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In the present work, a new design of honeycomb is proposed by embedding the rhombic configuration
into the normal re-entrant hexagonal honeycomb (NRHH), in order to enhance the honeycomb’s in-
plane mechanical properties. Both theoretical analysis and numerical simulations are employed to calcu-
late the in-plane mechanical properties of the new honeycomb under uniaxial compression, including
Young’s modulus, Poisson’s ratio and critical buckling strength. The results show that the new honey-
comb can maintain auxetic performance, while both the in-plane Young’s modulus and the critical buck-
ling strength are significantly improved compared to the NRHH. Comparisons between the present design
and other exiting enhanced periodic topologies are also carried out. With respect to them, the present
design features superior performances. For these outstanding properties, this layout may provide a
new concept for the optimization and design of auxetic materials.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

As an ultra-light material with physical and structural func-
tions, cellular materials are attractive for use in lightweight struc-
tures, energy-absorbing and heat transfer devices [1–6]. For a long
time, scientists have focused on revealing the relations between
the honeycombs’ mechanical properties and their geometric
configurations.

In recent years, there is a surge of research into a class of cellu-
lar materials with negative Poisson’s ratio (NPR) due to their supe-
rior physical properties and abnormal characteristics. Re-entrant
and roll-up are the two most commonmechanisms to achieve neg-
ative value of Poisson’s ratio. As a typical structure with negative
Poisson’s ratio, the re-entrant structures, including 2D re-entrant
honeycomb and 3D re-entrant lattice, have been extensively stud-
ied. Gibson and Ashby [1] developed a seminal model that success-
fully predicts Young’s modulus and Poisson’s ratio for conventional
hexagonal honeycomb, considering the axial and transverse shear
of cell walls as well as bending. A refined cell wall’s bending model
by adding a beam’s stretching and hinging motion was introduced
by Masters and Evans [7]. Both the approaches used by Gibson and
Ashby [1] and Masters and Evans [7] are able to model the normal
re-entrant hexagonal honeycomb (NRHH). Besides, there are other
analytical and numerical models to describe the in-plane elastic
constants of the NRHH [8,9]. The influences of the cell-wall angle
on the indentation resistance of the re-entrant hexagonal honey-
combs were studied by Hu and Deng [10] though numerical tests
and theoretical analysis. Under large deformation, both the Pois-
son’s ratio [11] and shear modulus [12] of the re-entrant hexagonal
honeycombs were investigated systematically. Based on the NRHH,
a new 2D centresymmetric honeycomb configuration [13] and a 3D
periodic re-entrant lattice structure [14–18] were designed and
late studied in deep on their elastic properties.

As well as the elastic properties of cellular materials, collapse is
important in applications. According to Gibson and Ashby’s work
[1], collapse of the cellular materials due to the buckling becomes
more likely as relative density is reduced. The asymmetrical buck-
ling mode of three cell edges for conventional hexagonal honey-
comb with uniform-thickness cell edges under uniaxial
compression was suggested by Gibson and Ashby [1]. Using the
similar analytical model, the in-plane elastic buckling strength of
regular hexagonal honeycomb with Plateau borders was derived
by Chuang and Huang [19]. The theoretical framework for buckling
analysis of conventional hexagonal honeycomb used by Gibson
and Ashby [1] is able to model the normal re-entrant hexagonal
honeycomb (NRHH). Wang and McDowell [2] approximated the
buckling strengths of a series of common cellular structures by
means of a simplistic approach involving the equivalent beam
length for cell walls of different periodic structures (i.e., square cell
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honeycomb, triangular cell honeycomb, mixed cell honeycomb,
Kagome cell honeycomb, diamond cell honeycomb and rectangular
cell honeycomb). In Haghpanah et al.’s work [20], a method based
on classical beam-column end-moment behavior expressed in a
matrix form was applied to sample honeycombs with square, tri-
angular and hexagonal unit cells to determine their buckling
strength under a general macroscopic in-plane stress state. Until
now, the research on the in-plane buckling analysis of auxetic
structures is rarely reported.

Auxetic materials have been identified in a series of applications
in textiles, industry, aerospace, protection, biomedical, sensors and
other sectors [21,22]. However, the stiffness of the auxetic materi-
als, which need substantial porosity, is relatively low [22]. Eventu-
ally, this causes limitations on the structural applications of the
materials with negative Poisson’s ratio [23]. Composites incorpo-
rating auxetic inclusions were proved to have a great potential in
terms of enhanced properties [24]. Also, the gradient honeycombs
are promising in improving the in-plane stiffness and some physi-
cal properties. With respect to classical re-entrant hexagonal con-
figurations, the thickness gradient re-entrant honeycomb was
proved by Lira and Scarpa [25] to have enhanced transverse shear
moduli, thermal conductivity and dielectric properties. Continuing
further, the graded conventional-auxetic cores and auxetic gradi-
ent honeycombs have been proved to have potential in the design
of sandwich structures due to their superior performance [26,27].
Recently, in order to improve the in-plane stiffness of the normal
re-entrant hexagonal honeycomb (NRHH), two new designs,
namely splined-reentrant and stiffened-reentrant honeycombs,
were conceived and investigated numerically, experimentally by
Zied et al. [28]. For the same purpose, a novel structure was devel-
oped by Lu et al. [29] by adding a narrow rib to the unit cell
of NRHH. These layouts can be considered as a possible
basis to design new concepts of auxetic structures with special
functions.

