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a b s t r a c t

There is significant interest today in integrating additive manufacturing (AM) and topology optimization
(TO). However, TO often leads to designs that are not AM friendly. For example, topologically optimized
designsmay require significant amount of support structures before they can be additivelymanufactured,
resulting in increased fabrication and clean-up costs.

In this paper, we propose a TO methodology that will lead to designs requiring significantly reduced
support structures. Towards this end, the concept of ‘support structure topological sensitivity’ is intro-
duced. This is combined with performance sensitivity to result in a TO framework that maximizes perfor-
mance, subject to support structure constraints. The robustness and efficiency of the proposed method is
demonstrated through numerical experiments, and validated through fused deposition modeling, a pop-
ular AM process.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Topology optimization (TO) represents a class of computa-
tional methods for designing light-weight, high-performance struc-
tures [1–3]. After several years of intensive research, it has
emerged as a powerful design tool, and is deployed in optimization
of aircraft components [4,5], spacecraft modules [6], automobiles
components [7], cast components [8], compliant mechanisms [9],
etc.

Additive manufacturing (AM), on the other hand, represents
a class of manufacturing processes for fabricating parts through
material addition [10,11]. The growing interest in AM stems from
its ability to fabricate highly complex parts with relative ease.

AlthoughTOandAMhave flourished independent of each other,
there is significant interest today in integrating the two for several
reasons [12–16]:

1. Designs stemming from TO are geometrically complex, and
therefore hard to manufacture using traditional processes.
However, these designs can often be additively manufactured;
Fig. 1(a), for example, illustrates a structural design problem
that is optimized through TO (Fig. 1(b)), and then fabricated
using AM (Fig. 1(c)), with minimal human interference.
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2. Since fabrication cost in AM is proportional to the material
used, light-weight topology optimized designs are particularly
relevant in AM.
In theory, these and other characteristics make TO and AM

well suited for each other. However, in practice, topologically
optimized designs are often not AM friendly [16,12]. For example,
consider the structural problem posed in Fig. 2(a). A topologically
optimized design is illustrated in Fig. 2(b); observe the four ‘props’
that improve the structural rigidity but are overhanging (see
Section 3.1 for a formal definition of overhanging). These props
will require additional support structures to prevent drooping’ (in
AM polymer processes) and ‘burning’ (in metal AM processes).
Fig. 2(c) illustrates an AM built part with these additional support
structures.

Support structures directly add to the build-time and material
cost. Material costs can be substantial in AM; for example, the
largest percentage cost formetal AM, besides themachine cost that
is amortized, ismaterial cost (18%) [17]. Further, support structures
can be hard to remove (and sometimes even inaccessible), leading
to the post-fabrication (clean-up) cost. Post-fabrication costs make-
up for about 8% of AM product cost [17].

The objective of this paper is to develop a TO methodology for
limiting the support structure volume, thereby leading to designs
that are AM friendly. In Section 2, prior research on support
structureminimization is reviewed, followed by a reviewon recent
TO advances. In Section 3, the concept of ‘‘topological sensitivity for
support structures’’ is introduced, and a methodology to impose
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Fig. 1. (a) A structural problem. (b) Topology optimized design. (c) AM fabricated part.
Fig. 2. (a) Structural problem. (b) Optimized topology. (c) Fabricated part with support structures.
support structure constraint during TO is proposed. In Section 4,
the efficacy of the proposedmethodology is demonstrated through
benchmark studies. Section 5 summarizes the contributions of this
paper, and discusses future work.

2. Literature review

For reasons stated earlier, support structure minimization is
of significant interest within the AM community, and several
methods have been proposed. These are classified into the
following categories.
Strategy 1: Finding an optimal build direction

AM build-direction can have a significant impact on support
structures. Therefore, a popular strategy is to find a build-direction
that minimizes support structure volume (and optionally opti-
mizes other AM metrics). For instance, Jibin [18] developed a
multi-objective function to find an optimal build direction to min-
imize volumetric error, support structure, and build time. Along
similar lines, Pandey et al. [19] proposed a multi-criteria genetic
algorithm tominimize support structure and build time, while im-
proving surface quality. In both instances, weighted averaging was
used to solve multi-objective problems. Nezhad et al. [20] pro-
posed tracing the Pareto front to find the optimal part orientation;
the Pareto front involved two objective functions, namely support
structure and build time. Paul and Anand [21] used a voxel repre-
sentation (rather than the STL representation) tominimize support
structure while satisfying constraints on cylindricity and flatness
errors. More recently, Das et al. [22] identified optimal build orien-
tation with respect to tolerance errors and support structure vol-
ume by extracting product manufacturing information. Alternate
approaches for selecting build-direction include optimizing post-
build quality and perception [23], and increased (cross-sectional)
mechanical strength [24].
Strategy 2: Generating efficient support structures

