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Featured by the two material length parameters in the nonlocal strain gradient theory, it is still unknown
that what are the boundary conditions of nonlocal strain gradient beams, since the equations of motion
and boundary conditions of these beam models appear in the same form as those of the classical ones.
Based on the weighted residual approaches, this paper provides the boundary value problems of
Euler–Bernoulli beams within the framework of the nonlocal strain gradient theory in conjunction with
the von Kármán nonlinear geometric relation. The closed-form solutions for bending and buckling loads
of nonlocal strain gradient beams are obtained. Numerical results show that the higher-order boundary
conditions have no effect on the static bending deflection of beams for the cases studied. However, the
higher-order boundary conditions and the material length parameters have a significant effect on the
buckling loads. Finally, when the two material length parameters are the same, the buckling loads can
not always reduce to the classical solutions, the findings of which violate our expectations. The results
provided in this work are expected to be helpful for the applications of this theory to the analysis of engi-
neering structures.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Engineering structures such as beams, plates and shells have
been widely used in micro- and nano-sized sensors, actuators,
atomic force microscopes. In these applications, size effects of
material properties are observed at small sizes both in experimen-
tal works [1–4] and in numerical simulations [5–7]. The aforemen-
tioned works show that the materials exhibit either stiffening
behaviors or softening behaviors in comparison to the bulk cases.
Therefore, continuum theories that can capture the size effects of
materials at small sizes have attracted considerable attention in
the research communities with the view toward a better under-
standing and characterization of materials.

Based on the concept that the stress at a reference point is not
only a function of the reference point, but also the strain at all
points of the body, Eringen [8] developed an elasticity theory for
the applications in surface waves. With the emerging of carbon
nanotubes and graphene sheets, this theory have been extended
to the study of the static and dynamic behaviors of structures in
terms of rods [9–14], beams [14–25], plates [26–33] and shells
[34–38]. For more details, the interested reader may refer to the
recent reviews by Arash and Wang [39] and Eltaher, et al. [40].
In general, the use of this theory results in the softening effect
when it is compared with the classical elasticity theory. However,
two issues violate the softening phenomena. The first issue is that
the bending solutions of nonlocal models in some cases are found
to be the same as the classical solutions. In other words, the size
effects vanish for cantilever beams subjected to concentrated
forces [41]. To address this issue, Challamel and Wang [42] pro-
posed a gradient elastic model as well as an integral nonlocal elas-
tic model that is based on combining the local and the nonlocal
curvatures in the constitutive relation. After this, several fresh
ideas are raised to clarify this issue [16,43–46]. For example, Khod-
abakhshi and Reddy [43] developed a unified integro-differential
nonlocal elasticity model and used this model to the bending of
Euler–Bernoulli beams. Fernández-Sáez et al. [46] investigated
the bending problems of Euler–Bernoulli beams using the Eringen
integral constitutive equation. The closed-form bending solutions
of Euler–Bernoulli beams and Timoshenko beams subjected to dif-
ferent loading and boundary conditions were carried out by Tuna
and Kirca [16]. It appears that the first issue can be solved with
the aid of the integro-differential nonlocal elasticity theory. The
second issue is that one can only obtain a few natural frequencies
of free vibrations of cantilever beams and that the counterintuitive
stiffening effect is observed. This issue has been analytically solved
by Xu et al. [47] using the weighted residual approaches (WRAs). In
their work, they reformulated the variational-consistent boundary
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conditions, and presented the closed-form frequency solutions for
Euler–Bernoulli beams and Timoshenko beams. The solutions of
the above-mentioned issues demonstrate that, when one uses
the nonlocal elasticity, the boundary conditions should be correctly
employed rather than simply replacing the classical force resul-
tants by the nonclassical force resultants in the equilibrium
equations.

Within the framework of strain gradient elasticity theory, it
emphasizes that materials constituting the body can be considered
as atoms with higher-order deformation mechanism at small
scales. Significant contributions in this field can be found in Mind-
lin and Tiersten [48], Toupin [49], recently in Yang et al. [50], Lam
et al. [1] and Zhou et al. [51] and literature therein. This theory has
been adopted to solve boundary value problems of static and
dynamic behaviors of structures. For example, Papargyri-Beskou
et al. [52] investigated the effects of the material length parame-
ters on the bending and buckling of Euler–Bernoulli beams. Since
then, the strain gradient theory has been widely used in modelling
the micro- and nano-sized beams [53–67], plates [32,68–79] and
shells [80–83]. These works show a stiffening effect for structures
with characteristic sizes reducing to small sizes.

