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a b s t r a c t

Topology optimization is an important topic in structuralmechanics. One common application is to obtain
the optimal distribution of material that maximizes the stiffness of the solution (minimize the compli-
ance). However, as an iterative process, topology optimization of large and complex structures is compu-
tationally intensive. The problem becomes even more complicated if the manufacturing constraints are
taken into account in the optimization process. In this paper, a novel growth method based on principal
stress lines (PSLs) is presented for topology optimization. The PSLs are traced in the design domain along
the direction of principal stresses, in which the materials would be located to define the geometry and
topology of the structure. Consequently, the optimization problem is converted into a geometric design
problem. Compared to previous methods, the computation based on PSLs is fast, and the designer can
have explicit control over the number of structural members. In addition, the manufacturing constraints
can easily be incorporated.Multiple test cases are given to illustrate the presentedmethod. The PSL-based
method is promising for building practical designing tools for various structural applications.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Structural Topology Optimization (STO) has gained extensive
interests in both academia and industry. It has been applied to
many structural design problems, such as the design of materials
and mechanisms. In recent years, a new manufacturing method—
additive manufacturing (AM), can directly fabricate objects from
computer-aided design (CAD) models without part-specific tool-
ing or fixtures. By building physical model layer upon layer, the
AMprocesses can build complex geometrywith small cost penalty.
This presents tremendous opportunities for complex structural de-
sign and enables the built part to be closer to the optimum design
that is impossible to be fabricated using the traditional manufac-
turing processes [1]. A recent case study by EADS (refer to Fig. 1)
demonstrates that a component design based on topology opti-
mization can reduce its weight by nearly 30% [2]. Exploring alter-
native design concepts such as different loading and constraints
using STO presents tremendous opportunities for designing prod-
uct components with optimum design performance.

A classic problem of the optimum structural design is due to
Michell’s theorem [3], in which the lightest frame structure S of
a bounded compliance is to be found to transmit a given load to
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given supports in a feasible domain Ω [4]. Michell trusses play a
significant role in STO because they define the shape and topol-
ogy of the optimal structure. The exact analytical solutions of
Michell trusses are very hard to obtain. However, they can be
approximated numerically by trusses composed of large, but fi-
nite number of members. It requires, however, solving large-scale
numerical optimization problems. The optimization of a truss
structure [5] means the simultaneous selection of the optimal
(1) topology, (2) shape, and (3) size, where topology is the connec-
tivity of the members, shape refers to the location of the joints,
and size represents the cross-sectional dimensions. Solving such
a non-linear optimization problem could be computationally ex-
pensive because all the structure variables are correlated to each
other. Nevertheless, topology optimization is critical because it can
achieve much greater material saving than only considering size
and/or shape optimization.

From Michell’s theorem, if there exists a virtual deformation of
the design domain, theminimumweight structure needs to satisfy
the conditions that the displacements vanish on the supports and
the strains distribute along the members of the structure. That is,
theminimumweight structure should follow the direction of prin-
cipal stresses (tension or compression) such that no shear stress
exists on the structure members. In this paper, we develop a novel
structural topology design method based on principal stress line
(PSL) analysis, and accordingly define the topology and shape of
the structures. Consequently, the topology optimization problem
can be converted into a geometric design problem, which can be
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Fig. 1. A test case based on topology optimization and additive manufacturing.
Source: Courtesy of EOS Inc.—http://www.eos.info/.

computed in an interactive speed. Our technical contributions are
summarized as follows:

1. We develop a novel design platform for structural topology
optimization, which is computationally fast and easy to control.

2. We develop an initial structure generation algorithm that can
connect given load to given supports for different kinds of
domains and set-ups.

3. We develop a topology growth process based on the PSL
to insert new joints for refining the designed structure. The
manufacturing constraints of AM processes are incorporated to
ensure the designed structures can be fabricated.

The main purpose of the paper is to develop a structural
topology design platform that is computationally inexpensive and
can provide a possible direction for design space exploration
(i.e., identifying ‘‘what if’’ scenarios). Although our method is a
heuristic-based approach, the final solutions tend to mimic the
exact solutions of Michell problems. Additionally, the user of our
method has explicit control over the number of final structural
members. Such a control does not exist in most non-heuristic-
based topology optimization methods. As Michell’s theorem is
only applicable to single-load case problems, our current frame-
work also works only for such problems while several loads may
be presented (see Ch. 1.5.1 in [6] for the distinction between
single-load andmultiple-load problems). Extending the PSL-based
design method for multiple-load case problems will be considered
in our future work.

The rest of the paper is organized as follows. The related work
is discussed in Section 2. The design principles and an overview
of our design platform are presented in Section 3. The implemen-
tation detail of the PSL-based design method is presented in Sec-
tion 4, followed by the experimental results that are discussed in
Section 5. Finally, Section 6 concludes the paper with a discussion
of future work.

