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This study proposes a constitutive model of viscous behaviour of short-fibre reinforced composites (SFRC)
with complex distributions of fibre orientations and for a wide range of strain rates. The model is based
on an additive decomposition of the state potential for the computation of composite macroscopic beha-
viour. Thus, the composite material is seen as the assembly of a matrix medium and several linear elastic
fibre media. The division of short fibres into several families means that complex distributions of orien-
tation or random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. vis-
coelastic and/or viscoplastic. Viscoelastic constitutive laws are based on a generalised linear Maxwell
model and the modelling of the viscoplasticity is based on an overstress approach. The accuracy of the
model is assessed for the case of polypropylene reinforced with short glass fibres. Matrix material param-
eters are identified from experimental tests carried out at several loading rates. Distributions of fibre ori-
entation are characterised by micro-computed tomography. Comparisons between numerical and
experimental responses in different loading directions and under different strain rates demonstrate the
efficiency of the model.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Short-fibre-reinforced composites (SFRC) are commonly used in
a variety of engineering applications, including automotive and
aerospace industry. The effectiveness of these materials is mainly
due to high stiffness to density ratio, in particular, resulting from
reinforcement with high-rigidity fibres. Today, the use of SFRC is
progressively extended to parts possibly subjected to severe load-
ing conditions (e.g. crash. . .), characterised by high strain rates.
Then, it becomes crucial to have access to a reliable and accurate
modelling of SFRC’s behaviour that can take strain-rate sensitivity
into account, in addition to other specificities.

SFRC are generally processed by injection moulding. In that
case, the fibres diluted in the matrix follow distributions of orien-
tation that depend on process parameters and highly influence
composite behaviour. In fact, SFRC macroscopic behaviour depends
on numerous microscopical interferent phenomena that must be
taken into account in behaviour models. In particular, complex
matrix behaviour, load transfer at fibre/matrix interface and dam-
age mechanisms of constituents or of the interface (i.e fibre/matrix
debonding) have to be considered in constitutive modelling. An
important point is that all these phenomena strongly depend on
local fibre characteristics (e.g. orientation with respect to macro-
scopic loading direction). Yet, knowing the actual local reinforce-
ment configuration is not so easy and deep investigations have to
be done, for instance by using micro-tomography [1,2].

Thermoplastic matrices generally exhibit a rate-dependent
behaviour at all stages of deformation. Dealing with various
approaches can be considered: Viscoelasticity, Viscoplasticity and
Viscoelasticity/viscoplasticity [3–7]. Moreover, during tensile tests,
non-uniform plastic strain and strain-rate fields are generally
developped even at moderate strain level. In that context Digital
Image Correlation (DIC) technique is a more and more widespread
method used to acquire local value of displacement/strain fields
throughout loadings. The captured heterogeneity of mechanical
fields is then used to identify behaviour law, based on several
methods [8–10]. Among available techniques, Lauro et al. have
developped the SE _E method [11]. Local values of stresses, strains
and strain-rates are used to build a surface behaviour called the
SE _E surface where parameters of viscoelastic and/or viscoplastic
behaviour law can be determined.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2016.10.083&domain=pdf
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Computation of macroscopic stress–strain relationship of SFRC
is treated in the literature mainly on the basis of micro-
mechanical approaches. Among them one may cite: direct finite
element (FE) analysis on representative cells of the microstructure
[12], mean-field homogenization (MFH) techniques and the
asymptotic or mathematical theory of homogenization [13,14].
Mean-field methods were first proposed for composites with linear
elastic constituents, relying on the exact solution of Eshelby [15]
for an ellipsoidal inclusion embedded in an infinite matrix. Most
common approaches are Mori and Tanaka [16], self-consistent
[17,18] and double inclusion [19] schemes. Such models provide
an estimation of the effective stress–strain relationship, in terms
of volume averaged mechanical fields within the phases.

More recently these schemes have been extended to non-linear
behaviour of one or more of constituents based on the linearisation
of the local constitutive equations and the definition of uniform
reference properties (e.g. secant [20,21], tangent [22] and affine
[23] methods).

Viscoelasticity of SFRC has been introduced within the
homogenisation technique using the correspondance principle,
according to which constitutive equations in the time domain are
recast into a linear elastic form into the Laplace domain [24,25].
After homogenisation in the Laplace space, the effective properties
are found by the inverse transform. Masson and Zaoui [26] and
Pierard and Doghri [27] used this approach to model linearised
elasto-viscoplastic composites. The main drawback of this
approach is its numerical cost related to the inversion of the
Laplace transform.

Compared to viscoelastic or elasto-(visco) plastic behaviour
modelling of thermoplastics, the modelling of viscoelastic–visco
plastic (VE–VP) short-fibre reinforced composites has received lit-
tle attention up to now and even less in case of distributed orien-
tations, typical of injection moulding process. In addition to
limitations dealing with constituents’ behaviour laws, inclusion-
type problems can become very difficult to handle in the case of
reinforcement with non-aligned short fibres. To overcome this dif-
ficulty, Doghri and Tinel [28] have developed a double step
homogenisation procedure. In a first step, a two-phase ‘‘pseudo-
grain” constituted of the matrix material reinforced with identical
and aligned fibres is homogenised. The second step then consists in
the homogenisation of all pseudo-grains to compute mechanical
properties at the representative elementary volume scale, taking
all orientations of the fibres are taken into account.

All these contributions show that the difficulty of implementing
homogenisation based models for SFRC increases significantly as
the behaviour of constituents and fibres orientation distribution
become more complex. To author’s knowledge, no behaviour
model enables today to deal with VE-VP matrix reinforced with
fibres with complex distributions of orientation. Therefore, it is
very interesting to consider models of composite behaviour at an
intermediate scale between very complex homogenisation
approaches and often inaccurate purely phenomenological
descriptions. In that context, an alternative was recently devel-
opped based on the additive decomposition of the composite ther-
modynamic potential. The composite is thus seen as the assembly
of a matrix medium and several media of embedded fibres. The
deformation gradient, applied to the composite as a whole, and
its multiplicative decomposition implicitly link the media. Nedjar
[29] used this approach for viscoelastic materials, assuming that
fibres carry load only in tension. Klinkel et al. [30] showed it can
be theoretically applied to non-linear elasto-plastic behaviour for
the matrix and the fibres. Nevertheless, there is no practical appli-
cation of their implementations in the analysis of a short-fibre-
reinforced material’s behaviour. More recently, Notta-Cuvier
et al. [31] used this approach to deal with rate-independent
elastoplastic SFRC behaviour. A main asset of this approach is its
adaptability to all kinds of reinforcement characteristics (orienta-
tion and geometrical properties) and matrix behaviour while keep-
ing the implementation relatively easy.