In order to bring both of the length scales into a combined elas-
tic theory such that the stiffening effects and the softening effects
of materials can be well described, Lim et al. [84] proposed a
higher-order nonlocal strain gradient theory and applied the non-
local strain gradient beam models to the study of the wave propa-
gation. After that, several works dealing with buckling [85], free
vibration [86,87] and wave propagation [88] of beams are reported.
In these works, they emphasize that the classical results will be
obtained for the same material length parameters. Since the partial
differential order of the governing equation(s) of motion increases,
the boundary value problems of structures modelled by the nonlo-
cal strain gradient theory should be treated carefully. However,
similar works have not been reported in the literature. For more
details of nonlocal strain gradient models, one can refer to
Papargyri-Beskou et al. [52], Li et al. [60], Akgöz and Civalek [57],
Lazopoulos and Lazopoulos [59], Liang et al. [65] and Xu and Deng
[66] for developing appropriate method to solve the boundary
value problems.

The present paper is motivated by the fact that the higher-order
boundary conditions induced by the nonlocal strain gradient the-
ory should play a significant role on the buckling behaviors of
Euler–Bernoulli beams. Therefore, the objective of the present
work is to use the WRAs to derive the variational-consistent
boundary conditions of nonlocal strain gradient beams, and to pre-
sent the closed-form buckling solutions for beams subjected to
various boundary conditions in which the effect of higher-order
boundary conditions on the buckling loads is highlighted.

The structure of this paper is as follows. Section 2 briefly sum-
marizes the nonlocal strain gradient theory. In Section 3, the gov-
erning equations of motion of nonlocal strain gradient Euler–
Bernoulli beams in conjunction with the von Kármán nonlinear
geometric relation are given, and the variational-consistent bound-
ary conditions are derived by the WRAs. After the closed-form
solutions of beam bending problems given in Section 4, the buck-
ling solutions for beams subjected to three typical boundary condi-
tions are addressed in Section 5. Finally, the conclusions are drawn
in Section 6.

2. Nonlocal strain gradient theory

Motivated by the observations that materials at small scales
exhibit either softening behaviors or stiffening behaviors, Lim
et al. [84] developed an elastic theory which combines both the
nonlocal elasticity theory and the strain gradient theory. Within
the framework of this theory, the concept of the higher-order non-
local strain gradient elasticity is proposed

t ¼ r�r � r�; ð1Þ
where t is the total stress tensor of nonlocal strain gradient theory,
r is the gradient symbol. The stress tensor r and higher-order
stress tensor r� are given by

r ¼
Z
V
K0ðy;x; le0ÞC : eyðyÞ dV ð2Þ

r� ¼ l2m

Z
V
K1ðy;x; le1ÞC : reyðyÞ dV ð3Þ

where e is the classical strain tensor, C is the usual fourth-order
elasticity tensor, lm is the internal length parameter, le0; le1 are non-
local parameters, Kiðy;x; leiÞ; i ¼ 0;1 is the attenuation kernel
function.

Mathematically, it is difficult to solve the above integral consti-
tutive equations, Lim et al. [84] then, following the Eringen’s
method, introduced a simple constitutive equation

ð1� l2er2Þt ¼ C : e� l2mC : r2e ð4Þ
For one-dimensional problems, the above constitutive equation

reduces to

1� l2e
d2

dx2

 !
txx ¼ Eexx � l2mEexx;xx: ð5Þ

Note that Eq. (5) contains two material length parameters. The
first one indicates the nonlocal effect, and the second one denotes
the size effect due to the higher-order strain gradient. Additionally,
the nonlocal elasticity [8] and the strain gradient theory [89–91]
can be obtained by taking lm ¼ 0 and le ¼ 0, respectively.

3. Basic equations of nonlocal strain gradient beams

For preliminaries, we first present in Section 3.1 the main pro-
cedures developed in the literature to the boundary value prob-
lems of the nonlocal strain gradient beams. How the boundary
conditions are obtained can be easily identified. Then, we use the
WRAs to formulate the variational-consistent boundary conditions
in Section 3.2.

3.1. Governing equations: A summary

We consider an elastic beam of length L, width b and thickness
h. The x-axis is taken along the length of the beam, and z-axis is
along the thickness of the beam. According to the Euler–Bernoulli
beam theory, the displacements (u1, u2, u3) along the (x, z) coordi-
nate directions are given by

u1ðx; zÞ ¼ uðxÞ � zw0; u2ðx; zÞ ¼ 0; u3ðx; zÞ ¼ wðxÞ; ð6Þ
where u, w are the axial and the transverse displacements of the
beam mid-plane; the prime denotes the spatial differentiation with
respect to variable x.