2. Related work

Topology optimization of trusses is a classic subject in struc-
tural design. For a more advanced presentation of structural topol-
ogy optimization, the reader can refer to some classic books
and papers [5,7–10]. Discrete and continuous structures are two
broad categories in the structural topology optimization. Our work
is mainly related to the discrete structure optimization. In the
approximate-discrete formulations, they can be roughly classified
into two different kinds of processes (or a combination of them):
reduction and growth processes. A widely used approach, called
Ground Structure [11–14], is one kind of the reduction processes.
It starts with the union of all potential members, and eliminates
the ‘‘vanishing’’ ones, i.e., those having a zero cross-section area,
in the optimization process. Dorn et al. were among the pioneers,
who developed a basis of a linear programming method [11,15].
Given a design domain, boundary conditions and external loads,
they obtained the members that are coincided with the principal
stress directions of an optimal continuum structure [5]. The nu-
merical computational theories of the ground structure approach
are mainly founded on minimizing compliance or maximizing
stiffness. This objective function has been utilized in many liter-
atures [16–21]. In order to solve the objective function of min-
imizing compliance, linear or nonlinear programming (LP/NLP)
techniqueswere developed [22–24]. There are some other numeri-
cal computational approaches that have been used to find the opti-
mal truss structure from a ground structure [25]. Node positions in
a ground structure are to be optimized as well as the cross-section
optimization. This node position optimization is called shape
optimization. Research on both topology and shape of ground
structures can be found in [8,26]. Despite much theoretical and
computational progress, the application of this topology optimiza-
tion method to industrial problems is still not widespread. A main
reason is due to the computational cost. The complexity of ground
structure approach is O(n2), where n is the number of the nodes.
When n is large, the ground structure is very dense, and the numer-
ical computation of the LP or NLP techniques is unstable; some-
times some unreasonable structures may be obtained [27]. Thus,
there is a need for a topology optimization method that is compu-
tationally efficient and easy to control.

In contrast to the reduction process, the growth process starts
with a simple topology and iteratively inserts joints and members
into the structure. The problem size of the growth process is
small, which makes it more practical for real world problems.
However, the main difficulty of the growth process is the selection
of variables. That is, the determination of whichmember should be
subdivided and where the new joints should be located. Different
subdivision strategies have been proposed before to address the
problem. Rule [28] subdivided the largest member at its midpoint,
and connect the new joint to the nearest joint. The shape annealing
method [29,30] applied to structural design grows structures by
using a set of shapemodification rules. McKeown [31] added a new
joint, or a symmetric group of joints, one at a time, and optimized
the position of joints at each stage. Bojczuk and Mróz [32] had
also considered joint separation to separate one existing joint
into two joints with a new member connecting them. Gilbert and
Tyas [33] introduced a growth method called ‘‘adaptive ground
structure’’, which starts with an initial ground structure with
minimal connectivity, and increases the number of members at
each step. Sokół [34,35] further speeded up this approach by
first considering the shortest members in the ground structure,
and considering longer and longer members as candidates in the
following iterations. Along the same trend, Sokółand Rozvany [36]
showed the growth method can be extended to the problems with
multiple loads. Martínez et al. [37] optimized the structure to
obey the orthogonal properties of the members at each joint, and
they fitted a cubic spline along the average slope of members to
compute the position of the new joint. Although these heuristics
work fine in some cases, they require a lot of post-processing
optimization as the effectiveness of the newly added joints
and members is unclear. More importantly, the generation of
initial structure is not well-studied. Gilbert and Tyas [33] simply
connected the adjacent nodes in the design domain, and Martínez
et al. [37] directly linked the loading to all the supports.
However, the initial structure generated in these ways may be
structurally unstable, far from optimal, and even invalid. Ning and
Pellegrino [38] optimized the structural topology based on the size
distribution field. In our study, we find the PSL can be used to
define the shape and topology of designed structure for given loads
and supports. Based on the PSL analysis, we are able to define the
initial structure, determine the positions of joints, and identify the
subdivision sequence. As a result, the difficulty of variable selection
in the traditional growthmethods can be overcomewith improved
usability for structural topology optimization.

http://www.eos.info/
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3. Principles and algorithm

3.1. Design principles

A fundamental problem of structural design is the determina-
tion of a structurewithminimumweight that can safely equilibrate
given loads by connecting them to given supports. In this paper, we
aim at developing a design framework based on principal stress
line analysis. Specifically, given the design domain with specified
loads and supports, we compute the stress field on the design
domain. By tracing lines from the load to the supports along the
direction of principal stress, the connectivity of the structure can
be defined. The lines traced along the principal direction are called
Principal Stress Lines (PSLs). The truss structure is constructed
based on the connectivity of PSLs, and the design process is to re-
fine the structure tomimic the shape of the PSLs. During the growth
process, in order to generate a valid and effective structure topol-
ogy, the following design principles are obeyed:

Principle 1: The truss members need to lie along the PSLs as close
as possible.

Principle 2: When a truss member is subdivided at a point, a new
member is added along the orthogonal PSL at that
point.

Principle 3: Subdivision should only occur at the points that
have orthogonal compression and tension principal
stresses (i.e., in the T regions to be explained in the
remainder of the section).

The reasons and theories of having these principles are as
follows.

Following the Michell’s theorem [3], if the design of a truss
structure S is optimum, all of its members are in tension or com-
pression, such that the loading forcewill be distributed on the sup-
ports and with strains along the members of S. In other words, the
members of S must lie along lines of the principal strain in the
virtual deformation such that they are fully loaded. Therefore, we
have Principle 1, which defines the shape of the structure.