The present work deals with the modelling of SFRC’s behaviour
when subjected to severe loading conditions, in particular at high
strain rates. The approach developped by Notta-Cuvier et al. [31]
is therefore extended here to viscous SFRC behaviour. To this
end, the matrix behaviour is modelled using a coupled VE-VP
scheme. Complex distributions of fibre orientation are considered,
leading to an accurate representation of the actual reinforcement
orientations. Thus, the coupled influence of strain rate and aniso-
tropy of SFRC behaviour can be modelled.

The paper is organised as follows. The developed constitutive
equations of the coupled viscoelastic–viscoplastic response of
composite material are exposed in Section 2. In Section 3, the
characterisation of the matrix material behaviour is performed
based on Dynamic Mechanical Analysis as well as compression
and tensile tests at different loading rates. The predicted behaviour
of the matrix material is then evaluated by comparison with
experimental tensile tests at a wide range of strain rates. Section 4
deals with the characterisation of fibre distribution of orientation
using micro-computed tomography. The characterisation of SFRC’s
behaviour is then presented and the developped constitutive
model is validated in tension, under a wide range of strain-rate.
It is worth mentioning that the current characterisation and valida-
tion work will be extended in a further part of this project, namely
with loading/unloading tests.

2. Constitutive model

The composite material is made of short fibres assumed to be
uniformly dispersed in the matrix medium. For modelling pur-
poses, the composite is seen as the assembly of a matrix medium
and several fibre media (or ‘‘families”). Fibres with the same orien-
tation, geometrical characteristics and material behaviour are
grouped into a same family. Each fibre family is characterised by
its own orientation vector, expressed in the global coordinate sys-
tem (i.e. linked to the matrix), and volume fraction, computed
according to actual fibre distribution of orientations and geometri-
cal characteristics (note that in the present paper, all fibres have
the same geometrical characteristics but distributions of orienta-
tion are considered). A fundamental assumption is that fibres carry
load only in their direction of orientation. Therefore, the deforma-
tion gradient tensor associated to a given fibre family is the projec-
tion of the global deformation gradient tensor (i.e. applied to the
composite) along fibre orientation. Behaviour of fibre families
and matrix material are successively computed before the 3D-
stress state of the composite material is determined via an additive
decomposition of the specific free energy potential, as described
hereafter.

2.1. Stress state of the matrix material

In order to predict the rate-dependent behaviour of thermoplas-
tic matrix, a coupled viscoelastic (VE)-viscoplastic (VP) scheme is
considered here. A first assumption is that the matrix total strain,
e, is subdivided into VE and VP parts, so that:

e ¼ eve þ evp ð1Þ
It is worth noting that this decomposition is valid in the frame-

work of small deformation, which is consistent with composite
behaviour. Although unreinforced polymeric matrix can axhibit
high level of deformation, this assumption remains valid when
dealing with reinforced matrix.
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The viscoelastic part of the response is modelled using the Gen-
eralized Maxwell model with a finite number of Maxwell elements
arranged in parallel with a linear elastic Hooke element. It is to
note here that the choice of a linear viscoelastic model is consid-
ered to be appropriate in the case of composites with relatively
high volume fraction of reinforcement. However, the modelling
scheme allows its adaptativity to all kind of matrix model of beha-
viour. If needed, the model can therefore theoretically be extended
to nonlinear viscoelastic constitutive laws. A return mapping algo-
rithm is implemented with a VE predictor step, followed if neces-
sary by a VP corrector step. It is worth noting that physical basis
are associated to this strain decomposition. Indeed, several
micromechanical observations tend to show that crystalline lamel-
lae and amorphous chains, present in thermoplastic polymer
microstructure, obey VE and VP behaviour, respectively, and are
assembled in series (thus following a Reuss model [32]). The Cau-
chy stress tensor of the matrix, rM tð Þ, is linearly related, at an
instant t, to the history of VE strain, eve, via Boltzmann’s hereditary
integral:

rM tð Þ ¼
Z t

�1
Rve t � fð Þ : @e

ve fð Þ
@f

df ð2Þ

where Rve is the fourth order relaxation tensor expressed by:

RveðtÞ ¼ 2GðtÞIdev þ 3KðtÞIvol ð3Þ
Ivol and Idev are volumetric and deviatoric operators defined by:

Ivol ¼ 1
3 1� 1 and Idev ¼ I � Ivol, where 1 and I are respectively the

second and the fourth order identity tensors. GðtÞ and KðtÞ are
shear and bulk relaxation functions, respectively, expressed in
the form of Prony series:

G tð Þ ¼ G1 þ
XN
i¼1

Giexp � t
sdi

 !

K tð Þ ¼ K1 þ
XN
i¼1

Kiexp � t
svi

� � ð4Þ

where N is the number of Maxwell elements, sdi ; svi ;Gi and
Ki; i 2 1; . . . ;Nf g, are respectively the deviatoric and volumetric
relaxation times and their corresponding shear and bulk moduli.
G1 and K1 are respectively the long-term elastic and shear moduli.
According to definitions given by Ohkami and Ichikawa [33], the
deviatoric and volumetric relaxation times are expressed as
follows:

sdi ¼
gd
i

Gi
; svi ¼ gvi

Ki
8i 2 1; . . . ;Nf g ð5Þ

where gd
i and gvi are the deviatoric and volumetric viscous coeffi-

cients. The VE strain tensor eve tð Þ is divided, in the same way, into
deviatoric, evedev tð Þ, and dilatational, eveH tð Þ, parts:
eve tð Þ ¼ evedev tð Þ þ eveH tð Þ1 ð6Þ

The deviatoric, SM tð Þ, and dilatational, rM;H tð Þ, parts of the stress
tensor are therefore defined by:

SM tð Þ ¼ SM1 tð Þ þ
XN
i¼1

SMi
tð Þ

rH;M tð Þ ¼ rH;M1 tð Þ þ
XN
i¼1

rH;Mi
tð Þ

ð7Þ

where

SM1 tð Þ ¼ 2G1�vedev tð Þ
rH1 tð Þ ¼ 3K1�veH tð Þ ð8Þ
SMi tð Þ ¼ 2Gi

Z t

�1
exp

f� t
sdi

 !
@�vedev fð Þ

@f
df

rH;Mi
tð Þ ¼ 3Ki

Z t

�1
exp

f� t
svi

� �
@�veH fð Þ

@f
df

ð9Þ

In addition to linear viscoelastic behaviour, matrix material can
show a non-linear plastic behaviour, possibly strain-rate depen-
dent, i.e. viscoplastic. Matrix behaviour is also pressure sensitive,
i.e. sensitive to the nature of loading (e.g., tension, compression..)
and non-isochoric in the plastic domain. Consequently, the frame-
work of non-associated viscoplasticity is considered in this work,
following Perzyna model [34]. The pressure dependency of the vis-
coplastic flow is introduced by Raghava yield surface [35]. Vis-
coplastic flow occurs as soon as the first invariant, I1 (Eq. (10a)),
and the second invariant, I2 (Eq. (10b)), of the matrix Cauchy stress
tensor reach a critical combination given by the yield surface
expression (Eq. (11)).

