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Tailoring fiber orientation has been a very interesting approach to improve the efficiency of composite
structures. For the discrete angle selection approach, previous methods use formulations that requires
many variables, increasing the computational cost, and they cannot guarantee total fiber convergence
(which is the selection of only one candidate angle). This paper proposes a novel fiber orientation opti-
mization method based on the optimized selection of discrete angles, commonly used to avoid the mul-
tiple local minima problem found in fiber orientation optimization methods that consider the fiber angle
as the design variable. The proposed method uses the normal distribution function as the angle selection
function, which requires only one variable to select the optimized angle among any number of discrete
candidate angles. By adjusting a parameter in the normal distribution function, total fiber convergence
can be achieved. In addition, a usual problem in fiber angle optimization methods is that because fibers
can be arbitrarily oriented, structural problems may exist at the intersection of discontinuous fiber paths.
Besides, composite manufacturing technologies, such as Advanced Fiber Placement (AFP), produce better
results when fiber paths are continuous. These problems can be avoided by considering continuously
varying fiber paths. In the proposed method, fiber continuity is also achieved by using a spatial filter,
which improves the fiber path and avoids structural problems. Numerical examples are presented to
illustrate the proposed method.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The increasing availability of composite materials, accessibility
to novel manufacturing techniques and novel design, and opti-
mization techniques for these materials have increased the interest
of the application of composite materials in structural panels and
shell structures for many engineering applications. The optimiza-
tion concept applied to composite materials allows finding the
optimized geometric contours of the laminate, the optimized
material distribution, the optimized orientation of fiber paths, as
well as optimized mapping regions for the insertion of additional
layers of material aimed, for example, to increase the strength of
regions with distribution of intense loads. This work is focused
on the optimization of the fiber path orientation and thus, only
related works are considered.
In the literature, there is no unanimity on the best method for
optimization of fiber angles. There are different applicable tech-
niques. The same generally fall in: indirect parameterization
related to the use of lamination parameters where intermediate
variables are used and lamination sequence is available after a
post-processing step [1–4]; and direct parameterization in which
the physical description of the laminate is explicit [5–10]. While
indirect parameterization imposes difficulties to consider manu-
facturing constraints, direct parameterization introduces local
minima to the design domain. Within the indirect parameteriza-
tion techniques, lamination parameters introduced by Tsai and
Hahn [11] are often used. Thus, Liu and Haftka [1] discuss buckling
load maximization of composite panels without stiffeners by using
lamination parameters as continuous design variables for fiber
angle values equal to 0�; �45�, and 90�. In another work, IJssel-
muiden et al. [2] study the incorporation of Tsai–Wu failure crite-
rion within the solution space of the lamination parameters.
Recently, Bohrer et al. [3] explored the use of lamination parame-
ters in the optimization of composite plates subjected to buckling
and small mass impact, and Faria [4] proposed a new optimization
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technique using lamination parameters to optimize composite
structures under buckling subjected to multiple load cases.
Although techniques based on lamination parameters can be suc-
cessfully used in different applications, its use makes difficult to
impose manufacturing constraints on the fiber angles, since they
do not generate a direct description of the stacking plies, or its
sequence.

In later years, the allowable fiber angles have been restricted to
a finite set of values 0�; �45�, and 90� due to manufacturing. Thus,
heuristic optimization algorithms can be considered given the dis-
crete nature of the problem and the presence of multiple local min-
ima. Following this idea, Gürdal et al. [12] employs genetic
algorithms for determining the optimized fiber angle. Other stud-
ies [13–15] use genetic algorithms to optimize fiber orientations
and thicknesses of laminated composite structures to minimize
the weighted sum of mass and the deformation of the laminated
structure subjected to a Tsai–Wu failure criterion [16]. However,
Sigmund [17] questions the advantage of using such algorithms
in topology optimization problems. The main advantages arising
from the use of genetic algorithm are the fact it is able to find a
‘‘global minimum” do not need the gradient calculation, and allow
handling discrete variables, however, this comes with a high com-
putational cost. Sigmund then compares the use of the genetic
algorithm with an algorithm based on gradients from the point
of view of the topology optimization, showing the inefficiency of
algorithms not based on gradients in optimization problems with
many design variables. Another difficulty of the heuristic algo-
rithms (e.g., genetic algorithms) is the way they deal with con-
straints. The inclusion of constraints on the problem is solved
indirectly by verifying them at each iteration, or by changing the
definition of the objective function by adding penalization func-
tions that require the determination of semi-empirical coefficients,
making it difficult to use.

Gradient-based optimization methods have also been applied to
the optimization of fiber angles. Mota Soares et al. [5] presents the
optimization problem whose design variables are the fiber angles
and the thickness by using analytical sensitivities. Several objective
function combinations and constraints are considered such as dis-
placement, structural strain energy, material volume, natural fre-
quency, buckling load and a specific mechanical stress criteria for
composite materials based on the Tsai–Hill criterion. In other
interesting work, optimization of reinforcements is performed
analogously to fiber angles optimization [6]. In an attempt to make
the solution of laminated structure optimization problem more
efficient, Bruyneel and Fleury [18] present the optimization of
composite structures by using sequential convex programming
where they discuss the use of the family of MMA algorithms
(Method of Moving Asymptotes). The technique is efficient for
optimizing composite structures when the thickness and fiber ori-
entation are simultaneously considered as design variables. In
sequence, other works propose to optimize the fiber orientation
of laminated composite material to alter the resonance frequencies
of the composite panels by taking into account the maximum load
capacity of fiber [19–22].