The only non-vanishing strain for a beam under large displace-
ments can be captured by the von Kármán nonlinear strain, i.e.,

exx ¼ u0
1 þ

1
2
u02
3 ¼ u0 þ 1

2
w02 � zw00; ð7Þ

where exx is the longitudinal strain.
Next, we will present the detailed derivation of the governing

equation and boundary conditions. With this aim at hand,
we first give the following virtual work of the strain energy as
follows
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dU ¼
Z
V
ðrxxdexx þ r�

xxdexx;xÞ dV

¼
Z
V
ðrxxdexx � r�

xx;xdexxÞ dV þ ½
Z
A
r�

xxdexx dA�
L

0

�����
¼
Z L

0
½Ncðdu0 þw0dw0Þ �Mcdw00� dx

þ ½Nnðdu0 þw0dw0Þ �Mndw00�jL0 ð8Þ
where V, L and A are the volume, the length and the cross-sectional
area of the beam. The stress resultants defined in Eq. (8) are given
by

ðNc;McÞ ¼
Z
A
txxð1; zÞ dA; ðNn;MnÞ ¼

Z
A
r�

xxð1; zÞ dA: ð9Þ

The virtual work done by the external forces reads

dV ¼
Z L

0
ðfduþ qdwÞ dx; ð10Þ

where f(x) and q(x) are the distributed axial and transverse loads,
respectively.

The variational principle states that the first variation of the
total potential energy of the beam vanishes, i.e.,

dU � dV ¼ 0: ð11Þ
Substitution of the expressions for dU and dV from Eqs. (8) and

(10) into Eq. (11), and integration by parts with respect to x, we
arrive at the equations of motion of the beam as

du : N0
c þ f ¼ 0

dw : M00
c þ qþ ðNcw0Þ0 ¼ 0;

ð12Þ

and boundary conditions at the beam ends as

du : either Nc ¼ 0 or u ¼ 0

du0 : either Nn ¼ 0 or u0 ¼ 0

dw : eitherM0
c þ Ncw0 ¼ 0 or w ¼ 0

dw0 : eitherMc � Nnw0 ¼ 0 or w0 ¼ 0

dw00 : eitherMn ¼ 0 or w00 ¼ 0:

ð13Þ

The nonlocal strain gradient constitutive equation as a function
of displacements can be written, by taking into account of Eq. (7),
as

txx � l2e t
00
xx ¼ EðzÞ 1� l2m

d2

dx2

 !
u0 þ 1

2
w02 � zw00

� �
: ð14Þ

Then, the stress resultants can be obtained directly by combin-
ing Eqs. (9) and (14), i.e.,

Nc � l2eN
00
c ¼ Axx u0 þ 1

2
w02

� �
� Axxl

2
m u000 þw0w000 þw002� � ð15Þ

Mc � l2eM
00
c ¼ �Dxxw00 þ Dxxl

2
mw

0000 ð16Þ
where

ðAxx;DxxÞ ¼
Z
A
½EðzÞ � ð1; zÞ� dA: ð17Þ

We then combine the equilibrium Eq. (12) and Eqs. (15) and
(16) to yield the following stress resultants

Nc ¼ Axx u0 þ 1
2
w02

� �
� Axxl

2
mðu000 þw0w000 þw002Þ � l2e f

0 ð18Þ

Mc ¼ �Dxxw00 þ Dxxl
2
mw

0000 � l2e ½qþ ðNcw0Þ0� ð19Þ
Finally, we obtain the equations of motion in terms of displace-
ments by introducing Eqs. (18) and (19) into the equilibrium Eq.
(12), i.e.,

Axx u0 þ 1
2
w02

� �� �0
� ½Axxl

2
mðu000 þw0w000 þw002Þ�0 � l2e f

00 þ f ¼ 0;

ð20Þ

Dxxl
2
mw

000000 � Dxxw0000 þ q� l2e q
00 þ 1� l2e

d2

dx2

 !
ðNcw0Þ0 ¼ 0; ð21Þ

where Nc is given by Eq. (18).
One can see from Eq. (21) that only the presence of the strain

gradient parameter lm raises the order of the differential equation
of motion from four to six. Therefore, it implies from the mathe-
matical points of view that in addition to the classical boundary
conditions, higher-order boundary conditions must also be
enforced for a well-posed boundary value problem of nonlocal
strain gradient beams. The formulation of the boundary value
problems of nonlocal strain gradient beams is presented in
Section 3.2.

For an elastic homogeneous beam with a rectangular cross sec-
tion, we have EðzÞ ¼ E, this then allows us to yield

Axx ¼ EA;Dxx ¼ EI; ð22Þ
where I is the second moment of inertia of the beam.