In this paper, a new honeycomb is developed by embedding the
rhombic configuration into the normal re-entrant hexagonal hon-
eycomb (NRHH). The effective Young’s modulus and Poisson’s ratio
of the new structure are analytically derived, which is later verified
by numerical simulations. Next, parameters studies are conducted
by using the numerically validated analytical solutions. Finally, the
critical buckling strength of the new proposed honeycomb
under uniaxial compression is also studied analytically and
numerically.
Fig. 1. New honeycomb (a) cells’ geom
2. New honeycomb and the representative block

The new honeycomb is developed by the normal re-entrant
hexagonal honeycomb (NRHH) with each cell enhanced with four
reinforcing walls, as shown in Fig. 1a. The cells within the new
honeycomb can also be regarded as a combination of the re-
entrant hexagonal configuration and the rhombic configuration.
The length of the vertical and the slant walls of the re-entrant cells
are h0 and l0, respectively, with their thickness being t0. The thick-
ness and the length of the four reinforcing walls are t1 and l1,
respectively. The slant walls of the re-entrant hexagonal cells and
the reinforcing walls have angles of h0 and h1 with the horizontal
direction, respectively, as marked in Fig. 1. These geometric param-
eters of the cell walls have relationship with each other, i.e.,

l1 ¼ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20
4l20

þ cos2 h0

r
h1 ¼ arctan h0

2l0 cos h0
:

ð1Þ

Under in-plane compression, in view of the periodic symmetry
of the honeycomb’s cell structure, a representative block is adopted
to deduce the mechanical properties of the honeycomb, as marked
within the dashed rectangle in Fig. 1a and shown in Fig. 1b in
details. The thickness and the length of both FA and CD are
ðt0=2Þ and ðh0=2Þ, respectively.

3. Young’s modulus and Poisson’s ratio

3.1. Theoretical analysis

When the honeycomb is uniaxially compressed by a stress rx

along the x-direction, a uniform horizontal displacement uC will
be caused at point B and wall CD, while vertical displacement vC

and vF will be caused at points C and F, respectively, as shown in
Fig. 1b. Due to the periodic symmetry of the cell structure, points
A and B have the same vertical displacement, i.e.,vA ¼ vB, and the
length of FA and CD after deformation should be equal, i.e.,

vC ¼ vF � vA: ð2Þ
Since the horizontal planes passing through points A and D are

the plane of symmetry, the transverse shear stress at points A and
D are zero that there is no transverse shear force on the vertical
walls FA and CD. For the reinforcing walls, the axial deformation
is the primary mechanism as every two neighboring reinforcing
etry and (b) representative block.
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walls form a triangle with the adjacent vertical wall. Thus, the
transverse shear force and the end-point bending moment on the
reinforcing walls can be neglected.

The axial force of both the two vertical walls and the two rein-
forcing walls in Fig. 1b can be derived by the end-point displace-
ment of the respective wall. The axial force on the walls FA and
CD is

FN
FA ¼ FN

CD ¼ E0bt0
h0

vC ; ð3Þ

with E0 being Young’s modulus of the walls in normal re-entrant
cells, and b being the width of the honeycomb in the out-of-plane
direction. The axial force on the reinforcing walls FB and EC are

FN
FB ¼ FN

EC ¼ E1bt1
l1

ðuC cos h1 � vC sin h1Þ; ð4Þ

with E1 being Young’s modulus of the reinforcing walls.
For the slant wall FC, both the bending deformation and the

transverse shear deformation should be considered besides the
axial deformation, as shown in Fig. 2. The axial force on wall FC is

FN
FC ¼ E0bt0

l0
½uC cos h0 � ðvC þ vFÞ sin h0�: ð5Þ

The transverse shear force on FC depends on the relative displace-
ment between C and C0, d, and d is:

d ¼ uC sin h0 þ ðvC þ vFÞ cos h0: ð6Þ
A 3D periodic re-entrant lattice structure designed by fourfold rota-
tions of the bow-tie functional element was analytically investi-
gated by Yang et al. [16]. Both the bending-induced deflection and
the shear-induced deflection of the slant strut were considered. Fol-
lowing similar approach used by Yang et al. [16], the deflection
angles hF and hC in Fig. 2 can be expressed as

hF ¼ hC ¼ Ml0
6E0I0

þ FS
FC

jG0A0
; ð7Þ

with M ¼ MFC ¼ MCF ¼ FS
FCl0=2, where G0 ¼ E0=ð2þ 2l0Þ is the shear

modulus of the basic re-entrant cell wall with l0 being its Poisson’s

ratio, A0 ¼ bt0 is the cross section area of wall FC, and I0 ¼ bt30=12 is
the second moment of inertia of the cross section. For rectangular
cross section, j ¼ 5=6.

Under small deformation, wall FC deflects by:

d � l0hF ¼ l30
12E0I0

FS
FC þ

l0
jG0A0

FS
FC : ð8Þ

Thus, the transverse shear force on FC can be obtained by substitut-
ing Eq. (6) into Eq. (8):

FS
FC ¼ E0bðt0=l0Þ3½uC sin h0 þ ðvC þ vFÞ cos h0�

1þ 2:4ð1þ l0Þðt0=l0Þ2
: ð9Þ
Fig. 2. Deformation of wall FC.
In the following, the end-point displacements vA, vB, vC and vF will
be expressed as function of displacement uC by using the force bal-
ance conditions. Since the honeycomb is free along the y-direction,
the total y-directional force on the top boundary of the representa-
tive block must be zero, i.e.,

FN
FB sin h1 � FN

FA ¼ 0: ð10Þ
By substituting Eqs. (3) and (4) into Eq. (10), the vertical displace-
ment mC is

vC ¼ sin h1 cos h1E1t1=l1
E0t0=h0 þ sin2 h1E1t1=l1

uC : ð11Þ

Based on the force balance on point F along the y-direction, it is
obtained:

FN
FC sin h0 � FS

FC cos h0 þ FN
FB sin h1 � FN

FA ¼ 0: ð12Þ
By substituting Eq. (10) into Eq. (12), we have:

FN
FC sin h0 � FS

FC cos h0 ¼ 0: ð13Þ
Then, vF can be obtained by substituting Eqs. (5) and (9) into Eq.
(13):

vF ¼ ½1þ ð1:4þ 2:4l0Þðt0=l0Þ2� sin h0 cos h0
ðt0=l0Þ2cos2h0 þ ½1þ 2:4ð1þ l0Þðt0=l0Þ2�sin2h0

uC

� sin h1 cos h1E1t1=l1
E0t0=h0 þ sin2h1E1t1=l1

uC :