However, to optimize the fiber orientation by using angle val-
ues as design variables is a problem that has many local minima
and it is highly sensitive with the initial fiber configuration, mak-
ing it difficult to obtain the optimized solution. Thus, Stegmann
and Lund [7] suggest obtaining the optimized angles through an
optimization approach based on a material model formed by
combining multiple elasticity tensors considering different fiber
orientations, and by using an optimization algorithm based on
gradients and a penalization coefficient to force solutions with
only one angle at each element. This method is called DMO (Dis-
crete Material Optimization). Following, Lund [8] extends this
topology optimization formulation for optimization of laminated
composite plates and shells structures with respect to linear
buckling load subjected to mass constraints. The work of Steg-
mann and Lund [7] gave rise to a series of works that aims to per-
form optimization by considering discrete values of angles, which
appear as alternatives to the DMO method. Thus, there is a
method of parameterization of mechanical properties called
‘‘Shape Functions with Penalization” (SFP) [9] which is simpler
than the DMO and employs a smaller number of design variables
for selecting the optimized laminate orientations with conver-
gence speed and quality comparable to the results obtained by
the DMO. However, it considers only laminates with fiber angles
equal to 0�; �45�, and 90�, typically found in aeronautical appli-
cations, for example [9,23]. Gao et al. [10] proposes a parameter-
ization method for the selection problem of fiber orientation
called ‘‘Bi-Value Coding Parameterization” (BCP). This method
generalizes the concept of the SFP shape functions, making it pos-
sible to consider in the optimization a large number of allowable
discrete orientations or different material candidates, with a
number of design variables substantially smaller than DMO, for
example. Following, Sørensen et al. [24] present an alternative
method called ‘‘Discrete Material and Thickness Optimization”
(DMTO) which allows the directly optimization of the orientation
of the material as well as the thickness of each ply. It employs a
parameterization by using interpolation functions with penalties
and it is tested in optimization problems involving mass mini-
mization subjected to constraints such as buckling load factors,
limited displacement, among others. However, all these discrete
material optimization methods suffer from a common issue: the
fiber convergence cannot be guaranteed. Because of the nature
of their formulations, there is the possibility that the final elastic-
ity tensor is still a mixture of one or more fiber angles, even if
applying a large penalization coefficient value. The fiber angle
optimization problem has some similarities with the multi-
material optimization problem in the sense in the latter the opti-
mization searches for a material property among a set of available
discrete property values. In a interesting work, Yin and Anantha-
suresh [25] have applied the normal distribution function to the
multi-material topology optimization problem for optimal selec-
tion of different isotropic materials. They proposed a continuation
approach on a penalization coefficient and they guarantee the
selection of only one material at the end of the optimization pro-
cedure. However, their formulation can generate artificially high
stiffness materials during the optimization process, which can
possibly lead to an undesired local minimum. Nevertheless, this
approach can be used to fiber orientation optimization.

Therefore these previous studies show that there is still room
for improvement in optimization techniques applied to composite
laminates including the optimization of the fiber orientation con-
sidering discrete materials and using gradients algorithms. Finally,
in particular, a problem that exists in the fiber orientation opti-
mization is to ensure the continuity of such orientation along the
laminate. Some studies in the literature applying fiber orientation
optimization have results with fiber discontinuity among finite
elements [7–10], which not only makes difficult the post-
processing and manufacturing of these designs, but also they cause
stress concentrations which makes difficult the convergence in
stress minimization problems. Some approaches have been pro-
posed to achieve fiber continuity [26–28], however, they had lim-
itations and disadvantages [29]. Recently the level-set method was
successfully applied to address the fiber continuity [29], however,
this method shows a great sensitivity with the initial fiber config-
uration. Brampton et al. [29] propose to solve this problem by
using the level set topology optimization solution for isotropic
material as the initial fiber configuration, and thus, additional work
needs to be done to achieve good fiber orientation solutions with
the level set method.
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Thus, this paper proposes a novel fiber orientation optimization
formulation applied to optimization of composite laminates, con-
sidering the optimized selection of discrete fiber angles defined
at each element within the mesh. The proposed method is based
on the normal distribution function, which has the advantage of
using only one variable to select the optimized discrete angle
among any number of candidates, can achieve total fiber conver-
gence (unlike the previous discrete material optimization meth-
ods), has low sensitivity to the initial fiber configuration, and it
includes a technique that ensures the continuity of the fiber orien-
tation. In this work, a similar continuation approach suggested by
Yin and Ananthasuresh [25] for the normal distribution function
approach is used, and in addition, a normalization function is
applied to avoid artificial high stiffness materials faced by their
formulation.

