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This paper presents a detailed investigation about the geometric non-linear stiffness behavior of corru-
gated laminates in six different load cases. The considered tensile, bending, and shear load cases allow
the modeling with a unit-cell approach assuming a generalized plane strain state. The torsional load case
is more complex. There the mechanical response depends on the number of unit-cells and the width of
the samples in case of geometric non-linearities. We first identify the load cases that show a non-linear
stiffness response under large deformation. Then the non-linear behavior is analyzed in detail using
numerical simulation and we aim for mechanical explanations to describe the non-linear behavior. The
FE simulations of the torsional load case are validated using experiments with 3D printed samples.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Corrugated structures have a highly anisotropic behavior due to
their geometry. They have a very high compliance in one direction
while they have very high bending stiffness about the same axis
due to the significant amount of material placed away from the
neutral axis. The high bending stiffness is achieved with relatively
low material use, this makes them very attractive for lightweight
structures for example in cardboards [1] or as structural elements
in aircrafts e.g in Junkers Ju-52 to increase the stability [2]. Further-
more, they were suggested as flexible skins [3] for morphing wing
applications [4–6] or lately also for artificial muscles [7]. Recently,
Dayyani et al. published a review paper about corrugated struc-
tures in morphing aircrafts [8]. Due to their geometry, corrugated
structures can undergo large deformations while the local strains
remain relatively low [9]. In many applications the material behav-
ior remains linear, but the large global deformations can cause
non-linearities. Hence, it is important to analyze the geometric
non-linear behavior of these structures.

Several models exist to calculate the initial stiffness response of
corrugated laminates in the form of equivalent plate properties.
Xia et al. [10,11] suggested a model to calculate the homogenized
equivalent stiffness values for thin and balanced laminates. Brias-
soulis et al. [12] modeled the equivalent mechanical properties of
thin orthotropic corrugated plates. Kress et al. suggested a
closed-form solution for thin corrugated laminates consisting of
circular sections [13] and a numerical model that is also valid for
thick laminates [14]. Biancolini et al. [1] presented a model to cal-
culate the equivalent stiffness properties for corrugated boards.
Dayyani et al. [15] investigated equivalent models for composite
corrugated cores coated with an elastomer. All these models are
only valid for linear analysis and do not take into account geomet-
ric non-linearities that occur under large deformation.

There also exist some investigations about the non-linear
behavior of corrugated laminates. Liew et al. [16] and Peng et al.
[17] presented studies about the non-linear mechanical response
of corrugated skins based on the mesh-free Galerkin method and
first-order shear deformation theory. Thill et al. [18] investigated
the mechanical behavior of trapezoidal shaped corrugated lami-
nates under large tensile displacements transverse to the corruga-
tion direction. Dayyani et al. [19] conducted a numerical and
experimental study about the behavior of composite corrugated
cores. Lately, we [20] presented an analytical model, validated with
experimental and numerical data, that can predict the non-linear
stiffness response of corrugated laminates in tensile loading. A
comprehensive study on the non-linear structural response of cor-
rugated laminates under all possible singly applied static loading
situation can as of yet not be found in literature.

The present paper presents an investigation about the geomet-
ric non-linear behavior of corrugated structures and studies the
mechanics that drive the non-linear stiffness response. We con-
sider six load cases, in particular two tensile load cases, two bend-
ing load cases, a shear load case and a torsion load case. The
authors are aware of the fact that the principle of superposition
does not hold in the case of non-linear analysis. Hence, we would
like to emphasize that the study aims to understand the non-linear
mechanisms in corrugated laminates in different loading rather
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Fig. 2. Corrugated structures consisting of circular sections.
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than presenting an equivalent stiffness model where various load-
ings can be coupled.

2. Modeling of corrugated laminates

This section presents the load cases that are considered, shows
the definition of the geometry and the coordinate systems, and it
introduces the notation of the constitutive stiffness matrix of cor-
rugated laminates. Then the used numerical models are described,
namely a unit-cell and a full model, and at the end of the section
the material properties are listed.

Fig. 1 shows the six load cases that describe the mechanical
response of corrugated sheets. Although in the non-linear case it
is not valid to superpose the different loadings, a detailed analysis
of the non-linear behavior of each of the six load cases gives impor-
tant insights about the mechanism that have to be considered if
dealing with geometric non-linearities. In this paper we only con-
sider geometric non-linearities (and non-linear contacts in load
case 5), but we assume that the material behavior remains linear.

