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Model definition accuracy dictates the reliability of a predictive analysis for 3D woven composites
(3DWC). The traditional modeling approach is based on analysis of ideal geometry with user specified
imperfections. In that case, co-relating the actual imperfections arising from manufacturing processes
with that of the model becomes an iterative process. In this study, a digital element (DE) approach is
implemented for creating the woven architecture of the composite. This technique simulates the individ-
ual fibers and their interactions allowing the user to create a reference unit cell with imperfect geometry
induced during manufacturing stages of 3DWCs. Thus the response and strength analysis account for the
unique weaving signature and provide better predictions without the necessity to run iterative analysis
procedures required for idealized geometry models. X-ray CT images or detailed statistical data for vari-
ations in specimen geometry are not required which makes this approach more attractive in terms of cost
and creation time. A representative model created using the DE approach is used for prediction of com-
pressive failure of 3DWCwithout having to seed imperfections for failure initiation. The analysis also cap-
tures the formation of a kink band as observed in experimental tests. Results of this study are compared
with the experimental results and simulation results of idealized geometry reported previously in
literature.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

3D woven composites (3DWC) are extensively used in aero-
space applications because of their better resistance against impact
and delamination in comparison to laminated composites. 3DWCs
have an additional binding fiber tow (or Z-fiber tow) running
through the thickness, that results in enhanced impact and delam-
ination resistance properties. However, due to waviness of the
Z-fiber tow, imperfections are introduced in the warp and weft
tows in the vicinity of Z-fiber tows during the manufacturing. Such
defects significantly affect the response and strength characteris-
tics. Studies on the compressive behavior of 3D composites indi-
cated that kink band formation is the primary mode of failure
and it is highly influenced by the geometric flaws in the woven
structure [1]. An analytic expression for buckling of a delaminated
3DWC was reported in [2] with the assumptions of no defects and
idealized geometry. In practice, the actual response was noted to
be much lower due to distortions in the fiber tows. Thus, accurate
modeling of the complex woven geometry with imperfections is
the key in predictive analysis. Fleck et al. [3] successfully co-
related a cohesive zone model of failure of notched 2D laminates
into 3DWC and verified that micro buckling of fiber tows is the
dominant failure mechanism. The influence of imperfections was
also verified experimentally. Cox et al. [4] carried out a series of
experiments and established failure mechanisms for various load-
ing conditions. Experiments by Stig et al. [5] suggested that the
imperfections can also initiate crimp mode of failure.

Finite element (FE) simulation accuracy is always limited due to
the discrepancy between actual fiber tow geometry of the speci-
men and the simplified geometric model [6,7]. Models for a
3DWC are generally based on experimental observations or an ana-
lytic approach. Every 3DWC can be characterized by its unique
weaving arrangement of different types of tows. This pattern of
arrangement which is repeated throughout the 3DWC is repre-
sented by the smallest possible number of tows called repetitive
unit cell (RUC). Commonly used modeling techniques rely on mak-
ing representative geometry, which simplifies the architecture and
often eliminates complicated geometry features that are associated
with failure [8,9]. These cells also require samples to be
manufactured and measured to determine the actual geometry.
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Table 1
Calculated elastic properties of a RUC.

Warp (GPa) Weft (GPa) Z-Fiber Tow (GPa)

E11 62.83 66.59 64.84
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Measurements are often made through the use of images obtained
from an X-ray CT scan or microscope images taken from slicing
through a sample. These images show that during the weaving pro-
cess, the warp (longitudinal) and weft (transverse) tows along with
Z-Fiber tows interact with each other resulting in unique geometry
[10,11]. This cannot be captured through simplified geometry,
which eliminates the imperfections of the actual woven material.
Additionally, a particular image provides details of only that partic-
ular section of the specimen. To fully understand the complex
interactions of fiber tows, it is necessary to consider the overall
geometry of the composite with several types of deviations arising
from various imperfections and interactions. Yushanov and Bog-
danovich [12] implemented a stochastic approach to consider the
deviations in the mean fiber tow path. Using parametric equations
and user defined deviation functions, an imperfect path can be
obtained and represented. This approach of user defined imperfec-
tions can be implemented using the commercially available soft-
ware WiseTexTM [13] and TexGenTM [14]. A comprehensive and
realistic model building approach was proposed by Vanerschot
et al. [15] which involves a statistical analysis that considers vari-
ability in fiber tow paths as well as their average trends and devi-
ations. The approach also implements data from X-ray CT scans for
the creation of realistic geometry.