This paper is organized as follows. In Section 2, a brief descrip-
tion on the discrete fiber angle optimization methods is presented.
In Section 3, the proposed method is explained. In Section 4, the
optimization problem is formulated and in Section 5, the sensitiv-
ity analysis is presented. In Section 6, it is presented the filtering
technique to achieve fiber continuity. In Section 7, some numerical
examples are shown and finally, in Section 8, the concluding
remarks are inferred.
2. Discrete fiber angle optimization

The DMO (Discrete Material Optimization) [7,8], SFP (Shape
Functions with Penalization) [9], and BCP (Bi-value Coding
Parametrization) [10] are the most recent optimization methods
for optimized discrete fiber angle selection. These methods were
proposed as alternatives to the CFAO (Continuous Fiber Angle Opti-
mization) which is known to present the multiple local minima
problem where the optimized solution is highly dependent on
the initial fiber configuration [7]. The basic concept of these dis-
crete angle methods is to define different candidates and to calcu-
late the effective elastic tensor Ce as a weighted sum of the elastic
tensors Ci of these candidates, such as

Ce ¼
Xnc
i¼1

wiCi ð1Þ

where wi are the weighting functions and nc is the total number of
candidates. In order to produce realistic results regarding physical
properties, two conditions must be satisfied [7]

0 6 wi � 1 ð2Þ

Xnc
i¼1

wi ¼ 1 ð3Þ

However, in their work, the reason that this approach can over-
come the local minima problem is that, at the beginning of the
optimization process, all wi have the same value, and Ce is a mix-
ture of all candidates. The main objective of these methods is to
drive only one wi to 1, while the other weighting functions must
be equal to 0, so that only one candidate is chosen and the effective
elastic tensor is equal to the elastic tensor of this candidate. This is
the definition of ‘‘fiber convergence” in the case of discrete fiber
angle optimization, where the candidates are the discrete angles
hi defined a priori, and Ci is the rotated elastic tensor of the ortho-
tropic material used. This method can also be applied to the dis-
crete material selection problem, where Ci is the elastic tensor
for each material. The difference among these methods is how to
parameterize the weighting functions wi. For the DMO method,
wi can be written as [7,8]
wi ¼ ŵiPnc
k¼1ŵk

; and ŵi ¼ #ið Þph
Ync
j¼1
j–i

1� #j
� �ph� �

0 6 #i � 1

ð4Þ

where #i is the orientation design variable associated to each candi-
date angle i, and ph is the penalization coefficient used to drive the
orientation variables towards 0 or 1 in order to achieve fiber con-
vergence. The normalization in Eq. (4) is defined so that

P
wi ¼ 1.

The fiber convergence v can be measured by the DMO convergence
measure proposed by Stegmann and Lund [7], which is essentially
the Euclidean norm of the weighting functions times a tolerance
level �

v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

1 þw2
2 þ � � � þw2

nc

q
ð5Þ

where � is typically 95–99.5%. Thus, if one of the weighting func-
tions wi is greater or equal to v, it can be assumed that the method
has converged and only one angle has been chosen. It is important
to mention that Eqs. (1), (4) and (5) are calculated at each element
of the finite element mesh. Although this method is very robust and
can achieve good results for fiber angle optimization, there are two
main drawbacks. First, even with large values of ph, fiber conver-
gence can not be guaranteed, especially at low stress regions
because the sensitivity of the objective function with respect to
the variables can be very low and no particular angle is chosen.
Additionally, depending on the loading condition, there may be
the case where a combination of two angles is the optimized solu-
tion, which can not be avoided by the DMO method. Second,
because this method does not have any mathematical restrictions
on the number of candidates that can be used, the total number
of orientation variables can be too large, since one variable must
be associated to one candidate at each element of the domain.
Assuming that nv is the number of orientation variables for an ele-
ment, the total number of orientation variables is equal to
Nv ¼ Ne � nv , where Ne is the total number of elements. Thus, the
method can have a high computational cost, especially at the sensi-
tivity analysis. To reduce the total number of orientation variables,
Stegmann and Lund [7] proposed the patch approach, where some
elements are grouped and they share the same effective elastic ten-
sor Ce and consequently, the same orientation variables. However,
they mention that the solution is dependent on the shape of the
patches and also requires some expertise of the engineer. Stegmann
and Lund [7] have also used the DMO method for combining fiber
angle optimization with topology optimization by adding an isotro-
pic polymeric foam material as a candidate representing the void
region. They mention that a mass constraint has been applied, how-
ever, it is not clear how it is calculated.

In an attempt to improve the discrete fiber angle optimization
method, Bruyneel [9] proposed the SFP method that defines the
weighting functions as the shape functions from the FEM. The
method is presented only for 4 candidates requiring 2 orientation
variables per element

w1 ¼ 1
4 1� #1ð Þ 1� #2ð Þ� �ph w2 ¼ 1

4 1þ #1ð Þ 1� #2ð Þ� �ph
w3 ¼ 1

4 1þ #1ð Þ 1þ #2ð Þ� �ph w4 ¼ 1
4 1� #1ð Þ 1þ #2ð Þ� �ph

�1 6 #i 6 1

ð6Þ

The size reduction of the optimization problem is promptly
noticed, nc ¼ 4; nv ¼ 2. The SFP method can certainly be extended
to more than four candidates if other existing finite element shape
functions with more nodes are used. Bruyneel [9] has also applied
topology optimization to some examples, however, they have used
the SIMP method to model the material distribution, since the
number of candidates is limited. However, this method also has
some drawbacks. If the orientation variables have not yet
converged towards their limits, and ph – 1, then the condition of
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Eq. (3) is not satisfied, yielding to non-physical properties. The
number of candidates is restricted and must match the number
of shape functions used. Higher-order FEM shape functions can
have negative values, which is a major problem. Thus, only shape
functions of first order elements must be used in order to satisfy
condition of Eq. (2). Additionally, if more than 8 candidates are
required, more complex shape functions must be formulated to fol-
low the number of candidates. Later, Gao et al. [10] proposed the
BCP method as a generalization of the SFP method:

wi ¼ 1
2nv

Ynv
k¼1

1þ sik#kð Þ
" #ph

ð7Þ

where sik can be calculated as [10]

sik ¼
1 i 2 ½1;2k�1�
�1 i 2 ½2k�1;2k�
snk i 2 ½2k þ 1;2nv � where n ¼ 2dlog2 ie þ 1� i

