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The behavior and characteristics of classical membrane theory of isotropic materials are different from
that of anisotropic materials, care must be taken to prevent secondary bending moments due to the
unbalanced arrangement of laminates of anisotropic materials. At times, bending theory may have to
be adopted and the current design codes, such as ASME, API and ACI must be reviewed for the case of
anisotropic materials. The stresses and strains can be significantly different between the pure membrane
and bending theories.
This paper derives a membrane type shell theory of hybrid anisotropic materials, governing differential

equations together with the procedures to locate the mechanical neutral axis. The theory is derived by
first considering generalized stress strain relationship of a three dimensional anisotropic body which is
subjected to 21 compliance matrix and then non-dimensionalizing each variable with asymptotic expan-
sion. After applying to the equilibrium and stress-displacement equations, we are allowed to proceed
asymptotic integration to reach the first approximation theory. Also possible secondary moments due
to the unbalanced built up of lamination are quantifiably expressed. The theory is different from the
so called pure membrane or the semi-membrane analysis.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Shell theories used for pressure vessel design and manufactur-
ing technology are becoming more important recently as the outer
space exploration being more active. The pressure vessel ranges
from deep water submarines, space vehicles, to the dome type
human residences in the Moon or Mars.

The membrane theory of shell is simple and been existing for
generations since Trusdell and Goldenveiser have theoretically for-
mulated as shown in the Refs. [7,8].

The mechanics of composites are complicated compared to the
ordinary conventional materials such as steel and other metallic
brands but composites possess such characteristics as high
strength/density and modulus/density ratios, which will allow
flight vehicles more efficient and increased distance. The filaments
embedded in the matrix materials of composites give additional
stiffness and tensile strength. They can be arranged arbitrarily so
as to make a structure more resistant to loadings. As the mechan-
ical properties of composites vary depending on the direction of
the fiber arrangement, it is necessary to analyze them by use of
an anisotropic theory. Also the current design codes including
ASME, API and ACI, Refs. [15–18], are all based on membrane the-
ory for isotropic materials.

Pressure vessels of composite materials are, in general, con-
structed of thin layers of different thickness with different material
properties. The properties of anisotropic materials are represented
by different elastic coefficients and different cross-ply angles. The
cross-ply angle, c, is the angle between major elastic axis of the
material and reference axis (Figs. 1 and 2). The variation in proper-
ties in the direction of the thickness implies non-homogeneity of
the material and composite structures must thus be analyzed
according to theories which allow for non-homogeneous anisotro-
pic material behavior. Our task is to formulate a theory for a shell
of composite materials which are non-homogeneous and anisotro-
pic materials.

According to the exact three-dimensional theory of elasticity, a
shell element is considered as a volume element. All possible stres-
ses and strains are assumed to exist and no simplifying assump-
tions are allowed in the formulation of the theory. We therefore
allow for six stress components, six strain components and three
displacements as indicated in the following equation:

rij ¼ Cijklekl i; j ¼ 1;2;3 k; l ¼ 1;2 ð1Þ

where rij and ekl are stress and strain tensors respectively and Cijkl

are elastic moduli.
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Fig. 1. Dimensions, deformations and stresses of the cylindrical shell.

Fig. 2. Details of the coordinate system.

Table 1
List of symbols.

List of symbols

a: Inside Radius of Cylindrical Shell
h: Total Thickness of the Shell Wall
Si: Radius of Each Layer of Wall (I = 1, 2, 3 — to the number of layer)
L: Longitudinal Length Scale to be defined, Also Actual Length of the

Cylindrical Shell
Ei: Young’s Moduli in I Direction
Gij: Shear Moduli in i-j Face
Sij: Compliance Matrix of Materials of Each Layer
r: Radial Coordinate
l: Circumferential Length Scale to be defined
Y: Angle of Fiber Orientation
r: Normal Stresses
e: Strains Normal
z, h, r: Generalized Coordinates in Longitudinal, Circumferential and

Radial Directions Respectively
s: Shear Stresses
eij: Shear Strains in i-j Face
k: Shell Thickness / Inside Radius (h/a)
Cij: Elastic Moduli in General
X, u, Y: Non Dimensional Coordinate System in Longitudinal,

Circumferential and Radial Directions Respectively
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There are thus a total of fifteen unknowns to solve for in a three
dimensional elasticity problem. On the other hand, the equilibrium
equations and strain displacement equations can be obtained for a
volume element and six generalized elasticity equations can be
used. A total of fifteen equations can thus be formulated and it is
basically possible to set up a solution for a three-dimensional elas-
ticity problem. It is however very complicated to obtain a unique
solution which satisfies both the above fifteen equations and the
associated boundary conditions. This led to the development of
various theories for structures of engineering interest. A detailed
description of classical shell theory can be found in various Ref.
[1–12].