While the above methods assume vertical support columns,
more efficient support structures have been proposed for a
given build-direction. For example, the commercial software
MeshmixerTM generates tree-like support structures. While this
potentially reduces the support volume, manual modifications are
required to ensure printability. Vanek et al. [25] overcame this
deficiency by presenting an efficient method for automatically
creating tree-like support structures that are printable. Specialized
methods have also been proposed for specific AM processes.
For instance, Barnett and Gosselin [26] developed shell and film
techniques to create support structures for processes with weak
supportmaterials, such as three dimensional foamprinters. Dumas
et al. [27] exploited scaffolding structures to generate efficient
supports for Fused Deposition Modeling (FDM). Considering the
stability of the object throughout the build process, the method
first identifies support points and then creates horizontal bars
between vertical pillars to reduce the support volume. A contour-
based support generation scheme was proposed in [28] based on
layer-wise analysis. The method first analyzes all of the layers
and then generates support anchors using offset and Boolean
operations to ensure printability of the part.
Strategy 3: Following design rules for AM

A third strategy is to include support volume constraints during
the manual design process [29–33]. This is often based on design
rules such as [30]: (1) avoid surfaces with large overhang angle,
(2) avoid large-size holes (say, larger than 5 mm) [22] perpendic-
ular to the build-direction, (3) avoid trapped surfaces where sup-
port structures are hard to remove, and (4) use explicit fillets and
chamfers to avoid support structures. Since these rules are feature-
based, they are hard to include during TO.
Strategy 4: Optimizing the topology for AM

The final strategy is to include AM constraints within TO. As
stated earlier, the advantage of this strategy lies in the (potential)
integration of these two technologies.

Imposing manufacturing constraints in TO has been addressed
before; a particularly relevant constraint is that of ‘draw-direction
constraint’ for casting [34,35], where the TO algorithm was
modified so as to avoid ‘inserts’. While this is analogous to
the support structure constraint, there are two fundamental
differences: (1) support structures are governed by a threshold
angle (see Section 3.1) while the threshold angle for draw-
direction is essentially zero, and (2) the draw-direction constraint
is bidirectional, while the build-direction in AM is unidirectional.
Thus, the draw-directionmethodology does not apply to AM; novel
methods are needed.

Bracket et al. [12] made several recommendations on integrat-
ing TO and AM,. For example, to minimize support structures, they
suggested a penalization scheme on overhanging surfaces, and an
edge analysis was carried out on a benchmark 2D example. The
overhang constraint was suggested but not demonstrated.

Wang et al. [36], proposed a novel strategy to reduce the
material cost by first extracting the frame structure of the design.
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The frame is in fact the solution of a multi-objective optimization
problem that minimizes the number of struts while considering
stability and printability.

Leary [14] introduced the idea of self-supporting designs,where
the TO optimized design was altered to include features similar
to support structures. In other words, support structures were
introduced as design features a posteriori. Since this is carried out
after TO, the structural load path is altered, and may violate stress
and other performance constraints.

Based on the suggestions proposed by Bracket [12], Gaynor and
Guest [16], employed a smooth Heaviside approximation to penal-
ize overhanging surfaces within a SIMP based TO. They demon-
strated that, for 2D complianceminimization, this scheme changes
the topology to be AM friendly. Specifically, they demonstrated
that it is possible to eliminate support structures by suitably chang-
ing the TOprocess. The results are encouraging, but theynoted con-
vergence issues when the overhanging penalization was imposed.
Recently, Hu et al. [37] proposed a shape optimization technique
to alter the model to a more self-supported one. To this end, once
a volumetric tetrahedral mesh is generated, the overhang tetrahe-
dra are mapped onto the Gauss sphere and minimally rotated to a
self-supported state; themethodwas also proven to be effective in
finding optimal build direction.

3. Proposed method

While we are witnessing significant research activities in TO
and AM, a robust framework for integrating the two is lacking. The
focus of this paper is to address one aspect of integrating TO and
AM, specifically, minimizing support structures.

Consider a typical compliance minimization problem of the
form:

Minimize
Ω⊂Ω0

J

|Ω| ≤ Vf |Ω0|

Kd = f.