ð14Þ

According to the force balance along the x-direction on the right
boundary of the representative block, we have

FN
FC cos h0 þ FS

FC sin h0 þ FN
EC cos h1 þ FN

FB cos h1
¼ rxðh0 � l0 sin h0Þb:

ð15Þ

Thus,

rx ¼ K1 þ K2

h0 � l0 sin h0
uC ; ð16Þ

with

K1 ¼ cos2h0E0t0
l0

þ E0ðt0=l0Þ3sin2h0

1þ 2:4ð1þ l0Þðt0=l0Þ2

þ2cos2h1E1t1
l1

� 2ðsin h1 cos h1E1t1=l1Þ2
E0t0=h0 þ sin2h1E1t1=l1

;

K2 ¼ sin2h0cos2h0E0t0=l0
1þ 2:4ð1þ l0Þðt0=l0Þ2

� �½1þ ð1:4þ 2:4l0Þðt0=l0Þ2�
2

ðt0=l0Þ2cos2h0 þ ½1þ 2:4ð1þ l0Þðt0=l0Þ2�sin2h0
:

Obviously, K1 and K2 only depend on the cell walls’ modulus and
the geometric parameters of the cell, including h0 , h1, t0, l0, h0, t1
and l1.

The effective strain along the x-direction, ex, is giving by:

ex ¼ uC

l0 cos h0
: ð17Þ

The effective strain along the y-direction, ey, is:

ey ¼ vA
h0 � l0 sin h0

¼ � 2 sin h1 cos h1E1t1=l1
ðE0t0=h0 þ sin2h1E1t1=l1Þl0ðh0=l0 � sin h0Þ

uC

þ ½1þ ð1:4þ 2:4l0Þðt0=l0Þ2� sin h0 cos h0

ðt0=l0Þ2cos2h0 þ ½1þ 2:4ð1þ l0Þðt0=l0Þ2�sin2h0
n o

l0ðh0=l0 � sin h0Þ
uC :

ð18Þ
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Thus, the effective Young’s modulus, Ex and effective Poisson’s ratio,
lxy are obtained as:

Ex ¼ ðK1 þ K2Þ cos h0
ðh0=l0 � sin h0Þ ; ð19Þ

and

lxy ¼ � ey
ex ¼

2 sin h1 cos h1 cos h0E1t1=l1
ðE0t0=h0 þ sin2h1E1t1=l1Þðh0=l0 � sin h0Þ

� ½1þ ð1:4þ 2:4l0Þðt0=l0Þ2� sin h0cos2h0

ðt0=l0Þ2cos2h0 þ ½1þ 2:4ð1þ l0Þðt0=l0Þ2�sin2h0
n o

ðh0=l0 � sin h0Þ
;

ð20Þ
respectively.

By using a similar method adopted above, when compressed
along the y-direction, the honeycomb’s effective Young’s modulus,
Ey, and Poisson’s ratio, lyx, can also be obtained correspondingly.
The derivation is shown in Appendix A in details.

3.2. Finite element analysis

In order to verify the analytical results obtained above, numer-
ical simulations are conducted by using ANSYS. The numerical
models of the new honeycomb contain 8 � 8 unit cells with
h0 ¼ 30�, h0=l0 ¼ 2 and t0 ¼ t1 ¼ 1 mm, as shown in Fig. 3. The
out-of-plane thickness of the honeycomb block, b, is 1 mm. Nine
levels of slant wall length, l0, are adopted: 10 mm, 15 mm,
20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 80 mm and 100 mm.

The boundary conditions of the honeycomb block are shown in
Fig. 3. When the honeycomb block is compressed along the x-
direction, both the horizontal displacement of the nodes at the left
boundary and the vertical displacement of the nodes at the bottom
boundary of the block are constrained. A uniform displacement Dux

is imposed on the nodes at the right boundary of the block, while
the nodes at the top boundary are coupled to move freely along
the y-direction. Similarly, when the honeycomb block is com-
pressed along the y-direction, both the horizontal displacements
of the nodes at the left and the vertical displacement of the nodes
at the bottom of the honeycomb block are constrained. A uniform
displacement Duy is imposed on the nodes at the top of the block,
while the nodes on the right boundary are coupled together to
move freely along the x-direction. The out-of-plane displacements
are constrained for all nodes.

Aluminum alloy is used for the cell wall material with
E0 ¼ E1 ¼ 70 GPa and l0 ¼ l1 ¼ 0:33. The cell walls are meshed
by the beam element of BEAM 188 with an element size of
Fig. 3. Boundary conditions used in the numerical models.
0.5 mm. A mesh sensitivity analysis is carried out to ensure that
the numerical solutions are mesh-independent.

For normal re-entrant hexagonal honeycomb (NRHH), the in-
plane Young’s modulus and Poisson’s ratio were derived by Gibson
and Ashby [1] by considering all the three mechanisms of bending,
shearing and stretching,

E�
x ¼

E0t03

l0
3

cos h0
ðh0=l0 � sin h0Þsin2h0

1

1þ ð2:4þ 1:5l0 þ cot2h0Þðt0=l0Þ2

E�
y ¼

E0t03

l0
3

ðh0=l0 � sin h0Þ
cos3h0

1

1þ ½2:4þ 1:5l0 þ tan2h0 þ 2ðh0=l0Þ=cos2h0�ðt0=l0Þ2

l�
xy ¼

�cos2h0
ðh0=l0 � sin h0Þ sin h0

1þ ð1:4þ 1:5l0Þðt0=l0Þ2
1þ ð2:4þ 1:5l0 þ cot2h0Þðt0=l0Þ2

l�
yx ¼

� sin h0ðh0=l0 � sin h0Þ
cos2h0

1þ ð1:4þ 1:5l0Þðt0=l0Þ2
1þ ½2:4þ 1:5l0 þ tan2h0 þ 2ðh0=l0Þ=cos2h0�ðt0=l0Þ2

;