In the first part of this article, the asymptotic expansion
and integration method is used to reduce the exact three-
dimensional elasticity theory for a non-homogeneous, anisotropic
cylindrical shell to approximate theories. The analysis is made such
that it is valid for materials which are non-homogeneous to the
extent that their mechanical properties are allowed to vary with
the thickness coordinate. The derivation of the theories is accom-
plished by first introducing the shell dimensions and as yet
unspecified characteristic length scales via changes in the indepen-
dent variables. Next, the dimensionless stresses and displacements
are expanded asymptotically by using the thinness of the shell as
the expansion parameter. A choice of characteristic length scales
is then made and corresponding to different combination of these
length scales, different sequences of systems of differential equa-
tions are obtained. Subsequent integration over the thickness and
satisfaction of the boundary conditions yields the desired equa-
tions governing the formulation of the first approximation stress
states of non-homogeneous anisotropic cylindrical shell.

2. Formulation of cylindrical shell theory of anisotropic
materials

Consider a non-homogeneous, anisotropic volume element of a
cylindrical body with longitudinal, circumferential (angular) and
radial coordinates being noted as z, h , r, respectively and subjected
to all possible stresses and strains (Fig. 1). The cylinder occupies
the space between a 6 r 6 aþ h and the edges are located at
z ¼ 0 and z ¼ L. Here, a is the inner radius, h the thickness and L
the length see Table 1.

Assuming that the deformations are sufficiently small so that
linear elasticity theory is valid, the following equations govern
the problem:

ðrsrzÞ;r þ shz;h þ ðrrzÞ;z ¼ 0
ðrsrhÞ;r þ rh;h þ ðrshzÞ;z þ shz ¼ 0
ðrrrÞ;r þ srh;h þ ðrsrzÞ;z � rh ¼ 0

ð2Þ

uz;z ¼ S11rz þ S12rh þ S13rr þ S14srh þ S15srz þ S16shz
1
r ðuh;h þ urÞ ¼ S12rz þ S22rh þ � � � þ S26shz
ur;z ¼ S13rz þ � � � þ S36shz
1
r ur;h þ uhz � 1

r uh ¼ S14rz þ � � � þ S16shz
uz;r þ ur;z ¼ S15rz þ � � � þ S36shz
uh;z þ 1

r uz;h ¼ S16rz þ � � � þ S66shz

ð3Þ

In the above Eqs. (2) are equilibrium equations and (3) stress-
displacement relations. In that ur , uh , uz are the displacement
components in the radial, circumferential and longitudinal direc-
tions, respectively, rr , rh, rz the normal stress components in the
same directions and shz, srz, srh are the shear stresses on the h-z
face, r-z face, r-h face respectively (Fig. 1). A comma indicates par-
tial differentiation with respect to the indicated coordinates. The
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Sij’s ði; j ¼ 1;2; . . . . . . ;6Þ in the Eq. (3) are the components of com-
pliance matrix and represent the directional properties of the
material. Complete anisotropy of the material is allowed for and
there are thus 21 independent material constants. We are not
allowed to illuminate any of those components since the material
properties are depending on the manufactures set up and different
gravity environment in case of aerospace vehicles. Also the compli-
ance matrix is symmetric, Sij ¼ Sji , and the components can be
expressed in terms of engineering constants as follows:

Sii ¼ 1
Ei
; ði ¼ 1;3Þ

Sij ¼ �mij
Ei

; ði ¼ 1;2; j ¼ 2;3; i–jÞ
S44 ¼ 1

G23

S55 ¼ 1
G13

S66 ¼ 1
G12

ð4Þ

In Eq. (4) the Ei ’ s are the Young’s moduli in tension along the i –
direction and ijע and Gij are the Poisson’s ratio and shear moduli in
the i-j face, respectively. Eq. (4) implies anisotropic property of the
material only, material to be non-homogeneous, different proper-
ties of each layer of the shell, we will allow the material property
variation in the radial direction as follows:

Sij ¼ Sij ð5Þ
The above equation is unique and different from most of con-

ventional theories, including Reddy’s, Ref. [11], which input the
engineering constants artificially from the beginning, while we
take the existence and magnitude of components only by approx-
imation theory of the asymptotic expansion.The principal material
axes (r0 , h0, z0) in general do not coincide with the body axes of the
cylindrical shell (r, h, z). If the material properties S0ij with respect to
material axes specified, then the properties with respect to the
body axes are given by the following transformation equations:

S11 ¼ S011 cos
4 cþð2S012 þ S066Þsin2 ccos2 cþ S022 sin

4 c

þðS016 cos2 cþ S026 sin
2 cÞsin2c

S22 ¼ S011 cos
4 cþð2S012 þ S066Þsin2 ccos2 cþ S022 cos

4 c

�ðS016 sin2 cþ S026 cos
2 cÞsin2c;

S12 ¼ S012 þðS011 þS022 �2S012 �S066Þsin2 ccos2 c
þ1

2ðS026 � S016Þsin2ccos2c
S66 ¼ S066 þ4ðS011 þ S022 �2S012 �S066Þsin2 ccos2 cþ2ðS026 þ S016Þsin2ccos2c;
S16 ¼ ½S022 sin2 c�S011 cos

2 cþ 1
2ð2S012 þ S066Þcos2c�sin2cþ S016 cos

2 cðcos2 c�3sin2 cÞ
þS026 sin

2 cð3cos2 c� sin2 cÞ;
S26 ¼ ½S022 cos2 c� S011 sin

2 cþ 1
2ð2S012 þ S066Þcos2c�sin2c

þS016 sin
2 cð3cos2 c� sin2 cÞþS026 cos

2 cðcos2 c�3sin2 cÞ
ð6Þ

where c is the angle of anisotropic orientation between the z0

and the original coordinate z axes. For the case of an orthotropic
material, where the major and minor elastic axes are 90 Degree,
the transformation Eq. (6) are reduced to Eq. (7):

1
E02
¼ cos4 c

E1
þ 1

G � 2m1
E1

� �
sin2 c cos2 cþ sin4 c

E2
;

1
E02
¼ sin4 c

E1
þ 1

G � 2m1
E1

� �
sin2 c cos2 cþ cos4 c

E2
;

1
G0 ¼ 1

G þ 1þm1
E2

þ 1�m1
E2

� 1
G

� �
sin2 2c

m01 ¼ E0
1

m1
E1
� 1

4
1þm1
E1

þ 1þm1
E2

� 1
G

� �h i

m02 ¼ m01
E02
E01

ð7Þ

The invariants are expressed by

ð1=E0
1Þ þ ð1=E0

2Þ � ð2m01=E0
1Þ ¼ ð1=E1Þ þ ð1=E2Þ � ð2m01=E1Þ
ð1=G0Þ þ ð4m01=E0
1Þ ¼ ð1=GÞ þ ð4m1=E1Þ

The shell is subjected to a uniformly distributed tensile force
then the boundary conditions are as follows:

rr ¼ srh ¼ srz ¼ 0 ðr ¼ aÞ
rr ¼ qðh; zÞ; srh ¼ srz ¼ 0 ðr ¼ aþ hÞ ð8Þ

We will find it convenient to work with stress resultants rather
than the stresses themselves. These stress resultants which are
forces and moments per unit length are obtained by integrating
with respect to the thickness coordinate. They are:

Nz ¼
R aþh
a rz 1þ r�a�d

aþd

h i
dr

Nh ¼
R aþh
a rhdr

Nhz ¼
R aþh
a shzdr

Nzh ¼
R aþh
a shz 1þ r�a�d

aþd

h i
dr

Mh ¼
R aþh
a ah½r � a� d�dr

Mz ¼
R aþh
a az r�a�d

aþd

h i
rdr

Mhz ¼
R aþh
a shz½r � a� d�dr

Mhz ¼
R aþh
a shz r�a�d

aþd

h i
rdr

ð9Þ

In the Eqs. (9) variable a denotes the inner radius of the cylin-
drical shell and d the distance from the inner surface to the ref-
erence surface where the stress resultants are defined. Note
that Nhz and Nzh and Mzh and Mhz respectively are different. This
is due to the fact that the terms of the order of thickness over
radius are not neglected compare to one in the integral
expressions.