(1)

In Eq. (1), J = fTd is the compliance that must be minimized, |Ω0|

is the initial design volume, Ω is the topology to be computed, and
Vf is the desired volume fraction; K is the stiffness matrix, f is the
external force vector, and d is the displacement vector.

3.1. The PareTO level-set method

There are several TOmethods employed today to solve such TO
problems; these include Solid Isotropic Material with Penalization
(SIMP) [38–41], level-set [42], [42–44] and evolutionary [45]meth-
ods. Among these, we propose to use the level-set based Pareto
Topology Optimization (PareTO) method [46–48] for the following
reasons: (1) in level-set methods, the boundary is well-defined at
all times, making it easier to impose support structure constraints,
and (2) PareTO relies on the topological sensitivity concept (de-
scribed in Section 3.4) that applies to various performance criteria
and constraints, and can be generalized to handle support sensitiv-
ity, as discussed in the remainder of the paper.

An important feature of the PareTO method is that it gener-
ates Pareto-optimal topologies for various volume fractions. To il-
lustrate, consider the three-hole bracket of Fig. 3, where the two
left side holes are fixed and the right hand side hole is subject to
a downward unit load. The underlying material is assumed to be
isotropic ABS plastic with Young’s modulus of E = 2 GPa and Pois-
son ratio of ν = 0.39.

Fig. 4 illustrates the progression of the optimization process in
PareTO up to a volume fraction of 0.5. Observe that optimization
begins with a volume fraction of 1.0, and generates multiple
Fig. 3. Three-hole bracket.

Fig. 4. Pareto curve for three-hole bracket optimization.

topologies that lie on the Pareto curve (Pareto tracing). This will
play an important role in the proposed method for constraining
the support structure volume. Further, we do not rely on a velocity
field concept to move the boundary; instead, we use fixed-point
iteration, proposed by [49], to converge to Pareto-optimal designs;
the implementation is described in [46–48].

3.2. Limitations of the overhang constraint

Before we discuss how support structure constraints can be
imposed, we will briefly review how support structures are
algorithmically generated. This will provide key insights into
developing appropriate constraints.

Support structure generation in AM is based on the overhang
concept which states that if the angle between the boundary normal
and the build direction exceeds a certain threshold, then support
structures are needed at that point [12]. For instance, for the design
and the build-direction illustrated in Fig. 5(a), the subtended angle
α is illustrated in Fig. 5(b). Given a threshold α̂ (typically around
135°), boundary points with α > α̂ are considered overhanging,
and require support, as illustrated in Fig. 5(c); For simplicity,
vertical support structures are assumed in this paper; support
structures may terminate at the platform or at any opposing
non-overhanging point. The union of all such support structures
results in a support volume as illustrated in Fig. 5(d). The fill-ratio,
i.e.,material density, of support structures is typically less than that
of the primary design.

The above definition is exploited both by designers and
software algorithms to create suitable support structures; for
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Fig. 5. (a) Build-direction. (b) Subtended angle. (c) Support length. (d) Support volume.
Fig. 6. Moving either the overhanging or its ‘opposing’ surface changes the support
volume.

example, see [25]. Further, the definition suggests that if one could
eliminate all overhanging surfaces, then support structures can also
be eliminated. But, this is not an effective optimization strategy for
the following reasons:

1. Eliminating all overhanging surfaces may not be possible.
Researchers [16] have demonstrated that one can eliminate
overhang surfaces in certain 2D problems. However this is
unlikely to be successful in general, especially in 3D (as the
numerical examples in Section 4 demonstrate). As was also
suggested in [6], ‘‘. . . there will probably be instances where it is
not necessary for all support structure to be eliminated and so the
user should be able to have some control over the strength of the
penalty function’’.

2. The overhang constraint does not penalize support volume. Two
overhanging surfaces with equal subtended angle will be
penalized equally, although the support volume associated
with one may be much larger than the other. To avoid such
contradictions, a direct constraint on the support volume is
desirable.

3. Penalizing just the overhanging surfaces is insufficient. Support
volume may be enclosed between an overhanging surface and
an opposing surface, as illustrated in Fig. 6. To reduce support
volume, both surfaces must be penalized, for example, by
moving them closer to each other as illustrated. By penalizing
the overhanging surface, only half the problem is addressed.

These limitations suggest that we must seek an alternate, and
fundamentally different method to impose constraints on support
structures during TO.

