimizer.
Structural design optimization is another common optimization
problem in ship design [14–16]. Typically improvement of a partic-
ular criterion causes deterioration of one or more others. It is intu-
itively recognized that suchmutually conflicting criteria cannot all
bemet simultaneously; instead, compromisesmust be established.
Two main approaches exist for solving multi-objective problems.
The first is to combine all the objectives into a single one, usually
based on economic merit [17]. The second approach is application
of the Pareto optimality concept yieldingmultiple solutions where
each one is better than all others in at least one objective.
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Many papers have been published on ship simulation-based de-
sign [18,19], multi-objective ship optimization [2,4,20] as well as
parameterization methods [3,5,21–23]. This paper aims at the de-
velopment of a global multi-disciplinary optimization workflow
without a need for initial solution. First, a sort of reverse engi-
neering procedure for testing the proposed parameterization is im-
plemented using the non-linear fitting procedure. The proposed
parameterization methods are compared to classical B-spline-
based parameterization with respect to the number of shape vari-
ables and root mean square fitting error (RMSE), on three different
hull shapes. It was shown that the proposed shape parameteriza-
tion does not have one-to-one mapping property as in some cases
multiple genotypes can represent the same phenotype (in this case
the same hull shape). The problem was solved by application of
niching methods in the objectives space, ensuring population di-
versity for phenotypes. After the proposed parameterization is ge-
ometrically tested, two multi-objective optimization cases were
conducted. This approach generates multiple Pareto optimal solu-
tions in single optimization run and no initial solution is required.

2. Modeling for multidisciplinary ship hull optimization

Many objectives are possible in global ship optimization
problemand in this paper only two are taken into account,minimal
single-speed resistance andminimal structuralmass. In addition to
the objectives, the required constraints include the capacity, deck
surface area and static stability. All constraints are easily calculated
from the geometry using simple mathematics and in-house codes
so only CFD and structural modeling are described in more detail.

2.1. CFD

For enhanced global optimization of a ship on the base of its
resistance, an accurate CFDmodel is needed to guide the optimizer
towards the optimal solution. With the recent breakthrough in
ship CFD technology, practical applications of CFD have become
possible [12,13].

A three-dimensional RANS model was used and implemented
by commercial CFD code ANSYS FLUENT [24]. The SST k–ω tur-
bulence model was used to close the governing RANS equations.
Although the flow fields appearing in practical marine hydrody-
namics are unsteady in nature, t is reasonable to assume that the
flow around the ship is steady-state flow [12,19]. The main con-
cern regarding the CFD in this paper is the reduction of the compu-
tational time such that the proposed parameterizationmethod can
be adequately tested on realistic time-scales. The proposed global
optimization method and corresponding parameterization are not
in any way limited to CFD as any ship hydrodynamic estimation
method (e.g. the panel method) can be used in the developed in-
tegrated workflow. Accordingly an accurate ship CFD model for all
Froude number regimes is not sought in this paper, but it is impor-
tant that the targeted speed range is well covered.

Selecting an appropriate computational domain is the first
step for accurate reproduction of fluid-dynamic phenomena. The
choice of computational domain was based on previous works
with a priority of reducing the computational effort as much as
possible since CFD simulationwill be plugged into the optimization
workflow where many simulations will be conducted. To test the
numerical model, the 5415 hull which has been adopted by the
International Towing Tank Conference (ITTC) as a recommended
benchmark for CFD validation for resistance andpropulsion [25,26]
was used. It was demonstrated by other authors (e.g. [27]) that
an accurate CFD model is possible for the targeted speed range.
Nevertheless a validation of CFD model will be conducted to
confirm that the same accuracy is achieved. Since DTMB 5415
towing tank tests are used, the domain width was chosen (at first)

Fig. 1. Schematic of used computational domain: wD-domain width, lD-domain
length, hD-domain height.

Fig. 2. Part of computationalmeshwith visible thickness of increasedmesh density
(Twl) near the waterline.

to be equal towidth of actual towing tank in experiment [28]while
during the optimization run the half-width was set to 0.7L and
depth was set to 2L. The length of domain was 2L upstream and
3L downstream (see Fig. 1).

The unstructured hexahedral grid was used as illustrated in
Fig. 2. In order to get the best computational performance for each
case of different hull shapes that appear during optimization, a
special treatment would be required for each individual shape.
That is not possible during optimization, hence a robust method
that always generates a good quality mesh is required. The cut
cell mesh generation method [29] is used, since it is robust,
its generation does not require substantial computational time
and has shown a better convergence rate in comparison to the
tetrahedral mesh. This mesh is composed of cube-like elements
that have a very low aspect ratio and skewness value A local zone
of refinement is created near the free surface in the entire domain,
to ensure a small enough z-grid spacing. A second refinement
near the hull ensures small x- and y-spacing there to properly
capture details of the free surface. A coarse mesh is used since
precise results are not required in this paper and the goal is to
test the proposed parameterizations for global multi-objective
optimization of ship hulls. The Convergence criterion was set to
10−3, this was enough to keep sufficient computational accuracy
and maintain low time requirements. Typical number of mesh
elements was about one million and each simulation takes about
1–2 h.

The comparison of the applied CFD model with experimental
data [28] is illustrated in Fig. 3 where good accuracy of the applied
numerical model is demonstrated.

2.2. Structural modeling

The design procedure turns out to be progressively complex as
more subsystems are considered. Structural design optimization
performed alone can require a large search and sometimes uses
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Fig. 3. Comparison between experimental data and CFD simulation.

Fig. 4. Craft construction elements and important dimensions: l—panel large
dimension, b—panel short dimension and lu—unsupported stiffener length.

computationally expensive FEM tools. A first principles method
can achieve a level of accuracy useful for early design without the
requirement for expensive FEA techniques was used in this paper.
Design rules have been developed on many years of experience
and they are the main system for structural design of hulls used
within the boatbuilding community. The hull was assumed to be
built from composite materials which are attractive due to the
ability to be tailored to various shapes. Standard ISO 12215 has
been developed for composite monohull scantling determination
for small craft under 24 m. There are many papers discussing the
ship structure optimization [14–16].

