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a b s t r a c t

This paper presents a minimum void length scale control method for structural topology optimization.
Void length scale control has been actively investigated for decades, which intends to ensure the
topology design manufacturable given the machining tool access. However, only a single lower bound
has been applied in existing methods, which does not fit the multi-stage rough-to-finish machining. To
fix this issue, the proposed minimum void length scale control method employs double lower bounds
which corresponds to the rough and finish machining operations, respectively. This method has been
implemented under the level set framework. For technical details, the rough machining lower bound is
satisfied by developing a signed distance-related constraint, which ensures enough space for the rough
machining tool movement and thus, guarantees the machining efficiency. The finish machining lower
bound is addressed through the curvature flow control, which ensures the small features manufacturable
and also a good finish dimension and surface. Through a few numerical case studies, it is proven that
the minimum void length scale can be effectively controlled without sacrificing much of the structural
performance.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Topology optimization has been actively investigated in the
past few decades, which is now a major structural design method-
ology. Compared to trial and errors, topology optimization em-
ploys the automatic sensitivity-driven design loops which ensures
outstanding efficiency and optimality; in addition, the method
does not require much about the initial guess to produce creative
design solutions, which makes it widely accepted by the design
community.

Currently, SIMP (Solid Isotropic Material with Penalization) [1],
ESO (Evolutionary Structural Optimization) [2], and level set [3,4]
are the main topology optimization methods. These methods all
have their unique characteristics and at the same time, are tightly
associated. A broad range of design problems governed by differ-
ent physical disciplines have been solved through these methods,
i.e. solid mechanics [1–6], fluid dynamics [7,8], and thermal dy-
namics [9–11], etc. A few comprehensive literature surveys can be
found in [12–14].

On the other hand, topology optimization is still poorly
developed given certain engineering backgrounds. A critical

∗ Corresponding author.
E-mail address: yongsheng.ma@ualberta.ca (Y. Ma).

http://dx.doi.org/10.1016/j.cad.2016.09.007
0010-4485/© 2016 Elsevier Ltd. All rights reserved.
challenge is the manufacturability. In the past two decades, quite
a few research publications have been dedicated to addressing
this challenge. Length scale control is concerned for machining
parts, which has been addressed based on both SIMP [15–24]
and level set [25–30]; No interior void and undercut restrictions
are necessary for injection molding/casting parts, which have also
been addressed based on SIMP [31–36] and level set [37–39];
recently, manufacturability of 3D printed parts has also attracted
plenty of concerns [40–43].

In this work, we focus on the length scale control of machining
parts. As mentioned in the last paragraph, length scale control has
been realized through both SIMP and level set. For SIMP, both the
void and solid phases have been effectively controlled about the
maximum and minimum length scales. For level set, the length
scale control has beenmainly implemented on the solid phase, but
not the void, even though it is technically realizable. On the other
hand, the existing minimum void length scale control methods
only employ one lower bound, while in practice, the machining
process is conducted from rough-to-finish by utilizing several
machining tools. Therefore, a better method is needed which
employs multiple lower bounds corresponding to the different-
sized machining tools. Hence, a major contribution of this paper
is the minimum void length scale control subject to multiple
lower bounds, and this research is conducted under the level set
framework.

http://dx.doi.org/10.1016/j.cad.2016.09.007
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2. Literature survey

Length scale control has been a long-lasting and challenging
research problem which intends to guarantee the topology design
manufacturable. To be specific, the void length scale should be
larger than the minimummachining tool size, and the component
length scale should not be too small because of the induced
machining difficulties.

The pioneering works were the filtering method [44] and the
local gradient constraint method [45], which were developed to
eliminate the checker-board patterns and mesh dependency [46],
while they marginally served to constrain the minimum length
scale.