Although these advanced approaches address the imperfections
in the fiber tow architecture, implementation of these defects is
completely user defined and controlled. To effectively understand
their influence on the final properties, it is necessary that these
imperfections be adequately distributed throughout the RUC in
terms of their location, nature and amplitude. This demands a large
number of input parameters and X-ray CT images with thorough
analysis to draw effective correlations as presented in [15]. With
the objective of combining the simplicity of an idealized geometry
model and the accuracy of a realistic approach, the RUC is modeled
using a digital element approach proposed by Wang et al. [16].
During the manufacturing processes, fiber tows are subjected to
various loads such as tension, compression and friction between
each other. These forces cause changes in localized orientations
and curvatures. These localizations are important as strength prop-
erties of composites are strongly dictated by these geometric
details.

The DE approach can accurately capture these effects without a
significant addition to processing time. A similar approach of digi-
tal elements was implemented using LS-DYNATM and TexGenTM for
model creation [11]. X-ray CT scans showed good correlation of
model geometry with the actual specimen [11]. Further, the model
was shown to be capable of predicting tensile strength with high
accuracy [17]. Geometric models created using the DE approach
in DEA Fabric Mechanics AnalyzerTM (DFMA) show very good corre-
lation with X-ray CT images of manufactured specimens [10,18].
Geometric models created using DFMATM accurately predicted the
elastic stiffness properties [19].

In this work, the DE approach using DFMATM is used to create
unique geometry that is then imported into FE software. The com-
putational models are then used to predict the compressive
response including the buckling behavior of a 3DWC. These new
simulations are compared to an idealized geometry model and to
experimental data. The model using the DE approach will enable
researchers to accurately predict material response without having
to fabricate the material.
E22 7.24 7.67 7.59
E33 7.24 7.67 7.59
m12 0.219 0.219 0.22
m13 0.219 0.219 0.22
m23 0.272 0.272 0.27
G12 3.28 3.48 3.45
G13 3.28 3.48 3.45
G23 2.84 3.01 2.99
2. Specimen properties

The material used in this study is a 6% Z-fiber tow reinforced 3D
woven composite. This composite uses S2 glass fiber tows and SC-
15 epoxy, a thermoset polymer, for the matrix material. The elastic
modulus and Poisson ratio for the matrix are 2.48 GPa and 0.36,
respectively [20], and for S2 glass fiber tow are 114.2 GPa and
0.22, respectively [21]. Using fiber volume fractions for warp and
weft tows reported previously [20]and the material properties
mentioned above, elastic properties of constituents of a RUC can
be calculated [22,8] as reported in Table 1.

The stress–strain response of fiber tows in the transverse direc-
tion can be determined by analyzing a finite element model based
on fiber volume fractions shown in Fig. 1 [23]. Fig. 2 shows the
nonlinear stress–strain response results from experimental testing
of pure matrix material [8] and the stress–strain response of the
fiber tow from computational results. The stress–strain response
in the axial direction is well known to be dominantly elastic with
very small amount of plastic deformation. Due to lack of well-
defined yield point in axial direction, the yield ratio is varied from
7 to 20 to observe the corresponding effects of varying degree of
plasticity [24].

3. Computational model

The RUC models in this work are constructed using Fabric
Mechanics DFMATM software. This section will use an example
based on a specimen previously presented [8] to provide a basic
overview of the technique and a detailed description of how a
model can be made. Fig. 3 compares the images of the architecture
from a micro CT scan with the idealized geometry work [8] previ-
ously reported and those predicted with the current proposed
method.

Fig. 3(c) clearly shows that the proposed method does not
assume ideal geometry with perfectly straight tows and cross sec-
tions with uniform area as seen in Fig. 3(b). This difference is dis-
cussed in more detail in upcoming sections. Fig. 4 shows an
overlap comparison of the DFMATM model with scans of the manu-
factured specimen. This comparison shows that the model accu-
rately captures the deviations and imperfections in the actual
specimen that were created by manufacturing processes.