3.2. Variational-consistent boundary conditions

For convenience of the illustration, we define the following two
classical stress resultants as

Ncl ¼ Axx u0 þ 1
2
w02

� �
; ð23Þ

Mcl ¼ �Dxxw00 ð24Þ
These two expressions enable us to re-write the equations of

motion in terms of stress resultants as

N0
cl � l2mN

000
cl � l2e f

00 þ f ¼ 0; ð25Þ

M00
cl � l2mM

0000
cl þ q� l2e q

00 þ 1� l2e
d2

dx2

 !
ðNcw0Þ0 ¼ 0: ð26Þ

In order to derive the true boundary conditions of the equations
of motion for a nonlocal strain gradient beam. We integrate over
the beam length the summation between the product of Eq. (25)
and du, and the product of Eq. (26) and dw to obtain

0 ¼
Z L

0
ðN0

cl � l2mN
000
cl � l2e f

00 þ f Þdu dx

þ
Z L

0
M00

cl � l2mM
0000
cl þ q� l2e q

00 þ 1� l2e
d2

dx2

 !
ðNcw0Þ0

" #
dw dx:

ð27Þ
Then, by utilizing the integration by parts with respect to the

right hand side of Eq. (27), we have

0 ¼ R L
0 ðN0

cl � l2mN
000
cl � l2e f

00 þ f Þdudx

þR L
0 M00

cl � l2mM
0000
cl þq� l2e q

00 þ 1� l2e
d2

dx2

	 

ðNcw0Þ0

h i
dwdx

¼�dU� þ dV� þ ½Ndu�L0 þ ½Nhdu0�L0 þ½Qdw�L0 þ½Mdw0�L0 þ½Mhdw00�L0;
ð28Þ

where the virtual strain energy expressed in the last line of Eq. (28)
is given by
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dU� ¼
Z L

0
½Ncldu0 þ l2mN

0
cldu

00 �Mcldw00 � l2mM
0
cldw

000 þ Ncw0dw0

þ l2e ðNcw0Þ0dw00� dx: ð29Þ
The virtual external work is given by

dV� ¼
Z L

0
1� l2e

@2

@x2

 !
ðfduþ qdwÞ

" #
dx: ð30Þ

The nonclassical variational-consistent stress resultants
(i.e., force resultant N, higher-order force resultant Nh, shear force
resultant Q , bending moment resultant M and higher-order
bending moment resultant Mh) introduced in Eq. (28) are defined
by

N ¼ Ncl � l2mN
00
cl ¼ 1� l2m

d2

dx2

	 

Axx u0 þ 1

2w
02� �� �

Nh ¼ l2mN
0
cl ¼ l2mAxx u0 þ 1

2w
02� �0

Q ¼ M0
cl � l2mM

000
cl þ Ncw0 � l2e ðNcw0Þ00

¼ � 1� l2m
d2

dx2

	 

ðDxxw00Þ0 þ 1� l2e

d2

dx2

	 

ðNcw0Þ

M ¼ �Mcl þ l2mM
00
cl þ l2e ðNcw0Þ0 ¼ 1� l2m

d2

dx2

	 

ðDxxw00Þ þ l2e ðNcw0Þ0

Mh ¼ �l2mM
0
cl ¼ l2mðDxxw00Þ0:

ð31Þ
It is shown that although the equations of motion are identical

to those reported in the literature [85,87], the resulted boundary
conditions are indeed different, especially for the higher-order
boundary conditions (i.e., (31)2 and (31)5). It is emphasized that
Eqs. (28) and (31) provide all possible boundary conditions of the
nonlocal strain gradient Euler–Bernoulli beams. These boundary
conditions require either prescribed boundary deformations
ðu;w;u0;w0;w00Þ, or prescribed stress resultants ðN;Q ;Nh;M;MhÞ,
or prescribed mixed boundary deformations and stress resultants.
For example, either the deflections ðu;wÞ or the stress resultants
ðN;QÞ, and the slope w0 or moment M have to be prescribed for
the lower-order boundary conditions. For the higher-order bound-
ary conditions, we should specify either u0 or higher-order stress
resultants Nh, and w00 or higher-order stress resultants Mh to con-
stitute a well-posed boundary value problems.

Table 1 presents the comparisons of the basic differences of the
boundary stress resultants for the nonlocal strain gradient Euler–
Bernoulli beams. Actually, different results will be obtained when
one deals with boundary value problems using different higher-
order boundary conditions.

On the other hand, Eq. (31) is the general form of the boundary
stress resultants of the nonlocal strain gradient Euler–Bernoulli
beams. As a result, these expressions can be reduced either to
the nonlocal elasticity or to the strain gradient elasticity. For exam-
ple, when the nonlocal parameter vanishes, the boundary stress
resultants reduce to the same results given by Akgöz and Civalek
[58] and Xu and Deng [92].
Table 1
Boundary stress resultants for the nonlocal strain gradient Euler–Bernoulli beams.