Dedicated to length scale control, Guest et al. [17] developed the
Heaviside projection method, which projected the nodal densities
into the element density field, and the minimum length scale was
embedded in the projection operator. This method was effective
in controlling the minimum component length scale, while the
voids were not considered. Later, a modified double-projection
was developed to restrict the minimum length scales of both
phases [15]. Sigmund [21] developed a series ofmorphology-based
density filters which realized both the single-phase and double-
phase minimum length scale controls. However, as mentioned in
the same paper, the sensitivity analysis cost of the double-phase
minimum length scale control is overweighed. Based on the erode
and dilate operations, a robust topology optimization method
[19,20,22] was developed, in which multiple design realizations
were evaluated while the worst case was optimized. The double-
phase minimum length scale control can be achieved in case that
the multiple realizations keep a consistent topology [19,22,24]. A
drawback of this method is that multiple finite element analyses
are required in each optimization loop.

Other than the density filters, length scale control has also
been realized by adding constraints. Poulsen [18] developed the
MOLE (MOnotonicity basedminimumLEngth scale)methodwhich
utilized local integral constraints to check the monotonic density
variations. The minimum length scale was explicitly satisfied
for both phases by addressing these local integral constraints.
Zuo et al. [47] utilized a minimum hole size constraint to
remove the small hole features from the topology design. Guest
et al. [16] realized the maximum component length scale control
by adding constraints to restrict any circular area in diameter of
the maximum length scale not fully filled. More recently, Zhang
et al. [23] realized the simultaneous maximum and minimum
component length scale controls through the structural skeleton
based constraints.

Level set method is also effective in length scale control, and
in some aspects, it has demonstrated superior characteristics.
Chen et al. [26] and Luo et al. [29] employed a quadratic energy
functional as part of the objective function, which successfully
realized the strip-like topology design with controlled thickness.
Liu et al. [28] developed a simplified thickness control functional to
realize the close-to-constant rib thickness. Guo et al. [27] realized
the concurrent maximum and minimum component length
controls through the structural skeleton based constraints which
are principally similar to [23]. The signed distance information
facilitated the narrow-band structural skeleton extraction and
related global constraints were constructed to restrict component
length scales. Xia and Shi [30] modified the structural skeleton
based method. The trimmed structural skeleton and the concept
of maximal inscribable ball were employed to evaluate the length
scale. Discrete point-based structural skeleton was extracted
instead of a narrow band which facilitated the distance evaluation
from skeleton. In this way, the length scale constraints were
directly applied to the structural boundary points. Allaire et al. [25]
explored the length scale control in depth under different
schemes of maximum length scale only, minimum length scale
only, and the simultaneous control; additionally, a comparative
discussion between thickness control functional and constraints
was provided. Very recently, Wang et al. [48] realized the
component length scale control through proposing and addressing
the contour-offset based constraints.

Literature surveys about the length scale control can be found
in [49,50].

In summary, diversified length scale control methods have
been developed subject to different length scale control scenarios.
However, these methods are only loosely connected to the engi-
neering background of machining. In practice, a part is generally
manufactured throughmultiplemachining operations from rough-
to-finish subject to different machining tool radii. Hence, multiple
lower bounds of the minimum void length scale should be applied
to ensure all the rough-to-finish machining operations executable,
throughwhich themachining efficiency and quality can be concur-
rently addressed. To the best of the authors’ knowledge, the mul-
tiple lower bounds of the minimum void length scale have never
been addressed, which is the main motivation of this research.

3. Void length scale control

3.1. Basic introduction to level set function

Level set function, Φ (X) : Rn
−→ R, represents any structure

in the implicit form, as:
Φ (X) > 0, X ∈ Ω/∂Ω

Φ (X) = 0, X ∈ ∂Ω

Φ (X) < 0, X ∈ D/Ω
(1)

where Ω represents the material domain, D indicates the entire
design domain, and thus D/Ω represents the void.

Generally, the level set field satisfies the signed distance
regulation through solution of Eq. (2), through which absolute of
the level set value at any point represents its shortest distance to
the structural boundary and the sign indicates the point to be either
solid ( >0), or void (<0).

|∇Φ (X)| = 1. (2)

Because of this signed distance characteristic, level set method
was previously applied to tool path planning [51,52] for contour
machining.

3.2. Void length scale control

As discussed earlier, the motivation of this work is to realize
the minimum void length scale control subject to multiple lower
bounds, which better fits the practical multi-stage machining
process. Two new types of constraints have been proposed
to achieve the goal, instead of the recently-popular structural
skeleton based constraints [27,30].