ð21Þ
where E�

x and l�
xy are Young’s modulus and Poisson’s ratio of the

NRHH, respectively, when it is uniaxially compressed along the x-
direction, and E�

y, l�
yx are those when it is under uniaxial compres-

sion along the y-direction.
Here, in-plane stiffness ratios of bx and by are introduced to

evaluate the enhancement of the in-plane stiffness of the new hon-
eycomb with respect to that of NRHH. bx and by are giving by:

bx ¼ Ex=E
�
x

by ¼ Ey=E
�
y:

ð22Þ

Fig. 4 compares the numerical and the analytical results of the
in-plane stiffness ratio b and Poisson’s ratio l of the new honey-
comb with various t0=l0, indicating that the analytical results are
in well agreement with the numerical ones. According to the
results obtained by Gibson and Ashby [1], in the case of NRHH,
when h0=l0 ¼ 2; h0 ¼ 30�, E�

x � E�
y and l�

xy � l�
yx, which resulted in

transversely isotropic characteristic. Coincidentally, the new hon-
eycomb also exhibits transversely isotropic characteristic with
bx � by(Ex � Ey) and lxy � lyx when h0=l0 ¼ 2; h0 ¼ 30�.

As shown in Fig. 4a, bx and by are both higher than 1, and
increase significantly with the decrease of the cell-wall thickness
ratio t0=l0 (when t0=l0 ¼ 0:01, bx � by � 871), which indicates that
the in-plane stiffness of the new honeycomb is indeed improved
significantly compared to the NRHH.

It is shown in Fig. 4b that both the analytical and the numerical
results demonstrate auxetic performance of the new proposed
design, although the magnitude of Poisson’s ratio of the new pro-
posed honeycomb is reduced with respect to the NRHH. It can be
explained by the cells’ configuration of the new honeycomb, i.e.,
the combination of normal re-entrant hexagonal configuration
and rhombic configuration, as shown in Fig. 1a. A honeycomb with
rhombic cells exhibits positive Poisson’s ratio under uniaxial in-
plane compression, which weakens the auxetic performance of
the re-entrant hexagonal cell. Besides, it is shown in Fig. 4b that
both lxy and lyx decrease with the increase of the ratio t0=l0.

3.3. Parametric studies and discussions

In the following, the effects of the cell’s geometric parameters
on the in-plane elastic properties are explored based on the analyt-
ical solutions obtained in Section 3.1.

Fig. 5 displays the effect of the re-entrant angle, h0, on the in-
plane properties of the new honeycomb with three different levels
of t1=t0. It is shown in Fig. 5a that the in-plane stiffness ratios, bx

and by , increase with h0 until to a peak and then decrease. The peak
appears with h0 � 50� for all the cases, revealing that the new hon-
eycomb can achieve the best effect of stiffness enhancement near
h0 = 50�. In addition, it is shown in Fig. 5a that both bx and by



Fig. 4. Variation of in-plane elastic properties of the new honeycomb with t0=l0 ðh0 ¼ 30�; h0=l0 ¼ 2; t0 ¼ t1 ¼ 1Þ (a) in-plane stiffness ratio and (b) Poisson’s ratio.

Fig. 5. Variation of the new honeycomb’s in-plane elastic properties with re-entrant angle h0 ðh0=l0 ¼ 2; t0 ¼ 1; l0 ¼ 10Þ (a) in-plane stiffness ratio and (b) Poisson’s ratio.
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increase with t1=t0, indicating that the thicker of the reinforcing
walls are, the more obvious enhanced effect on the new honey-
comb’s stiffness in comparison to the NRHH.

However, the thicker of the reinforcing walls are, the weaker of
the auxetic performance of the new honeycomb, as shown in
Fig. 5b. The Poisson’s ratios of the new honeycombs with
t1=t0 ¼ 0:05 are very close to that of the NRHH. Besides, it is shown
Fig. 6. Variation of the in-plane elastic properties of the new honeycomb with h0=
in Fig. 5b that with increase of re-entrant angle h0, lxy decrease
while lyx increase. Noticing that, for different of t1=t0, lxy � lyx

at h0 ¼ 30�, indicating the transversely isotropic characteristic of
the new honeycomb, as discussed in the last section (Fig. 4).

The effect of the cell-wall length ratio, h0=l0, on the in-plane
stiffness ratio and Poisson’s ratio is displayed in Fig. 6. It is shown
that both bx and by decrease with the increase of h0=l0, see Fig. 6a. It
l0 ðh0 ¼ 30�; t0 ¼ 1; l0 ¼ 10Þ (a) in-plane stiffness ratio and (b) Poisson’s ratio.



Fig. 7. Variation of the in-plane elastic properties of the new structure with ðE1A1Þ=ðE0A0Þ ðh0 ¼ 30�; h0=l0 ¼ 2; t0 ¼ 1; l0 ¼ 10Þ (a) in-plane stiffness ratio and (b) Poisson’s
ratio.
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is shown in Fig. 6b that with the increase of h0=l0, the new honey-
comb’s Poisson’s ratio lxy decreases while lyx increases, which are
similar to that of the NRHH.

By remaining the h0=l0 ¼ 2, h0 ¼ 30�, t0 ¼ 1 and l0 ¼ 10 , the
effect of the normalized axial rigidity of the reinforcing walls,
ðE1A1Þ=ðE0A0Þ, on the in-plane elastic properties is displayed in
Fig. 7. It is noted that, when ðE1A1Þ=ðE0A0Þ is equal to zero,
bx ¼ by ¼ 1, lxy ¼ l�

xy, lyx ¼ l�
yx, indicating that the new honey-

comb will reduce to the NRHH with ðE1A1Þ=ðE0A0Þ being zero. It
also can be seen that, with the increase of ðE1A1Þ=ðE0A0Þ, the in-
plane stiffness ratios, bx and by, increase, while the Poisson’s ratio
lxy and lyx decrease. As a result, the in-plane stiffness of the new
honeycomb is improved significantly compared to the NRHH on
account of the reinforcing walls. However, at the same time, the
reinforcing walls will weaken the auxetic performance of the hon-
eycomb. That is, the larger normalized axial rigidity, ðE1A1Þ=ðE0A0Þ,
of the reinforcing walls is, the more obvious the in-plane stiffness
enhancement, while the weaker the negative Poisson’s ratio effect.
Therefore, the reinforcing walls should be designed with appropri-
ate normalized axial rigidity to balance the enhanced stiffness and
the superior auxetic performance.