Respect to Principle 2, for two given nodes in a structure, a
straight line connecting them will lead to a smaller compliance of
the structure than any other curves that are used to connect them.
There are twomain reasons for this statement. First, a straight-line
segment between two adjacent nodes has the shortest distance.
Therefore, the consumed material of the structural member is the
least. Consequently, for a constant volume of material given to the
whole structure, the stiffness of the structure can be larger for
a straight line. Second, and more importantly, as the trusses are
assumed to support only axial loads, the shear stress of a truss
member should be minimized to achieve a smaller compliance.
Suppose two adjacent nodes P1 and P2 are connected by a curve
instead of a straight-line segment as shown in Fig. 2. Assume the
curve undergoes a compression, then the two axial forces of F1
and F2 are along the tangent directions on both nodes of P1 and
P2. In order to achieve the equilibrium of this curve, a force F3 is
generated by the internal strain deformation of the connection.
Obviously, F3 is a shear force, which will be zero if and only if the
curve is a straight line. As a result, whenever a joint is inserted to
refine a member, a new member has to be added as well, and it
has to be orthogonal to the principal stresses at the splitting joint.
Finally, Principle 3 comes from Michell’s optimality condition [3],
which states that for a virtual strain field ε on the structural domain
D , we must have

ε = k sgn f , (for f ≠ 0)
ε ≤ k, (for f = 0) (1)
Fig. 2. Shear force on a curve.

where k is a positive constant, f is the force in a bar, and sgn is
the sign function [39]. These optimality criteria allow the following
optimal regions for plane trusses at all points of the available space:

R+
: ε1 = k, |ε2| < k, f1 > 0, f2 = 0,

R−
: ε1 = −k, |ε2| < k, f1 < 0, f2 = 0,

S+
: ε1 = ε2 = k, f1 > 0, f2 > 0,

S−
: ε1 = ε2 = −k, f1 < 0, f2 < 0,

T : ε1 = k, ε2 = −k, f1 > 0, f2 < 0,

(2)

where ε1 and ε2 are the principal adjoint strains, and f1 and f2 are
the corresponding member forces. The layouts of various types of
optimal regions, together with their commonly used symbols, are
shown in Fig. 3.

As can be seen, members run in only one direction in R regions,
and the forces have the same sign. In S regions, members with the
forces of a given sign may run in any direction. The compression
and tension members in the T region are orthogonal to each other.
For the classical Michell problem, Rozvany [40] stated that ‘‘If
a pair of tension and compression members cross each other, they
must be orthogonal... No other members can be coplanar with them’’.
Therefore, as the T region is the only region that can fulfill the
orthogonality requirement, a subdivision should always happen
in the T region. In the rest of the paper, for the points in the
R+, R−, S+, S−, T regions, we call them R+, R−, S+, S−,
T -points respectively. After doing the stress–strain analysis on the
design domain with the given load and boundary conditions, the
type of a point can be determined by computing the member
forces (f1, f2) of that point along the principal directions, and then
matching them with the optimality criteria listed in Eq. (2). In
practice, we replace f2 = 0 by |f2| < δ to address the numerical
errors in computation, and we set δ =

f1
1000 .

3.2. Algorithm overview

The development of our topology design framework is based on
the aforementioned principles. The basic idea of the algorithm is
as follows. Through the stress and related optimal region analysis,
we can know the structural pattern of the local region around
the load and the supports. For the example of the classic case of
the single-load and two-supports cantilever as shown in Fig. 4,
after the analysis of the optimal regions, we know that the loading
point is a T -point and the two fixed supports are S+-point and
S−-point, respectively. Therefore, a pair of orthogonal compression
and tension members should meet at the point of loading, while a
set of tension/compression members should end at the points of
support (see Fig. 4(a)). After knowing the local structural patterns,
the next step is to find out how they are connected. Our approach
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Fig. 3. Types of optimal regions in Michell trusses. Blue solid lines and red broken lines represent tension and compression bars, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
(a) Domain specification & optimal regions. (b) PSLs. (c) Truss structure.

Fig. 4. The basic idea of the proposed method.
(a) Line constraint with middle load. (b) Line constraint with bottom load. (c) Two point constraints with middle load.

Fig. 5. Visualization of sampled principal stress lines in different boundary conditions and loads.
traces the field lines on the stress field that was computed in the
design domain (called principal stress lines). As shown in Fig. 4(b),
the blue and red PSLs correspond to the tension and compression
members, respectively. The details of the growth process will be
described in Section 4.3. Based on the PSLs, the connectivity of
the truss structure can be defined. As shown in Fig. 4(c), the
intersection points of the PSLs define the joints, and the PSLs
between the intersection points define the structure members.

For illustration, we present the principal stress field for a simple
cantilever beam with different loads and constraint positions in
Fig. 5. Compared to the case of line constraint with the load in
the middle (refer to Fig. 5(a)), the load is moved from the middle
to the bottom of the beam in Fig. 5(b), and two point constraints,
instead of the line constraint, are used in Fig. 5(c). We can observe
that for different boundary and loading conditions, the computed
PSLs of the design domain are different. Accordingly, the topology
and shape of the designed structures would be different in order to
mimic the computed PSLs.