We propose here a formulation that relies on (1) dynamically
estimating the support volume as the topology evolves, and (2)
imposing constraints on the support volume through topological
sensitivity methods.

Consider the first step of dynamically estimating the support
volume. In this paper, we assume that support structures are
vertical. Therefore, the support volume is simply the integral of
the support length over the boundary, multiplied by a suitable fill-
ratio, (see Fig. 5(d)), i.e.

S = γ


α≥α̂

lpdΓ (2)
Fig. 7. Searching for self-supporting boundary.

S : Support structure volume
α : Subtended angle
lp : Length of support structure at boundary pointp
γ : Fill ratio (relative material density) of support structures.

In Eq. (2), the exact value of the fill ratio γ is not critical; it can be
assumed to be 0.5, without a loss in generality.

Further, for short overhangs, it is well known that support
structures are not needed. For example, for FDM, the allowable
overhang [12] can be approximated via:

h(mm) =


5 + 40(1 − α/π); 3π/4 < α ≤ π
∞ 0 ≤ α ≤ 3π/4. (3)

Thus, at any point on the boundary, if the subtended angle is α,
support structures are not needed if the overhang distance is less
than h given by Eq. (3). In the implementation, we search for self-
supporting boundary within a distance given by Eq. (3); see Fig. 7.

3.3. Options for imposing support constraint

Next consider the challenge of imposing support volume
constraint. Perhaps the simplest strategy is to impose an absolute
constraint as in:

S ≤ Smax. (4)

However, this places an unreasonable burden on the designer to
arrive at an absolute value for the upper limit a priori. Instead, we
consider relative upper bound constraints. Specifically, recall that
in the PareTO method, one generates multiple topologies for var-
ious volume fractions, i.e., one can solve the unconstrained prob-
lem, and store reference support volumes Sunc.(v) at intermediate
volume fractions v. For example, Fig. 8 illustrates the support vol-
ume Sunc.(v) for the unconstrained problem. The support volume
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Fig. 8. Relative support structure volume at different volume fractions for
unconstrained problem.

curve is, in general, non-smooth, unlike the compliance curve in
Fig. 4.

Next we impose a relative constraint with respect to Sunc.(v),
via a user-defined parameter η (0 < η ≤ 1)

S(v) ≤ ηSunc.(v). (5)

In other words, Eq. (5) states that the desired support volume
should be less than the unconstrained support volume by a factor
of η, at each volume fraction (through interpolation, if necessary).
Alternately, one can impose a constraint at the final volume
fraction, but imposing a constraint at each volume fraction leads
to a smoother optimization process. Further, in this paper, we treat
Eq. (5) as a ‘soft’ constraint, i.e., the constraint is used to prioritize
the solutionswithin the feasible space (see Section 3.6), rather than
limiting this space [50].

In summary, we propose the following support-structure
constrained TO problem, where the parameter η (0 < η ≤ 1) is
used to strike a balance between performance and AM costs (see
numerical experiments in Section 3.8):

Minimize
Ω⊂Ω0

J

|Ω| ≤ Vf |Ω0|

S(v) ≤ ηSunc(v)(soft)
Kd = f.

(6)

In Section 3.4, we consider a gradient based TO framework for
solving the above problem. The framework will rely on topological
sensitivity for performance [51–54], and the proposed topological
sensitivity for support structure volume.

3.4. Topological sensitivity of performance

The PareTO method relies on the concept of topological
sensitivity for driving the optimization process. To illustrate,
consider the structural problem in Fig. 9(a) that represents the
design space Ω0. Consider now inserting a small hypothetical hole
that modifies the topology (Fig. 9(b)). Topological sensitivity is
the rate of performance change of any quantity of interest ϕ with
respect to the volumetric measure of the hole, i.e., in 2D,

Tϕ(p) ≡ lim
ε→0

ϕ(p; ε) − ϕ

πε2
. (7)

If the performance metric is compliance, the field in 2-D is given
by the closed-form expression [55]:

TJ(p) =
4

1 + ν
σ : ε −

1 − 3ν
1 − ν2

tr(σ )tr(ε). (8)

Thus the topological sensitivity can be computed as follows:
(1) FEA is carried over the domain, (2) stresses and strains
are computed, and (3) then the topological sensitivity field is
computed through Eq. (8); the resulting field is illustrated in
Fig. 9(c). The interpretation is that regions of low sensitivity
correspond to regionswith relatively lower impact onperformance
(and can be removed). Similar topological sensitivity fields can be
computed for various performancemetrics, both in 2D and 3D [56].