The determination of structure dimensions when using ISO
12215 is based on the watercraft features and the environment
that it is normally expected to be working in. The vessel structure
can be divided in panels for which the standard is used to calculate
pressure value on the basis of the panel position of within the hull
form. For each panel, the minimal thickness is calculated using
the pressure, the distance separating the stiffeners (long – l and
short – s dimension –Fig. 4) and the curvature of the individual
panel. Eq. (1) for calculating the minimal thickness tmin is given
merely for clarification purposes. The layout of the full ISO 12215
standard is out of scope of this paper, but from this single equation
and explanation below, it should be clear how the standard was

applied within this paper.

tmin = max


b · fk ·


P · k2

1000 · σd
, b · fk ·

3


P · k3

1000 · k1 · Ef


(1)

where b is the short dimension of the panel (Fig. 4). fk is a factor
that depends on the radius of curvature of the panel (which can
be calculated from the B-spline surface) and then the fk value is
obtained from tables within the standard. P is the design pressure
that depends on the overall hull geometry (e.g. length, width, dis-
placement, etc.) and the location of the panel (bottom, side, deck).
The factors ki depend on the aspect ratio b/l Fig. 4, and their values
are given in tables within the ISO 12215. The material is defined
by the design stress σd and flexural modulus of elasticity, Ef .

This shows how the thickness of the hull depends only on
simple geometrical relations (and material properties which are
constant) that can easily be obtained from a B-spline surface that
describes the ship hull. Similar equations are used to determine
the minimal allowed stiffener geometry dimensions. The stiffener
geometry is determined in a similar matter as thickness, by using
the thickness of the adjacent panel and the design pressure P at
the respective panel as input. Some of the most important (with
respect to totalmass of the vessel) craft construction elements such
as panel and stiffeners are illustrated in Fig. 4.

It has been shown that using ISO 12215 for structure optimiza-
tion of composite boat hulls gives reasonable results [14]. Many
design variables besides the hull form can be used [30] includ-
ing internal compartmentation, machinery specs and structure.
Although variables related only to the vessel structure such as dis-
tances between the stiffeners (b and l, Fig. 4) could easily be added
as additional variables in optimization, this paper uses the design
rules only for scantling and mass determination. The naval ves-
sel hull shape is the only variable and all of the variables related
to the structural analysis are calculated from the B-spline surface
that represents the vessel hull. Variables related exclusively to the
structure are not used since the primary objective of the paper is
to prove that an efficient parameterization method for global op-
timization can be developed. The initial construction design topol-
ogywas prescribed, and afterwards an automatic scantlingmethod
was implemented.

For a design generated by the optimizer, the draft is not known
in advance but can easily be calculated from the total mass of the
boat which includes prescribed equipment and crewweight, cargo
and structure. Since the draft has an influence on both the pressure
loads for individual panels as defined by the rules, a change in draft
has an influence on structural mass, which again changes the draft
and so on. This is solved iteratively for an individual design and the
resulting draft is used as an input to the CFD simulation.

3. Ship hull parameterization

Given the fact that fully generic 3D shape modeling, complex
3D CFD simulations, and multi-objective global optimization
are combined, a heavy computational effort of the respective
integrated numerical workflow can be expected. Consequently an
efficient shape parameterization is crucial for the optimization
of respective geometry especially if imposing initial shape is not
desired. If the parameterization is selected such that ship hull
geometry can be describedwith a small number of parameters, the
number of necessary simulations can perhaps be reduced enough
to open a possibility of practical realization of global optimization
procedures.

3.1. Parameterization

Traditional design of hull form is based on many points
necessary to draw the body plan, waterline plan and profile plan.
Using many shape parameters in modeling the 3D geometry of
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the boat hull provides for faithful and accurate both local and
global shape representation but is not adequate for optimization.
Complex 3D shape is commonly represented by CAD models that
contain many geometric primitives along with their attributes
in addition to the relationships linking those entities. While this
approach is sufficient for computer aided design it is a rather
bad choice in the case of shape optimization. The most common
approach is to use B-spline surfaces defined as:

S(u, v) =

n0
i0=0

n1
i1=0

Ni0,d0(u) · Ni1,d1(v) · Qi0i1, u, v ∈ [0, 1] (2)

where (n0 + 1) × (n1 + 1) are the numbers of the control points,
Ni0,d0(u) and Ni1,d1(ν) are the basic B-spline functions of degrees
d0, d1 ∈ N defined recursively as

Ni,0(t) =


1, ti ≤ t < ti+1
0, otherwise


, 0 ≤ i ≤ n + d

Ni,j(t) =
t − ti

ti+j − ti
Ni,j−1(t) +

ti+j+1 − t
ti+j+1 − ti+1

Ni+1,j−1(t),

1 ≤ j ≤ d, 0 ≤ i ≤ n + d − j

(3)

where:

t = {t0, t1, . . . , tn+d+1} . (4)

Eqs. (2)–(4) define the B-spline. As the individual shape
functions Ni,j(t) are non-zero just for the [ti, ti+j+1) interval, while
amounting to zero for t < ti and t ≥ ti+j+1, the property
of local control is ensured. As a result, the surface is formed
exclusively by a small number of adjacent control points, Qi0i1.
In this paper clamped knot vectors are assumed so that surface
passes coincidently through the end curves. The shape of the
surface is controlled by modifying the control points and the knot
vectors. The properties of local support, partition of unity and
non-negativity add to the numerical stability of the subsequent
optimization procedure. B-spline and NURBS surfaces are flexible
enough and provide sufficient degrees of freedom to represent the
necessary shape for ship hull representation.

Various methods of application of B-spline and NURBS surfaces
exist. One application of spline surfaces is the so called parametric
design which can greatly improve the hull form description with
respect to number of optimization variables. In [21], parametric
modeling based on NURBS surfaces and curves is combined
with CFD to improve hydrodynamic performance. The paper [5]
conducts surface modifications using a shifting method and radial
basis function (RBF) interpolation. This method provides for both
global and local modifications of hull form and offers a possibility
of reduction of the number of design variables, but this type of
methods are not appropriate for optimization in the case of global
optimization without an initial solution. In [31], a morphing tool is
used to generate new hulls by deforming the initial hull shape. In
a similar manner, the authors of [4] used a free-form deformation
technique with large number of variables, for the optimization of
an initial design of a fast catamaran.

In this paper an efficient global parameterization without the
need to impose an initial hull shape was developed. The starting
point for the idea leading to the proposed parameterization
method is the following. A method sometimes applied for fitting
splines curves is to modify the u and v parameters that define the
end-points of spline so that in Eq. (2) u, v ∈ [0, 1] is changed to u,
v ∈ [a, b], where a, b ∈ [0, 1]. The method is illustrated in Fig. 5
where an original B-spline curve is illustrated together with the
effect of modifying the parameters u and v consequently changing
the spline end-points.