The overview of our algorithm is illustrated in Fig. 6. Based on
the given design domain with the specified loads and supports, we
first use the Finite Element Analysis (FEA) to compute the stress
field in the design domain, and identify the candidates of joints
(Section 4.1). After that, the initial structure S0 is generated by
tracing PSLs to connect the load to the supports (Section 4.2). The
initial structure is then refined iteratively to reduce the total strain
energy E in the structure. This growth process has two nested loops
of iterations:
Outer Loop: It performs the topology and shape updates (Sec-

tion 4.3). At each step, a point with the maximum ap-
proximation error is located, and a new PSL is traced
from the point based on the aforementioned design
principles. By inserting new joints and members ac-
cording to the intersections of the PSLs, the structure
Si is refined to Si+1. It is iterated as long as the strain
energy is reduced, i.e., E (Si+1) < E(Si), otherwise, Si
is returned as the optimal truss structure.

Inner Loop: This is the loop for size optimization (Section 4.4).
Starting from the uniform cross-section area for all
members (A0), the strain energy stored in each truss
member is computed using FEA. The cross-section
areas are scaled to Aj+1 based on the distribution
of strain energy. In short, the member with larger
strain energy becomes larger and vice versa to achieve
uniform distribution of strain energy among all the
members. It is iterated as long as the total strain
energy is reduced, i.e., E


Aj+1


< E(Aj).

Therefore, once the topology is updated, the size optimization
will be applied to compute the optimal distribution of materials
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Fig. 6. The flowchart of the algorithm overview. E(·) represents the strain energy.

based on the updated topology. The optimized energy is compared
with the energy in the previous step, and the iterations are stopped
when no more improvement is made. Each step is discussed in
detail in the following section.

4. Design framework

4.1. Domain specification

Given a design domainΩ ∈ R2 with given load f and supportφ.
We first use the stress analysis method based on FEA to compute a
stress fieldFσ inΩ . Specifically, a finite elementmesh (e.g., quadri-
lateralmesh) is generated forΩ , and the load and support are spec-
ified as the nodal forces and boundary conditions applied to the
nodes of the mesh. Approximations for the strain and stress follow
directly from the displacements:

ε = Lu = LNjuj ≡ Bjuj, (3)

σ = Dε = DBjuj, (4)

where u is the set of the nodal displacements, L is the matrix of
differential operators, Nj are the shape functions, Bj = LNj, and the
Hooke’s law takes the plane stress condition. An increase in strain
energy δU in an element with a force fi applied on node i is given
by:

δU =


V

δεTσdV = δuT
i


V
BT
i DBjdV uj, (5)

which must be equal to the work done by the nodal forces:

δW = δuT
i fi. (6)

Equating Eqs. (5) and (6), and canceling the common factor δuT
i re-

sults in
V
BT
i DBjdV


uj = fi. (7)

This is of the desired form Ku = F with the stiffness matrix
K =


kij


, and kij =


V BT

i DBjdV . The result can be generated by
a FEA system (e.g., COMSOL). In our study, we have implemented
the FEA in our PSL-based design system for a better integration. The
FEA results have been verified by the commercial system; however,
our FEA code has not been optimized for the best efficiency. For any
point p ∈ Ω , its stress tensor is defined by Fσ as {σx, σy, τxy}. The
principal stresses are the components of the stress tensor when
the basis is changed such that the shear stress components become
zero. The angle between such a basis and the x-axis is given by

θ =
1
2
tan−1


2τxy

σx − σy


, (8)

and the principal stresses are

σ1,2 =
σx + σy

2
±


σx − σy

2

2

+ τ 2
xy. (9)

This stress field Fσ is a physical representation that contains
the information about the relationship between the load f and the
supportsφ. Therefore, it is also the governing field thatwill be used
for generating the truss structure of the given design problem. As
the principal directions are defined for thewhole design domainΩ ,
PSLs can be traced starting from any point in the domain. Without
loss of generality, assume a PSL is being traced froma starting point
p0 in the principal direction v0. We use an incremental method by
moving a small step δ along the current principal direction, i.e.,
pi = pi−1+δ·vi−1, and computing theprincipal direction in thenew
position for the next iteration. As there are two principal directions
at each point, the one closer to vi−1 will be selected as vi. In our
tests, we use δ = 0.001 m.

We identify the candidates of joint points in this step. There
are four types of candidate joints, including: (1) the point of
loading, (2) the points of supports, (3) local maximal points, and
(4) intersection points. Because the goal of the structure is to
withstand the loads through the supports, it is obvious that the first
two types of joints have to be in the designed structure. The third
type is the localmaximal point that is a point having themaximum
principal stress value in its neighboring region. It can be located
by checking whether its absolute stress value is greater than its
neighbors’ stress values. Generally speaking, the maximal points
are the points with loads and supports. However, as the design
space is limited by the given design domainΩ , some localmaximal
points may be located on the boundary ∂Ω . For the example of
the L-shape domain as shown in Fig. 7, the upper corner at the
turning point of ‘‘L’’ is a local maximal point. It will be one of the
joints in the final structure. This type of joint is generally a S+-point
or S−-point, where both member forces have the same sign (refer
to Fig. 3 and Eq. (2)). Finally, the joints of the fourth type are
the intersections between PSLs, as the structure members can
only cross each other through joints. Notice that, the first three
types of joints are identified as candidates in this step. They are
activated and constructed only when a PSL reaches them. The
intersection points are created whenever an intersection between
PSLs happens.