Before presenting the details, a few characteristics of the void
length scale control are discussed below.

(1) For load-bearing parts, the optimized material distribution
generally follows strip-like shapes, while voids do not have
regulated shape patterns.

(2) Given the machining background, it is not required to
control the maximum void length scale. For minimum void
length scale control, multiple lower bounds are required which
correspond to the different machining tool radii, because a
machining process generally includes several machining tool
switches. It is worth noting that, for the sake of simplicity, two
lower bounds are assumed in this work, in which the big one
corresponds to the rough machining while the small one relates
to the finish machining.
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Fig. 1. Interior voids and a boundary void.

(3) The voids are categorized into two types: the interior void
and the boundary void; see Fig. 1. Given themachining tool access,
the interior voids will be applied of both lower bounds, while the
boundary voids will only be constrained by the finish machining
lower bound, because they are open voids which generally do not
have tool access difficulty.

For the symbols, we define the ith interior void as Ωv
i and

its boundary as ∂Ωv
i. Peak point of the ith interior void is

represented by Pv
i, which is defined as: {X = X(Pv

i)|Φ

X


<

Φ (X) , for any X∈ Ωv
i}. The jth boundary void is represented by

Ωbv
j and its boundary by ∂Ωbv

j. As discussed earlier, two lower
bounds are utilized for the void length scale, which are 0 < K1 <
K2. They are determined by K1 = R1 and K2 = kR2, where R1
and R2 are the machining tool radii for finish machining and rough
machining, respectively. k > 1 is a positive number because there
should be enough space for the rough machining tool movement.

So far, the assumptions and the symbolic representations have
been introduced. Technical specifications will be presented in the
rest of this section.

For any interior void, the lower bound K1 is satisfied through
adding the curvature-related constraint as demonstrated in Eq. (3).

−
1
K1

< κ (X) ≤ 0, for any X ∈ ∂Ωv
i and i = 1, 2, . . . , n (3)

where κ means the curvature and n represents the number of
interior voids.

Then, the lower bound K2 is satisfied through adding the signed
distance-related constraint as demonstrated in Eq. (4).

Φ (Pv
i) ≤ −K2, i = 1, 2, . . . , n. (4)

This constraint is trivial in understanding that the level set value
of the peak point indicates the interior void size.

As discussed earlier, the boundary voids will only be partially
constrained by the finish machining lower bound K1, as presented
in Eq. (5).

−
1
K1

< κ (X) , for any X ∈ ∂Ωbv
j and j = 1, 2, . . . ,m (5)

where m represents the number of boundary voids.

3.3. Identification of interior voids

As indicated by Eq. (4), level set value at the peak point re-
flects the interior void size, and therefore, it is important to prop-
erly identify the peak points. Therefore, the quick two-dimensional
search is conducted and the peak points should satisfy the con-
straints in Eq. (6).

Φk,l − Φk−1,l ≤ 0
Φk,l − Φk+1,l ≤ 0
Φk,l − Φk,l−1 ≤ 0
Φk,l − Φk,l+1 ≤ 0.

(6)
Fig. 2. Incorrect mapping based on the distance standard.

Fig. 3. The Michell structure problem (100 ∗ 50).

Two situations may be identified: the peak point Pv
i is located

inside the design domain or at the boundary. Only the former
indicates the peak point of an interior void; the latter means the
peak point of a boundary void, which is meaningless because not
rough machining lower bound is applied to the boundary voids.

The other job is to identify the mapping relationship between
the peak points and the related boundary points, because the peak
point and the boundary points belonging to the same void should
be clustered to facilitate the later sensitivity analysis. The distance
would be a direct measure, because any boundary point and its
closest peak point generally belong to the same void. However,
directly applying the distance measure would cause mapping
errors; see Fig. 2.

To fix this problem, a directional distance measure is proposed,
as demonstrated in Eq. (7).

for any boundary point X
find the peak point Pv

i, which satisfies:
min . f ·

X (Pv
i) − X

 , i = 1, 2 . . .
f = 1, if


X (Pv

i) − X

· n


X


> 0

f = + ∝, if

X (Pv

i) − X

· n


X


≤ 0

n

X


= −

∇Φ

X

∇Φ

X

 .
(7)

Through Eq. (7), a correct mapping can be established in case
that the voids do not employ very irregular shapes. The boundary
curvature constraints in Eqs. (3) and (5) can prevent the irregular-
shape voids from appearing. In addition, a small batch of mis-
mapping would not affect the overall convergence.