Typically, the aim of cellular structural designs is to maximize
the stiffness and/or strength to relative density. However, the
trade-off between in-plane stiffness and auxetic performance
should be taken into consideration seriously on the aspects of
structures with negative Poisson’s ratio. Fig. 8 compares the nor-
malized Young’s modulus (normalized by cell wall material’s
Young’s modulus) and the Poisson’s ratio of the present design
with that of other designs in literatures.

The relative density of the normal re-entrant hexagonal honey-
comb (NRHH) is calculated as [1]

q�

q0
¼ ðh0=l0 þ 2Þðt0=l0Þ

2 cos h0ðh0=l0 � sin h0Þ ; ð23Þ

and the relative density of the new honeycomb designed in this
paper is

q�

q0
¼ ðh0=l0 þ 2Þðt0=l0Þ þ ½ðh0=l0Þ2 þ 4 cos2 h0�ðt1=l1Þ

2 cos h0ðh0=l0 � sin h0Þ ; ð24Þ

where q� and q0 are the density of the honeycomb and the cell-wall
material, respectively.

It is remarkable that, in both the x- and the y- direction, the in-
plane stiffness of the structure developed by Lu et al. [29] is signif-
icantly higher than that of others under the same relative density,
while the splined re-entrant [28] structure features the lowest
stiffness, as shown in Fig. 8a and b. With respect to the NRHH, both
the present design and the stiffened re-entrant structure perform
higher in-plane stiffness. When compressed along the y direction,
the present design exhibits higher Young’s modulus than the stiff-
ened re-entrant structure [28] for q�=q0 < 0:1425 and lower for
q�=q0 > 0:1425 (see Fig. 8b), while the Young’s modulus in the x-
direction of it is always higher than that of the stiffened re-
entrant structure [28], as shown in Fig. 8a.

Both the present study and Lu et al.’ work [29] show that, with
increase of the thickness of the reinforcing walls, the honeycomb’s
in-plane stiffness increases, while the negative-Poisson’s-ratio
effect decreases. By changing the thickness of the reinforcing walls
only, Fig. 8c displays the effect of the Poisson’s ratio on the normal-
ized Young’s modulus with h0 ¼ 30� and h0=l0 ¼ 2; t0=l0 ¼ 0:05. It is
shown that, under the same value of Poisson’s ratio, the normal-
ized Young’s modulus in the x direction of the present design,
Ex=E0, is higher than that of the Lu et al.’ design [29], while the nor-
malized Young’s modulus in the y direction of it,Ey=E0, is lower
than that of the Lu et al.’ design [29]. Obviously, the present design
performs isotropic characteristic (Ex=E0 is very close to Ey=E0),
whereas the structure proposed by Lu et al. [29] displays great dif-
ferent characteristics between the x- and the y-direction.

According to the results derived by Gibson and Ashby [1], the
dependence of normalized Young’s modulus on relative density
of the NRHH can be expressed in the following form:

ðE�
x=E0Þ / ðq�=q0Þ3; ð25Þ

which is consistent to the curves shown in Fig. 8a and b. However,
for both the present design and the Lu et al.’ design [29], approxi-
mately linear relationship is exhibited between �E=E0 and q�=q0.
Therefore, the normalized Young’s modulus of both the present
design and Lu et al.’ design [29] can be expressed as

ð�E=E0Þ / ðq�=q0Þ: ð26Þ

For cellular materials, the general dependences of the stiffness such

as relative Young’s modulus Ê=E0 on relative density q̂=q0 were
summarized by Grenestedt [30]. The result is given as

ðÊ=E0Þ / ðq̂=q0Þm; ð27Þ

in which m = 3, e.g., Eq. (25), for bending controlled micro struc-
tures and m = 1, e.g., Eq. (26), if the axial deformation is dominated
in the micro structures. Unlike the bending controlled micro struc-



Fig. 8. Comparisons of Young’s modulus of various periodic topologies ðh0 ¼ 30�; E1 ¼ E0;l1 ¼ l0;h0=l0 ¼ 2Þ (a) �Ex=E0 vs. q�=q0 (b) �Ey=E0 vs. q�=q0 and (c) normalized Young’s
modulus vs. Poisson’s ratio.

Fig. 9. Numerical model used to evaluate the critical buckling strength.
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ture in NRHH, axial deformation is dominated in both the present
design and Lu et al.’s design [29].

4. Buckling strength

As discussed in Section 3.3, in order to maintain the superior
auxetic performance, the reinforcing walls should not be designed
with very high axial rigidity. Thus, the reinforcing walls with
E1 ¼ E0;l1 ¼ l0 and t1 ¼ 0:5t0 are adopted to investigate the criti-
cal buckling strength of the new honeycomb. When the new hon-
eycomb is subjected to compressive load with sufficient magnitude
along the vertical walls, buckling is intend to occur both in the ver-
tical walls and the reinforcing walls. It will be failure when the
buckling occurs both in the reinforcing and the vertical walls.