4.2. Initial structure

The goal of the initial structure is to connect the loads to the
supports. Automatically constructing an initial structure for a given
problem is difficult. Onemay solve the problembydirectly creating
a set of straight bars between the load and the supports, and then
eliminating the zero-volume ones during the size optimization.
Although this method works well on the Michell cantilever
problem, it does notwork formore complicated cases. For instance,
directly connecting the load and supports in the concave L-shape
domain shown in Fig. 7 will result in a structure outside the design
domain; directly connecting the load and supports in the bridge
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(a) L- shape design domain. (b) Stress field. (c) Initial PSLs.

(d) Initial structure.

Fig. 7. (a) The input L-shape design domain with specified load and supports. (b) The stress field computed on the domain, and the candidate joints are identified. (c) Initial
PSLs are constructed by tracing from the points of load to the points of support. (d) The initial structure is constructed based on the connectivity and the intersections of
PSLs.
(a) Bridge design domain. (b) Initial PSLs. (c) Initial structure.

Fig. 8. The bridge problem and its initial structure generated by our method.
structure shown in Fig. 8will create twohorizontal bars, whichwill
make it difficult to do further subdivision. Therefore, the previous
growth-based methods generally required user interaction when
creating the initial structure.

In our method, the PSLs describe how the load is connected to
the supports within the design domain, and we can generate the
initial structure automatically with the help of the PSLs. Specifi-
cally, our method consists of three phases to compute the connec-
tivity including (I) load phase, (II) local maximal point phase, and
(III) support phase.
Load Phase (I)

Although there could be multiple supports, not all of them
would connect to the loads. The goal of the load phase is to
connect the loads to some of the given supports that can provide
the best performance. Therefore, the first phase in computing the
initial structure is to trace PSLs starting from the loading point
(Ref. Section 4.1). If the PSLs end at some points of support (e.g., the
Michell cantilever in Fig. 4, or Ib in Fig. 7), a structural member
is created for each of these PSLs, in which the two endpoints are
the points of load and support. Otherwise, if a PSL ends at a local
maximal point (e.g., Ia in Fig. 7), the point is activated and a joint is
created at that position. Afterwards it goes to Phase II.
Local Maximal Point Phase (II)

This phase is performed only if there is at least one local
maximal point that is activated in Phase I. A set of PSLs is traced
from the activated points. For the example shown in Fig. 7, the
upper PSL (IIa) ends at a point of support, and a structural member
is created between them. Another PSL (IIb) going toward the left
intersects an existing PSL (Ib), and thus Ib is subdividedwith a joint
created at the intersection point. A structural member is created
between the intersection point and the localmaximal point aswell.
The resultant initial structure is shown in Fig. 7(d). The PSLs that do
not have any intersection with others or will create duplicates of
structural member are discarded automatically.
Support Phase (III)

When the loading and supporting points are collinear (e.g. in
the example of bridge as shown in Fig. 8), they are connected by
intersection points that are created in the support phase. That is,
we trace PSLs from the supporting points to intersect the PSLs that
are traced in Phase I. In Phase III, we create a queue to sort the
supporting points in a descending order in term of their stress
values. Each time, the point with the maximum stress value is
taken out from the queue and PSLs are traced from it. This process
is continued until there is an intersection between the traced
PSLs and the existing ones. The initial structure generated by our
method for the bridge problem is shown in Fig. 8(c).

More test results will be shown in Section 5. The presented
PSLs-based initial structure generation method was used in all of
the test cases.

4.3. Topology growth

The PSLs play an important role not only in the initial structure
generation, but also in the topology growth process. The traditional
shape and topology optimization is a non-linear problem. With
the help of PSLs, we convert the shape and topology optimization
into a geometric design problem. Based on design principle 1,
the goal of the topology growth is to refine the structure to
better mimic the shape of the computed PSLs. In other words,
the approximation errors between the structure and the PSLs in
the design domain need to be minimized. Such approximation
error in our study is calculated as the area of the region that is
bounded by them (refer to Fig. 9). The area is computed by a
numerical method that uniformly samples the PSL into a set of
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points, and integrates the absolute orthogonal distances of each
sample point to the related structural member. In each iteration of
the topology growth, a structural member is subdivided at a point
that can reduce the approximation error by the largest amount. To
fulfill the orthogonality requirement in the design principle 3, only
T -points are considered for such subdivisions (refer to Fig. 3 and
Eq. (2)). Hence, from an initial structure (S0), the main process of
our topology growth method is:

(1) Locate a point (Pi,a) on the existing PSLs, where the point
can reduce the largest approximation error for the current
structure (Si). Pi,a is one of the sampling points {Pk} on the PSLs,
where the subscript i stands for the iteration number, and a
stands for the first intersection point (following by b for the
second, c for the third, etc.). See Fig. 10 for an example on the
notation.

(2) A new PSL (PSLi) is traced from Pi,a, where PSLi is the one that is
orthogonal to the existing PSL that contains Pi,a (refer to design
principle 2).

(3) Compute a set of intersection points

Pi,b, Pi,c, . . .


with the

existing PSLs (could be an empty set), and subdivide the
structural members by the intersection points together with
Pi,a. A new structure (Si+1) is created by connecting the existing
joints and the computed joints based on the connectivity of
PSLs.