I1 ¼ tr rM tð Þð Þ ð10aÞ

I2 ¼ 1
2
SM tð Þ : SM tð Þ ð10bÞ

f I1; I2;Rð Þ ¼
g� 1ð ÞI1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� 1ð Þ2I21 þ 12gI2

q
2g

� rt � R jð Þ P 0

ð11Þ
In previous expression, the hydrostatic pressure dependency

parameter, g, is defined by the ratio between the quasi-static initial
yield stresses in compression and tension, rcomp and rt , respec-
tively, so that g ¼ rcomp=rt . R jð Þ is the isotropic hardening function
that must be identified in tension for the considered polymeric
material. It is important to note that all types of hardening laws
can be considered in the present behaviour model. Here, hardening
law given by Eq. (12) will be considered.

R jð Þ ¼ h1exp h2j2� �
1� exp �h3jð Þð Þ ð12Þ

where h1; h2 and h3 are material parameters and j is the equivalent
viscoplastic strain defined by:

j ¼
Z
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_evp : _evp

r
dt ð13Þ

with _evp the viscoplastic strain rate tensor. The non symmetric and
non isochoric plastic flow of the polymeric matrix is modelled by a
hyperbolic viscoplastic dissipation potential [36], defined by:

wvp
M I1; I2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3I2 þ 1

3
aþ I1h i2 þ a� �I1h i2
� �r

ð14Þ

where the symbol h:i is the Macauley braket defined by hxi ¼ ðxþjxjÞ
2 ,

for any scalar x. aþ and a� are volume variation parameters under
positive and negative hydrostatic pressure, respectively. In the
framework of non-associated viscoplasticity, _evp is derived from
the viscoplastic potential of dissipation, wvpM , and expressed by the

normality rule in terms of the viscoplastic multiplier rate, _k, as
follows:

_evp ¼ _k
@wvp

M

@rM
¼ _kn ð15Þ

where n is the viscoplastic flow direction tensor. Given the expres-
sion of wvp

M , (14), the expression of the viscoplastic strain rate tensor
becomes:

_evp ¼ _k
3
2 SM þ 1

9 aþ I1h i þ a� �I1h ið ÞI
3I2 þ 1

27 aþ I1h i2 þ a� �I1h i2
� � ð16Þ
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The viscoplastic multiplier rate, _k, is calculated here using the
approach of overstress based viscoplasticity. According to the latter
theory, the static yield surface, f (Eq. (11)), is extended to a
dynamic yield surface, Fvp, defined as follows [34]:

Fvp I1; I2;R; _jð Þ ¼
g� 1ð ÞI1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� 1ð Þ2I21 þ 12gI2

q
2g

� rt þ R jð Þð Þ � rvp ð17Þ
where rvp is the viscous overstress. As postulated in Perzyna’s
model [34], this overstress is defined as follows:

rvp ¼ rt þ R jð Þð Þ _j
_j0

� �m

ð18Þ

where m and _j0 are the strain rate sensitivity and viscosity param-
eters, respectively. _j is the equivalent viscoplastic strain-rate,
defined by:

_j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_evp : _evp

r
¼ _k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
n : n

r
ð19Þ

The standard Kuhn-Tucker loading/unloading conditions are
then applied to the dynamic yield surface (i.e., Fvp � 0; _k P 0;
_kFvp ¼ 0) for the determination of the viscoplastic multiplier.

2.2. Stress state of fibre media

In SFRC, the load applied to the polymeric matrix is transferred
to embedded fibres through the interface. Due to relatively high
aspect ratio of fibres, each fibre family is assumed to carry load
only in its axis direction, i.e. to behave unidimensionally. More-
over, as it is very likely that the composite fails before the stress
applied to a fibre reaches its initial yield stress, fibre behaviour is
assumed to remain linear elastic. As already stated, the presence
of fibres with variable characteristics in the composite material is
modelled by the coexistence of Nfam families. Each family i
(i 2 1; . . . ;Nfam

	 

) is characterised by its elastic properties (Young

modulus Ei
F), its vector of orientation in global coordinates system,

~ai, and therefore matrix of orientation, Ai, defined by Ai ¼~ai �~ai, i.e.

Ai
kl ¼ ai

k � ai
l;8k; l, its geometric properties (i.e., diameter and

length) and its volume fraction, v i
F , so that

PNfam

i¼1 v i
F ¼ vF ¼

1� vM . vF and vM are respectively the total volume fraction of
fibres and matrix in the composite material.

The computation of 1D fibre axial stress, r0 i
F , is based on a for-

mulation that is consistent with a local iso-strain state between the
fibres and the matrix, in the direction of fibre axis [31,37,38]. The

fibre tensor of deformation gradient, Fi
F , is defined as the projection

of the total deformation gradient tensor, F, applied to the compos-
ite material, in the direction of fibre orientation (20).

Fi
F ¼ FAi 8i 2 i; . . . ;Nfam

	 
 ð20Þ
The right Cauchy-Green tensors of the composite, C, and fibre

families, Ci
F , are defined by Eq. (21) and are therefore linked by

the relation (22).