To understand the bulking models of the cell walls, numerical
simulations on both the new honeycomb and the normal re-
entrant hexagonal honeycomb (NRHH) are carried out by using
ANSYS. The numerical models of the new honeycomb containing
8�8 unit cells with h0=l0 ¼ 2, l0 ¼ 10 mm, t0 ¼ 1 mm and
t1 ¼ 0:5 mm are shown in Fig. 9. The out-of-plane thickness of
the blocks b ¼ 1 mm, and three levels of re-entrant angle h0 are
adopted: 10�, 30� and 45�. The boundary conditions of the blocks
are shown in Fig. 9 in details. The vertical displacement of the
nodes at the bottom of the honeycomb block and the horizontal
displacement of the middle nodes at the bottom are all con-
strained. A uniform vertical downward displacement is imposed
on the top, and the out-of-plane displacements are constrained
for all nodes. The cell-wall material of both kinds of honeycombs
is taken as an aluminum alloy with E0 ¼ E1 ¼ 70 GPa and
l0 ¼ l1 ¼ 0:33. Beam element of BEAM 188 with an element size
of 2 mm is used to mesh the cell walls. The verification of mesh
density is conducted during this work. The numerical model for
NRHH is similar to that of the new honeycomb except for the lack
of the enhancing walls.

The buckling models of both the NRHH and the new honeycomb
are displayed in Fig.10a and b, respectively. It is obvious that the
buckling models of the vertical walls of the two honeycombs are
different. The vertical walls in the NRHH perform in ‘‘S” shape with



Fig. 10. Buckling models of cell walls in numerical simulations (a) normal re-
entrant hexagonal honeycomb (NRHH) (b) new honeycomb.
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an obvious relative displacement along the horizontal direction
between the two end points of the vertical walls, as shown in
Fig. 10a. However, on account of the restraint of the reinforcing
walls in the new honeycomb, there is almost no relative horizontal
displacement between the two end points of the vertical walls, so
the vertical walls in the new honeycomb perform in ‘‘bow” shape,
as shown in Fig. 10b. Similar to the vertical walls, the ‘‘bow” shape
also appears in the reinforcing walls of the deformed new
honeycomb.

Based on the buckling model observed in the numerical simula-
tions (Fig. 10b), the deformed cell walls are focused and shown in
Fig. 11 for theoretical analysis. All the walls in Fig. 11a rotate an
equal angle / at F. The vertical wall FG is assumed to be an Euler
compressive bar with elastic supports at two ends (see Fig. 11b).
And it suffers from a moment of M at each end. Then the rotational
stiffness S at joint F is calculated as

S ¼ M
/

¼ M1 þM2 þM3 þM5

/
: ð28Þ

In the case with small value of t1=t0 concerned here, the stiffness of
walls FB and FB0, is much less than that of walls FC and FC 0, i.e.,
M3þM5

/ << M1þM2
/ , thus, Eq. (28) can be approximate to

S � M1 þM2

/
: ð29Þ

By relating the end slope of cell wall FC (FC0) to moments acting on
it gives,

M1 þM2 ¼ 4E0I0/
l0

: ð30Þ

Substituting Eq. (30) into Eq. (29), we obtain:
Fig. 11. Analytical model for the bucking analysis of the new honeycomb (a)
representative unit and the associated forces, moments, displacement and rotations
(b) vertical wall FG can be treated as an Euler compressive bar with elastic supports
at two ends.
S � 4E0I0
l0

: ð31Þ

Following the method used by Timoshenko and Gere [31], the
deflection equation of the vertical wall FG after deformation can
be found to be

x ¼ A sinðkyÞ þ B cosðkyÞ þM
P
; ð32Þ

where A and B being arbitrary constants which are unique for a

given set of boundary conditions and k ¼
ffiffiffiffiffiffiffi
P

E0 I
0
0

q
(I00 ¼ I0 ¼ bt30=12 is

the second moment of inertia of the cross section of the vertical
wall FG).

According to the boundary conditions of the deformed wall FG,
i.e.,

x ¼ 0 at y ¼ 0;
dx
dy ¼ 0 at y ¼ h0

2 ;

M ¼ S dx
dy at y ¼ 0:

ð33Þ

These boundary conditions giving the following equations for deter-
mining the constants A and B in Eq. (32):

Bþ M
P ¼ 0

Ak cos ðkh0Þ
2 � Bk sin ðkh0Þ

2 ¼ 0
M ¼ SAk:

8><
>: ð34Þ

Investigating the possibility of curved forms of equilibrium, we
observe that the only way to have a nontrivial solution of the three
equations in Eq. (34) is to have determinant of the coefficients equal
to zero. This determinant is

0 1 1
P

k cos ðkh0Þ
2 �k sin ðkh0Þ

2 0
Sk 0 �1

�������
�������; ð35Þ

and setting it equal to zero gives

tan
ðkh0Þ
2

¼ �ðkh0Þ E0I
0
0

Sh0
: ð36Þ

Substituting Eq. (31) into Eq. (36), we find

tan
ðkh0Þ
2

¼ �ðkh0Þ l0
4h0

: ð37Þ

To solve Eq. (37), a graphical method is useful. The smallest root
ðkh0Þmin of Eq. (37) can be obtained. Thus, the according critical load
of the vertical wall FG is

PFG
crit ¼

½ðkh0Þmin�2E0I
0
0

h2
0

; ð38Þ

According to the results of Timoshenko and Gere [31], the crit-
ical load of the wall FG, i.e., Eq. (38), can be expressed as

PFG
crit ¼

n2
0p2E0I

0
0

h2
0

; ð39Þ

where n0 =
ðkh0Þmin

p is defined as the end constraint factor that
depends on the degree of constraint to rotation at the end nodes
F and G, and 0:5 6 n0 6 2, in which n0 ¼ 0:5 if rotation is freely
allowed, e.g., pinned joints, and n0 ¼ 2 if rotation is inhibited as in
the case of fixed ends. It can be seen from Eqs. (37)–(39) that, values
of n0 only dependent on h0=l0.

For the reinforcing walls, a similar solution form as Eq. (39) can
be expressed for their critical load,

Pr
crit ¼

n2
1p2E1I1

l21
; ð40Þ



Fig. 13. Variation of the end constraint factors with h0=l0.
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With I1 ¼ bt31=12 is the second moment of inertia of the cross sec-
tion of the reinforcing walls.