While in the earlier method, curve end-points are modified in
parametric coordinates (u and v) a similar effect is obtained by

Fig. 5. End-points (EP) for spline curvewith fixed control points (CP),with different
parameter limit values: (a) original end-point parameter values (b) modified end-
point parameter values.

Fig. 6. End-points (EP) defined by the center line (CL) and y > 0 trimming.

trimming in physical coordinates. Now, the end-points are defined
not only by the spline definition (2) but also by the spline location
with respect to trimming line (or trimming plane for the case of
surface). An example of spline trimmed by line is illustrated in
Fig. 5,where the line designated as CL defines one of the end-points
of spline curve. In this way, the B-spline curve or surface can still
be defined by the modification of u and v parameters of the end-
points but the end-points are fully defined by the trimming line
or plane. In this paper, the center plane (similar to the center line
in Fig. 6) is used for trimming such that the hull is defined only
at y ≥ 0. The same y ≥ 0 trimming could be applied to any
other surface representation used for description of ship hull such
as NURBS, T-spline [32,33], RBF, etc. The limitation of this method
is that only symmetric ship hull forms can be described, but since
this is almost always assumed, it does not limit the application of
the method considerably.

Application of this method does not by itself decrease the
number of shape variables, although the freedom of shape is
possibly increased. However, themethod of constraining the spline
to y ≥ 0 allows for a big reduction of the multitude of shape
variables as now the number of degrees of freedom for individual
control point can be reduced to only one degree of freedom in y
direction, as illustrated in Fig. 7. That is, x and z coordinates of
each control point are set to the respective constant value. This
way, each Fig. 7 can be represented by an isoparametric curve
of B-spline surface, the curve also lies on x = const plane. This
methodwas named reduced parameter set (RPS) parameterization
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Fig. 7. Ship hull cross-section defined using reduced parameter set B-spline curve.

Fig. 8. Wigley hull: (a) isometric view and (b) view in y-axis direction.

method. If the one variable per control point approach would be
applied without the y ≥ 0 trimming, the shape in side-view (y-
direction) would always be a simple rectangular shape. Thus the
RPS allows a possibility of significant shape generality increase
while reducing the number of shape variables, and quantitative
results will be given later in Section 5.1.

The shape variables are now the y coordinates of the control
points CPm,n as illustrated in Fig. 7 for a single section and in
Fig. 9(a), for the entire 3D hull shape where just two control points
are designated (CP1,1 and CP1,5) and a part of control point mesh
is illustrated for Sections 1–3. The RPS parameterization provides
not only for shape representation but also for variations in shape
topology. For example, as illustrated in Fig. 9(b), the bulb shape
can easily be described with the same surface as the rest of ship.
The trimming is not only applied for ships with bulbous bow but
for essentially every shape except the ones that have rectangular
shape (Fig. 8(b)) when viewing in y-axis direction such as the
Wigley hull, Fig. 8.

With standard B-spline surface description, the bulb is usually
described by an additional surface, whereby the continuity at the
interface between the patches has to be imposed. Evenmore exotic
topologies can appear during the optimization such as two hulls
detached from each other. Since this paper dealswith optimization
of single ship hull, these occurrences are classified as unfeasible
during the optimization run.

There exist some more realistic cases, for example a combi-
nation of a hull with accompanying objects (appendages) whose
geometry is to be kept fixed. When using standard B-spline pa-
rameterization for the hull, the geometry of the appendages is usu-
ally modeled as separate entities by using CAD elements or again
by using B-spline or NURBS. These separate geometric entities are
then included as part of the overall geometry usually by using solid

Fig. 9. Ship hull surface shape representation using B-spline surface defined with
multiple sections (Si) using reduced parameter set parameterization: (a) original
B-spline surface and (b) resulting hull shape.

modeling. During optimization, these appendages would probably
not be the object of optimization and would remain unchanged.
The same can be accomplished by using RPS parameterization. An-
other optimization case would occur whenmost of the ship geom-
etry is ‘frozen’ and only the bulb geometry must be optimized. The
RPS parameterization can also be used here to describe the whole
hull and just the control points that influence the shape of the bulb
would be used in optimization. Since large computational effort
of the CFD limits the number of variables to small multitude, it is
not easy to obtain an optimal solution in a single optimization run.
In those cases, the RPS parameterization could be used for initial
global optimization with a small number of optimization variables
(and control points). The solutions of the initial global optimiza-
tion could then be used as initial geometries for optimization with
larger numbers of control points. Local optimization could now be
conducted using gradient methods for faster convergence despite
the larger number of variables. Also additional degrees of freedom
for the control points could be allowed for final fine tuning of the
optimization procedure. These special cases will not be conducted
in this paper, theyweremerelymentioned to point out that the RPS
can be used for realistic cases with larger numbers of variables.

An unfavorable property of the proposed RPS parameterization
is the non-uniqueness of mapping from the design variables space
to the shape space Fig. 10. From the optimization point of view,
non-uniqueness of mapping can cause problems such as poor
convergence. Onemethod of eliminating the possibility ofmultiple
solutions that have different values of shape variables but the same
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Fig. 10. Non-uniqueness of mapping shape variables to shape geometry.

geometry is by developing a niching operator as described in more
detail in Section 4.

The basic RPS method—using one degree of freedom per con-
trol point does have some shortcomings and limitations. As an ex-
ample, a hull shape that has a negative normal in y-axis direction
could not be represented. This is not a serious limitation since such
kinds of hull shapes are not common. Furthermore, the basic RPS
method could be used at first to find a near global optimal solu-
tion using small number of optimization variables and genetic al-
gorithms. The same spline surface could subsequently be used for
local optimization by giving full 3D degrees of freedom for the con-
trol points and keeping the y ≥ 0 trimming, thus eliminating the
limitation on the surface negative y-axis normal. A modification of
the basic RPSwhich can eliminate this limitation is also considered.
The modified RPS method adds x and z components of individual
B-spline rows (z-coordinates) and columns (x-coordinates) posi-
tions as two additional vector variables.

The geometrical test of the basic RPS, modified RPS and the
full 3D parameterization methods will be conducted on three
different hull shapes in Section 5.1. After the advantages of using
RPS methods were confirmed, the feasibility of application for the
global multi-objective optimization is still unknown since the RPS
method possesses mentioned unfavorable properties. So the final
two tests were the application of the basic RPSmethod on the local
and global multi-objective ship optimization.