The PareTO method uses the topological sensitivity as a level-
set to trace the Pareto curve for decreasing volume fraction. As
the topology evolves, the topological sensitivity is recomputed
at each iteration. For example, for an intermediate topology in
Fig. 10(a), (1) FEA is carried over the new topology, (2) the stresses
and strains are computed, and (3) the topological sensitivity field
is computed through Eq. (8); the resulting topological sensitivity
field is illustrated in Fig. 10(b) and (c).

3.5. Sensitivity of support volume based on surface angle

Analogous to the topological sensitivity for performance, we
propose here topological sensitivity of support structure volume,
i.e., ‘‘the rate of change in support structure volume with respect to
volumetric measure of the hole’’. Towards this end, consider the two
scenarios illustrated in Fig. 11, where the design is infinitesimally
perturbed either in the interior, or on the boundary.
Interior hole (Fig. 11(a)): If a hole of radius ε is inserted in the
interior of the domain (Ωε), one can compute the topological-
shape sensitivity as follows. Employing the shape-sensitivity
method proposed in [55], the topological derivative is computed
via:

TS(p ∈ Ω) ≡ lim
ε→0
δ→0

S(Ωε+δ) − S(Ωε)

V (Bε+δ) − V (Bε)
. (9)

In Eq. (9), S(Ωε) and V (Bε) are support volume and hole volume,
for a hole of radius ε. Using the above definition, one can show
that the support volume sensitivity is given by (see Fig. 11(a) and
Appendix):

TS(p ∈ Ω) =

3(π − α̂ − sin(α̂) cos(α̂))

sin(α̂) −

sin3(α̂)

3


π

(10)

where π/2 ≤ α̂ ≤ π is the threshold angle. For example, if the
threshold angle α̂ = π/2, then TS(p) = 1, i.e., the entire hole
will need to be filled with support structures; a typical value is
TS(p ∈ Ω) ≈ 0.72 when α̂ = 3π/4.
Boundary hole (Fig. 11(b)): Unlike the interior, the support
volume on the boundary depends both on the local neighborhood
(curvature) and the length and direction of support. In order to
capture both, we define a scalar function F S(xp) at each boundary
point as follows:

F S(xp) =
1
2
lp(1 − cos(αp)). (11)

In Eq. (11), αp is the angle between surface normal and build
direction at boundary point p. We compute the sensitivity for the
worst-case scenario, where boundary is perturbed along support
at each point ŝp. One can then show the sensitivity at the boundary
is given by Eq. (12):

TS(p ∈ ∂Ω) =
1
2
(1 − cos(αp)). (12)

Further, for each overhang point, the same sensitivity value is
assigned to its corresponding opposite point (see Fig. 6).

Given the above definitions, one can compute the support
volume sensitivity at all points; this is illustrated in Fig. 12(b) and
(c).
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Fig. 9. (a) A structural problem, (b) topological change, and (c) topological sensitivity field.
Fig. 10. (a) Instance of topology, (b) compliance topological sensitivity (2D) (c) 3D view of (b).
Fig. 11. Sensitivity of support volume, (a) in the interior, (b) on boundary.
Fig. 12. (a) Instance of topology. (b) Sensitivity of support volume (2D). (c) 3D view of (b).
3.6. Sensitivity weighting

Once the performance and support volume sensitivities are
computed and normalized, we exploit the well-established
augmented Lagrangian method [57] to impose support structure
constraint. Specifically, the support-constrained in Eq. (6) is first
expressed in the standard form:

g =
S(v)

ηSunc(v)
− 1 ≤ 0. (13)

A popular method for imposing such constraints the augmented
Lagrangian method [57], where the constraint and objective are
combined to a single field:

L = J + Lg

Lg =


µg +

1
2
γ (g)2; µ + γ g > 0

1
2
µ2/γ µ + γ g ≤ 0

(14)

where µ is the Lagrangian multiplier and γ is the penalty
parameter (that are updated during the optimization process [57]).
By taking the topological derivative of Eq. (14), we arrive at Eq. (15)
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Fig. 13. (a) Equally weighted sum of the two sensitivity fields (2D) (b) 3D view of the sensitivity field.
for the effective sensitivity [58,59]:

T = TJ + wSTS (15)

where

wS =


µ + γ g µ + γ g > 0
0 µ + γ g ≤ 0. (16)