C ¼ FTF and Ci
F ¼ FiT

F F
i
F 8i 2 i; . . . ;Nfam

	 
 ð21Þ

Ci
F ¼ AiCAi 8i 2 i; . . . ;Nfam

	 
 ð22Þ

By construction, each tensor Ci
F has a unique eigenvalue differ-

ent from zero, called kiF , with associated eigenvector ai. kiF actually
stands for the square of the ratio of the fibres current length by ini-
tial length. As a consequence, with the small strain assumption, the
1D Hencky strain of the fibres, e0 i

F , is simply expressed from kiF as
follows:
e0 i
F ¼ 1

2
ln kiF

� �
8i 2 i; . . . ;Nfam

	 
 ð23Þ

A modified shear lag model is then used to compute average
fibre axial stress, r0 i

F . This model is based on initial work by Bowyer
and Bader [39] and has been then extended to cases of complex
fibre orientations, as described in details by Notta-Cuvier et al.
[31]. According to this approach, the average 1D-stress state of
each fibre family, r0 i

F ;8i, can be computed using Eq. (24). It can
be noted that particular cases where fibres have different elastic

properties (i.e. different values of Ei
F) can be dealt with and that

the fibres response under compression is assumed to be the same
as under tension (i.e. buckling is neglected) [31].

r0; i
F ¼ e0; iF 1� EiF r

i

2Lisi
e0; iF

��� ���� �
Ei
F

r0; i
F ¼ sign e0; iF

� �
Lisi
2ri

if e0;iF

��� ��� 6 Lisi
EiF r

i

otherwise

8><
>: ð24Þ

where Li and ri are fibre length and radius, respectively, and si is the
interfacial shear strength for fibre family i;8i 2 1; . . . ;Nfam

� 
. In addi-

tion to isostrain condition in fibre axis direction, quasi iso-stress
states are assumed between the fibres and the matrix material in
transverse and shear directions with respect to fibre axis. More pre-
cisely, fibre stresses in those directions are assumed to be equal to
those of a fictitious purely viscoelastic material (with viscoelastic
parameters of the matrix material), in accordance with the well-
known principle of lower bound assumption. The expression of
3D stress tensor of fibre family i;ri

F , is therefore expressed in the
global coordinate system by:

ri
F ¼ Ti

r0;i
F r0;i

M12 r0;i
M13

r0;i
M12 r0;i

M22 r0;i
M23

r0;i
M13 r0;i

M23 r0;i
M33

2
664

3
775Ti�1 8i ð25Þ

where Ti is the transition matrix from the coordinate system related
to the fibre family i to the global one; r0;i

Mkl; k; l 2 1;2;3f g, are stress
components of the purely viscoelastic ‘‘matrix” material, expressed
in the coordinate system of fibre family i.

2.3. Stress state of the composite material

Once 3D stress tensors of the matrix material and all fibre fam-
ilies are computed, the composite stress tensor can be determined
as a combination of the contribution of all fibre and matrix media
[31]. Indeed, the state potential of the composite material, here the
Helmholtz free energy, is assumed to be additively split into a part
specific to the matrix medium and other parts specific to each fibre
family (26).

q/c ¼ vMqM/M þ
XNfam

i¼1

v i
Fq

i
F/

i
F ð26Þ

where q;qM and qi
F are the density of the composite material, the

matrix material and the fibre family i, respectively. /M and /i
F are

the state potentials of the matrix and the fibre family i, respectively.
The state potential of the composite material has to verify Clausius–
Duhem inequality, simplified here for isothermal transformations:

rc : D� vMqM
d/M

dt
þ
XNfam

i¼1

v i
Fq

i
F
d/i

F

dt

" #
P 0 ð27Þ

where rc is the composite stress tensor. D is the rate of deformation
tensor, assimilated to _e under the hypothesis of small perturbations.
It is important to note that the composite strain tensor, e, is here
identical to the matrix strain tensor. In the framework of viscoelas
ticity-viscoplasticity and small perturbations, the matrix state



Fig. 1. An example of applied sinusoidal strain for frequencies equal to 0.05, 0.1,
0.25, 0.5 and 1 Hz.
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potential, /M , is a function of e; eve; evp and j, with notations of Sec-
tion 2.1. If considering the strain partition e ¼ eve þ evp, only three
of these internal variables are actually independent. The time
derivative of /M can therefore be expressed using the following par-
tial derivatives form:

d/M

dt
¼ @/M

@e
:
@e
@t

þ @/M

@evp
:
@evp

@t
þ @/M

@j
� @j
@t

ð28Þ

Concerning the fibre media, each potential, /i
F , is a function of

the scalar axial strain, e0; iF (23). Yet for convenience, the fibre
Hencky strain tensors expressed in the global coordinate system

by eiF kl ¼ Ti
k1T

i�1

1l e
0; i
F ;8k; l;8i, are considered, so that

d/i
F

dt ¼ @/i
F

@eiF
:
@eiF
@t ;8i. If assuming small displacements, the Hencky

strain tensors can be assimilated to the Green–Lagrange strain ten-
sors, Ei

F . These ones are expressed from the right Cauchy-Green

tensors by Ei
F ¼ 1

2 Ci
F � I

� �
;8i. Relation (22) therefore leads to the

approximation @eiF
@t � Ai @e

@t A
i
;8i. Finally, noting that

X : AiYAi
� �

¼ AiXAi
� �

: Y , for any matrices X and Y, by construction

of matrices Ai, these developpements give rise to a factorized
expression of Clausius–Duhem inequality, given by Eq. (29).

rc � vMqM
@/M

@e
�
XNfam

i¼1

v i
Fq

i
FA

i @/
i
F

@eiF
Ai

" #

: _e� vMqM
@/M

@evp
:

@evp

@t
� @eve

@t

� �
þ @/M

@j
@j
@t

� �
P 0 ð29Þ

The Clausius–Duhem inequality (29) has to be verified for any
value of strain rate tensor, _e. Then, considering the state laws

qM
@/M
@e ¼ rM and qi

F
@/i

F
@eiF

¼ ri
F ;8i, the 3D stress state of the composite

material expressed by Eq. (30) is an admissible solution.

rc ¼ vMrM þ
XNfam

i¼1

v i
FA

iri
FA

i ð30Þ

To validate the present modelling, numerically computed
response of a polypropylene (PP) reinforced by 30 wt.% short glass
fibres is compared to experimental results, for a wide range of
loading directions and strain rates. Thus, a first step is to charac-
terise the VE-VP behaviour of PP matrix based on Dynamic
Mechanical Analysis and monotonic tensile and compression tests,
as described in the following section.

3. Characterisation and validation of matrix behaviour model

The matrix material under investigation is a Polypropylene (PP)
homopolymer (commercial grade Moplen HP500N by Lyon dell
Basell) for injection moulding applications, with a MFR of

12 g � ð10 minÞ�1 and a density of 0:9 g � ðcmÞ�3. PP plates
(200 mm-edge squares with a thickness of about 2.5 mm) are
injection moulded following the process conditions prescribed by
the supplier. In order to characterise the overall behaviour of PP
matrix material, Dynamic Mechanical Analysis (DMA) and mono-
tonic tensile and compression tests (at various loading speeds)
are performed.