3.2. Evaluation of parameterization by shape fitting

To confirm that the proposed parameterization is superior to
classical B-spline parameterization, a number of shape fitting tests
were conducted on several point clouds that represent different
hull shapes. The advanced method of non-linear fitting procedure
similar to one in [34,35] was used as it allows for B-spline
control points crowding and aggregation at locations of certain
geometric features thus enabling good shape fitting while keeping
low numerical complexity and high stability. The advanced fitting
method is crucial since the linear fitting method cannot replicate
the mentioned control point aggregation that occurs in actual
optimization. If the ship hull geometry is obtained by 3D scanning,
this procedure can be regarded as a reverse engineering [36]
procedure, recent application includes [37–39]. The first step of
the non-linear fitting method is a projection of point cloud P to
a rectangular domain and obtaining an initial solution by linear
fitting a B-spline to the projected point cloud. After the linear
fitting, a gradient method and genetic algorithm are used for
improving the solution. As opposed to classical B-spline fitting, the
parametric coordinates (u and v) of the (point cloud) individual
points are additional fitting variables that allow the B-spline
control points movement towards locations of certain geometric
features such as the bulb or hard-chine. In that case the error

Fig. 11. DTMB half of ship hull.

function subjected to minimization is:

E(U,V,Q) =
1
2

m0
j0=0

m1
j1=0

 n0
i0=0

n1
i1=0

Ni0,d0(uj0j1)

·Ni1,d1(vj0j1) · Qi0i1 − Pj0,j1


2

(5)

where P is point cloud matrix representing the hull shape; U and
V are matrices of parametric values:

U =

 u00 · · · u0m1
· · · · · · · · ·

um00 · · · um0m1


(6)

V =


v00 · · · v0m1
· · · · · · · · ·

vm00 · · · vm0m1


. (7)

For the initial solution, the U and V values are fixed and only
the control points coordinates are obtained. Before obtaining the
initial solution, an ordered structured point cloud is required such
that it can be written in matrix form. In the case of the RPS
parameterization, an ordered distribution of U and V is obtained
easily by projection in y-axis direction and ignoring the y < 0 part
of the domain. To obtain the required ordered distribution for U
and V in the case of the full 3D spline fitting, a projection of shape
from physical space to parametric space is required. The most-
simple method is to use parallel sections (or waterlines) which
can individually be projected to the respective location in the
parametric domain. However this is not appropriate for a complex
hull shapes such as DTMB hull illustrated in Fig. 11.

Fig. 12 illustrates the importance of the projection to rectan-
gular domain. The line j-j which is the straight line with constant
height that can easily be projected to u − v domain by projection
in y-axis direction. Similarly, the line k-k also appears that it can
easily be projected but in a general case, line k-k is a 3D curve. The
line designated l-l is obviously a 3D curve and it cannot be pro-
jected to the parameter space in a simple matter as the line j-j.
This makes projecting 3D surfaces to rectangular domain a nec-
essary step. The simplest method of projection to rectangular do-
main is obtained by applying the spring analogy to the meshed
point cloud as presented in the paper [40] but a variety of differ-
ent methods exist. In this paper a procedure from [34] is imple-
mented since it demonstrated the best results. Regardless of the
applied projection method, the result is a shape with rectangu-
lar boundaries in the parametric space as illustrated in Fig. 12(b).
The required regular point grid can subsequently be created in the
parametric space. New (regular) point coordinates in physical
space are obtained easily by linear interpolation—mapping from
parametric domain (Fig. 12(b)) to physical domain (Fig. 12(a)).

Themethod is briefly summarized here whereby the procedure
will be illustrated on a half of the DTMB. The starting point of
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a

b

Fig. 12. Lines j-j, k-k and l-l illustrated in: (a) physical space (b) parametric space.

Fig. 13. Point cloud illustration: internal points, boundary points and corner points.

the projection method is a triangulated surface with an unordered
point cloud pU in physical coordinates as illustrated in Fig. 13. The
unordered points pU can be divided into two sets of points, the first
set being the boundary points pB and the second set of points the
remaining internal points pI .

The first step is pre-projection of points (p′

i) to parametric
coordinates for which a simple y-axis projection can be used in
case of half of ship hull. The next step is selecting four points
on the geometry boundary pB, illustrated as small circles A, B, C
and D Fig. 13. These points will be pre-set in the corners of the
square u − v parametric domain as illustrated in Fig. 14. Spacing
of the rest of the boundary points when projected to the u − v
domain is linearly correlated to the physical distances between
the points (da′′/da′

= db′′/db′). The final step is moving of
all of the pre-projected p′′

i internal points to their final location
in parametric domain. Procedure for individual point starts with

arbitrary selection of angle αu. For the selected angle, d′

i(α) and
d′

i(α + π) (physical distances between the point pi and points xa′

and xa′) are calculated as illustrated in Fig. 14. The point p′

i is then
translated to p′′

i along the xb′′
− xa′′ line such that:

d′′

i (α)

d′

i(α)
=

d′′

i (α + π)

d′

i(α + π)
, (8)

where d′′

i (α) is in-plane distance in the parametric domain. For the
same point pi, the projection p′′

i is calculated for multiple angles α
and the resulting projection is obtained by averaging.

After projection of unstructured points pU into the square
parametric domain, the required matrix (for U and V) topology
of point cloud is obtained by simple interpolation. The fitting
procedure is continued according to (5).

This brief section only illustrated a few key steps of the fitting
method. The aim of this paper is not the testing of the methods
from [34,35] or the spring analogy method from [40]. The goal is
the application of the non-linear fitting methods to evaluate the
proposed reduced-set parameterization. The original contribution
of this paper is focused in using the non-linear fitting procedures
for the purpose of evaluating suitability of various parameteriza-
tionmethod for optimization. The comparison between the param-
eterization methods will be based on the root mean square error
(RMSE) of the real distance from the point cloud to the spline sur-
face:

RSME =


1
N

∗


XPoint cloud − XSpline

2 (9)

where XPoint cloud is a point on the point cloud and XSpline is corre-
sponding closest point on the B-spline surface and N is number of
used points. Point cloud points are taken by interpolation from the
equidistant 100 × 100 grid from the projected u − v domain as
illustrated in Fig. 14 for both parameterization methods, such that
the results can be compared. The closest point on the B-spline sur-
face is found by the robust pattern search algorithm [41].