The above process is iterated until the strain energy does not
drop further, or until it reaches the subdivision level specified
by user. The details of the algorithm are described in Procedure
1; △A is the difference of approximation error before and after
subdivision. Fig. 10 illustrates the algorithm based on the Michell
cantilever case shown in Fig. 4. Starting from the initial structure
in iteration #0, the best point to be subdivided is P0,a, because
it can reduce the largest approximation error. After tracing the
orthogonal PSL (PSL0) of P0,a, the overall structure is refined and
a new structure is generated as shown in iteration #1. After size
optimization, the strain energy of the new structure is 12.081 mJ,
which is significantly reduced from that of the structure in the
previous iteration (12.500mJ). Hence, the stiffness of the structure
is increased using the same amount of material. In the next
iteration (iteration#1), the subdivisionpoint is P1,a. The orthogonal
PSL (PSL1) of P1,a intersects with other PSLs at the point P1,b (there
could be more intersection points, e.g., P3,b and P3,c in iteration
#3). P1,a and P1,b are then inserted to refine the structure for the
next iteration. We have shown 14 iteration steps in Fig. 10 with
the related strain energy for each iteration.

As shown in the topology growth process, when more PSLs are
used, the generated structure is more similar to the Michell-type
structure. Although the strain energy of the structure is getting
smaller, the improvements on stiffness are getting smaller after
several iterations. At the same time, the designed structure is
becoming more complex with an increasing number of structural
members. The truss sizes of the structure are also getting smaller;
some of them may reach the fabrication limit of AM processes.
As can be seen in the chart, the strain energy is increased in
iteration #13 when the manufacturing constraint is enforced. This
is because when the minimum thickness is required for all the
structural members in the size optimization, the strain energy
cannot be distributed uniformly. Thus the total strain energy in
the structure is increased in iteration #13. In contrast, if the
manufacturing constraint is not considered (i.e., no minimum
thickness is required for each truss member), the strain energy of
the structure can keep decreasing as shown in Fig. 10. However,
such structure will have structural members whose sizes are too
small to be fabricated byAMprocesses. Therefore, ifmanufacturing
constraint is considered, getting the finest refinement is not always
the best.

4.4. Size optimization

Once the topology and the shape of a structure have been
determined during an iteration of the topology growth process, the
cross-section size of each member is optimized in our PSL-based
design method. The objective of the size optimization is to achieve
the maximum stiffness of the structure using the same amount of
material. Based on themethod of uniform strain energy density [5],
maximizing the stiffness also means to minimize the strain energy
of the structure. The structure achieves the minimum potential
energy when the strain energy density is uniform in the entire
structure. Since the strain energy density of the ithmember is given
asUi =

1
2Vi

uT
i Ki(xi)ui, where ui is the displacement, and Ki(xi) is the

stiffness matrix of the ith member with the cross-section area xi.
As the area factors in the stiffness matrix K =

Ex
L and the volume

V = xL are cancelled, the density U is proportional to the square of
the displacement u (i.e., U ∝ u2), and u is inversely proportional to
the area under Hooke’s law: F =

Ex
L u (i.e., u ∝

1
x ). In other words,

when the area x is increased, the displacement uwill be decreased
in the same ratio, and the strain energy densityU will be decreased
by the square root of the ratio (i.e., x ∝ ( 1

U )
1
2 ). Therefore, the size

optimization is defined by the square root of the density ratio:

xnewi = xi ·

 Ui

max
j

Uj

 1
2

. (10)

After the cross-section areas are resized, they are rescaled to fit
the given volume Vmax. By computing the new FEA results on the
new sizes, this step is iterated until there is no more update.

Although nowadays additive manufacturing can fabricate
complex shape with small cost penalty, there is still a requirement
on the minimummember size that can be fabricated by a selected
AM process. Assume the minimum printable size is tmin, and the
cross-sectional shape of a member is square, then the minimum
allowable size is xmin = t2min (or xmin = tmin·h for rectangular shape,
where h ≥ tmin). Therefore, to incorporate the manufacturing
constraint, any structural member that is scaled to a size smaller
than xmin during the size optimization is set to xmin, and other
members will be scaled proportionally to make the total volume
equal to Vmax. The size optimization results are rendered as the
thickness of each structural member in Fig. 10.

5. Results

In this section, a number of test examples are presented to
demonstrate the presented PSL-based design method. The test
cases include some classic cases in topology optimization such as
the Michell cantilever structure and the bridge structure, as well
as some cases with different domain shapes, loads, and boundary
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Fig. 9. The shape approximation is calculated by the area bounded by the truss member and its PSL.
Fig. 10. The topology growth of a Michell cantilever structure in 14 iterations. The chart shows the relation of strain energy (E) and growth times.
conditions. Based on ourmethod, all the examples can be designed
in an interactive speed (see Table 1) using a PC running with 64-bit
Win7 and Intel R⃝ CoreTM i7-4790 CPU @3.60 GHz. A YouTube video
made to demonstrate the design process can be found at [41].

To verify the scalability, a finer mesh is used for the last ex-
ample in the table to show how the size of the domain influ-
ences the computation time. While the time needed for the SIMP
method [42] increases to a couple of minutes, our method still
takes less than a second in the growth process. Our method can
be further improved with a more efficient implementation of the
FEA method. The physics properties that are used in the tested
examples include: H = 1.0 m; F = 1000 N; Young’s modulus
E = 2.0× e8 Pa; Poisson’s ratio υ = 0.33; maximum total volume
Vmax = 0.005 m3; and minimum thickness tmin = 0.1 mm.