As shown in Fig. 5, each fiber is represented by a chain of digital
rod elements connected by frictionless pins. If the length of the ele-
ments approaches zero, the digital chain becomes fully flexible.
The rod elements are assumed to have a circular cross section. If
the distance between the two yarns becomes less than the diame-
ter of an individual yarn, a contact element is established between
these two yarns at the common node. A contact element is a two
node element with three degrees of translation freedom per node.
Thus, it allows compression along the contact line (local X direc-
tion) and friction in the two mutually perpendicular axes (local Y
and Z direction). Assembly of multiple digital chains with contact
elements then accurately captures the flexibility of fiber tows.
The extent of flexibility is governed by the length of rod elements
and hence the size of digital elements is much smaller than typical
finite elements. Digital rod elements do not necessarily exhibit the
properties of the body they represent (fiber tow in this case). For



Fig. 1. Volume fraction based fiber tow-matrix finite element model [23].

Fig. 2. Plastic response of matrix and fiber tows [8].
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example, the flexible nature of yarns is captured by the link of rod
elements and not individual rod elements. This highlights the dif-
ference between digital elements and conventional finite elements.
The details of the approach are explained by Wang and Sun [16].
The model creation approach is summarized by the flow chart in
Fig. 6. In this figure, rectangular blocks indicate input or output
stages and parallelogram indicates computational processing
stage.

3.1. Geometric input parameters

The geometric input parameters include visual properties such
as cross sectional area and the arrangement of fiber tows. Please
refer to Appendix A for details.
a)  Images from CT scan [8]         b) Ideal geometry
Fig. 3. Comparison of the computational models with actual images. (a) Im
3.1.1. Cross sectional area
Each type of fiber tow can be assigned an effective cross sec-

tional area representing different sized tows. The effective cross
sectional areas for all the 3 types of fiber tows – warp (X direction),
weft (Y direction), and Z-fiber tows (binding fiber tows propagat-
ing in x direction) are defined. These values can be based on either
experimental observations or inputs from the effective size of a
fiber tow from the setup on the loom.

3.1.2. Topology
The topology parameters define the arrangement of different

types of tows relative to each other. The cell length and width
determine the in plane bounds for the cell geometry. For reference,
average dimensions at the edge of RUC are reported in Table 2.
These values represent final values after multiple iterations involv-
ing scaling in X, Y and Z directions. To avoid the interpenetration of
the tows, the initial value of width and length should be slightly
higher than the final configuration. After defining the bounds of
the RUC, the arrangement of tows can be defined accurately and
unambiguously using the parameters as shown in Fig. 7.

In an idealized geometry model, the cross section shape (circu-
lar, rectangular or elliptical) is assumed to be consistent through-
out the length of the tow. In the DE approach, the initial cross
section is assumed to be circular but the iterative procedure results
in irregular ellipse type geometry that varies as a function of the
length. The transition can be seen in Fig. 8. This slight deviation
in the cross sectional area is because of effect of surrounding fiber
tows.

In addition to these parameters, each warp section needs to be
defined accurately for number of warps and Z-fiber tows along
with their arrangement in tabular form. For example, the number
of tows in section 1 is 5 (only x direction warps) while that for sec-
tion 2 is 1 (only Z-fiber tows). Table 3 shows tabular arrangement
to define position of warp and Z-fiber tows. Only 2 tables are
shown for comparison. In practice, they need to be defined for each
and every warp section. Wefts, warps and Z-fiber tows are denoted
 [8]     c) Proposed geometry
ages from CT scan [8]. (b) Ideal geometry [8]. (c) Proposed geometry.



Fig. 4. Comparison of a model created using DFMATM with X-ray CT scans [26].

Fig. 5. Building blocks of the model using the digital element approach [25].

Fig. 6. Creation of geometric model using digital element approach.

Table 2
Unit cell dimensions for model geometry.