We consider corrugated shapes consisting of circular sections
defined as shown in Fig. 2. The parameters are the amplitude c,
the laminate thickness tlam, the radius of the circular section R,
the periodic cell-length p and the sample width w in the
x� direction. We use a global coordinate system x; y and z and a
local coordinate system s; t.

To denote the single stiffness terms of a flat laminate, we use
the well-known notation of the classical laminate theory where
the ABD-matrix links the strains and curvatures with line forces
and moments [21]:
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To indicate the stiffness terms of the corrugated laminate we
use the superscript �:
Fig. 1. Load c
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In order to reduce the numerical effort, we can take advantage
of the periodicity of corrugated structures by only modeling one
unit-cell. Further, we can also consider a generalized plane strain
state in the x-direction. Fig. 3 shows two possible unit-cells. The
red one is mostly used when modeling corrugated structures; we
also use this unit-cell for load case 1– 4. However, for bending
about the x-axis in load case 5 we found out that the green unit-
cell is more advantageous if contact between the unit-cells occurs.
In this case the green unit-cell allows to model self-contact with-
out introducing rigid walls. Certainly, the results are independent
of the choice of the unit-cell. For the twist load-case the unit-cell
and generalized plane strain modeling is not as straight forward
for large deformations. Furthermore, this load-case should be com-
pared to experiments where the samples cannot fulfill an infinite
width. Therefore, we use a full model with four unit-cells and a
ases [13].



Fig. 3. Possible unit-cells (red and green).
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finite width in the present study to investigate the twist load case.
The authors are aware of the fact that the results of a model with a
finite width will be influenced by free edge effects.

2.1. Unit-cell model

For all considered load cases except the torsion load case we can
use a unit-cell model. We implement two different unit-cell mod-
els as shown in Fig. 4. All simulations are conducted with Ansys
Mechanical classic 14.5. The first model (see Fig. 4a) is a 3D model
consisting of SOLID186 elements with 16 nodes for load case 1,2,3,
and 5 and 20 nodes (including mid-node in the x-direction) for load
case 4. We use one element per layer through the thickness, 40 ele-
ments along the s-direction, and one element in the x-direction.
One element per layer through the thickness is sufficient to obtain
accurate stiffness results in which we are interested in this study
since the studied laminate is very thin. The stress results might
be less accurate, however, we only use them for qualitative illus-
tration of the different load cases in the present paper. In the x-
direction we assume a generalized plane strain state which means
that the distribution of all state variables is homogeneous along x.
On both edges of the unit-cell we apply periodic boundary condi-
tions. The unit-cell has an amplitude c of 20 mm and a periodic cell
length p of 100 mm. The model consist of 2 layers. The model that
is used for all the calculations is shown in Fig. 4a (i). Since the
model consists of only two layers, it is very thin and it is difficult
to visualize stress distributions with colors. Therefore, we scale
the thickness and the width in the post-processing (as shown in
ii)) to plot stress distributions, the quantitative stress values
remain the same in the post-processing.

For the bending about the x-axis non-linear contact can occur if
the corrugation amplitudes are very large. Therefore, we introduce
a second unit-cell model as shown in Fig. 4b. Since in this load case
there are no enforced displacements in the x-direction, and the
Fig. 4. Unit-cell model: (a) 3D unit-cell which allows to model displacements in
direction of the generalized plane strain (i) how it is used for the FE calculations and
(ii) a post-processed model with scaled thickness to be able to visualize the stress
distributions and (b) 2D unit-cell model that can be used to model self-contact in
load case 5.
strains along x may be assumed to be very small, we can reduce
the model to a 2D model with a special plane-strain state. We
use the PLANE183 element with 8 nodes. Also here we use one ele-
ment per layer, and, considering that we need a finer mesh due to
the contact and the fact that the arc length is longer for corruga-
tions with large amplitudes, 400 elements along the s-direction.
The contact was modeled with contact elements of the type
CONTA172 using the penalty method. The geometry is defined with
an amplitude of c ¼ 80 mm and a periodic cell length p ¼ 100 mm.