3.1. Dynamic Mechanical Analysis for the identification of parameters

For the determination of the viscoelastic parameters of PP
matrix, small amplitude oscillatory tensile experiments are per-
formed on an electromagnetic jack (INSTRON E3000) with a 3 kN
cell force. The experiments are performed at room temperature.
For these tests, flat rectangular specimens (50x10 mm2, with a
thickness of 2.5 mm) are cut in an injected plate. A sinusoidal
strain (Eq. (31)), characterised by an angular frequency, x, is
applied to the specimen. Frequency is progressively increased from
0.01 Hz to 30 Hz with several loading cycles per frequency (Fig. 1
and Table 1) and 5 specimens are tested for each frequency.

e tð Þ ¼ e0cos xtð Þ ¼ e0Re exp ixtð Þf g ð31Þ
e0 is the strain amplitude, t the time and Re stands for the real

part of any complex number. In the framework of small deforma-
tions, the stress response is sinusoidal as well, with the same pul-
sation, x, but with a different amplitude, r0, and an out-of-phase
angle (loss angle), d, such that:

r tð Þ ¼ r0cos xt þ dð Þ ¼ r0Re exp i xt þ d xð Þð Þð Þf g ð32Þ
The complex modulus, E�, is defined by the ratio of stress and

strain as follows:

E� ixð Þ ¼ r0

e0
exp id xð Þð Þ ð33Þ

E� can be split into a real part, E0, called storage modulus (asso-
ciated to the elastic response) and an imaginary part, E00, called loss
modulus (associated to the viscous response), so that E� ¼ E0 þ iE00,
with E0 ¼ r0

e0
cos dð Þ and E00 ¼ r0

e0
sin dð Þ.

The Maxwell parameters are identified based on results of DMA.
A 1D form of the hereditary integral expression of the stress–strain
relation, Eq. (2), is expressed as follows:

r tð Þ ¼
Z t

�1
E t � fð Þde fð Þ

df
df ð34Þ

where E tð Þ is the relaxation modulus. Considering that a finite
number N of separate Maxwell elements are arranged in parallel
with an elastic Hooke element (as presented in Section 2.1), E tð Þ
is expressed as follows:

E tð Þ ¼ E1 þ
XN
i¼1

Eiexp � 1
si

� �
ð35Þ

Ei and si correspond to the rigidity and relaxation time of the ith
Maxwell element, respectively. E1 represents the long term mod-
ulus of the material. By substituting the deformation sinusoidal
form, (Eq. (31)), into the hereditary integral expression (Eq. (34)),
the complex modulus can be expressed as follows:



Table 1
DMA cycles.

Frequencies (Hz) Number of cycles

0.01 3
0.05 4
0.1 5
0.25 6
0.5 8
1 21
10 201
20 301
30 301

Fig. 2. Comparison of measured and computed loss and storage moduli.
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E� ixð Þ ¼ ix
Z 1

0
E tð Þexp �ixtð Þdt ð36Þ

By expressing the time dependent modulus, E tð Þ, in its Prony
series form (Eq. (35)), the complex modulus can be expressed as
follows:

E� ¼ E1 þ
XN
i¼1

Ei
xsið Þ2

1þ xsið Þ2
þ i
XN
i¼1

Ei
xsi

1þ xsið Þ2
ð37Þ

The storage and loss moduli are therefore expressed by:

E0 ¼ E1 þ
XN
i¼1

Ei
xsið Þ2

1þ xsið Þ2
ð38aÞ

E00 ¼
XN
i¼1

Ei
xsi

1þ xsið Þ2
ð38bÞ

The parameters Ei and si are found following a least square min-
imization algorithm (Eq. (39)).

Ei ;simin
XM
i¼1

E0 xj
� �

E0
exp xj
� �� 1

 !2

þ E00 xj
� �

E00
exp xj
� �� 1

 !2
2
4

3
5 ð39Þ

where E0
exp and E00

exp are obtained from measured data at pulsa-
tion xj, j 2 1; . . . ;Mf g, with M the number of imposed frequencies.
The identified viscoelastic parameters for a model composed of 7
Maxwel elements are listed in Table 2. Comparisons between the
computed (from the Maxwell generalised model (Eq. (38b))) and
measured moduli are presented in Fig. 2.

3.2. Monotonic tests for the identification of viscoplastic parameters

For the characterisation of the viscoplastic behaviour of unrein-
forced PP matrix, quasi-static and dynamic monotonic tensile tests
are performed. Specimens are cut by water jet in the injection-
moulded plates and tested at room temperature.

Quasi-static tensile tests are carried out using Instron E3000
electromagnetic jack (3 kN cell force). The specimen geometry fol-
lows ISO527 norm (Fig. 3a). Displacement rates of 1, 10 and
Table 2
Identified linear viscoelastic parameters of the PP matrix material.

Coefficients Ei (MPa) Relaxation times si (s)

495.78 10þ3

267.51 10þ2

249.68 10
195.66 1
151.59 10�1

94.06 10�2

59.12 10�3

E1 (MPa) 486.93
60 mm � min�1 are imposed, corresponding respectively to strain
rates of 5:55 � 10�4 s�1, 5:55 � 10�3 s�1 and 3:33 � 10�2 s�1 (for a
region of interest (ROI) of 30 mm height). Dynamic tensile tests
are carried out using Instron 65/20 hydraulic jack. A piezoelectric
load cell was fixed on the rigid frame of the jack. A specific set-
up for dynamic test, developped in LAMIH to prevent specimen
loading as long as imposed test velocity is not reached, is used to
clamp the specimen. The specimen geometry is specially designed
to this set-up (Fig. 3b). The imposed displacement rates are of 10,
100 and 1000 mm � s�1, corresponding to strain rates of 0.5 s�1,
5 s�1 and 50 s�1, respectively (for a 20-mm-heigth ROI). For both
quasi-static and dynamic tensile tests, nominal axial stress, r, is
computed as the ratio of load, F, measured by the cell force, by ini-
tial cross-section at the centre of the ROI, S0, i.e. r ¼ F=S0.

True displacement and true in-plane strain fields are deter-
mined using Digital Image Correlation (DIC) technique [40]. A black
and white random pattern is created on specimen surface. As
Fig. 3. Geometry of tensile specimens.