Width (mm) Length (mm) Thickness (mm)

RUC 6.83 8.16 6.72
Warp 2.98 8.16 0.48
Weft 3.27 6.83 0.52
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by type 1, 2 and 3 respectively. Number of rows and columns in the
tables is equal to number of tows per section and number of weft
columns respectively as defined earlier. Please refer to Appendix A
for details.
3.2. Material input parameters

The material input properties consist of the modulus, strength,
density and approximate number of fibers per tow for each tow
type. However, as explained by Wang [16], these properties do
not necessarily represent actual properties. It is preferable to start
the iterations with actual stiffness properties. But these values can
be adjusted by 2–3 orders of magnitude to get desired compliance
in the tows so that the RUC can achieve higher volume fractions.
This procedure requires manual examination of tow shapes after
each iteration which will dictate the choice of parameter values
in next iteration.



Fig. 7. Geometric parameters for construction of RUC.
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3.3. Iterative analysis

After the topology is successfully defined, the objective is to
increase the volume fraction of the cell by reducing the thickness
while controlling the yarn tension, boundary conditions and some
additional computational parameters. Fig. 8 shows evolution of the
unit cell model from the simplified initial geometry. The final
model used in this analysis was achieved in 6 iterations. In each
iteration, more fibers are added to the tow so that the assembly
of multiple fibers can accurately represent the unique imperfec-
tions in different tows. Average time for each iteration was approx-
imately 6 min on 4 cores with 8 GB RAM. The computational time
Fig. 8. Development of mod

Table 3
Definition of warp sections.

1 2

Warp section 1
#1 1 1
#2 2 2
#3 3 3
#4 4 4
#5 5 5

Warp section 2
#1 6 0
is highly dependent on the iteration step parameters. Please refer
to Appendix A for details.

3.4. Mesh export parameters

The final geometry created by DFMATM is exported in .stp format
for finite element analysis. The export parameters can be adjusted
to accurately capture the tow bending and geometric imperfec-
tions. Smaller element size is desirable for accuracy and to avoid
fiber tow penetration. The effect of export parameters of Fabric
Mechanics DFMATM is shown in Fig. 9. Before the geometry is ready
for analysis, it is important to check for and eliminate yarn inter-
penetration. When interpenetration occurs, a small region of the
geometry is shared by more than one tow resulting in irregular
surfaces as shown in Fig. 10. Generally, such regions occupy a small
irregular volume which poses problems in defining the mesh and
in assigning material properties and orientations. An irregular
mesh in these regions causes stress concentration resulting in
excessive deformations which ultimately leads to erroneous
results.

The interpenetration may take place during the iterative proce-
dure to achieve desired volume fraction. This can be avoided by
adjusting the ‘gap factor between yarns’ which is a relaxation
parameter of DFMATM. Most of the time, interpenetration will occur
in the thickness direction during the compaction of RUC (Z-fiber
tows interacting with the other tows). This can be avoided by cre-
ating a thicker initial RUC model which seeds enough gap between
the tows to prevent interpenetration. The final model is then scaled
back to the desired dimensions. However, this will result in
reduced fiber volume fraction of the model geometry.

Additional penetration problems can be solved when exporting
the geometry into the FE software. This can be controlled by ‘yarn
model parameters’ of DFMATM. Generally Z-Fiber tows need much
finer export parameters as shown in Fig. 9 compared to warp
and weft tows. Highly refined models will have a large number
of elements which necessitates finer export control parameters
to maintain accurate geometry.
el using DE approach.

3 4 Yarn Type

1 1 2
2 2 2
3 3 2
4 4 2
5 5 2

0 6 3



Fig. 9. Effect of mesh export parameter on fiber geometry.
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3.5. Finite element analysis

To have a complete model of a composite RUC, the fiber tow
geometry must be surrounded by matrix in all directions. A hollow
block as shown in Fig. 11 replicates all the imperfections in the
tows and thus can be treated as the matrix.
Fig. 11. Single RUC wit

Fig. 10. Irregular geometry resulting from to
Table 4 compares the fiber volume fraction of model RUC
against experimental specimen and ideal geometry model reported
earlier. The RUC may not always have an integer number of warps.
For example, as shown in Fig. 11, the edges of RUC have only half of
the warp cross section. To achieve such partial sections, an array of
multiple RUCs needs to be created. Then the desired sized RUC can
be created by cutting along the length and width.