Observe that theweight on the support structure sensitivity is zero
if g < −µ/γ , else it takes a positive value. To illustrate Eq. (15),
suppose the two topological sensitivity fields are normalized to
unity, and suppose wS = 1.0, the resulting field is illustrated in
Fig. 13(a) and (b). Observe that the resulting field is a combination
of the two fields in Figs. 11 and 12. As the optimization progresses,
the weight is determined dynamically from Eq. (15), while the
parametersµ and γ are updated during each iteration as described
in [58,59]. The algorithm is insensitive to the normalization/
scaling of the topological sensitivity fields, i.e., if the fields were
not normalized, the computed parameters would be different, but
the computed solutions would remain the same. Normalization,
however, makes the implementation robust.

3.7. Topological optimization framework

Piecing these concepts together, the proposed algorithm
proceeds as follows (see Fig. 14):
1. It is assumed that the unconstrained optimization problem has

been solved, and Sunc.(v) has been computed.
2. Carry out FEA on Ω; compute the normalized sensitivity fields

TJ , TS , and the weighted field T as described above; smoothen
the T field [47]. Observe that, every time the topology changes,
FEA must be executed and the topological sensitivities recom-
puted.

3. Treating T as a level-set function, extract a new topology
Ω using fixed-point iteration [47], and the iso-surface is ex-
tracted [60]. If the topology has not converged, repeat steps 2
and 3.

4. Decrement the volume fraction and return to step 2 until the
desired volume is reached.

3.8. Limitations

The proposed sensitivity-based framework assumes a con-
tinuous dependence of support volume on boundary/topological
perturbation. While this is generally true, the continuity is vio-
lated when the overhang angle approaches the critical limit at
which the support volume abruptly drops to zero, making it non-
differentiable. Due to this discontinuity, the proposed algorithm
does not converge to solutions thatmay be obvious to a human de-
signer. Instead, it converges to other solutions that can be reached
in a smooth and continuousmanner, as illustrated in the numerical
experiments.
Fig. 14. The proposed algorithm.

4. Numerical experiments

In this section, we demonstrate the proposed method through
several examples. In Section 4.1, we study the impact of the
proposedmethod on the optimized design and support volume for
a simple 2D example. In Section 4.2, the impact of user controlled
parameter η is examined for the three-hole bracket. In Section 4.3,
a more complex 3D design is optimized and the designs are
printed to demonstrate the effectiveness of the proposed method.
In Section 4.4, the effect of build direction on support volume and
performance are studied on a large-scale optimization problem. In
all of the experiments, the material is assumed to be isotropic ABS
plastic with Young’s modulus of E = 2 GPa and Poisson ratio of
ν = 0.39. The threshold angle α̂ is assumed to be 3π/4, unless
otherwise noted.
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Table 1
2D MBB. Effect of support constraint on optimized design.

Final topology Support volume constraint Support volume achieved Relative compliance

N/A 100% 1.29

80% 62% 1.34

60% 59% 1.42

40% 42% 1.56

0% 0% 1.75
Fig. 15. 2D MBB example with boundary conditions and build direction.

Fig. 16. Compliance Pareto curve for the MBB beam.

4.1. 2D MBB

Consider the 2D MBB design (implicit thickness of 1 cm) in
Fig. 15 whose support structure reduction was studied by Gaynor
and Guest [16]. The initial design requires no support and the
objective is to find stiffest design at 0.65 volume fraction.

Recall that we first solve the unconstrained problem, and a
series of topologies that lie on the Pareto curve are generated; see
Fig. 16.

Fig. 17 illustrates the corresponding support volume in cm3.
The unconstrained support volume from Fig. 17 is then used as

a reference to impose a support structure constraint. In particular,
we study the impact of the relative constraint η (see Eq. (6)) on the
final topology at a volume fraction of 0.65. Table 1 summarizes the
results; observe that with increased support structure constraint,
the proposed method reduces the number of internal holes. This
Fig. 17. Support volume for the unconstrained MBB beam problem.

is, by no means, the unique solution to the problem; it happens
to be a solution that meets the desired constraints. It remains to be
seen if one can generate topologies thatmeet the support structure
constraint and exhibit a better performance.

4.2. Three-hole bracket

In this example, we study the impact of the support structure
constraint over the entire Pareto curve. In particular, consider
the three-hole bracket illustrated earlier in Fig. 3. Recall the
compliance Pareto curve for the unconstrained problem in Fig. 4,
and the corresponding support structure curve in Fig. 8. Fig. 18
illustrates the Pareto curves for the unconstrained and the
constrained case. As expected, imposing the support constraint
increases compliance.