N Nh Q

Li et al. [85,86] Nc ¼ 0 Nn ¼ 0 M0
c ¼ 0

S�ims�ek [87] Nc ¼ 0 Nn ¼ 0 M0
c þ Ncw

Present work (see Eq. (31)) Ncl � l2mN
00
cl ¼ 0 Ncl ¼ 0 M0

cl � l2mM
lm ¼ 0 [15,47,93] Ncl ¼ 0 – M0

cl þ Nc

le ¼ 0 [58,92] – – M0
cl � l2mM

le ¼ 0 [94] Ncl � l2mN
00
cl ¼ 0 Ncl ¼ 0 M0

cl � l2mM
4. Bending solutions

In Section 3, the classical Euler–Bernoulli beam theory has been
generalized to the development of the nonlocal strain gradient
beam theory that features the two material length parameters.
Here, we study the boundary value problems of the model to illus-
trate the size effect of beams. For simplicity, we omit the geometric
nonlinearity (i.e., Nc ¼ 0) and consider a simply supported beam
subjected to an arbitrary distributed load q(x) along the beam
length. Based on these considerations, we can easily formulate
the following boundary value problems according to Eqs. (21)
and (31) as

EIl2mw
000000 � EIw0000 þ q� l2e q

00 ¼ 0 ð32Þ
subjected to the following boundary stress resultants

Q ¼ � 1� l2m
d2

dx2

	 

EIw000 ¼ 0

M ¼ 1� l2m
d2

dx2

	 

EIw00 ¼ 0

Mh ¼ l2mEIw
000 ¼ 0:

ð33Þ
4.1. Nondimensional boundary value problems

The boundary value problems in Eqs. (32) and (33) can be easily
converted into the nondimensional forms as

W 000000 ��l22W
0000 þ 1� s21

d2

dX2

 !
�qðXÞ ¼ 0 ð34Þ

and

�Q ¼ QL2

EI ¼ � 1��l22
d2

dX2

	 

W 000 ¼ 0

�M ¼ ML
EI ¼ 1��l22

d2

dX2

	 

W 00 ¼ 0

�Mh ¼ Mh
�l22

EI ¼ W 000 ¼ 0;

ð35Þ

where we have introduced the following dimensionless
parameters:

X ¼ x=L;WðXÞ ¼ wðxÞ=L;�l2 ¼ L=lm; s1 ¼ le=L; �qðXÞ
¼ qðxÞL3�l22=EI: ð36Þ
For an arbitrary load q(x), it can be expanded in Fourier series as

qðxÞ ¼
X1
m¼1

Qm sinðmpx=LÞ ð37Þ

where Qm is the amplitude given by

Qm ¼ 2
L

Z L

0
qðxÞ sinðmpx=LÞ dx: ð38Þ

The detailed expressions of Qm are calculated as follows

Qm ¼ q0 ðm¼ 1Þ sinusoidal load of intensity q0
4
mpq0 ðm¼ 1;3;5; :::Þ uniform load of intensity q0:

(
ð39Þ
M Mh

Mc ¼ 0 Mn ¼ 0
0 ¼ 0 Mc � Nnw0 ¼ 0 Mn ¼ 0
000
cl þ Ncw0 � l2e ðNcw0Þ00 ¼ 0 �Mcl þ l2mM

00
cl þ l2e ðNcw0Þ0 ¼ 0 M0

cl ¼ 0

w0 � l2e ðNcw0Þ00 ¼ 0 �Mcl þ l2e ðNcw0Þ0 ¼ 0 –
000
cl þ Ncw0 ¼ 0 �Mcl þ l2mM

00
cl ¼ 0 M0

cl ¼ 0
000
cl þ Ncw0 � l2mN

00
cw

0 ¼ 0 �Mcl þ l2mM
00
cl ¼ 0 M0

cl ¼ 0
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Then, we obtain the dimensionless load from Eq. (36) as

�qðXÞ ¼ L3�l22
EI

X1
m¼1

Qm sinðmpXÞ: ð40Þ
4.2. Closed-form solutions

The equation of motion of the nonlocal strain gradient beam is
the linear nonhomogeneous six-order ordinary differential equa-
tion, the complete solution of Eq. (34) for W includes the general
solution and the particular solution, i.e.,

W ¼ C0 þ C1X þ C2X
2 þ C3X

3 þ C4sinhð�l2XÞ þ C5coshð�l2XÞ

þ
X1
m¼1

Q � sinðmpXÞ ð41Þ

where Ci, (i = 0,1,2,. . .,5) are integration constants to be determined

by the specified boundary conditions, and Q � ¼ 1þs21ðmpÞ
2

ðmpÞ4 ½�l22þðmpÞ2 �
L3�l22
EI Qm:

4.2.1. Case 1
For simply supported boundary conditions, the lower-order

boundary conditions are

W ¼ 0; �M ¼ 0 at X ¼ 0 and 1: ð42Þ
The higher-order boundary conditions are

W 00 ¼ 0 at X ¼ 0 and 1: ð43Þ
Substitution of Eq. (41) into Eqs. (42) and (43) yields six linear

algebraic equations for Ci, (i = 0,1,2,. . .,5). Solving these equations,
we can determine these coefficients as