Fig. 4. Definition of the facets and the ROI for the strain field measurement.

Fig. 5. Evolution of the viscoplastic Poisson ratio versus true axial strain.
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shown in Fig. 4, the pattern is divided into sub-pixel zones (facets
or zone of interest (ZOI)), each of them being characterised by a
unique signature in grey level. The facets are tracked by DIC soft-
ware (VIC 2D) so that in-plane displacement of facet centres are
determined with respect to a reference image (recorded at an
undeformed stage). In-plane strains at the centre of each facet

are then computed. A facet size of 21 � 21 pix2 is selected as the
one leading to the best compromise between noise and spatial res-
olution, based on tests of rigid body motion.

To complete the characterisation of matrix behaviour, uni-axial
compression tests are carried out on electromagnetic device

INSTRON E3000 at a crosshead speed of 0:08 mm � min�1. Speci-
mens are cylinders (diameter of 5 mm) cut by water jet in the
injected plates, so that their height is about 2.5 mm. The corre-
sponding equivalent strain rate is then of 5 � 10�4 s�1. It is to note
that five specimens are tested for every loading speed test. These
Fig. 6. Behaviour laws obtain
monotonic tests are exploited to identify the PP matrix viscoplastic
parameters, as described below.

Parameters aþ and a� (Eq. (14)) define the expansion and com-
paction of the viscoplastic flow associated to tension and compres-
sion, respectively, as presented in Section 2.1. The expansion can
be characterised, in the case of tensile tests, from the (visco) plastic
Poisson coefficient, vp, which is the ratio between the transversal,
evpxx , and axial, evpyy , viscoplastic strain components (vp ¼ �evpxx =evpyy ).
vp is calculated using data obtained over all the ZOI and all the
loading speeds (i.e., quasi-static and dynamic) by neglecting the
elastic part of the total strain (i.e. evpij ’ eij 8ij). Fig. 5 shows the
evolution of the (visco) plastic Poisson ratio in function of true
axial strain for all the loading speeds and for all the ZOI. It can
be seen that the evolution is scattered for the very low strain val-
ues and tends to be constant for higher ones (when eve acrually
becomes neglectible compared to evp). The (visco) plastic Poisson
ratio is therefore identified for strain level higher than 0.02. As
for this strain values vp is rather constant, it can be expressed in
terms of incremental VP strain components, i.e. vp ’ �Mevpxx =Mevpyy .
Considering the incremental form of the VP strain tensor under
tensile loading (i.e. h�I1i ¼ 0 (Eq. (40)) the expression of vp is given
by Eq. (41).

Devp ¼ Dk
3
2 SM þ 1

9 aþ I1h i þ a� �I1h ið ÞIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3I2 þ 1

27 aþ I1h i2 þ a� �I1h i2
� �r ð40Þ

vp ¼ �
3
2 Sxx þ 1

9 a
þI1

3
2 Syy þ 1

9 a
þI1

ð41Þ

Reminding the definition of the deviatoric stress tensor, S, Eq.
(41) becomes:

vp ¼ �
3
2 � 1

3 I1
� �þ 1

9 a
þI1

3
2 ryy � 1

3 I1
� �þ 1

9 a
þI1

ð42Þ

The expression of the expansion parameter aþ is finally given
by:

aþ ¼ 9
2

1� 2vp

1þ vp

� �
ð43Þ

With an identified value of vp equal to 0.43, the expansion
parameter aþ is equal to 0.44. A similar analysis should be done
under uniaxial compression loading in order to identify the com-
paction parameter a�. Unfortunately the small size of the compres-
sion specimen did not allow the use of Digital Image Correlation
technique and only axial displacements were measured by optical
extensometry. Therefore incompressibility will be assumed in the
ed with the SE _E method.
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case of compression loading and a� has the value of zero in the fol-
lowing. It is worth noting that it will not biased the validation of
the SFRC behaviour modelling as long as only tensile loadings are
considered. The use of Digital Image Correlation technique allows
the determination of local displacements (i.e. on each ZOI) and
therefore local strain and local strain rate throughout the test.
Then, using the assumption of transverse isotropy, the true tensile
stress of each ZOI is calculated as follows:
Table 3
Constitutive parameters.

Parameters Value

rt (11) 7 MPa
h1 (12) 35.40 MPa
h2 (12) 2.17
h3 (12) 58.78
_j0 (18) 10�5 s�1

m (18) 0.02
aþ 14) 0.61
a� (14) 0
g (11) 2.04

Fig. 7. Comparison between modelled and experimental tensile behaviour of PP at
different loading rates (Continuous lines = Experimental data, Dashed
lines = Numerical data) with vertical bars delimited by minimum and maximum
values.

Fig. 8. Definition of
ryyi ¼
F
S0

exp �2exxi
� � ð44Þ

where exxi is the true transversal strain of the ith ZOI. According to

the SE _E method, developped by Lauro et al. [11], points of coordi-
nates (ryyi ; ei; _ei) are plotted in the stress, strain and strain rate

space to form the SE _E (‘‘Stress, Epsilon, Epsilon dot”) surface. ei is
the equivalent true strain expressed as follows:

ei ¼
Z
t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_e : _e

r
dt ð45Þ

This surface represents material’s behaviour for a large strain
rate range (Fig. 6a). The hardening and viscoplasticity parameters
(h1;h2;h3;m and _j0) are determined by fitting the overstress
expression (Eqs. (12) and (18)) with the behaviour surface
(Fig. 6b). Note that the equivalent strain and equivalent strain rate
are assumed here to be equal to the equivalent viscoplastic strain,
j, and equivalent viscoplastic strain rate, _j, respectively.

It is to note that in the constitutive model the yield stress, rt , is
identified here as the stress from which the true stress–strain
curve becomes non-linear (7 MPa). This leads to a true equivalent
viscoplastic threshold of about 0.5% which justifies the later
assumption. Finally, the pressure dependency parameter g (Eq.
(11)), is defined as the ratio of the compression and tension initial
yield stresses, is identified. To do that, tensile and compression
yield stresses must be measured for tests realized at identical
angles h and w.

Fig. 9. Reconstructed microstructure of PP-30GF by micro-computed tomography.



Fig. 10. Distribution of fibre orientation in scanned volume of specimens cut at
different plate locations and 0	 with respect to IFD.