2.2. Full model

For the torsion load case a generalized plane strain exists along
convected coordinates which circumstance cannot be mapped
with our unit-cell model in Ansys Mechanical. Also a 2D unit-cell
model with plane strain elements is not suitable since it does not
allow loading in the x-direction. Furthermore, the FE simulations
should be validated with experiments. Hence we need a FE model
that has the same geometry and boundary conditions as in the
experiments. Since the samples have a finite width, the mechanical
response is influenced by free edge-effects and generalized plane
strain does not hold anymore. Therefore, we use a full model for
load case 6 as illustrated in Fig. 5. The model consists of four unit
cells and a finite width. We test different geometries. Since we also
verify these simulations with experiments and the test samples are
printed with a 3D printer, the dimensions of the samples have to be
chosen according to their manufacturability. We chose the
following geometric parameters: p ¼ 40mm ¼ const; c ¼ ½5 mm;

10 mm; 30 mm�, and the width is 25 mm and 50 mm, respectively.

2.3. Materials

To model the corrugated laminates, we used a carbon fiber rein-
forced plastic (CFRP) namely a high modulus carbon fiber epoxy
composite. Its properties are listed in Table 1. We tested two differ-
ent lay-ups: a [0, 0]� and a [90, 90]� configuration. Each layer has a
thickness of 0:125 mm.

To fabricate the test samples for the experiments we used a 3D
printer and all specimens were made from PolyLactic acid (PLA). Its
properties are shown in Table 2. In order to be able to compare the
numerical and experimental results we used PLA for the simulation
with the full model. The samples made from PLA have a thickness
of 0:52 mm;0:55 mm, and 0:975 mm for amplitudes of
c ¼ 5 mm;c ¼ 10 mm, and c ¼ 30 mm, respectively. The different
thicknesses of the different geometries are due to the fabrication
process. We measured a tolerance in the thickness of about
�0:05 mm.

3. Geometric non-linearities

In the following subsections the results of the FE simulations
are presented for the different load cases. The stiffness response
for large deformations is analyzed and the load cases where
Fig. 5. FEM model with four unit-cells and a finite width.



Table 1
Material properties of high modulus Carbon Fibre Epoxy Composite.

E11[GPa] 290 E22[GPa] 5 E33[GPa] 5
G12[GPa] 5 G13[GPa] 5 G23[GPa] 2:083
m12 [–] 0:41 m13 [–] 0:41 m23 [–] 0:2

Table 2
Material properties of PLA.

E11[GPa] 3:5
G23[GPa] 1:3
m23 [–] 0:346

Fig. 7. Normalized stiffness eA11 for different global strains �x .
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geometric non-linearities occur are identified. For the torsion load
case we present a detailed study including experimental
validation.

The enforced loads are chosen in a way that the material
strength is not exceeded. The limit is set to a maximum material
strain of 1%. Hence geometric non-linearities are only investigated
in the range before material failure is expected. Since the maxi-
mum allowable material strain for PLA is higher than for a typical
fiber reinforced plastic material, the PLA-samples for the experi-
ments can reach higher local strains. For the simulation, however,
material non-linearities are not considered.

Within all the colored deformation plots of the 3D unit-cell
model for load case 1–5, the thickness is scaled to have a better vis-
ibility of the stress distributions.

Within this paper, we do not combine the non-linear stiffness
response with the stiffness of the underlying base sheet laminate,
since such comparisons between initial base and corrugated sheet
stiffness has been shown by other authors [13].

3.1. Load case 1

In load case 1 a global strain �x is enforced in x-direction. One
unit-cell is modeled using periodic boundary conditions and gener-
alized plane strain. The results are obtained using CFRP material.
Fig. 6 shows the deformed shape for load case 1. The resulting stiff-
ness response depends on the cross-section area and the normal
force in x-direction. Therefore, it is obvious that we will not
observe geometric non-linearities which is confirmed looking at

Fig. 7. This figure shows the stiffness component eA11 normalized
with the initial stiffness.

3.2. Load case 2

Load case 2 is a tensile load case where a global strain �y is
enforced in y-direction. The results are obtained using CFRP
Fig. 6. Deformation in load case 1, the colors represent the stress distribution ry ,
the deformations are scaled by a factor of 50. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this article.)
material. In Fig. 8 we see the deformed unit-cell. Fig. 9 shows the

normalized stiffness values eA22 for different �y. The stiffness
depends on the enforced global strain, hence the mechanical
response is highly non-linear.

We extensively discussed the geometric non-linear response of
this load case in a recently submitted paper [20]. Understanding
the governing mechanism we suggested an analytical model and
verified it with simulations and experiments using different
geometries. The non-linear stiffness response can be explained
with the governing mechanism shown in Fig. 10. The mechanical
response is driven by the bending moment M and the normal force
N. In the beginning, when the amplitude is large, the response is
mainly driven by the moment M. The more the corrugated struc-
ture deforms, the smaller the amplitude gets. Hence, the moment
gets less and the normal force more important. This results in
the typical stiffness response as illustrated in Fig. 11.