C0 ¼ C2 ¼ C5 ¼ 0;C1 ¼ � sinðmpÞð�l22 � 1Þð5�l22 þ 6Þ
6�l42

;

C3 ¼ sinðmpÞð�l22 � 1Þ
�l22

; C4 ¼ � sinðmpÞ
�l42 sinhð�l2Þ

: ð44Þ

Then, substituting these expressions back into Eq. (41), we can
determine the bending solution of the nonlocal strain gradient
beams.

4.2.2. Case 2
For the second choice of the higher-order boundary conditions,

we have

W 000 ¼ 0 at X ¼ 0 and 1: ð45Þ
Solving the boundary value problems of the nonlocal strain gra-

dient beams, we have
Fig. 1. The bending profiles of the size-dependent beams sub
C0 ¼ � sinðmpÞð��l22þcosh�l2�1Þ
�l5
2
sinh�l2

;

C1 ¼ � sinðmpÞð�6�l22 cosh
�l2þ6�l22þ6�l52 sinh

�l2þ�l32 sinh�l2�12 cosh�l2þ12Þ
6�l5

2
sinh�l2

;

C2 ¼ 0;
C3 ¼ sinðmpÞ

6�l2
2

;

C4 ¼ � sinðmpÞ
�l52

;

C5 ¼ � sinðmpÞð�l22�cosh�l2þ1Þ
l52 sinh

�l2
:

ð46Þ

It can be verified from the coefficients given by Eqs. (44) and
(46) that the all the coefficients will be identically zero for integer
values ofm. In other words, the proposed simply supported bound-
ary conditions do not influence the bending deflection of nonlocal
strain gradient beams subjected to the distributed load. As a result,
Case 1 and Case 2 will result in the same expression for bending
deflections, i.e.,

W ¼
X1
m¼1

1þ s21ðmpÞ2
ðmpÞ4½�l22 þ ðmpÞ2�

L3�l22
EI

Qm sinðmpXÞ ð47Þ

where Qm is given by Eq. (39). It is worth mentioning that the inclu-
sion of the material length parameter lm has the ability to stiffen the
beam, and consequently, it reduces the beam bending deflection;
whereas, the material length parameter le has the opposite
behavior.

Note that once the strain gradient parameter vanishes (i.e.,
�l2 ! 1), the above equation for bending deflection reduces to a
nonlocal form

W ¼
X1
m¼1

1þ s21ðmpÞ2
ðmpÞ4

L3

EI
Qm sinðmpXÞ: ð48Þ

Additionally, when the two material length parameters are the
same, the bending deflection reduces to the classical form.

4.3. Numerical results

With the purpose of studying how the material length parame-
ters affect the bending behaviors of the nonlocal strain gradient
beams, we define, for convenience, the following bending deflec-
tion ratio

c1 ¼ w
wcl

¼ W
5q0L

3

384EI

ð49Þ

where wcl is the maximum deflection of the classical solution for
beams subjected to a uniform load.

Fig. 1 depicts the bending profiles of the size-dependent beams
subjected to the uniform load for various values of the material
jected to the uniform load. (a) s1 ¼ 0:1 and (b) �l2 ¼ 10.



Table 2
The bending deflection ratio c1 (or c2) for a simply supported beam under distributed loads. �l2 ! 1 denotes results of a nonlocal beam model.

�l2 s1

0a 0 0.05 0.1 0.2

5 0.7188 0.7188 0.7364 0.7891 1.0000
10 0.9116 0.9116 0.9337 1.0000 1.2653
20 0.9765 0.9765 1.0000 1.0706 1.3528
1 1.0000 1.0000 1.0240 1.0960 1.3840

a Numerical results of Eq. (29) in Akgöz and Civalek [57].
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length parameters. We mention that the values �l2s1 ¼ 1, �l2 ! 1
and s1 ¼ 0 correspond to the classical case, nonlocal case and
strain gradient case, respectively. As observed in Fig. 1, the values
of deflections of the beam increase with the increasing �l2 and s1.
Additionally, we can see that the deflections are more sensitive
for small values of �l2 and large values of s1. Furthermore, we can
observe that the nonlocal model overestimates the bending deflec-
tions, whereas the strain gradient model underestimates the bend-
ing deflections. These observations demonstrate that the proposed
nonlocal strain gradient beam model can capture the structures
featuring either stiffening or softening behaviors.