Fig. 11. Distribution of fibre orientation in scanned volume of specime
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strain rates. The uniaxial tensile and compression tests corre-
sponding to a strain rate of 5:55 � 10�4 s�1 (realised respectively
at 1 mm/min and 0.08 mm/min) are therefore considered. With
determined tensile and yield stresses of 29 MPa and 14 MPa,
respectively, a value of 2:071 is obtained for g.

Parameters involved in the matrix constitutive model are listed
in Table 3.

3.3. Evaluation of the matrix constitutive model

The relevance of the implemented constitutive model for the
matrix material is assessed through its capacity to reproduce the
experimental response of PP material over a relatively large range
of strain rates. To this end, the constitutive equations presented in
Section 2 are implemented in Abaqus 6.11 subroutine VUMAT
(explicit temporal integration scheme). Uniaxial tensile tests of
PP matrix are then simulated, using the parameters identified in
Section 3 (Table 3). Obviously, fibre volume fraction is null in the
present numerical tests. Tensile tests are simulated at the same
quasi-static (1, 10 and 60 mm/min) and dynamic (10, 100 and
1000 mm/s) loading speeds as during experiments. 8 nodes, full
integration elements (C3D8) are used. All degrees of freedom are
locked at the basis of the specimen and the loading consists on a
prescribed monotonic velocity on nodes of the upper edge. Numer-
ical results are compared with experimental data (averaged over
the five tests realised for each loading speed) in Fig. 7. In this figure,
numerical and experimental data are averaged upon all the ROI
(height of 15 and 20 mm in quasi-static and dynamic tests, respec-
tively). In fact, strain fields obtained both numerically and from
DIC measurements were verified to be homogeneous enough in
the ROI so that the comparison of averaged strains is reliable for
the validation of the model. Finally, results show that the numeri-
ns cut at angles equal to 20	 ;45	;60	 and 90	 with respect to IFD.



Fig. 12. Identification of the IFSS (Continuous line = Experimental data, Dashed
line = Numerical data).

Fig. 13. Comparison of experimental and numerical data for tests of 0� specimens
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cal model is in agreement with experimental data at all investi-
gated loading rates.

4. Characterisation and validation of SFRC behaviour model

The composite material under investigation (hereafter called
PP-30GF) is commercial grade ALTECH PP-H A 2030/159 GF30 CP,
supplied by Albis, and obtained by reinforcing a homopolymer
polypropylene (PP) matrix with 30 wt.% of short-glass fibres with

chemical coupling. PP-30GF has a MFR of 2 g.ð10 minÞ�1 and a den-
sity of 1.12 g � cm�3. PP-30GF plates (200 mm-edge-squares with a
thickness of about 2.5 mm) are injection moulded following the
process conditions prescribed by the supplier. Quasi-static and
dynamic PP-30GF specimens, with geometries identical to the PP
ones (Fig. 3), are cut at different angles, h, with respect to the injec-
tion flow direction (IFD) (h ¼ 0	;20	;45	;60	 and 90	, Fig. 8). In this
Section, the microstructure of the SFRC is investigated in the cen-
tral volume of some selected specimens using micro computed
tomography, aiming at the characterisation of fibres’ orientation.
In accordance to the ‘‘families of fibres” concept presented in Sec-
tion 2.2, fibres are afterwards divided into a finite number of fam-
ilies. Volume fractions attributed to fibre families are those
corresponding to real distribution of orientation obtained by
micro-computed tomography.

4.1. Characterisation of composite micro-structure by micro-computed
tomography

The distribution of fibre orientation in the injected plates of PP-
30GF is investigated by X-ray micro-computed tomography (l-CT)
using high-resolution microtomograph Skyscan 1172 (Bruker
Micro CT). A rotation step of 0.4�, voltage of 30 kV and current of
40 lA are used, leading to a spatial resolution (voxel size) of
3.87 lm. Some quasi-static specimens (ISO527-type), cut at differ-
ent angles h with respect to the injection flow direction (IFD)
(h ¼ 0	;20	;45	;60	 and 90	), are selected for micro-tomography
analysis. A volume centred on the specimen region of interest
(ROI), with a height of about 5 mm and covering all specimen
width and thickness, is scanned (Fig. 8). A 3D representation of
the PP-30GF microstructure is obtained using data acquired by
l-CT (Fig. 9a). Reconstructed 3D microstructures show that the
vast majority of fibres present a very low out-of-plane angle (i.e.
with respect to the (x, y) plane, with y the specimen axis and z ori-
ented along thickness). In all the following, fibres are therefore
assumed to have in-plane orientation. Sets of 2D greyscale images,
in the (x, y) plane, are extracted from slices of the 3D view, at reg-
ular spaced positions in thickness direction (Fig. 9b). Fibres are first
isolated from matrix material, using Fiji tools of Image J software
[41], by applying a grey-level thresholding to the images (based
on Otsu mehtod). Fiji tools of structure detection and analysis were
applied to 2D images in order to identify and count fibres and
determine their characteristics (length, diameter and orientation).

In order to obtain orientation histograms, density of fibres char-
acterised by an angle w with respect to specimen axis within the
intervals a;aþ 10	½ ½, for a varying from �90	 to 80	, are
determined.

Histograms for scanned h-specimens (i.e. characterised by a cut-
ting angle h) are presented in Figs. 10 and 11. First, it can be seen
that fibre orientations in 0	-specimens are distributed around the
value 0	 as a preferential orientation (Fig. 10). More generally, pref-
erential orientation of fibres is IFD, i.e. equal to 
h with respect to
the specimen axis for all values of h, as expected (Fig. 11). His-
tograms obtained for 0	-specimens show that fibres distribution
of orientation depends on specimen location in the plate. For
instance, as illustrated by specimen 0–1, the distribution curve
tends to be sharper around IFD direction near plate edge (i.e. frac-
tion of fibres that are oriented in IFD increases). In addition, it is
worth noting that fibre orientation evolves in the thickness direc-
tion in accordance with the well-known skin-shell-core phe-
nomenon [42]. In fact, angle of fibre orientation tends to increase
in plate skins, where fibres tend to orient randomly, then decreases
in shell layers, where fibres are preferentially oriented along IFD,
(Continuous lines = Experimental data, Dashed lines = Numerical data).
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and increases again in core layer where fibres tend to orient
transversally to IFD. This layered structure results from the combi-
nation of shear flow and fountain flow in injection moulded pro-
cess [43].

As the microstructure of the selected specimens is charac-
terised, actual distribution of orientation will be taken into consid-
eration as input data in the evaluation of the implemented SFRC
behaviour model.