3. Formulation of a boundary layer Theory

The procedure used to formulate the shell theory here is basi-
cally to reduce the three dimensional equations to two dimen-
sional thin shell equations and we will use the asymptotic
integration of the Eqs. (2) and (3) describing the cylindrical shell.
As a first step to integrating Eqs. (2) and (3), we make them non-
dimensionalized coordinates as follows:

X ¼ z=L; Y ¼ ðr � aÞ=h; u ¼ h=b ð10Þ
where L and ‘ð¼ baÞ are quantities which are to be determined later.

Next the compliance matrix, the stresses and deformations are
non-dimensionalized by the use of a representative stress levelr, a
representative material property S and the shell radius a, as
follows:

Sij ¼ SSij
rz ¼ rsrh; rh ¼ rsh; rr ¼ rsr
srh ¼ rsrh; srz ¼ rsrz; shz ¼ rshz
ur ¼ raSmr; uh ¼ raSmh; uz ¼ raSmz

ð11Þ

where the dimensionless displacements and stresses are functions
of x, y and u . These variables together with their derivatives with
respect to x, y and u are assumed to be of order unity. The param-
eters L and ‘ introduced in Eq. (10) are thus seen to be characteristic
length scales for changes of the stresses and displacements in the
axial and circumferential directions, respectively.It is convenient
at this point to define what is here meant by the concept of relative
order of magnitude. Consider a small parameter e, e is less than 1 .
With respect to an arbitrary domain D of the cylinder, M1 is said to
be of order en relative to a second quantity M2

M2 � enM1 ð12Þ
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if everywhere in D (with the possible exception of some isolated
small regions) the relationship

enþm 6 jM2j=jM1j 6 en�m ð13Þ
holds for a suitably chosen value of m, 0 < m < 1 . According to this
definition, two quantities are of the same order if n ¼ 0 in the above,
while a quantity is of order unity when n ¼ 0 and M1 ¼ 1. Substitu-
tion of the dimensionless variables defined by (10) and (11) into the
elasticity Eqs. (2) and (3) yields the following dimensionless
equations:

Stress-displacement relationships are

mr;y ¼ k½S31tz þ S32th þ S33tr þ S34trh þ S35trz þ S36thz�
mz;y þ kðaLÞmr;x ¼ k½S51tz þ S52th þ S53tr þ S54trhS55trz þ S56thz�
kmr;u þ ð laÞð1þ kyÞmh;y � ð laÞkmh
¼ kð laÞð1þ kyÞ½S41tz þ S42th þ S43tr þ S44trh þ S45trz þ S46thz�
mz;r ¼ ðLaÞ½S11tz þ S12th þ S13tr þ S14trh þ S15trz þ S16thz�
ðalÞmh;u þ mr ¼ ðlþ kyÞ½S21tz þ S22th þ S23tr þ S24trh þ S25trz þ S26thz�
ðaLÞðlþ kyÞmh;z þ ðalÞmz;u ¼ ðlþ kyÞ½S61tz þ S62th þ S63tr þ S64trh þ S65trz þ S66thz�

ð14Þ
Equilibrium equations are expressed as

½trzð1þ kyÞ�;y þ ðkal Þthz;/þ ðkaL Þð1þ kyÞtz;x ¼ 0

½trhð1þ kyÞ�;y þ ðkal Þth;/ þ ktrh þ ðkaL Þð1þ kyÞthz;x ¼ 0

½trð1þ kyÞ�;y þ ðkal Þtrh;/ þ ðkaL Þð1þ kyÞtrz;x � kth ¼ 0

ð15Þ

where k is the thin shell parameter defines as

k ¼ h=a ð16Þ
The parameter k is representative of the thinness of the cylin-

drical shell.

k is much less than 1 ð17Þ
The dimensionless coefficients Sij of the compliance matrix in gen-
eral are not all of same order.

We therefore assume that they can be expanded in terms of
finite sum as:

SijðyikÞ ¼
XN
n¼0

SðnÞij ðyÞkn
2 ð18Þ

where the SðnÞij ðyÞ are of order unity or vanish identically. Next, we
assume that each displacement components, represented by the
generic symbol mðmÞ, and each stress components represented by
the generic symbol sðmÞ, can be expanded in terms of a power series
in k1=2

mðy; x;/; kÞ ¼
XM
m¼0

mðmÞðy; x;/Þkm=2 ð19Þ

tðy; x;/; kÞ ¼
XM
m¼0

tðmÞðy; x;/Þkm=2 ð20Þ

The mðmÞ and tðmÞ are of order unity. No convergence properties
are assumed for series (19) only asymptotic validity for k. That is,
if expansions (19) are terminated at some power of k1=2, the error
in using the expansions rather than the exact solutions tends to
zero as k approaches zero.