8><
>: ð8Þ

The number of orientation variables per element is equal to
nv ¼ dlog2nce. As indicated by Gao et al. [10], the BCP scheme can

interpolate nc ¼ 2ðnv�1Þ þ 1;2nv
h i

material candidates with nv ori-

entation variables. However, Eq. (7) must be used to interpolate
2nv possible candidates, which means that i ¼ 1; . . . ;2nv . If the
actual number of candidates is less than possible number of candi-
dates, nc < 2nv , then some other material (possibly a void phase)
must be defined to fill up the vacant candidates, and constraints
must be applied to the orientation variables so that these addi-
tional candidates are not chosen. Thus, strictly speaking, nc ¼ 2nv ,
which is equivalent to the SFP method in the matter of number
of candidates and orientation variables [30]. Additionally, the
BCP method presents the same convergence problem as mentioned
for the DMO and SFP methods, resulting in regions with mixed
materials.

Regardless their efficiency of achieving good results, these 3
methods share the same problems:

	 no guarantee of total fiber convergence;
	 the number of candidates is related to the number of variables;
	 fiber continuity can not be achieved by any knownmeans so far,
and a fiber continuity constraint would be too complicated to
formulate and implement.

Another more recent method for fiber path optimization has
been proposed by Brampton et al. [29] which is based on the
Fig. 1. Normal distr
level-set method. The fiber paths are defined by the contour lines
of a level-set function, and then, these paths are projected as indi-
vidual fiber angles for each element within the mesh. This method
does not suffer from the fiber convergence problem since the angle
is already defined by the level-set function. The fiber continuity is
also guaranteed because the fibers follow the contour lines. How-
ever, the solution of this method is dependent on the initial fiber
configuration, as demonstrated by authors [29].

3. Proposed method – NDFO

The fiber optimization method we propose in this work is based
on previous discrete methods in the sense that one discrete angle
must be chosen within a set of candidates. The main difference is
in the parametrization of the weighting functions wi. Our method
has the following advantages over the mentioned methods:

	 only ONE orientation variable is associated to ANY number of
candidates;

	 total fiber convergence can be achieved;
	 a filtering technique can be easily implemented to achieve fiber
continuity;

	 the formulation is straightforward to be implemented.

In order to associate only one orientation variable to any num-
ber of candidates, the normal distribution function is used as a
parametrization of the weighting functions. The normal distribu-
tion function is given by [25]

f #jx;rð Þ ¼ e�
#�xð Þ2
2r2 ð9Þ

By changing the parameters r and x, we can control the width
of the curve and the location of the peak, respectively, as shown
by the graphs of Fig. 1 Thus, to use the normal distribution function
as the weighting function, there are three aspects that need to be
addressed. The first aspect is that conditions of Eqs. (2) and (3)
must be satisfied. By analyzing Fig. 1 and Eq. (9), only condition
of Eq. (2) is satisfied. Failing to satisfy condition of Eq. (3) can pro-
duce artificially high stiffness materials during the optimization
and can lead to a bad solution [8]. Thus, to satisfy condition of
Eq. (3), we propose to use the normalization scheme proposed by
Stegmann and Lund [7]

wi ¼ ŵiPnc
k¼1ŵk

ð10Þ
ibution curves.



Table 1
Influence of r on the values of wi .

ph ¼ 10 ph ¼ 4 ph ¼ 0:3

# ¼ 2 # ¼ 5 # ¼ 2 # ¼ 5 # ¼ 2 # ¼ 5

w1 0.202 0.190 0.212 0.144 0.004 0.000
w2 0.203 0.197 0.218 0.179 0.992 0.000
w3 0.202 0.202 0.212 0.210 0.004 0.000
w4 0.199 0.205 0.193 0.230 0.000 0.004
w5 0.194 0.206 0.165 0.237 0.000 0.996
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Fig. 2. Values of wi for nc ¼ 5 and # ¼ 3:5001 and different values of pmin
h .
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The second aspect is to associate the orientation variable to the
candidate angle (or material). By defining # as the continuous ori-
entation variable, and i being the integer values of # as the peak
locations to denote each candidate i, the weighting function ŵi

can be written as

ŵi ¼ e
� #�ið Þ2

2p2
h where i ¼ 1; . . . ; nc ð11Þ

Finally, the third aspect is the value of r, which has been
replaced by ph because it works as a penalization coefficient to con-
trol the width of the curve, in order to achieve fiber convergence.
For large values, for instance ph ¼ 10, the normal function has a
low curvature, as it can be seen in Fig. 1. This means that all ŵi,
and consequently all wi, will have close values, and the effective
elastic tensor Ce is a mixture of all candidates. On the other hand,
the smaller the value of ph, the values of wi will be more discrete (0
or 1), as represented by the blue line of Fig. 1. Table 1 shows the
influence of ph on the values of wi (Eq. (10)) for i ¼ 1; . . . ;5 and
two values of #. It can be seen that for ph ¼ 4 and ph ¼ 10, the val-
ues of wi are very similar around i ¼ #, and for ph ¼ 0:3 almost dis-
crete values are achieved for wi.