The final dimensions of the model RUC are within 5% of experi-
mental measurements. The commercial software ABAQUSTM is used
for mesh generation and stress analysis. The minimum number of
elements is dictated by the export parameters used in DFMATM soft-
ware but higher mesh density can be defined for a particular region
if required. The entire part is meshed using 4 node linear tetrahe-
dral element (C3D4) of ABAQUSTM. Typical element size in Z-Fiber
tows is approximately 5 times smaller than that of warps andwefts.
The total number of elements is approximately 340,000. Isotropic
material orientation has been assigned to all of the elements
belonging to the matrix. The fiber tows’ orientations change con-
stantly along their lengthwhichmust be accounted for. Local orien-
tations are assigned to the elements based on 3 or more curved
paths defined from individual tows from the DFMATM software.
These are chosen to represent the primary axis (material direction
1) of the Z-Fiber tow for different spatial locations. Fig. 12 summa-
rizes the procedure of assigning material orientation. (The red and
black arrows in Fig. 12 are for representation only. In actual model,
orientations are calculated for every element differently.)
h the components.

w penetration in z-fiber and warp tow.



Table 4
Comparison of volume fractions.

% Volume fraction V(Voids)

Vf (warp) Vf (weft) Vf (z-fiber) Vm

Ideal Geometry model [20] 19.07 20.96 1.97 58 0
Manufactured [20] 20.66 22.03 3.21 53.5 0.6
DE Geometry model 26.24 29.77 0.83 43.16 0

Fig. 12. Assigning the material orientation for z-fiber tows.

Fig. 13. Description of boundary conditions.
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Fig. 13 shows boundary conditions used for weft and warp load-
ing. The face used for load application is allowed to move only in
the direction of load application. The face opposite of loading face
is restricted for all degrees of freedom. All other faces are
unconstrained.
4. Results

The fully built model was run using three different analysis
types to understand the response and see what information can
be captured. First it was run using a quasi-static analysis to calcu-
late the effective Young’s modulus of the material. Then the RUC
was subjected to linear buckling in an Eigenvalue analysis. Finally
a Riks simulation was used to look at the onset and progression of
damage in the material to determine the fully non-linear curve.
Since the model creation approach inherently captures the imper-
fections, no seeded points are needed.

4.1. Determination of the elastic modulus of the RUC

A linear elastic quasi-static analysis was run to determine the
effective modulus in the two orthogonal orientations of the mate-
rial to compare to the idealized geometry RUC. Table 5 shows a
comparison of the elastic moduli in both directions for different
computational approaches and experimental results. The DE



Table 5
Comparison of elastic moduli.

Elastic modulus in
warp direction (GPa)

Elastic modulus in
weft direction (GPa)

Ideal Geometry model [8] 22.68 23.99
Experimental results [8] 21.46 24.55
DE Geometry model 20.27 22.53
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geometry shows a 5–8% lower modulus as compared to experi-
mental results.

4.2. Eigenvalue analysis for buckling load estimation

The buckling response of the RUC was simulated by running an
eigenvalue analysis. This method is often used in idealized geome-
try models to get the results for buckling modes and corresponding
shapes. This information is further used to seed the imperfection in
the RUC. The eigenvalue analysis is a linear buckling simulation,
which tends to over predict the actual critical load. However, it is
a useful method to get a quick estimate and predict what the buck-
ling shape will look like. This can be helpful to estimate the loca-
tion of the kink band in a compressive response. Fig. 14 shows
first linear buckling mode shapes of the RUC observed in warp
and weft directions. Tows in other direction and matrix are not
shown since they do not exhibit prominent mode shapes. The cor-
responding critical load values for entire RUC are reported in
Table 6.