Length scale L and ‘ are as yet arbitrary. Their choice, as will be
seen in the subjects to follow, determines the type of shell theory
to be identified.

Last step in the procedure consists of substituting expansions of
the series and one of assumed length scales into the dimensionless
elasticity equations of stress-displacement and equilibrium given
by Eqs. (14) and (15). Upon selecting terms of like powers in k1=2

on both sides of each equations and requiring that the resulting
equations be integrable with respect to the thickness coordinate
and be capable of identifying the relations for all stresses and dis-
placement components, we will obtain systems of differential
equations. The first system of equations of ‘‘thin shell” theory
and we will call it the first approximation system. We can however
obtain stresses and displacements of each layer of thickness coor-
dinate, that can be an advantage of the procedure among others. In
the following section, the thin shell theories for different combina-
tions of length scales can be derived.

4. Formulation of membrane type theory

(Associated with characteristic length scales, a)
As we observed the shell geometry is an important factor for the

formulation of theories. The basic geometry of cylindrical shell are
the longitudinal length L, inside radius a, total wall thickness h and
the distance from Inner surface to a desired surface, d. We are
interested here in deriving the shell theory associated with the
case where the axial and circumferential length scales are both
equal to the inner radius of the cylinder, a , as follows:

L ¼ a; l ¼ a ð21Þ
Here we adopt the concept of characteristic length scale first

developed by Calladine in the Eq. (3.8) in the Ref. [18].
The reason for taking the length scales, a, is the longest practical

dimension of the shell and we are interested in developing mem-
brane type theory which requires longer than the bending charac-
teristic influential length according to the classical theory of
isotropic materials, Refs. [6] through [8] and [17] through [19].

On substituting these length scales into the three-dimensional
elasticity Eqs. (12) and (13) and stress-displacement relations
and equilibrium equations of (14) and (15), we obtain:If the
asymptotic expansions (19) and (20) for the displacements and
stresses are now substituted into Eqs. (22) and (23), the following
equations representing the first approximation theory of the
problem result upon use of the procedure outlined in the last chap-
ter. Note that both sides 1/2 of each equation are equated in like
powers of k and the leading terms may not correspond to m ¼ 0
term.

v ð0Þ
r;y ¼ 0

v ð0Þ
z;y ¼ 0

v ð0Þ
h;y ¼ 0

ð22Þ

v ð0Þ
z;x ¼ sð0Þ11 t

ð0Þ
z þ sð0Þ12 t

ð0Þ
h þ sð0Þ16 t

ð0Þ
hz

v ð0Þ
h;/ þ v ð0Þ

r ¼ sð0Þ21 t
ð0Þ
z þ sð0Þ22 t

ð0Þ
h þ sð0Þ26 t

ð0Þ
hz

v ð0Þ
h;x þ v ð0Þ

z;/ ¼ sð0Þ61 t
ð0Þ
z þ sð0Þ62 t

ð0Þ
h þ sð0Þ66 t

ð0Þ
hz

tð2Þrz;y þ tð0Þhz;/ þ tð0Þz;x ¼ 0

tð2Þrh;y þ tð0Þh;/ þ tð0Þhz;x ¼ 0

tð2Þr;y þ tð0Þh ¼ 0

ð23Þ

The superscripts indicate the leading term in each of the expan-
sions (18) and represent the relative of magnitude of the displace-
ments and stresses. These orders of magnitude result from the
intention to obtain a system of equations which is integrable with
respect to the thickness coordinate y in a step-by-step manner and
the following additional reasoning:

a) The dominant stress state in thin shell theory is the in-plane
stress state. These stresses should be of the same order of
magnitude.
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b) The order of the displacements is chosen so that the product
of the in-plane strains and the elastic moduli is of the same
order of magnitude as the in-plane stresses.

c) The choice for the transverse stresses arises from the fact
that they should contribute terms of the same magnitude
in the equilibrium. Integration of the first three equations
of (23) with respect to y yields

v ð0Þ
r ¼ v ð0Þ

r ðx;/Þ
v ð0Þ

z ¼ v ð0Þ
z ðx;/Þ

v ð0Þ
h ¼ v ð0Þ

h ðx;/Þ
ð24Þ

where v r; vz; vh are the displacements of the y ¼ 0 (r ¼ a) surface.
The middle three equations of (23) can be solved for the in-

plane stresses as follows:

tð0Þz

tð0Þh

tð0Þhz

8><
>:

9>=
>; ¼ ½C�

e1
e2
e12

8><
>:

9>=
>; ð25Þ

Here, C . (i, j = 1, 2, 3) are the components of a symmetric matrix-
given by

C ¼
sð0Þ11 sð0Þ12 sð0Þ16

sð0Þ12 sð0Þ22 sð0Þ26

sð0Þ16 sð0Þ26 sð0Þ66

2
664

3
775

�1

ð26Þ

and e1; e2; e12 are the in-plane strain components of the y ¼ 0
surface:

e1
e2
e12

8>>><
>>>:

9>>>=
>>>;

¼
v ð0Þ
z;x

v ð0Þ
h;/ þ v ð0Þ

r

v ð0Þ
h;x þ v ð0Þ

r;/

8>><
>>:

9>>=
>>;

ð27Þ

On substituting the first approximation in-plane stress-strain
relations (25) into the last three equations of (23) and integrating
with respect to y, we obtain:

trz ¼ Trzðx;/Þ � ½A13Vz;x/ þ A23ðVh;// þ Vr;/Þ þ A33ðVh;x/ þ Vz;//Þ�
�½A11Vz;xx þ A12ðVh;x/ þ Vr;xÞ þ A13ðVh;xx þ Vz;x/Þ�

trh ¼ Trhðx;/Þ � ½A12Vz;x/ þ A22ðVh;// þ Vr;/Þ þ A23ðVh;x/ þ Vz;//Þ�
�½A13Vz;xx þ A23ðVh;x/ þ Vr;xÞ þ A33ðVh;xx þ Vz;x/Þ�

tr ¼ Tr þ A12Vz;x þ A22ðVh;/ þ VrÞ þ A23ðVh;x þ Vz;/Þ
ð28Þ

where trz , Trh , Tr are the transverse stress components of the y ¼ 0
surface and

Aij ¼
Z y

0
Cijdq ð29Þ

In relations (28) and in what is to follow, the superscripts
on the displacements have been dropped. Boundary conditions
(8) are to be satisfied by each term of asymptotic expansions
(18). This yields

tð2Þrz ¼ tð2Þrh ¼ tð2Þr ¼ 0 ðy ¼ 0Þ
tð2Þrz ¼ tð2Þrh ¼ 0; tð2Þr ¼ p� ðy ¼ 0Þ

ð30Þ

Here, p� is a dimensionless pressure defined by

p� ¼ p=ðrkÞ ð31Þ
Satisfaction of conditions (30) by (29) yields

Trz ¼ Trh ¼ Tr ¼ 0 ð32Þ
and the following three differential equations for displacements Vr ,
Vz and Vh

A13Vz;x/ þ A23ðVh;// þ Vr;/Þ þ A33ðVh;x/ þ Vz;//Þ
þA11Vz;xx þ A12ðVh;x/ þ Vr;xÞ þ A13ðVh;xx þ Vz;x/Þ ¼ 0

A12Vz;x/ þ A22ðVh;// þ Vr;/Þ þ A23ðVh;x/ þ Vz;//Þ
þA13Vz;xx þ A23ðVh;x/ þ Vr;xÞ þ A33ðVh;xx þ Vz;x/Þ ¼ 0

A12Vz;x þ A22ðVh;/ þ VrÞ þ A23ðVh;x þ Vz;/Þ ¼ p�

ð33Þ

In the above equations

Aij ¼ Að1Þ
ij ð34Þ

To obtain the appropriate expressions for the stress resultants
we first non-dimensionalize those defined by (9) as follows:

�N ¼ N
r � k � a ;

�M ¼ N

r � k2 � a2 : ð35Þ

where N and M are the generic symbol for the force and moment
stress resultants, respectively. Note that to non-dimensionalize
the force and moment we divide by same unit of force and moment
per unit strip of the shell surface, which is of pound/inch or kilo-
gram/centimeter for force and pound-inch/inch or kilogram-
centimeter/centimeter respectively. Assuming it to be possible, we
now asymptotically expand each of the dimensionless stress resul-
tants in a power series in 1/2,

�N ¼
XM
m¼0

NðmÞðx;/Þ � km=2

�M ¼
XM
m¼0

MðmÞðx;/Þ � km=2

ð36Þ

where NðmÞ and MðmÞ are of the order unity.
5. Pseudo-membrane phenomena

We are now interested in a formulation of equations to be able
to obtain all the stress resultants due to membrane and bending
actions.