4.2. Tensile tests

In order to characterise the behaviour of the composite material
(PP30GF) and validate the implementation of the composite beha-
viour model, quasi-static and dynamic tensile tests are performed
at various loading speeds and for all values of cutting angle h. Same
testing devices and specimen geometries as for PP are used, as well
as same imposed quasi-static and dynamic displacement rates. As
tensile behaviour of the composite material is expected to be more
brittle than that of unreinforced PP and therefore limited to low
strain levels, DIC technique is not used for PP-30GF. Instead, axial
displacements are measured by optical extensometry, i.e. non-
contact elongation measurement based on motion tracking of
black-and-white transition lines. For quasi-static tests, optical
extensometer ZS16D (CCD line scan sensor – Rudolf GmbH), with
a precision of 3 lm over 50 mm, is used. Elongation of a black-
painted area of 15 mm height, centred in the ROI, is followed. Axial
strain is computed as the ratio of measured axial elongation by the
initial length of 15 mm. For dynamic tests, optical extensometer
Fig. 14. Comparison of experimental and numerical data for tests of 20� specimens
(Continuous lines = Experimental data, Dashed lines = Numerical data).
200XR (Rudolf GmbH – precision of 5 lm over 50 mm), which
allows higher acquisition frequency, is used with a tracked zone
covering all specimen’s ROI (i.e. gauge length of 20 mm).

4.3. Validation of the composite constitutive model

As described in Section 4.1, the composite material is charac-
terised by a distribution of fibre orientation having the injection
flow direction (IFD) as preferential orientation. In the modelling,
10 families of fibres are considered with angles of orientation, a,
varying from 0	 to 90	 by step of 10	. Corresponding volume frac-
tions are computed consistently with the identified distributions.
The tensile tests realised for PP-30GF specimens with different cut-
ting angles and at different loading rates (Section 4.2) are simu-
lated taking into account actual fibre orientations. In fact, all PP-
30GF specimens were not analysed by l-CT. Then, distributions
of fibre orientation in specimens that were not scanned are
assumed to be identical to that of scanned specimens located at
approximately the same position in the plate. The same geometries
and boundary conditions are used as in the case of simulation of PP
specimens (Section 3.3). As presented in Section 2.2, fibres have a
linear elastic behaviour. All fibres are assumed to have the same
young modulus, EF , equal to 76 GPa. Length, L, and radius, r, are
respectively equal to 0.24 mm and 5 lm. The last parameter to
be introduced for the fibre stress computation is the interfacial
shear strength (IFSS), s. In fact, this parameter depends in particu-
lar on the nature of the matrix and fibres, process conditions and
fibre volume fraction [44–46]. The experimental identification of
Fig. 15. Comparison of experimental and numerical data for tests of 45� specimens
(Continuous lines = Experimental data, Dashed lines = Numerical data).
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the IFSS is not in the scope of this work. Therefore, it is determined
as the one leading to the best fit with experimental results in the
case of a PP-30GF specimen tested at 0	 and at the lowest loading

rate (i.e. 1 mm � min�1). More precisely, the specimen 0–1 is con-
sidered, as the one presenting the highest fraction of fibres ori-
ented in tensile direction (Fig. 10). Fig. 12 presents numerical
results obtained with a value of s ¼ 23 MPa leading to the best
fit between experimental and numerical responses.

The relevance of the developped constitutive model is then
evaluated using the set of identified parameters and distrubtion
of fibre orientation. Experimental results obtained for tensile tests
at quasi-static and dynamic loading rates are compared with
numerical responses of the composite model for all cutting angles
(0	;20	;45	;60	 and 90	). Results presented in Figs. 13–17 demon-
strate the accuracy of the implemented model, since the stress–
strain response is well reproduced for the different cases. A limita-
tion was however noted as the tensile strain increases in the quasi-
static case. Actually a softening in the stress–strain curves is
observed on the experimental results and is not predicted by the
current constitutive model. An explanation is that this phenomena
is due to the developpement of damage mechanisms, mainly fibre–
matrix decohesion, which are not taken into account in the present
model. It is also observed that this softening is more important at
lower loading angles with respect to IFD (0	 and 20	), which
reveals the possible anisotropy of these damage mechanisms.
The characterisation and the modelling of the debonding mecha-
nisms and their dependency on the strain rate are the object of
ongoing work.
Fig. 16. Comparison of experimental and numerical data for tests of 60� specimens
(Continuous lines = Experimental data, Dashed lines = Numerical data).
5. Conclusions

A strain-rate dependent behaviour model for SFRC is presented
here, based on an original approach that aims to be an efficient
alternative to more complex procedures of homogenisation. This
work presents the extension of this approach to strain rate depen-
dent composite behaviour (i.e. viscoelastic and/or viscoplastic).
Complex fibre orientations, including distributed and random ori-
entations can be modelled in a simple way. The implemented con-
stitutive laws are first described in details, begining with coupled
viscoelastic–viscoplastic scheme of matrix behaviour. Then consti-
tutive equations of composite bahviour model are detailed. The
accuracy of the modelling is assessed for the case of a PP reinforced
by 30 wt.% of short-glass fibres by comparison of numerical results
with experimental ones. To this end, constitutive parameters
involved in the matrix behaviour law are identified based on
dynamic mechanical analysis, compression and tensile tests under
a wide range of strain rates. Then dealing with the case of
injection-moulded PP-short glass fibre composite, a first step is
to characterise the actual distribution of fibre orientation using
micro-computed tomography. Orientations thus identified were
input of the behaviour model according to the ‘‘families of fibres”
concept. A comparison of numerical and experimental results
obtained for PP material is performed in order to validate the
implementation of the matrix behaviour model. Then simulated
quasi-static and dynamic tensile tests of PP-GF composite proved
the consistency of the implemented model.
Fig. 17. Comparison of experimental and numerical data for tests of 90� specimens
(Continuous lines = Experimental data, Dashed lines = Numerical data).
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The advantageous adaptability of the present modelling offers
the possibility to go further with the matrix material modelling.
Hence, introducing non-linearities in the modelling of matrix vis-
coelasticity will be addressed in a future work, for instance in
the case of composites with very low volume fraction of reinforce-
ment. Moreover, experimental investigations are to be extended to
the case of loading/unloading tests for the direct verification of the
Kuhn-Tucker condition introduced in the current matrix model.
Finally, further work concerns the introduction of damage mecha-
nisms in the behaviour prediction by the implementation of a
fibre-matrix debonding model.
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