Fig. 19 illustrates the evolution of support structure volume
for the two scenarios. Observe that as expected, removing more
material can either increase or decrease the support volume due
to its nonlinearity, nonetheless imposing a stringent constraint on
support structure consistently reduces the support volume w.r.t.
the corresponding unconstrained design.

The support volume prior to optimization is S0 = 0.79 (cm3).
The objective is to find stiffest design at 0.5 volume fraction.
Fig. 20 illustrates the optimized design for (a) unconstrained, (b)
constrained with η = 0.50. Relative compliance values for these
cases are respectively 1.29 and 1.58.
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Fig. 18. Unconstrained and constrained Pareto curves for three-hole bracket
optimization.

Fig. 19. Evolution of support volume for three-hole bracket.

Fig. 20. Optimized three-hole bracket. (a) Unconstrained (b) Constrained with
η = 0.50.

4.3. Mount bracket

Consider the mount bracket of Fig. 21 subject to structural
constraints and loading as illustrated. The threshold angle α̂ is
assumed to be 3π/4. The build direction is illustrated in Fig. 21
since it gives the best surface quality on the larger cylindrical face;
for this design, prior to optimization the support volume is S0 =

1.12 (cm3). The objective is to find stiffest design at 0.7 volume
fraction.

Fig. 22 illustrates the optimized designs of (a) unconstrained
and (b) constrained with η = 0.80. The final support structure
volume for the unconstrained design is 9.24 (cm3) while for the
constrained design it has reduced by about 17% to 7.70 (cm3).

Fig. 23 illustrates the evolution of support volume throughout
the optimization process. Observe that up to 0.9 volume fraction
the unconstrained and constrained results are very similar. How-
ever for lower volume fractions the constrained support volume is
consistently about 20% smaller than that of unconstrained design.

Fig. 24 illustrates the evolution of relative compliance values as
more material is removed from the design. For the unconstrained
Fig. 21. Mount bracket with boundary conditions and build direction.

design the final (C/C0) is about 1.05, while by imposing support
constraint this value increases to about 2.52. Fig. 24 highlights
the trade-off between support volume and compliance when the
support constraint is imposed. It is essentially up to the designer
to choose the intensity of support constraint.

To verify the validity of these simulated results, each of these
topologies were ‘printed’ on an XYZ Da Vinci 2.0 fused deposition
printer. Note that the support structures were not generated by
our algorithm, theywere introduced by the XYZ software, based on
default settings. Fig. 25 illustrates the actual parts after clean-up.
Observe that both of the optimized designs have the same weight
(as prescribed by the optimization), while the amount of support
structure is substantially reduced in the constrained design. This
example illustrates the effectiveness of the proposed algorithm in
handling support constraints.

4.4. Different build directions

In this section, we demonstrate the robustness of the proposed
method with respect to the build directions. Consider the problem
posed in Fig. 26 where the geometry is described via numerous
curved surfaces and two cylindrical holes in two different
directions; this makes picking the optimal build orientation
challenging. Further to capture the complexity of the design, a
hexahedral mesh with about 1.7 million degrees of freedom was
used.

A plausible choice for the build direction is −Z , as shown in
Fig. 27. In this direction, the larger cylinder has better surface
quality and the initial support is minimal. First, we optimize the
design for minimum compliance at 0.7 volume fraction without
imposing any constraints on support structure.

In this particular orientation, Sunc.(0.7) is smaller than S0, which
means that during optimization, some of the overhanging surfaces
are removed to reduce the overall support volume. Next, in order
to further reduce support structure, we set η = 0.90 and solved
the optimization problem of Eq. (6) to arrive at the design in
Fig. 27(b). Observe that by imposing the support constraint, no
additional overhangs are created, however since the initial design
is dominant, support volume is reduced by only about 3%, while
the compliance has increased by about 15%.

Next, the build direction was set to +Y since it gives better
surface quality for the smaller cylindrical hole. Solving the same
optimization problemas before results in the unconstrained design
in Fig. 28(a) and constrained design in Fig. 28(b) with η = 0.90.
The support volume was reduced by 20%, while the compliance
increased by 32%.

Finally, the build direction was set to+X; a justification for this
direction can be better fusion between layers, since the print area
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Table 2
Computational cost, with and without support structure constraints.