Since the ends of the reinforcing walls are restrained by the ver-
tical and the slant walls greatly, as shown in Fig. 10b, hence, n1 ¼ 2
is used here to estimate the critical load of them, i.e.,

Pr
crit ¼

4p2E1I1
l21

: ð41Þ

Thus, the critical load of the representative unit as shown in Fig. 11a
is

Pcrit ¼ PFG
crit þ 2Pr

crit sin h1 ð42Þ
So that, the critical nominal stress of the new proposed honeycomb
is

rcrit ¼ Pcrit

2l0 cos h0
: ð43Þ

Fig. 12 shows a comparison of critical buckling stress of both
the new honeycomb and NRHH between the analytical predictions
and the numerical simulations. The plateau of the compressive
stress-strain curves obtained from numerical simulations in
Fig. 12 is caused by the elastic buckling. It is remarkable that, the
critical buckling strength of the NRHH is lower than that of the
new honeycomb under different re-entrant angle h0, and for both
the new honeycomb and the NRHH, the re-entrant angle h0 have
significant effect on the critical buckling strength. For increasing
the re-entrant angle h0, the critical buckling strength increase.
Obviously, the present analytical predictions are close to the
numerical results, which verifying the theoretical framework. Of
course, there are errors between the present analytical predictions
and numerical simulations. This can be explained by the following
reasons. The change in h0 during the honeycomb’s deformation and
the rotation constraint of the reinforcing walls on the vertical
wall’s end-points are neglected. The fixed ends assumption on
the reinforcing walls, i.e., n1 ¼ 2 in Eq. (40), may lead to an overes-
timation on the critical strength of the new honeycomb. In addi-
tion, in the present theoretical framework, the relative
displacement in horizontal direction between the two end points
F and G is assumed to be zero under any value of the re-entrant
angle h0. Actually, the relative displacement is related to h0. The
smaller the re-entrant angle h0 is, the smaller the relative horizon-
tal displacement as the horizontal constraint of the reinforcing
walls on the end points of wall FG increase with the decrease of h0.

In our design, the reinforcing walls play a significant role to the
buckling strength improving. On the one hand, the reinforcing
Fig. 12. Comparisons of critical buckling strength between analytical and numerical r
walls could bear a part of the vertical load directly; on the other
hand, the restraint of the reinforcing walls on the end points of ver-
tical walls can improve the critical load of them. The degree of con-
straint on the end nodes of vertical walls caused by the reinforcing
walls is measured by end constraint factor. In Gibson and Ashby’s
work [1], several end constraint factors for elastic bucking of hon-
eycomb with hexagonal cells were derived. Similar analysis is
easily performed for the normal re-entrant hexagonal honeycomb
(NRHH). Here, the NRHH and the new honeycomb with the same
values of h0=l0 are investigated. The dependence of constraint fac-
tors for elastic bucking of these two configurations on h0=l0 are dis-
played in Fig. 13. As it can be seen from Fig. 13 that, n0 P 2n� under
various value of h0=l0, which reveals that the critical buckling load
of the vertical walls of the new honeycomb is much higher than
that of the NRHH.

5. Conclusion

Auxetic materials present a series of particular characteristics in
comparison to conventional materials, such as enhancement of
shear modulus, indentation resistance, and fracture toughness.
However, the in-plane stiffness of them is relatively low. In this
esults ðt0 ¼ 1; t1 ¼ 0:5; l0 ¼ 10; h0 ¼ 20Þ (a) h0 ¼ 10� , (b) h0 ¼ 30� and (c) h0 ¼ 45� .



Fig. 14. (a) New honeycomb under uniaxial compression along the y-direction and (b) representative block.
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paper, a novel honeycomb, comprised of re-entrant hexagonal con-
figuration and rhombic configuration, is developed. The new struc-
ture can be regarded as an optimization to the NRHH by
embedding four reinforcing walls into every cell of it. The in-
plane effective modulus, i.e., the Young’s modulus and Poisson’s
ratio, of the new honeycomb are analytically derived, which later
verified by finite element simulations. Both the results obtained
from the analytical and numerical analysis reveal that the new
honeycomb can achieve negative Poisson’s ratio and the in-plane
effective Young’s modulus of it is significantly improved compared
to the NRHH.

The dependence of the in-plane elastic constants on the re-
entrant angle h0, the cell wall length ratio h0=l0, normalized axial
rigidity of the reinforcing walls ðE1A1Þ=ðE0A0Þ and the relative den-
sity q�=q0 are further studied by using the numerically validated
analytical solutions. With respect to the NRHH, the new proposed
structure allows more geometric parameters in the unit cell, which
provide enhanced in-plane flexibility and tailoring of properties.
Results show that, for maintaining a superior auxetic performance,
the reinforcing walls should be designed with appropriate axial
rigidity. A comparison of in-plane stiffness is carried out between
the present design and other periodic topologies. The results reveal
that the new honeycomb developed in this paper shows superior
stiffness and auxetic behavior with respect to the others.

Critical buckling strength of the new honeycomb under uniaxial
compression is investigated analytically and numerically. The
results obtained from the analytical analysis are close to that
obtained from numerical simulations. Both of them reveal that
the critical buckling strength of the new structure is much higher
than that of the NRHH.

For these outstanding properties mentioned above, this layout
may provide a new concept for the optimization and design of aux-
etic materials.
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Appendix A. In-plane elastic properties in direction y

As shown in Fig. 14, when the new honeycomb is uniaxially
compressed by a stress ry along the y-direction, uniform vertical
displacement vA will be caused at points A and B, a uniform hori-
zontal displacement uC will be caused at point B and wall CD, while
a vertical displacement vC at point C and vF at point F, respectively.
Similar to the analyses performed for compressing along the x-
direction, the axial force on walls CD and FA is

FN
CD ¼ FN

FA ¼ E0bt0
h0

vC : ðA-1Þ

The axial force on walls EC and FB is

FN
EC ¼ FN

FB ¼ E1bt1
l1

ðuC cos h1 þ vC sin h1Þ: ðA-2Þ

The axial force on FC is

FN
FC ¼ E0bt0

l0
½uC cos h0 þ ðvC � vFÞ sin h0�: ðA-3Þ

The transverse shear force on FC can be obtained,

FS
FC ¼ E0bðt0=l0Þ3½uC sin h0 � ðvC � vFÞ cos h0�

1þ 2:4ð1þ l0Þðt0=l0Þ2
: ðA-4Þ

Along direction x, the structure is assumed to deform freely, the
total force must be zero, i.e.