Each row in Table 1 shows an example with the domain size,
the optimal iteration numbers, the time for computing the FEA
results on the design domain as well as the time for the growth
process, the total time, and the computation time using the SIMP
method [42].

5.1. Cantilever structure

The classicMichell cantilever structure is the case of supporting
a single-load with two fixed supports as shown in Fig. 4. We
have shown the growth process of the Michell cantilever structure
in Fig. 10. To further verify if the structure is fabricatable, we
used the mask-image-projection-based Stereolithography (MIP-
SL) process [43] to fabricate the designed truss structure (after
Iteration #14). A simple physical test of the fabricated structure is
shown in Fig. 11. The structure is firm even built with photocurable
plastics. It can easily hold an aluminum part with no noticeable
deflection.

Fig. 12 compares our results with those generated by the SIMP
method [42]. To assess the performance, we have tested three
different levels of resolution in the design domains, including 600
elements (20 × 30), 9.6k elements (80 × 120), and 60k elements
(200×300). The analytic solution is also shown in Fig. 12. It can be
Fig. 11. Physical test on the fabricated structure produced by PSL method.

seen that the results generated by the SIMPmethod highly depend
on the given resolution of the design domain. When the resolution
is low, the boundaries of the members are not well-defined,
whichmakes the SIMPmethod cannot get amore refined structure.
When the resolution is high, a more refined structure is generated;
however, the related computation gets more expensive, (e.g., it
takes more than 5 min in the domain with 60k elements). In
contrast, the PSL-based design results always have well-defined
boundaries, and similar shapes were generated for different
resolutions. This is because the finite elements in our method
are only used for the stress analysis. As long as the resolution is
good enough to provide a reasonable stress analysis result, the PSL
computation is independent of the domain resolution. Therefore,
the PSL-based design method demands less on the resolution of
the design domain and can produce repeatable results in different
resolutions. This means coarser finite element mesh could be used
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Table 1
Time statistics and comparison.

Example Domain size Iter. FEA (s) Growth (s) Total (s) SIMP [42] (s)

Fig. 10 9600 (80 × 120) 10 1.490 0.168 1.658 38.39
Fig. 13 9600 (80 × 120) 6 1.513 0.156 1.669 26.03
Fig. 14 5000 (50 × 100) 8 0.900 0.055 0.955 12.67
Fig. 16 6400 6 1.076 0.440 1.516 70.57
Fig. 17 40000 (200 × 200) 6 6.531 0.549 7.080 218.64
Fig. 12. A comparison between the results of cantilever structure generated by the SIMPmethod and the PSL-basedmethodwith different resolutions of the design domain.
The analytic optimum is shown on the left, and the total time to generate the structures are shown in the bottom-right for each of them accordingly.
Fig. 13. The test case of an asymmetric cantilever structure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
in the PSL-based design method for shorter computation time.
Furthermore, even in the domain with 60k elements, our method
takes less than 10 s in total to complete all the steps, in which
the FEA takes 9.2 s and the growth process takes only 0.36 s. This
is promising for some complicated cases or 3D problems that are
more computationally intensive. More importantly, our method
can generate results with different refinement levels to mimic
the analytic solution of the Michell truss, and the user can have
the explicit control on which level of refinement to stop. Such
capability is not supported by the SIMP method.

Beside the symmetric cantilever structure, we have also tested
the asymmetric one as shown in Fig. 13. In this example, the
design domain is exactly the same as the symmetric one; however,
the load is applied on the bottom-right corner instead of the
middle of the right edge. To compare with the symmetric case, the
domain specification and the optimal regions indicated by Eq. (2)
have also been shown. The R+, R−, S+, S−, and T regions are
shown in blue, red, light gray, gray, and green, respectively. The
subdivisions are allowed only in the T regions. Notice that, the
optimal regions are visualized based on the sampling in the design
domain, which is just for reference. The sampling is not needed
in the computation for topology growth; instead, the principal
strains can be directly computed from the FEA result for any points
in the domain. Therefore, some subdivision points (e.g., P3,a in
Fig. 13) may look like outside the T -region, but they actually are
T -points. In both of the symmetric and asymmetric cases, the initial
structures have two structural members and three joints. After
the growth process, the strain energy is decreased from 15.125 to
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Fig. 14. The topology growth of a bridge structure.
Fig. 15. A comparison between the results of bridge structure generated by the SIMPmethod and the PSL-basedmethod based on different resolutions of the design domain.
The analytic optimum is shown on the left, and the total time to generate the related structures are shown in the top-right of each structure.
12.376 mJ. Hence, the stiffness of the structure is increased using
the same amount ofmaterial in the structure. It can be seen that the
PSL-based method can work for both symmetric and asymmetric
cases without modifications to the design method or the user
interface.

5.2. A bridge structure

The design domain and the initial structure of a bridge design
problem are shown in Fig. 8. The initial structure has three mem-
bers and four joints. The optimal regions and the related topol-
ogy growth process are shown in Fig. 14. After eight iterations, the
strain energy of the designed structure has been decreased from
4.161 to 3.588 mJ.