Example Finite element degrees of freedom CPU time unconstrained CPU time support constrained

MBB 27,400 5.25 s 5.5 s

Three-hole bracket 45,012 10 s (η = 0.75) 11 s
(η = 0.50) 13.7 s

Mount bracket 196,965 1 min 18 s 1 min 29 s
Rocker Arm (−Z) ∼1.7 million 28 min 30 s 30 min 59 s
Rocker Arm (+Y ) ∼1.7 million 28 min 30 s 32 min 6 s
Rocker Arm (+X) ∼1.7 million 28 min 30 s 30 min 14 s
Fig. 22. Optimized mount bracket at 0.7 volume fraction. (a) Unconstrained (b) η = 0.80.
Fig. 23. Evolution of support volume for the mount bracket.

Fig. 24. Evolution of compliance for the mount bracket.

is smaller than previous directions. The results are summarized
in Fig. 29: the support volume was reduced by 4%, while the
compliance increased by 10%.

4.5. Computational cost

In this section, we study the convergence and performance of
the proposed algorithm.
Fig. 25. Printed mount bracket and the required support structures at 0.7 volume
fraction.

All experiments are conducted on a Windows 7 64 bit machine
with an 8-core Intel Core i7 CPU running at 3.00 GHz, and 16 GB of
memory. Table 2 summarizes the CPU times of the unconstrained
and constrained examples presented in Sections 4.1–4.3. Observe
that as the size of the problem and the support volume increases,
the constrained problem requires more computational effort to
compute support sensitivity field, yet for all of the presented
experiments CPU time remains comparable.

5. Summary and future work

The main contribution of this paper is to propose a topology
optimization framework that leads to designs with reduced
support structures. Specifically, we introduced a novel topological
sensitivity approach for constraining support structure volume
during design optimization. The effectiveness of the proposed
scheme was illustrated through several numerical examples, and
demonstrated using FDM technology.
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Fig. 26. Rocker arm of Honda Supra-X 100 cc (grabcad.com): (a) Iso view, (b) Top view.
Fig. 27. Rocker arm. Building in −Z direction (a) unconstrained (b) constrained.
Fig. 28. Build direction along +Y direction: (a) unconstrained, and (b) constrained.
Fig. 29. Rocker arm. Building in+X direction, unconstrained (left) and constrained
(right).

Support structures were assumed to be vertical for simplicity,
but we believe that the methodology can be extended to handle
non-vertical support structures. Additionally, the weighting pro-
posed in this paper is simple and easy to implement. Since there
are no benchmark examples in the literature for support volumes,
it is difficult to evaluate efficacy of the proposed method.

Finally, thework presented is seen as a first step towards amore
comprehensive framework for integrating topology optimization
and additive manufacturing. Additional research is needed to
include other AM-related constraints, such as surface roughness,
volumetric error, inter-layer fusion, and so on. Finally, the
proposed method must be coupled with methods for finding the
optimum build direction to further reduce support volume.
Fig. 30. Support area in a 2D interior hole.
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Appendix

In this Appendix, we elaborate on the derivation of Eq. (10).
Consider the hole inserted in the interior of the design, we need
to find support volume A = 4(A1 + A2) (see Fig. 30).

Since θ = α̂ − π/2 we have:

A1 =
1
2
(r cos(θ))(r sin(θ))

=
1
2
r2 sin(θ) cos(θ) =

−1
2

r2 sin(α̂) cos(α̂) (17)

A2 =


π/2 − θ

2π


πr2 =

(π − α̂)r2

2
(18)
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1)
TS(p ∈ Ω) = lim
ε→0
δ→0

4r3(π − α̂ − sin(α̂) cos(α̂))

sin(α̂) −

sin3(α̂)

3


((ε + δ)3 − ε3)

4
3π((ε + δ)3 − ε3)

(2

Box I.
A = 2r2(π − α̂ − sin(α̂) cos(α̂)). (19)

Next to find the support volume in a spherical ball with radius r we
extend Eq. (19) as follows:

S =

 r cos(θ)

−r cos(θ)

2(r2 − x2)(π − α̂ − sin(α̂) cos(α̂))dx

= 4r3(π − α̂ − sin(α̂) cos(α̂))


sin(α̂) −

sin3(α̂)

3


. (20)

Finally based on Eq. (9) the topological sensitivity is computed via
Eq. (21) given in Box I: i.e.

TS(p ∈ Ω) =

3(π − α̂ − sin(α̂) cos(α̂))

sin(α̂) −

sin3(α̂)

3


π

. (22)
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