3.3. Load case 3

In load case 3 a shear strain �xy is enforced. The results are
obtained using CFRP material. Fig. 12 illustrates the deformed
unit-cell in the shear load case and Fig. 13 shows the normalized
Fig. 8. Deformation in load case 2, the colors represent the stress distribution ry .



Fig. 9. Normalized stiffness eA22 for different global strains �y .

Fig. 10. Governing mechanism for tensile loading in y-direction [20].

Fig. 11. Typical stiffness response for tensile loading in y-direction: in the
beginning the stiffness depends on the bending stiffness, and in the end on the
axial sheet stiffness [20].

Fig. 12. Deformation in load case 3, the colors represent the stress distribution sxy ,
the deformation is scaled by a factor of 10. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this article.)

Fig. 13. Normalized stiffness eA66 for different global shear strains �xy .

Fig. 14. Deformation in load case 4, the colors represent the stress distribution rx .
(For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this article.)
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stiffness eA66 for different shear strains. As we can see from the plot
the stiffness value does not change with increasing strains, since
the governing mechanisms remain the same.

3.4. Load case 4

Load case 4 describes a bending about the global y-axis as
shown in Fig. 14. The results are obtained using CFRP material.
To investigate this load case we use a unit-cell with periodic
boundary conditions and apply a generalized plane strain state.
The stiffness response for different curvatures jx is illustrated in

Fig. 15. The stiffness values eD11 are normalized with the initial
stiffness. For deformations up to the point where the maximum
material strain is reached, the bending stiffness keeps its value
since the governing mechanisms remain the same.
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Fig. 15. Normalized stiffness eD11 for different global curvature jx .

Fig. 17. Normalized stiffness eD12 and eD22 for different global curvature jxy and jy ,
respectively.

Fig. 18. Typical moment-curvature curve for corrugations with large amplitudes:
after self-contact of the unit-cells the bending stiffness increases.
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3.5. Load case 5

In load case 5 we investigate a bending about the global x-axis
as illustrated in Fig. 16. The unit-cell model is used and periodic
boundary conditions are applied and generalized plane strain is
assumed. The results are obtained using CFRP material. If the

unit-cells do not touch each other, the bending stiffnesses eD12

and eD22 remain constant also for large enforced curvatures jxy

and jy, respectively, as we can see in Fig. 17.
If the amplitudes are large, self-contact occurs between the

unit-cells if the structure is bent about the x-axis. This self-
contact increases the bending stiffness as illustrated in Fig. 18.
Hence, the bending stiffness response becomes non-linear result-
ing in a moment–curvature curve with characteristic tangent stiff-
ness without and with contact.

3.6. Load case 6

For the torsion load case the unit-cell assumption does not hold
anymore in case of geometric non-linearity in the global coordi-
nate system. This can easily be explained with Fig. 19: while the
line in the rotation center keeps its length (blue) all the lines at
x – 0 change their length (green to red). Therefore, the evaluation
of an equivalent non-linear stiffness is not possible, instead the
non-linear stiffness curves of different finite samples are shown
in the following.
Fig. 16. Deformation in load case 5, the colors represent the stress distribution ry .
(For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this article.)

Fig. 19. In case of twist the generalized plane strain assumption does not hold
anymore for large deformations in the global coordinate system: while the line in
the rotation center keeps its length (blue) the arc length changes for x– 0 (green to
red). (For interpretation of the references to colour in this figure caption, the reader
is referred to the web version of this article.)



Fig. 21. Experimental test-setup for the torsional load case.
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Therefore, this load case is studied with a full FE model contain-
ing four unit-cells and a finite width. The numerical results are ver-
ified with experimental data. The results are obtained using PLA
material. For large twists the corrugation tends to get unstable.
The FE simulation does only cover the region before these instabil-
ities occur. The experiments show the stability behavior containing
several instabilities for some samples.

Six different geometries are tested with different amplitudes
and widths. The periodic cell length is 40 mm, the amplitudes
are c ¼ 5;10 and 30 mm. The width w is 25 mm and 50 mm. The
samples are made from PLA using a 3D printer.