4. Optimization

In general, ship design problems are nonlinear and also non-
convex, therefore excluding the possibility of using local optimiza-
tion algorithms. The more suitable solution approach must adopt
a global optimization scheme, since a local optimization algorithm
cannot jump across the gaps created by the nonlinearities (con-
straints and objective function) to reach more favorable feasible
regions of the design space. In addition, local optimizer can easily
get stuck in suboptimal solutions near the initial design. To conduct
a multidisciplinary global shape optimization, an optimizer has to
integrate various performance analysis and geometric modeling
tools with shape parameterization methods in form of a numeri-
cal workflow. The workflow consists of an evolutionary optimizer,
structural scantling calculator, geometric properties calculator and
CFD simulation programs as illustrated in Fig. 15 where horizon-
tal direction represents process flow while the vertical direction
represents simultaneous data flow. The computational workflow
encapsulates geometric modeling (computer-aided design, CAD),
simulation software (computational fluid dynamics, CFD) and cal-
culators (structural, geometric characteristics) coupled with evo-
lutionary numerical optimization. The numerical coupling needs
to include the process executions and their mutual synchroniza-
tion aswell as data flows between the individual applications. Each
vessel simulation starts after the optimizer generates values for
the control points coordinates CPm,n (Figs. 7 and 9(a)). In the op-
timization case only the basic RPS method was used, thus the in-
put parameters are the y coordinates for CPm,n control points. The
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Fig. 14. Point cloud projected to rectangular parametric domain.

Fig. 15. Procedure of shape optimization and design synthesis controlled by an optimization algorithm.

values are at first taken from the initial population and later de-
termined by the optimizer. The design speed and various design
requirements such as capacity, deck area, and required stability
are constant during a single optimization run. The structural anal-
ysis uses input values for control points to construct the B-spline
surface and calculate the required geometrical characteristics to
determine the dimensions and mass of the construction elements
Fig. 4. Additional geometric properties such as displacement and
deck surface area are calculated here. The design requirements
together with the computed output values are now used to de-
fine the optimization constraints. For example the capacity con-
straint is defined such that the required capacity must be smaller
than displacement minus total structural mass. After this, hydro-
dynamic simulation is conducted. The B-spline surface is commu-
nicated to the ANSYS Geometry Modeler [24] where trimming is
applied, and based on trimmed surface solid modeling is used to

define the volume that is used as input to mesh generation. The
final step of a single vessel evaluation is completed after the CFD
evaluates the hydrodynamic drag. Here, commercial software AN-
SYS Fluent [24] is used, although any kind of flow analysis can
be plugged into the workflow. Both the structural calculator and
CFD simulator produce large output files after they complete their
assignments. Corresponding data mining (process of finding the
required data in output files of simulation software) and coordina-
tion of the process flow was implemented using commercial soft-
ware modeFRONTIER [42]. All of the calculations are executed on
a single machine but in the case of practical applications the pro-
cedure should be parallelized [37].

The global optimization procedure is implemented using an
evolutionary optimization algorithm, the used type of genetic al-
gorithm was the MOGA-II [43] that can be used for single-speed
optimization and eventually for robust (multiple speeds for a given
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Fig. 16. Illustration of niching operator.

speed distribution) optimization. Sobol initialization method [44]
is used to initialize 500 designs as an initial population. The hull
resistance (CFD) evaluation is the most computationally demand-
ing task in the workflow (up to two hours of computational time)
but during the optimizationmultiple simulations can be conducted
simultaneously on a multiprocessor PC since genetic algorithm is
used. The optimization procedure was stopped after 10,000 design
evaluations (several months computational time on a standard PC)
since the primary objective of the paper is to investigate the ability
of optimization procedure to keep a wide Pareto front and prevent
stagnation, and a near-global optimum is sufficient.

For the local optimization case, theWigley hull is used as initial
solution with initial length L = 20 m, width B = 2 m, height D =

1.5manddraft T ≈ 1msuch that it geometrically coincides closely
with dimensions used by other authors. In the case of Wigley hull
optimization, a smaller initial population of 50 Wigley hulls (with
very small random variations) is used. The optimization procedure
was stopped if no significant improvement was observed for two
subsequent generations. For both local and global optimization
cases the design speed was v = 4.4 m/s corresponding to the
Froude number Fr = 0.314 what is nearly the same as in the first
case from [45]where Fr = 0.316. The hull geometrywas described
by a 5× 5 control pointmesh using the basic RPS parameterization
method. The parameterization defines the hydrodynamically most
important part of the hull z = 0.0 m–1.0 m, while the upper
part is a simple extrusion of the z = 1.0 m cross section. The
similar approach is used also by other authors. The geometrical
constraints areminimal waterlinemoment of inertia of 1.4m4 and
capacity (defined as displacementminus hull mass for the purpose
of this paper) of 14,500.00 kg.Many other constraints and objective
functions can and have been considered by various authors (for
example [1,30]) but the selected constraints and objectives are
sufficient for the parameterization test.

The one-to-one mapping problem can be solved by various
methods. A simple approach would be to add a small penalty to
the original objective function, where the penalty might be based
on surface area or curvature of the original B-spline surface which
includes the y ≤ 0 part. The B-spline property of local support
could also be used since it is easy to know based on the degree of
spline howmany successive control points have y ≤ 0 coordinate,
which control points do not influence the shape. Now, penalization
can be added to all redundant shapes except for one or the penalty
could be distributed across all of the shapes. This approach would
be more computationally efficient since it does not require redun-
dant computationally expensive CFD simulations. Here, an original,
generic approach is applied by using a niching operator [46] related
to the one inmulti-objective optimization algorithms. The used ap-
proach is a bit less computationally efficient but it is robust and
sufficient for the testing of the parameterization method. This ap-
proach adds penalty not only to the mutually identical shapes but

Fig. 17. Standard full 3D B-spline fitting compared to RPS parameterization with
respect to the number of shape variables, comparison of fitting root mean square
error of the fitting error for the DTMB hull shape.

tomutually very similar ones thus allowing for a smooth optimiza-
tion procedure. The niching operators are implemented in MOGA
algorithms to obtain a wider Pareto front. When they are not used,
the Pareto front tends to concentrate on small areas that stalls the
optimization process. The niching operator acts as a sort of penalty
function added to the fitness function used to evaluate the perfor-
mance of individual designs within the genetic algorithm. A type
of niching operator, based on niching radius is illustrated in Fig. 16.
The approach is based on counting the number of designs within
some radius (in the objective space) for each individual design. In-
dividual design fitness functions are then penalized by a value pro-
portional to the number of designs counted in the niching radius
around the design. For example, design ‘‘a’’ in Fig. 16 does not have
any neighboring designs, so no penalty will be added. Meanwhile
the design ‘‘c’’ has only oneneighbor in theniching radius so a small
penalty will be added while the design ‘‘b’’ has multiple neighbors
such that larger penalty will be added to its fitness function. There
are many types of niching operators, but each performs similar ac-
tion of penalizing the designs in the design-dense area of the ob-
jective space. In this way, additional penalty functions that would
be based on the inactive variables are not required. It was shown
that the approach of using niching operators is sufficient since the
optimizer hasmanaged tomaintain awide Pareto front despite the
inactive variables during the global optimization case presented in
the next section.