On substitution (35), (36) and the results for in-plane stresses
(24) into relations (9) and equating terms of like powers in 1/2
on each side of the equations, we obtain the following expressions
for the first approximation stress resultants:

Nz

Nh

Nzh

Nhz

Mz

Mh

Mzh

Mhz

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼
�A
�B

� � e1
e2
e12

8><
>:

9>=
>; ð37Þ

where the superscript zero have been omitted and B. is defined as
follows:
Bij ¼
Z y

0
CijðqÞdq; Bij ¼ Bijð1Þ ð38Þ

and submatrices ½�A� and ½�B� are given by



Fig. 3. A laminated cylindrical shell, material orientation c.
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½�A� ¼

1
1þd=a ½A11;A12;A13�
A21;A22;A23

1
1þd=a A31;A32;A33½ �
A31;A32;A33

2
66666664

3
77777775

½�B� ¼

1
1þd=a � d

h A11 þ B11
� �

; ð� d
h A12 þ B12Þ; � d

h A13 þ B13
� �� 	

ð� d
h A21 þ B21Þ; � d

h A22 þ B22
� �

; � d
h A23 þ B23

� �
1

1þd=a � d
h A31 þ B31

� �
; ð� d

h A32 þ B32Þ; � d
h A33 þ B33

� �� 	
� d

h A31 þ B31
� �

; ð� d
h A32 þ B32Þ; � d

h A33 þ B33
� �

2
66666664

3
77777775

ð39Þ
Note that d=a can be written as

d=a ¼ kðd=hÞ ð40Þ
From the results obtained above, we characterize the theory as

follows:

a) The approach that this research took, the asymptotic inte-
gration, for deriving shell equations is capable of obtaining
all stress components, including the transverse components.

b) The first three equations of (22) result from the relations for
the transverse strains. The variation with respect to y is zero
as shown in the displacements (23) which are independent
of y . The strain components of any point y off the y ¼ 0 sur-
face are thus equal to those of the y ¼ 0 surface, similar to
classical membrane theory.

c) The stress components vary with y because as the Cij , and
the Aij . are functions of y.

d) Equations (37) show that moment stress resultants are pro-
duced due to the non-homogeneity of the material.

For an isotropic and homogeneous material, the Cij are constants
and d/h = 1/2. This yields

Bij ¼ 1
2
Cij ¼ 1

2
Aij ð41Þ

On substituting this result into relations (38) it is seen that subma-
trix B is equal to zero and that relations (37) become those of the
classical membrane theory of shell (zero moment resultants). In
case of hybrid anisotropic materials, it is very rare to satisfy all
the components of the submatrix ½B� to be equal to zero at the same
time. Another way of observation, it is unavoidable to associate
with some bending moments in addition to pure membrane forces
for laminated anisotropic shell walls. Therefore, the analysis is
named pseudo-membrane theory. It is different from the long effec-
tive length of Vlasov’s semi-membrane theory nor the short effec-
tive length of Donnell’s theory.

6. Application

To demonstrate the validity of the theory developed here, we
will choose a problem of a laminated circular cylindrical shell
under internal pressure and edge loadings. The shell is assumed
to build with boron/epoxy composite layers. Each layer is taken
to be homogeneous but anisotropic with an arbitrary orientation
of the elastic axes. We need not consider the restriction of the sym-
metry of the layering due to the non-homogeneity considered in
the original development of the theory expressed by Eq. (5). Thus
each layer can possess a different thickness.We assume here that
the contact between layers is such that the strains are continuous
function in thickness coordinate. As the Cij are piecewise continu-
ous functions, the in-plane stresses are also continuous. We would
expect them to be discontinuous at the juncture of layers of dis-
similar materials. The transverse stresses are continuous functions
of the thickness coordinate.Although as mentioned above the the-
ory developed can take unlimited hybrid random layers but for an
example, a four-layer symmetric angle ply configuration. For this
configuration the angle of elastic axes c is oriented at þc , �c ,
�c , þc w I t h the shell axis and the layers are of equal thickness.
Let the shell be subjected to an internal pressure p , an axial force
per unit circumferential length N . The axial force is taken to be
applied at r ¼ aþ H such that a moment NðH � dÞ is produced
about the reference surface r ¼ aþ d . We introduce dimensionless
external force and moments as p r e v i o u s l y described.