A comparison between our method and the SIMP method for
the bridge structure is shown in Fig. 15. Again, three different levels
of resolution, 800 elements (20 × 40), 20k elements (100 × 200),
and 80k elements (200× 400), were used. The analytic solution of
the structure is also shown in Fig. 15. A similar phenomenon can
be found, that is, the quality and the computational effort of the
SIMPmethod depend heavily on the given resolution of the design
domain, while our method generates similar results in different
resolutions. In the domain with 80k elements, the SIMP method
takes about 8min,while ourmethod takes 12.66 s, inwhich the FEA
takes 12.33 s and the growth process takes only 0.34 s. In addition,
the results generated by our method can better mimic the shape
defined by the analytic solution of the Michell truss than those
generated by the SIMP method.

5.3. L-shaped design domain

A test case with different design domain is the L-shape design
problem as shown in Fig. 7. The domain is fixed at two points on
the top, and a load is applied on the bottom-right of the ‘‘L’’. In this
example, H = 2.0 m. Fig. 16 shows its growth process using the
PSL-based design method. The test case has six iterations, and the
strain energy is decreased from 139.557 to 84.206 mJ. The result
generated by the SIMP method is also shown in the figure for a
comparison.

Instead of the L-shape domain, we have also tested our design
method based on a convex design domain. All other conditions
are exactly the same as the ‘‘L’’ domain test case. As shown in
the bottom row of Fig. 17, the growth process for this structure is
converged in six steps to achieve the strain energy of 14.633 mJ,
which is much lower than that of the L-shape domain. In this
example, we can see that the given design domain affects the
computed final structure, and our proposed framework can handle
both concave and convex domains without any modifications to
the design method.

5.4. Bicycle frame structure

Fig. 18 shows a test case using a bicycle frame structure [44].
The given load simulates the situation of a person sitting on the
frame and holding the front handles. Therefore, two loads, one in
the middle pointing down and one on the left with both x and y
directions, are applied. The domain is fixed at two points on the
bottom to simulate the centers of the wheels. After performing the
FEA on the design domain, the optimal regions can be computed
for the design problem. The two points of load are T -point and
S−-point, and the two points of support are S+- and S−-points,
respectively. There is one local maximum point at the top of the
domain between two points of load. PSLs were traced from the
two points of load consecutively in the load phase during the
initial structure generation. Accordingly, the connectivity between
the loads and supports was found. The initial structure has six
members and five joints. The growth process is converged in
five iterations, and the strain energy is decreased from 12.916 to
10.167 mJ.



T.-H. Kwok et al. / Computer-Aided Design 80 (2016) 19–31 29
Fig. 16. The topology growth of a concave L-shaped structure using the PSL method, compared with the result generated by SIMP method.
Fig. 17. The example of a convex L-shaped structure.
Fig. 18. The topology growth of a bicycle frame structure.
6. Conclusions and discussion

Based on the principle of minimum shear stress in the Michell-
type structure and the proposition of uniform strain energy den-
sity in discrete truss structures, we presented a new structural
topology design framework that is computationally fast and easy to
control. Three design principles are derived from theMichell’s the-
orem. The principal stress lines are used to identify the topol-
ogy and shape of the designed structure. The PSL-based topology
growth process is to reduce the difference between the generated
structure and the PSLs computed in the design domain. The fabri-
cation constraints given by additivemanufacturing processes have
been incorporated in the structure design process. With a given
minimum fabrication size, the refinement of the structure needs
to be controlled; the finest refinement may not lead to the optimal
structure. An algorithmwith the topology growth as the outer loop
and the size optimization as the inner loop has been developed
to control the optimal refinement level. A number of examples
have been used to test the PSL-based design method. The results
have demonstrated its effectiveness and efficiency. In addition, the
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Fig. 19. A test case showing the growth process of 3D cantilever structure design by PSL strategy.
PSL-based method is general. The same design process and user
interface can be used for symmetric and asymmetric cases, con-
vex and concave domains, as well as single and multiple external
forces.

Webelieve the PSL-based designmethod is promising for devel-
oping practical designing tools for various structural applications.
The presented principles can be extended to three-dimensional
(3D) problems. A simple test example of a 3D cantilever is shown
in Fig. 19, which illustrates how the PSLs in a 3D design domain
could be used for designing a 3D cantilever. The PSL distribution
in the 3D design domain is visualized in the figure. Two iterations
of topology growth are performed. The strain energy of the struc-
ture in iteration #2 is smaller than that in iteration #0. Hence, the
structure is getting stiffer with the same amount of material. How-
ever, the load paths based on the principal stresses in the 3D cases
are more complicated. In addition, the PSLs in some regions could
become messy. Another challenge of using the PSL-based method
in 3D domain is how the intersections between different PSLs can
be robustly computed in order to use them in the topology growth
step. Our future work will study how these issues can be handled.

In addition to addressing 3D problems, the PSL-based design
method still has a number of limitations that need to be addressed.
Firstly, as our design principles are developed based on Michell’s
theorem in minimizing compliance, the current version is not
able to handle other design goals. In the future, we will study
other theorems (e.g., the optimality criteria advocated by Praeger,
Rozvany) to see if the related mathematical problems can be
converted into geometric design problems. Secondly, we only
consider the point loads in this paper. For a structure that needs
to support a distributed volume load, further research is needed
on how it will affect the tracing of PSLs. Thirdly, we assume the
truss structure has the same strengths in tension and compression.
If such strengths are different, the structure should have different
topology and shape. One way to incorporate such strength
difference is to add weights to the approximation errors between
the structure and the PSLs. Our future work will study how to
incorporate the allowable tension and compression strains aswell.
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