5. Results and discussion

The results section is divided in two sections. The first
section will evaluate whether the proposed parameterization can
achieve the reduced space dimensionality without a loss in shape
generality. After the proposed RPS has been confirmed to have the
desired effect of reducing thenumber of optimization variables, the
second part of the section presents the results of global and local
multi-objective optimization test cases.

5.1. Comparison with standard parameterization

Two variations of the proposed parameterization are consid-
ered, the first is using only one variable per control point—the re-
duced parameter set (RPS) parameterization method. The second
option is themodified RSP parameterizationmethod by adding the
control point grid column and row coordinates as additional vari-
ables. The fittingwas tested using n×n B-spline grid sizes, where n
was varied from 3 to 10 whereby larger values are not considered
since they are not adequate for global optimization. The original
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Fig. 18. Fitting error difference between the point cloud and B-spline surface
for full 3D parameterization with 10 × 10 grid in: (a) physical coordinates (b)
parametric coordinates.

hull point clouds are scaled to unit cube before the fitting proce-
dure such that the results can be compared between individual fit-
ting cases.

The first case, DTMB hull Fig. 11 is characterized by the complex
shape of the ‘‘bulb-like’’ sonar dome suitable for parameterization
using a separate parametric surface. The idea of the proposed
parameterization was to increase the ability to handle these
complex shapes. Fig. 17 shows the results of RMSE between the
full 3D and the RPS parameterization methods for the DTMB
hull with respect to number of shape variables and confirms
that RPS methods yield better results. Both versions of the
proposed parameterization show superior fitting performance in
the investigated range of shape variables while the modified RPS
version shows the most promising results.

The fitting error between the B-spline surface and point cloud
for full 3D parameterization with 10 × 10 grid is illustrated in
Fig. 18(a) where the distance is plotted on the hull surface. The
fitting error was calculated from each point on the regular point
cloud surface to the B-spline. A better visualization of the fitting
error distribution can be obtained byplotting the fitting error in the
parametric coordinates as Fig. 18(b) illustrates. As expected, most
of the error is concentrated in the sonar dome area (near point C)
of the hull amounting up to 3 ∗ 10−2.

When comparing fitting errors for the same 10 × 10 grid size,
the basic RPS method (Fig. 19(c)) yields larger fitting error values
in all parts of the domain but the number of shape variables is
three times smaller. The basic RPS method with the 10 × 10 grid
has 100 shape variables that can be compared to the 6 × 6 full
3D parameterization (Fig. 19(a)) containing 108 shape variables.
When comparing these two cases, the benefits of using the
proposed parameterization are evident since the error is smaller
in all parts of the hull geometry. The modified RPS method fitting
error for the same 10 × 10 grid size is illustrated in Fig. 19(b),
demonstrating exceptionally good results. In comparison to the
basic RPS, the modified RPS method allows accumulation of the
control point rows and columns in the areas of rapid geometry
changes such as the sonar dome area. The RMSE even surpasses the
full 3D parameterization for the same grid size while the number
of variables is almost three times smaller.

The second test case is the relatively simple sailing yacht hull
shape. As earlier, only half of the hull is used and corner points of
the parametric domain are illustrated in Fig. 20. It is expected that
this hull shape could be fitted fairly well with both parameteriza-
tion methods since it contains no complex features.

In comparison to the DTMB shape fitting where even with a
10 × 10 control points grid a RMSE of 10−3 could not be achieved.
Meanwhile, in this case of a relatively simple hull shape a RMSE of
0.9 ∗ 10−3was obtained with full 3D parameterization. Meanwhile
when using the modified RPS, a 15 × 15 control point grid was
required to achieve RMSE under 10−3 amounts to a reduction
in number of variables by 20% for the purpose of high accuracy
fitting.When applying parameterization to the global optimization
problem, 300 variables are still too much when complex CFD
simulations are involved in shape optimization. Therefore, Fig. 21
illustrates the fitting error for grid sizes up to 10 × 10 and number
of shape variables up to 100. For these low number of variables
(<100), an even larger reduction in the number of variables for the
same fitting error is obtainable with modified RPS. For example, a
5 × 5 fitting grid has almost the same fitting error for both the
modified RPS and standard full 3D parameterization as illustrated
in Fig. 21, which represents approximately a 50% reduction in the
number of variables.

Meanwhile the basic RPSmethod did not achieve improvement
over classical full 3d parameterization. Fig. 22 presents the
comparison between all three methods for approximately the

Fig. 19. Fitting error difference between the DTMB hull point cloud and B-spline surface for types: (a) full 3D parameterization with 6 × 6 grid; (b) modified RPS method
with 10 × 10 grid; (c) RPS method with 10 × 10 grid.
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Fig. 20. Sailing yacht hull shape.

Fig. 21. Standard full 3d B-spline fitting compared to RPS parameterization with
respect to the number of shape variables, comparison of fitting root mean square
error of the fitting error for the sailing yacht hull shape.

same number (∼70) of variables. The modified RPS method shows
the best results and has ∼10−3 fitting error on most of the
shape except on the bottom area of the hull—near B-C line. In
comparison, the full 3D method does not contain this error. The
maximal error amounts to 0.015, 0.029 and 0.04 while standard
deviation amounts to 0.0022, 0.0028 and 0.0039 for cases of full 3D,
modified RPS and RPS methods respectively. This can be explained
by the fact that the y-component of the normal on the hull in the
symmetry plane tends to zero for the sailing yacht hull shape. In
other cases this did not occur that is, lower RMSE is followed by
lower maximum error and lower standard deviation. As pointed
out earlier, the basic RPS is expected to yield poor results in these
areas. Generally, a similar conclusion as in the DTMB case can be
obtained; the modified RPS yields the best results. The basic RPS
method was shown to be better than the full 3D parameterization
only with a very low number of shape variables and its fitting
performance deteriorates for more than 50 shape variables.