So far, the overall void length scale control method has
been well established and its embedment into the optimization
algorithm will be discussed in Section 4.

4. Optimization problem and its solution

A typical compliance minimization topology optimization
problem including the void length scale constraints is formulated
in Eq. (8). The structural compliance is to be minimized subject to
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(a) Reference circles of the radius 10, 12,
14.

(b) No length scale constraint (compliance = 8.77).

(c) K2 = 10 (compliance = 9.12).

(d) K2 = 12 (compliance = 10.00).

(e) K2 = 14 (compliance = 11.15).

Fig. 4. Topology optimization results and histories under different rough machining lower bounds.
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(a) Iteration 1. (b) Iteration 50.

(c) Iteration 100. (d) Iteration 150.

(e) Iteration 200. (f) Iteration 250.

(g) Iteration 300. (h) Iteration 350.

Fig. 5. Entire optimization process under the rough machining lower bound of K2 = 14.
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Fig. 6. The cantilever structure problem (100 ∗ 50).

the material volume fraction constraint.

Line 1 : Min. J (u, Φ) =


D

1
2
De(u)e(u)H (Φ) dΩ

Line 2 : s.t. a (u, v, Φ) = l (v, Φ) , ∀v ∈ Uad

Line 3 :


D
H (Φ) dΩ ≤ Vmax

Line 4 : −
1
R1

< κ (X) ≤ 0, for any X ∈ ∂Ωv or ∂Ωbv

Line 5 : κ = ∇ · n = ∇ ·


−

∇Φ (X)

|∇Φ (X)|


Line 6 : Φ (Pv

i) ≤ −K2, i = 1, 2, . . . , n

Line 7 : a (u, v, Φ) =


D
De(u)e(v)H (Φ) dΩ

Line 8 : l (v, Φ) =


D
pvH (Φ) dΩ

+


D
τvδ (Φ) |∇Φ|dΩ.

(8)

In Eq. (8), line 1 is the objective function, where the structural
compliance (sumof the strain energy densities) is to beminimized.
Line 2 presents the weak form of the governing equation, where
a (u, v, Φ) is the energy bilinear form and l (v, Φ) is the load
linear form. Specifications of them are demonstrated in lines 7–8.
Line 3 shows the material volume fraction constraint. In summary,
lines 1–3 and lines 7–8 together form the typical compliance
minimization problem subject to the material fraction constraint.
For more details, interested readers can refer to [4,5,26]. For the
symbols in the problem formulation, u is the deformation vector,
v is the test vector, and Uad = {v ∈ H1 (Ω)d |v = 0 on ΛD} is
the space of kinematically admissible displacement field; D is the
elasticity tensor and e(u) is the strain; Vmax is the upper bound of
the material volume; H () and δ () are the Heaviside function and
the Dirac Delta function, which are applied to realize the domain
and boundary integrations, respectively.

Other than that, lines 4–6 are the newly added machinability
constraints, which have been discussed in the last section. More
details about the curvature calculation in line 5 can be found
in [53].

About solution of this problem, the Augmented Lagrange
Multiplier method is applied and the adjoint sensitivity analysis
is performed. Typically, if only considering the compliance-
minimization problem but not the void length scale control, the
sensitivity analysis result is well known as presented in Eq. (9) [4].

L′
=


D
Rδ (Φ) Vn |∇Φ| dΩ

R = −De (u) e (u) + λ

Vn = −R.

(9)

For the constraint in line 6 of Eq. (8), it is not directly solvable
because the derived sensitivity result is a local velocity located
at the peak point inside the void, which cannot be utilized to
update the zero-value level set contour. Therefore, we switch it
into another approximated form as demonstrated in Eq. (10).

Vn(X) = −λi, X ∈ ∂Ωv
i

λi
k+1

= max


λi
k
+

1
µ

(Φ (Pv
i) + K2) , 0


.