The difference between the mode shapes for warp and weft
tows is due to the specific structure of the RUC. For example, each
warp tow of the RUC has 2 weft tows above and below causing
higher resistance to deformation in the region closer to weft tows.
Hence at the center, the warp tows deform significantly due to the
absence of weft tows. Similarly, the weft tows experience higher
deformation between the center and edge of the tow causing dom-
inant deformation in that area while the center is almost
unchanged. The Z-fiber tows do not contribute directly to the buck-
ling mode shapes however it is evident that the maximum strain is
present at the location where the Z-fiber tow binding action intro-
duces more imperfections and less reinforcement resulting in
lower eigenvalue.
Fig. 14. Mode shapes in linear buckling.

Table 6
Critical buckling load based on eigenvalue analysis.

Critical Buckling Load (kPa)

Warp Tow 1.813
Weft Tow 1.786
4.3. Riks analysis

A Riks analysis was run on the RUC to determine the kink band
failure mode in the material. A Riks analysis is essential because it
considers structural instability arising from imperfections in the
geometry. These imperfections play a major role in the formation
of kink bands. Fig. 15 shows the comparison of results along with
experimental and ideal geometry simulation results reported in
[8] for loading in the weft direction. Riks analysis was also
repeated for loading in warp direction (not shown in the figure).
While the model is below 1% effective strain, the model behaves
in a linear elastic manner. A slight deviation from linearity is
noticed at about 1% strain, and this is the onset of the kink band
formation from the plasticity in the matrix. The difference in the
slopes of different results can be attributed to the differences in
volume fractions leading to difference in moduli as reported earlier
in Table 5. The critical stress values are compared for each scenario
in Table 7. The DE approach can predict the compressive strength
of the RUC within 8% accuracy, while an ideal model with an
assumed 5% imperfection over predicts the critical stress by about
14%.

With the idealized geometry approach used earlier [8], the nat-
ure and extent of imperfections are unknown if the X-ray CT
images are not available. Hence, the simulations are rerun by
assuming the imperfection shape (such as mode I, mode II etc.
obtained from eigenvalue buckling) and the value of imperfection.
(% deviation from ideal geometry). The analysis is repeated by
changing these two artificial imperfection parameters until the
results compare well with the experiments [8,9]. This redundant
iterative procedure is eliminated by using the DE approach.

Fig. 16 shows a comparison of artificial imperfections in the
idealized geometry model versus inherent imperfections in the
DE model. Each tow in the DE geometry has its own unique woven
signature. For the purpose of comparison, the weft tow at the
Fig. 15. Effective stress–strain plot comparison [8].

Table 7
Effect of imperfection on critical stress based on Riks analysis.

Type of Analysis Model Critical Stress (MPa)

Experimental [8] 280
Digital Element Approach 260
Ideal Geometry with 1% mode I type imperfection [8] 580
Ideal Geometry with 5% mode I type imperfection [8] 320



Fig. 16. Artificial imperfection [8] vs inherent imperfection.

Fig. 17. Evolution of deformed shape in weft loading.
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center of the RUC is considered. The DE geometry shows natural
deviations in the width in top right and bottom left portion of
the weft tow in Fig. 16. These deviations are due to Z-fiber tows.
For the idealized geometry, it remains straight resulting in a rect-
angle. For the DE model, the average centerline imperfection is less
than 0.1% while the average boundary imperfection is around 0.5%.
The maximum imperfection is around 1.6%. Similar trends are
observed in the warp tows. However, for the idealized geometry
RUC, nature of imperfection, its value and its location need to be
approximated. These approximations need to be accompanied by
iterative analysis till the response correlates with experimentally
observed response. Thus, it required an unrealistic artificial imper-
fection of 5% based on the failure mode it was seeded it with.

This comparison highlights the benefit of the DE approach com-
pared to an idealized geometry approach as well as comprehen-
sive, realistic geometry approach mentioned in [15]. The DE
approach for model creation inherently considers the imperfec-
tions and deviations of the tows. This approach eliminates the need
to carry out an iterative analysis to validate the assumptions of
imperfections as is required with idealized geometry. Additionally,
it does not require expensive X-ray CT images for model creation as
required with a comprehensive realistic geometry approach. Since
the DE approach only needs the overall material parameters, the
computational analysis can be performed without actually manu-
facturing the specimen. Thus, the DE approach results in tremen-
dous savings in model creation and computation time and
captures the buckling of tows in an accurate manner.