Since the first two test cases yield good results in favor of the
proposedmethod, the last test case hull was selected such that the

Fig. 23. Planing hull with hard chine.

Fig. 24. Standard full 3d B-spline fitting compared to RPS parameterization with
respect to the number of shape variables, comparison of fitting root mean square
error of the fitting error for the planing hull with hard chine.

proposed method is initially expected to result in poor fitting. The
initial expectation is based on the reduced ability to describe a hull
shape with a normal pointing in the negative y direction (or equal
to zero). The selected hull shape has a part of surface (hard chine,
Fig. 23) with a surface normal y-component equal to zero.

As illustrated in Fig. 24, the basic RPS method shows reduced
fitting performance for a >50 number of variables, while it
surprisingly yields better results for the very low numbers of shape
optimization variables. Furthermore, the modified RPS method
shows better fitting results in all investigated cases in comparison
to the full 3D parameterization.

Fig. 22. Fitting error difference between the sailing yacht hull point cloud and B-spline surface parameterization for types: (a) full 3D parameterization with 5 × 5 B-spline
grid; (b) modified RPS with 8 × 8 B-spline grid; (c) RPS with 8 × 8 B-spline grid.
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Fig. 25. Fitting error difference between the planning hull point cloud and B-spline surface parameterization for types (a) full 3D parameterization with 5× 5 B-spline grid;
(b) modified RPS with 8 × 8 B-spline grid; (c) RPS with 8 × 8 B-spline grid.

Fig. 25 illustrates the fitting error for approximately the same
number of variables (∼70). Most of the error is now contained
in the narrow area of the hard chine and in nearby areas (about
halfway between points A and B) while the rest of the hull shapes
results in relatively small fitting errors.

The results of all three cases show the benefits of the RPS
methods in low and especially in the region of very low (<50)
number of shape variables. Thismeans that for the same number of
variables, the proposed RPS method could obtain a solution closer
to the global optimum. The larger shape generality is obtained
with the same number of variables; correspondingly a reduction
of the computational time could be obtained while keeping the
same shape generality. Still the applicability of the method to the
real case of optimization could become problematic because of the
problems associated with the one-to-one mapping property some
other unexpected difficulties could accrue.

5.2. Multi-objective optimization

In the previous section, the RPS parameterization has demon-
strated better results in comparison to classical B-spline param-
eterization for the purpose of shape fitting. Shape fitting can be
regarded as shape optimization if the shape (point cloud) to which
the surface is fitted represents the actual optimal shape for some
case. Three different shapes were used in the fitting examples, and
each can be considered optimal for a maritime vessel in different
operating conditions. The point clouds to which the surface is fit-
ted are not actually optimal shapes but they have the most im-
portant geometric features that the optimal shape would have. For
example a small vessel optimized for large Froude numbers would
have a hard chine, Fig. 23. If a large maritime vessel is optimized
for single speed, the resulting hull shape will have a bulbous bow.
Although the example used here is the DTMB hull Fig. 11 with a
sonar dome and not a bulbous bow, if a parameterization has a
good capacity to represent the DTMB hull, it is expected that it will
be good at representing the optimal hull shape that would appear
during optimization of a large vessel optimized for a single speed.
A small vessel that operates in a wide array of speeds would prob-
ably not have any specific geometrical features Fig. 20. Since the
RPS parameterization illustrated better fitting (RMSE) in all three
cases, it is expected that the optimization using the RPS parame-
terization will arrive closer to the optimal solution with the same
number of optimization variables. Equivalently, a smaller num-
ber of optimization variables can be used and the resulting shape
would be equally close to the optimal one. After the proposed RPS
parameterization has demonstrated better results, the following
optimization cases are conducted in order to confirm that the RPS
parameterization can be used for ‘‘practical’’ optimization pur-
poses. Since the one-to-one mapping problem could possibly pre-
vent convergence, one of the main objectives of this section is to
demonstrate that the proposed parameterization method can be
used for actual optimization.

As for the smallest grid sizes the RPS method provided the
best results earlier in comparison to full 3D parameterization
method, and computational expensive CFD constrains number of
evaluations, the 5 × 5 B-spline control points grid is selected.
Only the basic variation of RPS parameterization is used to conduct
the optimization cases. The results are presented for two cases
of multi-objective optimization of a small vessel. The first case
is the local optimization case with the Wigley hull as a starting
solution. The second case uses the same parameterization as in the
first case, but starts from randomly generated initial population.
The individual feasible designs in the objective space after 20
generations for both optimization cases are illustrated in Fig. 26
where the number of points (optimization designs) is reduced for
better clarity.

Fig. 27(a) illustrates the starting solution for the local optimiza-
tion case half-sections. The middle half-section is the widest sec-
tion on the right part of the figure and rest are equally spaced
half-sections towards the ship bow. The stern-wise part of ship is
illustrated in the similar manner but on the left side of the figure.

Fig. 27(b) illustrates a hull on the minimum resistance side
of case 1. The hull has the same tendency as in [19] where the
Wigley hull, when used as a initial geometry, has a tendency to
reshape the bow into a shape similar to one generated here. While
the Wigley hull hydrodynamic resistance amounts to 2.17 kN, the
reduction to 1.95 kN is obtained byminimization of resistance. The
simultaneous reduction of the hull mass (on the other side of the
Pareto front) results in the hull shape illustrated in Fig. 27(c). The
half-sections are a bit bulkier and an increase from 1.95 to 2.16 kN
of resistance (see Fig. 28) is followed by a small reduction in hull
mass from 1596 to 1579 kg.

The comparison of Pareto front sizes Fig. 26 of the two
cases illustrates a huge advantage of using global optimization.
Nevertheless local optimization starting from the Wigley hull
yields good results as the Pareto front coincides with the global
optimization case. Only a modest change in mass from one to
the other side of the Pareto front was obtained in the former
while the for the global optimization case it varies from 1312
to 1606 kg. The difference in the hydrodynamic resistance
is considerable as it ranges from 3.54 to 1.77 kN. In [19],
the optimized hulls reduction in hydrodynamic resistance with
respect to the Wigley hull amounts 17.4% which is similar to
the one obtained here amounting to 18.4%. The result can be
different since the hydrodynamic simulation analysis methods
were not the same. More detailed results for the selected designs
are presented in Table 1 where hydrodynamic, geometric and
structural characteristics.