To investigate the bending behaviors of nonlocal strain gradient
beams subjected to the sinusoidal load of intensity q0, we define
the following bending deflection ratio

c2 ¼ w
wcl

¼ W
q0L

3

p4EI

ð50Þ

where wcl is the maximum deflection of the classical solution for
beams subjected to a sinusoidal load. It is interestingly found that
they exhibit the identical behaviors compared to the uniform load
case, and consequently, the bending profiles of the size-dependent
beams subjected to the sinusoidal load can also be described in Fig. 1.

Table 2 lists the numerical results of the deflection ratios of a sim-
ply supported beam under distributed loads as functions of the nor-
malized material length parameters. Again, the effects of material
length parameters are to make the beam behave either stiffer or
softer, depending on the competitions of the two material length
parameters. Additionally, our numerical results reduce to the strain
gradient beam model developed by Akgöz and Civalek [57].

5. Buckling solutions

The boundary value problems of the buckling cases of a nonlo-
cal strain gradient beam will be studied in this section to highlight
the effects of the material length parameters on the buckling loads.
We consider beams with three common boundary conditions, i.e.,
clamped-free (CF) boundary conditions, simply supported (SS)
boundary conditions and clamped-clamped (CC) boundary condi-
tions. Since each boundary value problem has two alternative
higher-order boundary conditions, we will study the differences
of each higher-order boundary conditions adopted to gain insight
into the differences of the buckling results.

For the buckling case, we take q ¼ 0 and Nc ¼ �Nb. Then, the
governing equation (21) of a beam becomes

EIl2mw
000000 � EIw0000 � 1� l2e

d2

dx2

 !
ðNbw00Þ ¼ 0 ð51Þ

subjected to the following boundary conditions at the beam
ends

Q ¼ � 1� l2m
d2

dx2

	 

EIw000 � 1� l2e

d2

dx2

	 

ðNbw0Þ ¼ 0 or w ¼ 0

M ¼ 1� l2m
d2

dx2

	 

EIw00 � l2eNbw00 ¼ 0 or w0 ¼ 0

Mh ¼ EIl2mw
000 ¼ 0 or w00 ¼ 0:

ð52Þ
Analogously, when the strain gradient parameter lm vanishes,
the above boundary value problem reduces to the nonlocal
Euler–Bernoulli theory by Xu et al. [47]. On the other hand, when
the nonlocal parameter le equals to zero, the above boundary value
problem reduces to the similar form of Papargyri-Beskou et al. [52]
and Akgöz and Civalek [58].

5.1. Nondimensional boundary value problems

Analogous to that presented in Section 4.1, we can introduce an
extra dimensionless parameter �N ¼ NbL

2=EI to re-write the bound-
ary value problem expressed in Eqs. (51) and (52) as

W 000000 þ a4W
0000 þ a2W

00 ¼ 0 ð53Þ
and

�Q ¼ QL2

EI ¼ � 1��l�2
2

d2

dX2

	 

W 000 � 1� s21 d2

dX2

	 

ð�NW 0Þ ¼ 0 orW ¼ 0

�M ¼ ML
EI ¼ 1��l�2

2
d2

dX2

	 

W 00 � s21 �NW

00 ¼ 0 orW 0 ¼ 0

�Mh ¼ Mh
�l22

EI ¼ W 000 ¼ 0 orW 00 ¼ 0;

ð54Þ
where a4 ¼ �l22ð�Ns21 � 1Þ; a2 ¼ ��N�l22:

We state that all the other dimensionless parameters are
defined by Eq. (36).

5.2. Closed-form solutions

The general solution for the sixth-order ordinary differential
equation from Eq. (53) is

W ¼ B1 þ B2X þ B3 sinhðaXÞ þ B4 coshðaXÞ
þ B5 sinðbXÞ þ B6 cosðbXÞ ð55Þ

where Bi, (i = 1,2,. . .,6) are the integration constants to be deter-
mined by the specified boundary conditions, and

a ¼ �l22ð1��Ns21Þþ�l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l2
2
ð1��Ns2

1
Þ2þ4�N

p
2

� �1=2
;

b ¼ ��l22ð1��Ns21Þþ�l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l2
2
ð1��Ns2

1
Þ2þ4�N

p
2

� �1=2
:

ð56Þ

Next, we will solve various boundary value problems of a non-
local strain gradient beam with a view toward evaluating how the
material length parameters affect the buckling behaviors of a non-
local strain gradient beam.