Thus, the value of ph is very important to avoid the local minima
problem and to achieve fiber convergence. We propose applying
the continuation scheme on the penalization coefficient, starting
ph equal to 4 and reducing it gradually until pmin

h . From our tests,
pmin
h shows a great influence in achieving total fiber convergence.

As mentioned before, the orientation variable varies continuously
from 1 through nc . If # is somewhere between i and iþ 1, the value
of pmin

h will dictate whetherwi is discrete or not. However, there is a
major problem when # is exactly in the middle of two adjacent
integers, # ¼ ½iþ ðiþ 1Þ�=2. In this very particular case, no matter
the value of pmin

h , their weighting functions will have the same
value, wi ¼ wiþ1, which characterizes as a mixture of these two
candidates, and thus, the proposed method fails to achieve fiber
convergence. However, we rely on the fact that the probability that
this problem happens is almost zero because of the computation
approximations and a very large computer precision (large number
of digits). Even if # ¼ ½iþ ðiþ 1Þ�=2, it is proposed to manually add
a small perturbation to the variable to avoid the singularity. To
illustrate the influence of pmin

h , consider a problem with nc ¼ 5
and # ¼ 3:5001 (this value has been chosen because it is very close
to the middle of two integers). Fig. 2 shows the graphs ofwi for four
different values of pmin

h . It can be seen that the smaller the value of
pmin
h , the value of wi approaches discrete values, 0 or 1. However, if

pmin
h is too small, the exponential function can be equal to zero

regardless the value of #. Consequently, all ŵi are also equal to zero
and there will be a numerical problem in Eq. (10) (division by
zero). The value pmin

h ¼ 0:012953 has been found empirically
through exhaustive tests. However, the limit value of pmin

h where
the exponential function becomes zero cannot be stipulated
because it depends on the precision of the computer.

Because the weighting functions are based on the normal distri-
bution function, we named this method NDFO, which stands for
Normal Distribution Fiber Optimization. Although we tested only
for fiber angle optimization, this method can be applied to any
multi-material optimization problem too.

4. Optimization problem formulation

The response of the structure is obtained by employing the
finite element method and assuming linear elasticity, however,
the proposed method can be applied to non-linear problems as
well. To illustrate the proposed method, the eight node laminated
shell element is used to model thin structures made of orthotropic
materials. This element is based on the degenerated three-
dimensional solid approach and first-order shell theory kinematics
[31,32], with 5 degrees of freedom per node (3 translations and 2
rotations) and selective integration to avoid shear locking. A repre-
sentation of the element is presented in Fig. 3. However, because
the proposed method only affects the effective elastic tensor Ce,
any element type that considers the use of orthotropic materials
can be used. At each element is defined one orientation variable
#e, which must represent only one fiber angle by the end of the
optimization process by using the proposed method. This angle is
assumed to be constant within the entire element. Thus, the ele-
ment stiffness matrix Ke, which is dependent on #e, can be
obtained as

Keð#eÞ ¼
Z

BTCeð#eÞBdVe ð12Þ

where B is the strain–displacement matrix and Ceð#eÞ is the
effective elastic tensor obtained by Eq. (1). Eq. (12) refers to a
single layer element to simplify the formulation presented further.
For a multi-layer structure, there should be one variable for each
layer within each element, and Eq. (12) is applied separately for
each layer and then the resulting matrices are summed up to build
the element stiffness matrix. By properly assembling the elements



Fig. 4. Flowchart of the iterative optimization process.
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stiffness matrices, the global stiffness matrix K is obtained and the
static equilibrium equation can be written as

KU ¼ F ð13Þ
where U and F are the global displacement and load vectors. It is

implicit that K and U are functions of #e.
The objective function is to minimize the total compliance of a

structure, C, which can be defined as

C ¼ UTKU ¼ FTU ð14Þ
Essentially, the compliance measures the sum of the displace-

ments at the points where the loads are applied. Thus, the opti-
mization problem formulation can be defined as

Minimize : C ¼ FTU
subject to : KU ¼ F

1 6 #e 6 nc

ð15Þ

where the orientation variable can vary continuously from 1
through nc , which is the number of discrete angle candidates. This
problem is solved by the GCMMA optimization algorithm, devel-
oped and kindly provided by Prof. Kirster Svanberg [33]. The opti-
mization procedure runs iteratively and follows the flowchart
presented in Fig. 4. To update the orientation variables, the
GCMMA algorithm requires the differentiation of the objective
function with respect to the orientation variables, which is pre-
sented in the next section.