FN
FC cos h0 þ FS

FC sin h0 þ 2FN
EC cos h1 ¼ 0: ðA-5Þ

The resultant force applied at point C along direction y should be
zero, so that,

FS
FC cos h0 � FN

FC sin h0 � FN
EC sin h1 � FN

CD ¼ 0: ðA-6Þ
According to Eqs. (A-5) and (A-6), we have,

vC ¼ K 0
1 þ K 0

2

K 0
3 þ K 0

4

uC ; ðA-7Þ

with
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K 0
1 ¼ E0t0

l0

ðt0=l0Þ2cos2h0
1þ 2:4ð1þ l0Þðt0=l0Þ2

þ sin2h0

" #

� cos2h0E0t0
l0

þ E0ðt0=l0Þ3sin2h0

1þ 2:4ð1þ l0Þðt0=l0Þ2
þ 2cos2h1E1t1

l1

" #
;

K 0
2 ¼

sin h0 cos h0E0t0 1þ ð1:4þ 2:4l0Þðt0=l0Þ2
h i

l0 1þ 2:4ð1þ l0Þðt0=l0Þ2
h i

�
sin h0 cos h0E0t0 �1� ð1:4þ 2:4l0Þðt0=l0Þ2

h i
l0 1þ 2:4ð1þ l0Þðt0=l0Þ2
h i � sin h1 cos h1E1t1

l1

2
4

3
5;

K 0
3 ¼ ðsin

2h1E1t1
l1

þ E0t0
h0

Þ

�
E0t0 sin h0 cos h0 1þ ð1:4þ 2:4l0Þðt0=l0Þ2

h i
l0 1þ 2:4ð1þ l0Þðt0=l0Þ2
h i ;

K 0
4 ¼ �2 sin h1 cos h1E1t1

l1

E0ðt0=l0Þ3cos2h0
1þ 2:4ð1þ l0Þðt0=l0Þ2

þ sin2h0E0t0
l0

" #
:

The vertical displacement at point F is

vF ¼ cos2h0E0t0=l0 þ E0ðt0=l0Þ3sin2h0=½1þ 2:4ð1þ l0Þðt0=l0Þ2� þ 2cos2hE1t1=l1
fE0t0=l0 � E0ðt0=l0Þ3=½1þ 2:4ð1þ l0Þðt0=l0Þ2�g sin h0 cos h0

uC

þ sin h0 cos h0E0t0=l0 � sin h0 cos h0E0ðt0=l0Þ3=½1þ 2:4ð1þ l0Þðt0=l0Þ2�
fE0t0=l0 � E0ðt0=l0Þ3=½1þ 2:4ð1þ l0Þðt0=l0Þ2�g sin h0 cos h0

K 0
1 þ K 0

2

K 0
3 þ K 0

4

uC

þ 2 sin h1 cos h1E1t1=l1
fE0t0=l0 � E0ðt0=l0Þ3=½1þ 2:4ð1þ l0Þðt0=l0Þ2�g sin h0 cos h0

K 0
1 þ K 0

2

K 0
3 þ K 0

4

uC ;

ðA-8Þ

Since the resultant force applied at points A and B along direction y
should be zero, then we have

E0bt0ðK 0
1 þ K 0

2Þ
h0ðK 0

3 þ K 0
4Þ

uC þ E1bt1
l1

sin h1 cos h1 þ ðK 0
1 þ K 0

2Þsin2h1
ðK 0

3 þ K 0
4Þ

" #
uC

¼ ryl0 cos h0b;

ðA-9Þ

So that,

ry ¼ E0t0ðK 0
1 þ K 0

2Þ
h0l0 cos h0ðK 0

3 þ K 0
4Þ
uC

þ E1t1
l1l0 cos h0

sin h1 cos h1 þ ðK 0
1 þ K 0

2Þsin2h1
ðK 0

3 þ K 0
4Þ

" #
uC ;

ðA-10Þ

The strain along the y-direction is

ey ¼ E0cos2h0t0=l0 þ E0ðt0=l0Þ3sin2h0=½1þ 2:4ð1þ l0Þðt0=l0Þ2� þ 2cos2h1E1t1=l1
fE0t0=l0 � E0ðt0=l0Þ3=½1þ 2:4ð1þ l0Þðt0=l0Þ2�gl0 sin h0 cos h0ðh0=l0 � sin h0Þ

uC

þ
2 sin h0 cos h0fE0t0=l0 � E0ðt0=l0Þ3=½1þ 2:4ð1þ l0Þðt0=l0Þ2�g K 0

1þK 0
2

K 0
3þK 0

4

fE0t0=l0 � E0ðt0=l0Þ3=½1þ 2:4ð1þ l0Þðt0=l0Þ2�gl0 sin h0 cos h0ðh0=l0 � sin h0Þ
uC

þ
2 sin h1 cos h1E1t1=l1ð Þ K 0

1þK 0
2

K 0
3þK 0

4

fE0t0=l0 � E0ðt0=l0Þ3=½1þ 2:4ð1þ l0Þðt0=l0Þ2�gl0 sin h0 cos h0ðh0=l0 � sin h0Þ
uC

ðA-11Þ

The strain along x-direction is

ex ¼ uC

l0 cos h0
: ðA-12Þ

The effective Young’s modulus and Poisson’s ratio along the
y-direction is
Ey ¼ ry

ey
; ðA-13Þ

and

lyx ¼ � ex
ey

: ðA-14Þ

The ratio of by is

by ¼
Ey

E�
y
: ðA-15Þ
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