(10)

By utilizing Eq. (10), the entire boundary of the constraint-
violating void will uniformly expand. It will be proven in the case
study section that, this approximated solution could effectively
control the length scale while not evidently affect the proper
convergence.

In addition, line 4 in Eq. (8) is also non-trivial in solution through
the regular shape sensitivity analysis. Therefore, the curvature
flow control technique is applied to address this constraint. Eq.
(11) demonstrates the curvature dependent velocities for mean
curvature flow control [53], in which b is a positive constant. If
κ > 0, the interface will move in the direction of concavity; and if
κ < 0, the interface will move in the direction of convexity.

v = −bκn. (11)

To satisfy the local curvature constraints, we need to re-define
the constant b, that:

b = 0, if −
1
R1

< κ (X) ≤ 0

b > 0, if κ (X) ≤ −
1
R1

or κ (X) > 0.
(12)

Then, the Hamilton–Jacobi equation is adapted into the
convection–diffusion form, which is:

Φt + V · ∇Φ = −bκ|∇Φ|. (13)

5. Numerical examples

In this section, a few numerical examples will be studied to
prove the effectiveness of the proposedminimumvoid length scale
control method. All the implementations are based on Matlab.

For all the numerical examples, the finite element analysis (FEA)
is performed based on fixed quadrilateral meshes and the artificial
weak material is employed for voids in order to avoid the stiffness
matrix singularity, which is:

Dv = 10−3D (14)

in which Dv is the elasticity tensor of the void.
The volume constraint is addressed by the Augmented Lagrange

multiplier, as presented in Eq. (15).

λk+1 = λk + µk


D
H (Φ) dΩ − Vmax


µk+1 = αµk where 0 < α < 1

(15)

in which µ is the penalization factor and α is its adjustment
parameter.

5.1. Michell structure design under rough machining lower bound

First, the Michell structure problem is studied only subject
to the rough machining lower bound. The boundary condition is
shown in Fig. 3, where the two bottom corners are fixed and a
vertical unit force is loaded at the bottom middle. The objective
is to minimize the structural compliance under the maximum
material volume fraction of 0.3. The solid material employs the
Young’s Modulus of 1.3 and the Poisson ratio of 0.4.
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(a) Reference circles of the radius 4.5, 5, 5.5, 6, 7.

(b) K2 = 4.5 (compliance = 48.83). (c) K2 = 5 (compliance = 50.09).

(d) K2 = 5.5 (compliance = 51.54). (e) K2 = 6 (compliance = 54.26).

(f) K2 = 7 (compliance = 58.49).

Fig. 7. Topology optimization results under different rough machining lower bounds.
Fig. 8. The L-bracket structure problem (80 ∗ 80).
A set of different roughmachining lower bounds are tested, and
the related optimization results are demonstrated in Fig. 4. We
can see from the results that, (i) the minimum void length scales
are well constrained bigger than the different rough machining
lower bounds; and (ii) increasing rough machining lower bound
slightly sacrifices the structural performance. In addition, the
entire optimization process under the rough machining lower
bound of K2 = 14 is demonstrated in Fig. 5.

5.2. Cantilever structure design under roughmachining lower bounds

Then, the cantilever structure problem is studied subject to
different rough machining lower bounds. As shown in Fig. 6,
the left side edge is fixed and a vertical unit force is loaded
at the middle of the right edge. The objective is to minimize
the structural compliance under the maximum material volume
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(a) Reference circles of the radius 7, 7.5, 8, 8.5, 9.

(b) K2 = 7 (compliance = 68.56). (c) K2 = 7.5 (compliance = 69.33).

(d) K2 = 8 (compliance = 70.38). (e) K2 = 8.5 (compliance = 71.98).

(f) K2 = 9 (compliance = 76.11).

Fig. 9. Topology optimization results under different rough machining lower bounds.
fraction of 0.4. The same material properties used by the last
example are employed.

A set of different rough machining lower bounds are tested,
and the related optimization results are demonstrated in Fig. 7,
from which similar result can be derived as compared to the
last example. It is worth noticing that, utilization of a too big
rough machining lower bound may break the optimal structural
topology; see Fig. 7(f).