5. Sensitivity analysis

The differential of the compliance function with respect to the
orientation variables for linear analysis is well known and it can
be written as

@C
@#e ¼ �UT @K

@#e U ð16Þ

The differential of the stiffness matrix can be calculated
element-wise, since each element has its own orientation variable.
Thus, by differentiating Eq. (12) we have

@Ke

@#e ¼
Z

BT @Ce

@#e BdV
e ð17Þ

where the differential of the effective elastic tensor Ce is obtained
by differentiating Eq. (1), and then, Eqs. (10) and (11) as

@Ce

@#e ¼
Xnc
i¼1

@wi

@#e Ci ð18Þ
@wi

@#e ¼ 1Pnc
k¼1ŵk

� �2 @ŵi

@#e

Xnc
k¼1

ŵk � ŵi

Xnc
k¼1

@ŵk

@#e

 !
ð19Þ

@ŵi

@#e ¼ �#e � i
p2
h

e
� #e�ið Þ2

2p2
h where i ¼ 1; . . . ;nc ð20Þ
6. Achieving fiber continuity

As mentioned before, fiber continuity is important not only for
manufacturing issues, but also to avoid stress concentrations at
discontinuous paths. The proposed NDFO method with fiber conti-
nuity is represented by NDFO-C. The proposed filter for fiber con-
tinuity is a spatial filter based on the projection technique
[34,35]. Besides the orientation variables #e already defined for
each element in the mesh, another set of variables must be defined.
This new set of variables are called design variables / and they can
be assigned anywhere within the mesh. In this work, for simplicity,
the design variables are assigned to the centroid of each element,
such as the orientation variables. Thus, the orientation variable is
now defined as a function of the design variables around it
#e ¼ f ð/jÞ, where j 2 Xe, and Xe is the projection sub-domain
defined as a circle with radius r and centered at the centroid of ele-
ment e. Fig. 5 illustrates the proposed filter.

Thus, we must define the projection function that calculates the
orientation variables with respect to the design variables. Because
the proposed method requires only one variable per element to
describe the optimized angle, the proposed projection function
can be a very simple function, such as the mean value of the design
variables /j withinXe. The linear projection technique [34] has also
been applied as the projection function, however, because it pro-
duced practically the same results comparing with the mean func-
tion, it was decided that this approach was not included in the
manuscript. Thus,

#e ¼
P

j2Xe/j

ne
j

ð21Þ



L

F

◦

90◦

φ

r
Ωe

ϑ = f(φ)

Fibers

Fig. 5. Illustration of the filtering technique applied to the fibers to achieve fiber
continuation.
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where ne
j is the total number of design variables within the sub-

domain Xe. Thus, every equation that is dependent on the orienta-
tion variables, is now dependent on the design variables. The sen-
sitivity of the objective function with respect to the design
variables can be calculated by the chain rule as

@C
@/j

¼
X
e2Xj

@C
@#e

@#e

@/j
ð22Þ

where e 2 Xj means the orientation variables #e that have been
affected by the design variable /j. Finally, by differentiating Eqs.
(10) and (11)

@#e

@/j
¼ /j

ne
j

ð23Þ
3L

0

Fig. 6. Rectangular domain for example 1. Left side is clamped.

(a) θe
ini = 0◦

(b) θe
ini = 45◦

Fig. 7. Solutions for the CFAO method by using different initial fiber configurations.
Highlighted areas with local minima problem.
7. Numerical examples

Numerical examples are presented to illustrate the potential of
the NDFO method in 3 different cases: a rectangular plate with in-
plane load; a square plate with transversal load; and a half-
cylinder with vertical load. For each example, results are presented
using the CFAO, the BCP, the NDFO, and the NDFO-C methods. The
results with fiber continuity are shown with different filter radius
to show that the level of continuity can be controlled.

In the CFAOmethod, the angle of each element he is the variable.
For the BCP and NDFO methods, there are 16 candidate angles,
equally distributed,

h ¼ �78:75� � 67:5� � 56:25� � 45� � 33:75� � 22:50�½
� 11:25� 0� . . . symmetric . . . 90�� ð24Þ
and thus, the BCP method requires 4 variables per element,

whereas the NDFO method requires only one. The initial configura-
tion of the design variables has great influence only in the CFAO
method. As mentioned before, the BCP and NDFO methods start
with a mixture of fiber angles and they will gradually converge
to only one fiber angle. Thus, in the CFAOmethod, the initial angles
are equal to he ¼ 0� for all elements, in the BCP method, all
variables starts equal to zero, and in the NDFO method the design
variables are equal to /j ¼ i where hi ¼ 0�.
The following material properties have been used:
E1 ¼ 135 GPa, E2 ¼ E3 ¼ 10 GPa, m12 ¼ m13 ¼ 0:3; m23 ¼ 0:5;
G12 ¼ G13 ¼ 5 GPa, and G23 ¼ 3 GPa. For all cases, only one layer
has been used, although any number of layers can be used with
this method.

In the result figures, the fibers are represented by lines inside
each element. The black line means that the fiber convergence
has been achieved and there is only one angle in that element.
On the other hand, the red lines (refer to the online version with
colored figures) represent the non-converged fibers where there
is still a mixture of two or more angles. However, red lines appear
only for the BCP method. As mentioned before, for these methods,
the penalization coefficient ph is responsible to improve the con-
vergence of the fibers. For the BCP method, initially ph ¼ 2 and
increases by unit every 10 iterations until ph ¼ 8. For the NDFO
method, this coefficient starts equal to ph ¼ 4, and after iteration
10, it decreases by 0.1 every 2 iterations until ph ¼ 0:1, and then
it decreases by 0.01 every 2 iterations until reaching a minimum
value equal to ph ¼ 0:012953. This minimum value has been found
empirically as demonstrated in Section 3.