To demonstrate the validity of the derived theory, we have sim-
plified loading and boundary conditions as follows:

Vr ¼ Vr;x ¼ Vz ¼ Vh ðx ¼ 0; y ¼ d=hÞ
v r ¼ 0; �N2 ¼ N; �M2 ¼ M ðx ¼ l; y ¼ d=hÞ
ð1þ d=aÞ�Nzh þ k �Mzh ¼ �T

ð42Þ

Here, l is the dimensionless length of the cylindrical shell.
In the theories developed in the previous chapters, the distance

d at which the stress resultants were defined was left arbitrary. We
now choose it to be such that there exists no coupling between Nz

and K1 and Mz and Cij.
As the loading applied at the end of the shell is axi-symmetric,

all the stresses and strains are also taken to be axi-symmetric. We
thus can set all the derivatives in the expressions for the stresses
and strains and in the equations for the displacements equal to
zero (see Fig. 3).

Numerical calculations are now carried out for a shell of wall of
various hybrid laminae.

Each of the layers is taken to be equal thickness and thus the
dimensionless distances from the bottom of the first layer are
given by

S1 ¼ 0; S2 ¼ 0:25; S3 ¼ 0:5; S4 ¼ 0:75; S5 ¼ 1:0

each layer of the symmetric angle ply configuration (elastic symme-
try axes y are oriented at (þc , �c , �c , þc) is taken to be orthotro-
pic with engineering elastic coefficients representing those for a
boron/epoxy material system,

E1 ¼ 2:413� 105 MPa
E2 ¼ 1:0� 105 MPa
G12 ¼ 5:17� 105 MPa

ð43Þ
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Here direction 1 signifies the direction parallel to the fibers while 2
is the transverse direction. Angles chosen were c = 0, 15, 30, 45 and
60. Use of the transformation Eqs. (6) then yields the mechanical
properties for the different symmetric angle ply configurations.We
Fig. 4. Non-dimensionalized radial displacement of pure theory.

Fig. 5. Comparison of radial displacements of the bending and pure membrane
theories.
next apply the following edge loads: N ¼ p and take r ¼ p=k,
H ¼ ð3=4Þh and the reference surface we take d=h ¼ 1=2 Shown in
Figs. 4 and 5 are the variation of the dimensionless radial displace-
ment with the actual distance along the axis for the different theo-
ries. The reference surface for the chosen configuration is given by
d=h ¼ 1=2 . The integration constants determined from the edge
conditions. For the case of isotropic material we simply set E1 = E2
and we can obtain the results in the figures.It is also seen that
wide variations in the magnitude of radial displacement take place
with change in the cross-ply angle. The maximum displacement
occurs at c = 30 degree while the minimum displacement is at
c = 60 degree. Because we have simplified all the conditions to be
purely membrane status, membrane stress as well as displacements
cannot accommodate with the edge conditions as shown in the
Fig. 5. Also shown in the Fig. 5 is the patterns of near edge zone
to compare the pure membrane theory against bending theory,
which are close to Donnel’s theory for the case of isotropic material.
The results of bending theory were adopted from the Ref. [12].In
each case, the displacements increase with increase in c up to
c = 30 degree and thereafter decrease.

7. Conclusion

In the present analysis, first approximation shell theories are
derived by use of the method of asymptotic integration of the exact
three-dimensional elasticity equations for a non-homogeneous
anisotropic circular cylindrical shell. The analysis is valid for mate-
rials which are non-homogeneous to the extent that their proper-
ties are allowed to vary with the thickness coordinate (r).

The first approximation theory derived in this analysis repre-
sent the simplest possible shell theories for the corresponding
length scales considered. Although twenty-one elastic coefficients
are present in the original formulation of the problem, only six
are appear in the first approximation theories. It was seen that
use of the asymptotic method employed in the research also yields
expressions for all stress components, including the transverse
ones. Unlike the pure membrane theory of isotropic materials, sec-
ondary bending moments can be computed in association of mate-
rial characteristics of lamination.

The fact that these expressions can be determined is very useful
when discussing the possible failure of composite shells and also
for the discrepancy between theoretical membrane theory and
experimental results.

For design of space shuttles and other vehicles, a shell structure
must be carefully designed for all possible loading conditions,
extremely high negative and positive pressure and temperature,
which demands further accurate shell theories. In case the mem-
brane theory seems to be justified, the effect of all possible sec-
ondary bending moments must carefully be examined as shown
in the Eq. (37) through (41) of this analysis. It is more realistic
for shells of hybrid anisotropic materials of high strength.
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