The lowest-mass solution from global optimization results
is illustrated in Fig. 29(a). For this design, the hull length is
decreased to 13.6 m while still satisfying the constraints related
to displacement and waterline moment of inertia. This is possible
since the width has increased considerably and the design is
also accompanied by an increase in hydrodynamic resistance to
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Fig. 26. Designs from both local and global optimization case plotted in optimization criteria space.

Fig. 27. Half-sections for designs: (a) The Wigley hull (b) L_B design (c) L_C design.

Fig. 28. Free-surface height for local optimization designs: (a) initial design—Wigley hull (b) L_B design (c) L_C design.

Fig. 29. Pareto individuals: (a) G_A design (b) G_B design (c) G_C design.

3.54 kN. The important feature to notice about this design is that
about half of hull shape B-spline control points are located in the
y negative area. The control points at the bow have practically
no impact on the resulting hull shape but still the optimizer
managed to find the solution in the integrated procedure with
computationally expensive CFD simulation. Going along the Pareto
front, the solutions of continuously increasing the length appear
as illustrated in Fig. 29(b) with 16.0 m length, 1374 kg mass and
2.53 kN hydrodynamic resistance. The design Fig. 29(c) represents

a design with minimal resistance of 1.77 kN and small hull mass
amounting 1606 kg and is located in area close to the Pareto front
of the first case. Further reduction of resistance (see Fig. 30) is
negligible and followed with large hull mass requirements.

Finally note the increase of block coefficient (ratio of vessel
displacement to a block of the same width, length and draft) in
global optimization for cases G_A and G_B. This cases correspond
to considerable decrease in hull structural mass and decrease in
hull length. The increase of the block coefficient is possible because
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Fig. 30. Free-surface height for global optimization designs: (a) G_A design (b) G_B design (c) G_C design.

Table 1
Partial results of structural scantling calculation, hydrodynamic resistance and geometric characteristics for selected local (L) and global (G) optimization cases. A—cross
sectional area, SM cross sectional modulus.

Design Wigley hull L_B L_C G_A G_B G_C

Hydrodynamic resistance (kN) 2.17 2.16 1.95 3.54 2.53 1.77
Hull mass (kg) 1625 1579 1596 1312 1374 1606
Length (m) 20.0 19.9 19.8 13.6 16.0 19.4
Beam (m) 2.0 1.64 1.94 2.14 2.11 1.92
Draft (m) 0.98 0.99 0.95 0.98 0.96 0.98
Displacement (m3) 16.1 16.1 16.1 15.8 15.9 16.1
Waterline moment of inertia (m4) 2.07 1.43 1.60 1.75 2.03 1.41
Bottom pressure (kN/m2) 58.4 52.1 59.5 69.4 65.0 41.2
Bottom plate thickness (mm) 8.4 8.0 8.4 7.9 7.6 7.4
Longitudinal stiffener, A (cm2) 16.2 16.0 16.2 13.5 15.2 14.0
Longitudinal stiffener, SM (cm3) 58.4 56.2 58.1 44.6 51.9 45.6
Transversal frame, A (cm2) 18.2 17.4 18.4 16.5 17.4 15.2
Transversal frame, SM (cm3) 67.7 62.8 68.6 58.4 62.8 51.2

Fig. 31. 3D view of flat bottom for design G_A.

the hull now has a flat bottom as illustrated in Fig. 31 for the G_A
design.

6. Conclusion

Two proposed reduced parameter set (RPS) shape param-
eterization methods have been compared to classical B-spline
parameterization. It has been shown that the proposed shape pa-
rameterization methods are able to keep the shape generality
while lowering the number of shape parameters on three mutu-
ally different test shapes. This means that for the same number of
variables, the proposed RPS method could obtain a solution closer
to the global optimumor likewise a reduction of the computational
time could be obtained while keeping the same shape generality.
Non-linear fittingmethod has shown an ability to be used as a per-
formance prediction tool for shape parameterization before the ac-
tual optimization. Both proposed RPS methods have shown good
results for DTMB shape containing a bulb-like sonar dome where
a reduction of shape variables by a factor of three was obtained.
Somedifficulties have appearedwith describing a hull shapewith a
normal pointing in the negative y direction, but the RPS meth-
ods have shown advantages in all cases. While the modified RPS

method has kept the advantage over classical parameterization
for other test cases and number of shape variables, the basic RPS
method shown good results only for low number (<50) of shape
parameters.

The developed multidisciplinary workflow integrating the
proposed shape parameterization, hydrodynamic prediction tool
and structural scantling rules proves that it is possible to have
a numerical procedure that autonomously synthesizes the 3D
shapes. Successful application of the basic RPSmethod has showed
that the parameterization is suitable for global shape optimization.
This novel shape parameterization approach has enabled a global
optimization procedure that can start without an initial solution
and result in wide Pareto front. Similar reduction of hydrodynamic
resistance has been obtained as with other authors but the
approach used in this paper allows for various compromises
between the structuralmass andhydrodynamic performance. Only
one local and one global optimization case was presented in
this paper although variations of global optimization case could
be (and were) undertaken. The presented optimization case has
illustrated the primary goal of this paper, to show applicability of
the proposed parameterizationmethod tomultidisciplinary global
optimization without an initial solution.

3D CFD was used for hydrodynamic resistance prediction, and
an accurate prediction of the resistance for DTMB and Wigley
hull were achieved. Nevertheless the results of the resistance
simulation andused structural scantlingmethoddonot necessarily
have to be reliable for a wide array of generic shapes that the
optimizer is able to generate. This does not have impact on the
good results that the presented parameterization method has
illustrated regarding its ability of better fitting to various shapes
and proven applicability to a global optimization. Using ISO 12215
standard for structure scantling or 3DCFD for resistance estimation
is not of any particular importance. The same parameterization
method could be applied with any combination of structural
scantling and hydrodynamic resistance evaluation tools and
even other objective functions could be added. Furthermore
the proposed parameterization procedure could be suitable for
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applications beyond that of ship optimization. The procedure is
suitable not only for generic optimization of planar symmetric
shapes but axisymmetric shapes or it could be used in cases where
part of the geometry is constrained while a part is subjected to
optimization.

Since the full 3D CFD results in an optimization procedure
with intensive computational resource is demanding, further ap-
proaches to reducing the computational time are required. A multi
fidelity approach regarding resistance prediction methods imple-
menting surrogate models will be investigated in future work. To
additionally improve convergence, other optimization algorithms
will be tested along with MOGA II. In this paper only B-spline sur-
faces were used, but NURBS and especially T-splines could be used
for improvements and further reduction in the number of opti-
mization variables.
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