7.1. Rectangular plate

The first numerical example is the rectangular domain pre-
sented in Fig. 6, where L ¼ 100 mm. One side is fully clamped
and the in-plane load equal to F ¼ 100 N is distributed along
50 mm on the indicated region. This domain is modeled using
60x20 elements.

Fig. 7 shows the optimized solution by using the CFAO method.
In this case, two results have been obtained by using different ini-
tial fiber configurations, heini ¼ 0� and heini ¼ 45�. It can be seen that
this method is indeed very susceptible to the local minima prob-
lem, where both results are totally different. Additionally, the con-



(a) BCP

(b) NDFO

Fig. 8. Solutions for the BCP and NDFO methods. Black and red lines represent
converged and non-converged fibers, respectively.

(a) r = 20 mm

(b) r = 50 mm

Fig. 9. Solutions for the NDFO-C method with two different filter radius.

Table 2
Summary of the compliance values of the solutions obtained for different methods for the

CFAO CFAO BCP NDFO
heini ¼ 0� heini ¼ 45� r = 20 mm

C 3:49� 10�3 3:23� 10�3 2:01� 10�

Ite
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Fig. 10. Evolution of the compliance valu
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figuration of the fibers at the highlighted areas also indicates that
the solution is trapped in an undesired local minimum. The final
compliance in these cases are equal to C ¼ 3:49� 10�3 and
C ¼ 3:23� 10�3, respectively for heini ¼ 0� and heini ¼ 45�.

The results obtained for the BCP and NDFO methods are pre-
sented in Fig. 8. These two results are very similar regarding the
fibers orientation. In the BCP result, there are still many red lines
(non-converged fibers), although the objective function has
already converged. For the red lines at the center of the domain,
the BCP method was probably looking for a combination of two
or more fibers to make this region stiffer. For the red lines at the
bottom right corner, the BCP method could not have decided which
angle was better because it is a low sensitivity area, i.e., the fibers
in that region does not contribute for the stiffness of the structure.
The proposed NDFO method has fixed the fiber convergence prob-
lem by properly choosing only one angle for every element. The
final compliance in these cases are equal to C ¼ 2:01� 10�3 (BCP)
and C ¼ 1:85� 10�3 (NDFO), which are lower than the CFAO cases.
The NDFO presents the minimum compliance value because it
could achieve total fiber convergence and the fibers are free to
assume any angle, i.e., no filter has been applied.

Finally, by using the NDFO-C method, i.e., with the proposed fil-
ter to achieve fiber continuity, the optimized results are presented
in Fig. 9, where two different filter radius have been used,
r ¼ 20 mm and r ¼ 50 mm. It can be seen that the larger the filter
radius is, the smoother is the fiber continuity, which means that
the fiber continuity can be controlled by the filter radius. The final
compliance in these cases are equal to C ¼ 1:97� 10�3 and
C ¼ 2:19� 10�3, for r ¼ 20 mm and r ¼ 50 mm, respectively.
Because there is a constraint in the arrangement of the fibers, the
compliance in these cases are greater than the NDFO solution.
However, the compliance of the solution for r ¼ 20 mm is still
lower than the BCP method, which means that the proposed
method could achieve a better result compared to previous meth-
ods and still achieve fiber continuity. Table 2 summarizes the com-
pliance values for all cases and Fig. 10 shows the evolution of the
compliance values through the iterations.
rectangle plate example.

NDFO-C NDFO-C
r = 50 mm

3 1:85� 10�3 1:97� 10�3 2:19� 10�3

CFAO with θe
ini = 0◦

CFAO with θe
ini = 45◦

BCP
NDFO
NDFO-C with r = 20 mm
NDFO-C with r = 50 mm

rations

es through iterations for example 1.
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7.2. Square plate

The next numerical example is the square plate domain pre-
sented in Fig. 11a, where L ¼ 100 mm. All sides are fully clamped
and the normal load equal to F ¼ 10 N is applied at the center of
the plate. This domain is modeled using 40x40 elements. Symme-
try is applied to the design variables according to the dotted lines
in Fig. 11b.

Fig. 12 shows the optimized solution by using the CFAO, BCP,
and NDFO methods. The solutions follow the same pattern, in the
center region, the fibers are arranged as circles, and around this
L
L

F

(a)

Fig. 11. Square plate domain for example 2 with the four sides clamped. Symmetr

(a) CFAO

(c) NDF

Fig. 12. Solutions for the CFAO, BCP, and NDFO methods. Black and red
center region, the fibers are arranged radially. In the CFAO solution,
the symmetry condition has been responsible to avoid the local
minima problem, although some few fibers have been wrongly ori-
ented. The final compliance in this case is equal to C ¼ 5:97� 10�4.
The BCP method has achieved a better fiber configuration solution
than the CFAO although there are still some non-converged fibers
at the corners. However, the final compliance in this case is equal
to C ¼ 7:58� 10�4, which is greater than the CFAO compliance. The
NDFO method has presented the solution with fibers oriented in a
more organized way, with the lowest compliance of all cases
C ¼ 5:39� 10�4. It is interesting that in this last case the fibers at
0◦

90◦

(b)

y is applied to the fiber orientation according to the 4 dotted lines on Fig. (b).

(b) BCP

O

lines represent converged and non-converged fibers, respectively.



(a) r = 20 mm (b) r = 100 mm

Fig. 13. Solutions for the NDFO-C method with two different filter radius.

Table 3
Summary of the compliance values of the solutions obtained for different methods for the square plate example.