4.3.1. Effect of yield ratio on Riks analysis
The yield ratio is a factor used in the model to scale the

response in any material direction (1, 2 or 3) to the response of
pure matrix material. The response of a composite in the trans-
verse direction (2 and 3) is dictated by the matrix properties.
Hence the yield ratio in these directions is close to unity. In the
axial direction, the composite exhibits very limited plastic
response and thus the yield ratio in the axial direction must be
high. Based on experimental results of pure matrix material, the
yield ratio is varied between 7 and 20 to observe the effects of
varying levels of plasticity. Fig. 17 shows the evolution of deformed
shape when yield ratio is 7. While the plot correctly shows the
elastic loading region, corresponding von mises stress contours
do not show a distinct kink band formation. Previous research
has shown that a larger number of RUCs are often needed to show
the distinct kink band formation [8]. Fig. 18 shows the effect of dif-
ferent values of axial yield ratio (R1) on the effective stress – strain
response of loading in weft direction. Corresponding von mises
stress contours are plotted at maximum stress values.
Increasing the yield ratio increases the yield point of the com-
posite without changing the elastic modulus. As observed from
the deformed shape of the tows, a higher yield ratio causes higher
stress levels in the tows but the overall deformed shape of the tows
is almost unchanged. Based on the stress contour and deformed
shape, the results do not appear to capture kink band formation.
Additionally, the simulations show that the experimentally
observed sudden load drop at buckling can only be predicted for
ratios higher than 15. However, at this yield ratio, the critical load
is over predicted as the instability of the tow will take over before
the plasticity and failure can become dominant. Therefore, distinct
kink bands never form. The current tow material model does not
allow for varying amounts of plasticity in the different directions.
A user defined material would need to be created to capture this
type of variation.

4.3.2. Effect of multiple RUCs on the Riks analysis
A single RUC is not effective at capturing the kink band forma-

tion as reported in section 4.3.1. A multiple RUC model has more
imperfections and longer tows, allowing for kink bands to form
more readily as they will not run into the model boundaries. A
4RUC model (2 in each direction) was created for the purpose of
this analysis. The overall arrangement pattern of fiber tows inside
any RUC of the specimen is identical. However, every RUC has
unique imperfections. Hence this model is created by actually con-
structing the larger RUC rather than simply duplicating the geom-
etry in each direction. The loading and boundary conditions are
identical to the previous single RUC model. The mesh refinement
and material properties from the previous model are also used
for this analysis. Table 8 compares the single RUC and 4RUC mesh
with approximate run time where a 4 core cluster was used to exe-
cute the jobs.

Fig. 19 shows the comparison of experimental observations of
kink bands with that of the computational results for the 4RUC
model showing von mises stress. 4RUC model effectively captures
the formation of kink band at about 450. This kink band is observed
at peak stress value when R1 = 15. Fig. 20 shows the comparison of
the effective stress – strain response of a single RUC with the 4RUC
model. The 4RUC model shows a drop in peak load of about 12% as
compared to the single RUC model. This difference highlights the
effect of the size of the model on peak load for buckling failure.



Fig. 18. Effect of yield ratio on the response of compression loading in weft direction.

Table 8
Mesh and analysis comparison for single and multiple RUC model.

1 RUC 4 RUC

No. of Nodes 64,398 104,907
No. of Elements 339,960 605,026
Analysis Run Time (Hours) 2.3 3.6

Fig. 19. Comparison of kink band formation [8].

Fig. 20. Effect of multiple RUC on the response of compression loading in weft
direction.