3.6.1. Experiments
Fig. 20 shows the six different samples that were tested. To test

the samples on a tensile test machine we designed a test set-up
where we are able to transform the traverse displacement into a
rotation and the measured reaction force into a torque. The test
set-up is shown in Fig. 21. One side is clamped while the other side
is mounted on balanced alloy wheel that can rotate. Two ball bear-
ings guarantee that the friction onto the wheel is minimized. Then
the force is redirected to a second wheel with a carbon roving and
then to the traverse of the tensile machine. Also this wheel is
mounted on a ball bearing. For the tests we use a Zwick tensile test-
ing machine with a load cell of 5kN. The rotation is calculated by
multiplying the traverse displacement by the radius of the
clamping wheel. A degree template is glued onto the wheel to
double-check the values. The torque is calculated by multiplying
the measured force by the radius of the wheel. The tests were
Fig. 20. Tested samples mou
conducted at low speed, each experiment taking about three min-
utes to be completed. The test temperature was around 22�. The
samples were tested shortly after printing them, hence the liquid
nted in the test bench.
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concentration can be assumed to be very low. According to [22]
PLA is a very stable material and the creeping strains remain lower
than 0.05 % for our operating temperatures and liquid concentra-
tions. Therefore, creeping was not considered in the study.

Four cameras are used to visually capture the experiment. One
camera is positioned on top of the experiment, one in front, one
takes pictures from the side, and one tracks the degree template.

3.6.2. Comparison between numerical and experimental results
In this section we first show a qualitative comparison between

the numerical and experimental results and analyze the deforma-
tion behavior for the different samples. Then we present a quanti-
tative comparison, namely the torque-rotation-curves, and
comment the different stiffness responses.

In all the following figures, the colors in the numerical results
denote the displacement in y-direction. For the same amplitude
the deformed shapes qualitatively look similar for both tested
widths. Therefore, we only show illustrations of the deformed
shapes for the wider samples since they correspond more with a
corrugated plate rather than a beam.

Fig. 22 shows the deformed shapes observed in the experiments
and simulation for specific rotations for the samples with an ampli-
tude of 5 mm and a width of 50 mm.We can see that the numerical
and experimental results agree very well. With increasing rotation
the corrugations straighten at the free edges. For rotation angles of
250� and higher we observe plastic deformations which are not
considered in the simulation.

Fig. 23 shows the deformation plots for an amplitude of 10 mm
and a width of 50 mm. We observe a different deformation behav-
ior than for the samples with the lower amplitudes due to the
longer arc-length. As the rotation angle increases, first the free
edges also start to straighten, but at a rotation of 410� for the wider
sample, the corrugation gets unstable and collapses. We observe a
second instability at a rotation of 680� for w ¼ 25 mm and 555� for
w ¼ 50 mm, respectively.

Fig. 24 shows the deformed shapes for the samples with an
amplitude of 30 mm and a width of 50 mm. For both widths the
global behavior is similar. At a rotation angle of 220� for
w ¼ 50 mm self-contact between the unit-cells occurs. Since we
do not consider non-linear contact in the FE simulation, we stop
the simulation at this point. If the rotation is further increased,
we observe again an unstable behavior and the corrugation col-
lapses. At 315� for w ¼ 50 mm, the corrugated structures touches
the ground of the experimental test set-up and the experiment is
stopped.
Fig. 22. Visualization of numerical and experim
In the following part of this subsection, the quantitative com-
parison between the numerical and experimental results is pre-
sented by means of the torque-rotation-curves.

Fig. 25 shows the comparison between experimental and
numerical data for the first configuration with an amplitude of
5 mm. We can see that the experiments are very robust and
repeatable. For a width of w ¼ 25 mm the samples fail after a rota-
tion of about 520�. The experimental and numerical results agree
very well up to a rotation angle of 320�, after that the FEM simula-
tion predicts experimentally measured stiffness too high. At this
point we also observed plastic deformation during the experiments
which explains the difference to the simulation. Also for
w ¼ 50 mm the FE simulation matches very well with the experi-
ments. Again the simulation gets stiffer than the experiments at
a rotation of about 160�, this can be explained with the fact that
the non-linear material behavior is not considered in the FE model.
The sample with a width of 50 mm is stiffer than the one with a
width of 25 mm as expected. The overall behavior remains the
same for both widths. A non-linearity due to large deformation
can clearly be identified.