CFAO BCP NDFO NDFO-C NDFO-C NDFO-C
r = 20 mm r = 100 mm

C 5:97� 10�4 7:58� 10�4 5:39� 10�4 5:54� 10�4 7:49� 10�4

CFAO
BCP
NDFO
NDFO-C with r = 20 mm
NDFO-C with r = 100 mm

Iterations
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Fig. 14. Evolution of the compliance values through iterations for example 2.
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90◦
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2
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F

Symmetry

(b)

Fig. 15. Square plate domain for example 3. Top and vertical edges are clamped
(Fig. (b)). Symmetry is applied to the fiber orientation according to the vertical
center dotted line on Fig. (b).
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the center of the domain (the loading point) is configured in a cross
shape, instead of in circle as the CFAO and BCP solutions. In fact,
the cross shaped fibers presents greater stiffness at loading points
than the circle shape fibers. Again, the NDFO method has achieved
better solution than the previous methods.

By using the NDFO-C method, the optimized results are pre-
sented in Fig. 13. Two filter radius have been used, r ¼ 20 mm
and r ¼ 100 mm. Again, the fiber continuity is smoother with lar-
ger filter radius. The center cross shape fibers are still present for
the smaller filter radius solution, which breaks the fiber continuity
although provides lower compliance than the larger filter radius.
The compliance for these cases are equal to C ¼ 5:54� 10�4 and
C ¼ 7:49� 10�4. Even for a very large filter radius, the compliance
of the proposed method is lower than the BCP solution. Table 3
summarizes the compliance values for all cases and Fig. 14 shows
the evolution of the compliance values through the iterations.



(a) CFAO (b) BCP

(c) NDFO

Fig. 16. Solutions for the CFAO, BCP, and NDFO methods. Black and red lines represent converged and non-converged fibers, respectively.
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7.3. Half cylinder

The last numerical example is the half-cylinder domain pre-
sented in Fig. 15a, where R ¼ 200 mm and L ¼ 300 mm. Both ver-
tical edges and the top edge are fully clamped, and the vertical
load equal to F ¼ 1 N is applied at the center of the domain, accord-
ing to Fig. 15b. Symmetry is applied to the design variables accord-
ing to the vertical center line in Fig. 15b.

The optimized results for the CFAO, BCP, and NDFO methods are
presented in Fig. 16. The solution of CFAO method is clearly a very
bad local minimum, which compliance is the greatest
C ¼ 8:55� 10�6. The solutions of the BCP and NDFO methods are
similar when considering the converged fibers of the BCP solution,
(a) r = 30 mm

(c) r = 10

Fig. 17. Solutions for the NDFO-C metho

Table 4
Summary of the compliance values of the solutions obtained for different methods for the

CFAO BCP NDFO NDFO-C

C 8:55� 10�6 4:23� 10�6 3:94� 10�6
where almost half fibers have not achieved convergence. The final
compliance in these two cases are equal to C ¼ 4:23� 10�6 and
C ¼ 3:94� 10�6, respectively. Again, the proposed NDFO method
has obtained a better solution than the other methods.

By using the NDFO-Cmethod, the optimized results are presented in
Fig. 17. Three filter radius have been used, r ¼ 30 mm, r ¼ 60 mm, and
r ¼ 100 mm. Again, the fiber continuity is smoother with larger filter
radius, however, there is an increase in the compliance values. The
compliance for these cases are equal to
C ¼ 4:85� 10�6; C ¼ 4:99� 10�6, and C ¼ 5:48� 10�6. As expected,
these values are greater than the NDFO solution (without filter). Table 4
summarizes the compliance values for all cases and Fig. 18 shows the
evolution of the compliance values through the iterations.
(b) r = 60 mm

0 mm

d with three different filter radius.

half cylinder example.

NDFO-C NDFO-C
r ¼ 30 mm r ¼ 60 mm r ¼ 100 mm

4:85� 10�6 4:99� 10�6 5:48� 10�6



CFAO
BCP
NDFO
NDFO-C with r = 30 mm
NDFO-C with r = 60 mm
NDFO-C with r = 100 mm
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Fig. 18. Evolution of the compliance values through iterations.
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8. Concluding remarks

A novel method for optimizing fiber orientation has been pro-
posed, which is based on elemental individual fibers that can
assume arbitrary angles. It is also based on the discrete material
optimization (DMO) method to find the appropriate angle for each
element. The proposed method, called NDFO (Normal Distribution
Fiber Optimization) uses the generic form of the normal distribu-
tion function to select only one discrete angle among any number
of candidate angles. By applying the continuation method to the
parameter ph, total fiber convergence is achieved. Additionally,
fiber continuity is achieved by including a spatial filter, such as
the filter proposed in this work, where the level of fiber continuity
can be controlled by the size of the filter radius.

Numerical examples have shown that the proposed method has
obtained better results than previous methods based on elemental
fibers, considering the final configuration of fibers and the value of
compliance. With fiber continuity, the fibers are disposed in a more
organized way, improving the manufacturability of the solution.
However, the compliance is greater than the solutions without
the filter. Even though, some results with fiber continuity are still
better than the solution from previous methods.

Because the solution of the proposed method is element-based,
there is still need for post-processing of the fiber paths before man-
ufacturing process. Thus, additional investigations are needed in
order to reduce the gap between numerical results and
manufacturing.
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