5.3. L-bracket structure design under double lower bounds

Then, the L-bracket structure problem is studied subject to both
rough and finishing machining lower bounds. As shown in Fig. 8,
the top edge is fixed and a vertical unit force is loaded at the
middle of the right edge. The objective is tominimize the structural
compliance under the maximum material volume fraction of 0.4.
The same material properties used by the last two examples are
employed.

A set of different roughmachining lower bounds are tested first,
and the related optimization results are demonstrated in Fig. 9.
Then, the finish machining lower bounds are considered, and the
optimization results subject to double lower bounds are presented
in Fig. 10. We can see from Figs. 9 and 10 that, sizes of the interior
voids (measured by the absolute of the peak point level set value)
are always larger than the rough machining lower bounds, i.e. the
reference circles are well contained by the interior voids; more
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(a) K2 = 7, K1 = 4 (compliance = 69.58; the red
circles of diameter 4 are references for local curvature
control).

(b) K2 = 7.5, K1 = 4 (compliance = 69.90).

(c) K2 = 8, K1 = 4 (compliance = 71.01). (d) K2 = 8.5, K1 = 4 (compliance = 72.76).

(e) K2 = 9, K1 = 4 (compliance = 76.91).

Fig. 10. Topology optimization results under double lower bounds. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
importantly, the corner features are well constrained in Fig. 10,
by simultaneously applying the finish machining lower bounds,
i.e. local radii of the corner features are bigger than the finish
machining lower bound K1.

5.4. MBB structure design under double lower bounds

The last example is the MBB structure problem, for which both
rough and finishingmachining lower bounds are applied. As shown
in Fig. 11, the two bottom corners are vertically fixed and a vertical
unit force is loaded at themiddle of the top edge. The objective is to
minimize the structural compliance under the maximummaterial
volume fraction of 0.5. The same material properties used by the
earlier examples are employed.

A set of different roughmachining lower bounds are tested first,
and the related optimization results are demonstrated in Fig. 12.
Fig. 11. The L-bracket structure problem (240 ∗ 40).

Then, the finish machining lower bounds are considered, and the
optimization results subject to double lower bounds are presented
in Fig. 13. From the optimization result, we can draw similar
conclusions as compared to the last examples. It is worth noticing
that, only the left half of the MBB structure is demonstrated in the
results because of the symmetry.
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(a) Reference
circles of the
radius 8.5, 9.5.

(b) K2 = 8.5 (compliance = 158.03).

(c) K2 = 9.5 (compliance = 161.82).

Fig. 12. Topology optimization results under different rough machining lower
bounds.

(a) K2 = 8.5, K1 = 5 (compliance = 161.97).

(b) K2 = 9.5, K1 = 5 (compliance = 163.58).

Fig. 13. Topology optimization results under double lower bounds.

In summary of the numerical examples, there is a trade-off be-
tween the machining efficiency and the derived structural per-
formance. Generally, by applying a bigger rough machining lower
bound, the machining efficiency is better, but the derived struc-
tural compliance is bigger as well, which means weaker per-
formance of deformation resistance. Therefore, pursuing better
machining efficiencywould cause reduced structural performance.
Then, if the finish machining lower bound is co-applied, the de-
rived structural compliancewould be further sacrificed. Practically,
determination of the finish machining lower bound is tightly re-
lated to the available cutting tool resources. Hence, the trade-off is
necessary to guarantee the parts manufacturable.

6. Conclusion

In this paper, the minimum void length scale control is
well addressed under the level set framework. Innovatively, two
lower bounds are concurrently applied which correspond to the
different machining tool radii of the rough-to-finish machining
process. The derived optimal design demonstrates the outstanding
characteristics that, both rough and finish machining operations
can be effectively performed, through which both the machining
efficiency and quality can be guaranteed.

As for the side effects, the applied double lower bounds slightly
sacrifice the design optimality. Especially for the rough machining
lower bound, if a large value is applied, the optimal structural
topology may not be achievable.

For further work, we intent to extend the developed minimum
void length scale control method to address stress-constrained
problems, which is even more challenging because the stress level
is not simply monotonic to the material volume fraction.
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