Fig. 26 shows the experimental and numerical results for an
amplitude of 10 mm. All the experimental samples show a robust
behavior. In the experiment we could see two instabilities that
can clearly be identified in the torque-rotation curve as a drastic
stiffness loss. These instabilities lead to a non-linear behavior.
Again the FEM simulation is able to reproduce the experiments
in the area before the stiffness loss appears. Some deviations occur,
due to the linear material model in the FE simulation. Non-
linearities due to large rotations can clearly be identified in the
stiffness curve. As expected, the wider sample is stiffer, the global
behavior remains the same.

Fig. 27 shows the results for the samples with an amplitude of
30 mm. The tested samples are robust and show the same behav-
ior. For a width ofw ¼ 25 mm the stiffness up to a rotation of about
200� remains almost linear with a slight increasing slope for higher
rotations. Between 200� and 300� the torque stays almost constant
and then it rapidly decreases. The experiments were stopped at the
point where the corrugation started to touch the ground of the
experimental set-up. In comparison to the experiments with the
lower amplitudes, non-linear material behavior was not observed
for these samples. The simulation delivers results up to 200� and
reproduces the experimentally found behavior very well. For a
width of w ¼ 50 mm the global behavior is similar to the experi-
ments with c ¼ 30 mm and w ¼ 25 mm, however, the samples
are stiffer. The experiments are repeatable, non-linear material
ental results for c = 5 mm and w = 50 mm.



Fig. 23. Visualization of numerical and experimental results for c = 10 mm and w = 50 mm.

Fig. 24. Visualization of numerical and experimental results for c = 30 mm and w = 50 mm.

Fig. 25. Comparison between numerical and experimental results for c = 5 mm.
Fig. 26. Comparison between numerical and experimental results for c = 10 mm.
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behavior was not observed. The simulation agrees very well with
the experimental results.
For all the samples we observed some differences between the
experiments and the simulations. These can mainly be explained
with the fact that the simulation does not take into account



Fig. 27. Comparison between numerical and experimental results for c = 30 mm.
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material non-linearity and non-linear contact. Further reasons
might be the tolerances in the thickness and the periodic–cell
length of the fabricated samples, uncertainties in the material data,
and the fact that the simulation assumes isotropic material
behavior.

4. Discussion

Experiments as well as simulations show that the twist defor-
mation of load case 6 leads to structural response with different
characteristics, dependent on corrugation amplitude. In particular,
specimens with large corrugation amplitude buckle at critical twist
whereas those with smaller corrugation amplitude deform in a
stable manner until material failure occurs. The phenomenon
results from two competing mechanisms. The inherently stabiliz-
ing mechanism is illustrated with Fig. 28, where it is shown that
a twisted prismatic body, whose ends are kept at the same dis-
tance, experiences direct strains constant along the original
straight lines which have become helix-shaped. The direct strain
increases with increasing distance from the center of rotation
and creates positive direct stress whose resultant of the cross-
sectional area gives a tensile force, preventing instability. This
straightening effect dominates the specimens with small corruga-
tion amplitude, but ceases to be effective at higher amplitudes,
where the arc-length along the corrugations is much larger than
the distance between the clamps.

The remaining question, how the stiffness response is influ-
enced, if coupling of the different loading is considered, will be
addressed in future studies.
Fig. 28. Illustration of the strains in x-direction in case of torsional loading.
5. Conclusion

In the present paper we investigated the geometric non-linear
behavior of corrugated laminates in six different loading situations.
In load case 1, 3, and 4 we found that material strength is exceeded
before geometric non-linearities can occur. All the non-linear stiff-
ness curves show a very progressive behavior with a knee where
the stiffness changes. For load case 2, tensile loading in y-
direction, the stiffness response is highly non-linear due to large
deformations. In load case 5, bending about the x-axis, the stiffness
remains linear until self-contact between the unit-cells occur. At
this point the stiffness increases. In load case 6, the large deforma-
tions also resulted in geometric non-linearities. Due to its com-
plexity load case 6 was investigated numerically and
experimentally. The experiments are very robust and reproducible
and agree very well with the FE simulation. We observed that the
qualitative non-linear stiffness response mainly depends on the
corrugation amplitude.

These results can be used in design processes where large defor-
mations might occur, such as morphing wings, to estimate whether
linear modeling is sufficient or geometric non-linearities have to be
considered. We can conclude that non-linearities have to be taken
into account for structural materials in load case 2 and 6, and in
load case 5 if self-contact occurs. To increase the applicability for
design purposes, we plan to model combinations of the different
load cases and conduct parametric studies in future work.
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