Fig. 21. Effect of mesh refinement on critical buckling load.
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4.3.3. Effect of mesh density on the critical buckling load
The effect of the number of elements on eigenvalues was eval-

uated for models with varying mesh density. As shown in Fig. 21,
the difference was found to be less than 7% for three times the
number of elements. This shows that the mesh refinement used
in this analysis is sufficient.
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5. Conclusion

The digital element approach using DFMATM has been success-
fully implemented for modeling the imperfections and deviations
in the fiber tow geometry. This method was used to analyze
quasi-static buckling of 3D woven composites. A Riks analysis of
this model accurately predicts critical buckling loads and the onset
of kinking without seeding the model with artificial imperfections.
The iterative procedure for and idealized geometry model required
to estimate the imperfection in the actual specimen is eliminated.
This approach also gives useful results to predict kink band forma-
tion in the specimen. As with previous studies, it was shown that
the number of RUCs modeled affects the results. However, this
method lends itself to multiple RUCs as we can digitally weave a
larger portion and capture more unique geometry rather than just
putting individual RUCs together as is typically done with an ide-
alized geometry model. The accuracy of results increases as the
model size approaches the specimen size used in conducting
experiments.
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Appendix A

A.1. RUC model creation in fabric mechanics DFMATM

It is recommended to enter all the properties in SI units for
easier transition and compatibility with FE analysis software.

A.1.1. Define yarn properties
Total yarn types entered as 3 corresponding to weft, warp and

z-fiber. Cross sectional area, elastic modulus in transverse and axial
directions, strength and fiber density are entered for each yarn
type. The number of actual fibers per yarn (typically in the order
Fig. A1. Overall topolog
of thousands) is also entered for each yarn type. The bending stiff-
ness flag can be neglected and hence entered as 0.

A.1.2. Unit cell topology
The 3Dwoven type is chosen. Generally, it is suggested to create

at least 4 RUCs in a model rather than a single RUC. Hence, length
and width parameters will be double than single RUC. For each of
the warp sections, the total number of tows (warps + Z-Fibers) is
defined and then the arrangement of the tows needs to be defined
in tabular form (Fig. A1).

A.1.3. Digital element mesh and remesh
This provides 3 controls viz. Fibering, Elementing and Scaling.

Scaling is applied only in z direction to reduce the thickness and
achieve higher volume fraction (Table A1).

A.1.4. Periodic geometry and relaxation
These parameters provide the controls for an iterative proce-

dure to achieve next step geometry. For most of the parameters,
help guidelines in the software are followed. Some differences
are mentioned next. Boundary conditions should be imposed so
as to restrict the displacement of fibers out of the RUC. Thus warps
and Z-Fibers are restricted in X direction while wefts are restricted
in Y direction. Sometimes, removing the boundary conditions in
the initial steps allows the fibers to easily acquire realistic shape.
Target tension is defined on yarn types and varied between 1e-4
to 0.2. Relaxation parameters contain many sub parameters. Solu-
tion time step is varied from 900 to 5000. Gap factor is set at 0.3 to
restrict yarn interpenetration.

A.1.5. Solid yarn model
The yarn model parameters control the mesh resolution of the

geometry. The ratio d/R controls the length of the element and is
set at 0.5 for Z-Fibers and 1.2 for warp and wefts. Number of nodes
per section is adjusted by setting the parameter ‘n’ to 32 for all
types of tows. Rs/r and Tol/r control the perimeter geometry and
they are set to 10 and 0.1 respectively.
y input parameters.



Table A1
Warp section arrangement in tabular form.

1 2 3 4 Yarn Type

Warp section 1
#1 1 1 1 1 2
#2 2 2 2 2 2
#3 3 3 3 3 2
#4 4 4 4 4 2
#5 5 5 5 5 2

Warp section 2
#1 6 0 0 6 3

Warp section 3
#1 0 6 6 0 3

Warp section 4
#1 1 1 1 1 2
#2 2 2 2 2 2
#3 3 3 3 3 2
#4 4 4 4 4 2
#5 5 5 5 5 2

Warp section 5
#1 6 6 0 0 3

Warp section 6
#1 0 0 6 6 3

Warp section 7
#1 1 1 1 1 2
#2 2 2 2 2 2
#3 3 3 3 3 2
#4 4 4 4 4 2
#5 5 5 5 5 2

Warp section 8
#1 6 0 0 6 3

Warp section 9
#1 0 6 6 0 3

Warp section 10
#1 1 1 1 1 2
#2 2 2 2 2 2
#3 3 3 3 3 2
#4 4 4 4 4 2
#5 5 5 5 5 2

Warp section 11
#1 6 6 0 0 3

Warp section 12
#1 0 0 6 6 3
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