5.2.1. CF boundary conditions
For a cantilever beam clamped at the left end and free at the

right end, the lower-order boundary conditions are

Wð0Þ ¼ W 0ð0Þ ¼ 0;
�Qð1Þ ¼ � 1��l�2

2
d2

dX2

	 

W 000ð1Þ � 1� s21 d2

dX2

	 

½�NW 0ð1Þ� ¼ 0;

�Mð1Þ ¼ 1��l�2
2

d2

dX2

	 

W 00ð1Þ � s21 �NW

00ð1Þ ¼ 0:

ð57Þ
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The higher-order boundary conditions have two alternative
expressions. The first ones (BC1) we adopt are

W 00ð0Þ ¼ 0; �Mhð1Þ ¼ W 000ð1Þ ¼ 0: ð58Þ
It is worth mentioning that Eq. (58)1 indicates the vanishing of

the curvature at the clamped end of the beam, and Eq. (58)2 repre-
sents the vanishing of the higher-order moment at the free end of
the beam.

We then introduce the general solution in Eq. (55) into the
boundary conditions in Eqs. (57) and (58) to yield a set of linear
algebraic equations for coefficients Bi, (i = 1,2,. . .,6). The necessary
condition for nonzero solution of coefficients Bi, (i = 1,2,. . .,6) is
the vanishing determinant of its coefficient matrix, i.e.,

1 0 0 1 0 1
0 1 a 0 b 0
0 0 0 a2 0 �b2

0 0 a3 cosha a3 sinha �b3 cosb b3 sinb
0 0 �a2 sinha �a2 cosha �a2 sinb �a2 cosb
0 a2 0 0 0 0

�������������

�������������
¼ 0: ð59Þ

Or alternatively,

2a2b2 þ ða4 þ b4Þ cosha cosbþ abða2 � b2Þ sinha sin b ¼ 0: ð60Þ
For the pure strain gradient model (i.e., s1 = 0), we emphasize

that the above characteristic equation is not the same as the one
given by Akgöz and Civalek [58].

The second ones (BC2) we adopt are

�Mhð0Þ ¼ �Mhð1Þ ¼ 0 ) W 000ð0Þ ¼ W 000ð1Þ ¼ 0: ð61Þ
Analogously, the buckling load is determined by the following

equation

1 0 0 1 0 1
0 1 a 0 b 0
0 0 a3 0 �b3 0
0 0 a3 cosha a3 sinha �b3 cosb b3 sinb
0 0 �a2 sinha �a2 cosha �a2 sinb �a2 cosb
0 a2 0 0 0 0

�������������

�������������
¼ 0: ð62Þ
Table 3
Comparisons of the first five dimensionless buckling loads, �N, under three typical bounda

CF boundary conditions with a BC1 case CF boundary conditions

n Akgöz and Civalek [58] Present work Lazopoulos and Lazopou

�l2 ¼ 5
1 2.71092 3.97027 4.20110
2 41.93195 49.62049 61.14888
3 213.88673 228.78025 288.78071
4 705.60072 727.17906 897.50034
5 1797.61210 1825.66037 2191.24917

�l2 ¼ 10
1 2.52828 3.10130 3.12159
2 27.13795 31.92166 33.41908
3 99.73545 111.30482 121.41988
4 267.07717 286.11449 319.46022
5 599.29764 625.59821 703.52068

�l2 ¼ 20
1 2.48262 2.74904 2.75100
2 23.43944 25.82298 25.98219
3 71.19763 77.69890 78.91961
4 157.44628 169.72744 174.33277
5 299.71903 318.89993 331.07539

�l2 ! 1
1 2.46740 2.46740 2.46740
2 22.20661 22.20661 22.20661
3 61.68503 61.68503 61.68503
4 120.90265 120.90265 120.90265
5 199.85949 199.85949 199.85949
Or its equivalent form

a3 cosb sinha� b3 cosha sin b ¼ 0: ð63Þ
Lazopoulos and Lazopoulos [59] studied the buckling of the

pure stain gradient beams, they used in their work the following
higher-order boundary conditions (BC3)

W 00ð0Þ ¼ W 00ð1Þ ¼ 0: ð64Þ
The boundary value problem in this case can be obtained by

solving the following characteristic equation

a sinha cos bþ b cosha sin b ¼ 0: ð65Þ
Note that our expression in Eq. (65) is in the same form as that

of Lazopoulos and Lazopoulos [59], but with different parameters.
More specially, their result for pure strain gradient models is here
generalized to the nonlocal strain gradient beam models (see com-
parisons shown in Table 3).

5.2.2. SS boundary conditions
We next consider a nonlocal strain gradient beam with SS

boundary conditions at the beam ends. The lower-order boundary
conditions read

W ¼ 0; �M ¼ ��l�2
2 ðW 0000 þ a4W

00Þ ¼ 0 at X ¼ 0 and X ¼ 1: ð66Þ
The higher-order boundary conditions (BC1) are given by

W 00 ¼ 0 at X ¼ 0 and X ¼ 1: ð67Þ
Noteworthy, Eq. (67) can be used to simplify Eq. (66)2, i.e.,

W 0000 ¼ 0 at X ¼ 0 and X ¼ 1: ð68Þ
Then, we insert the general solution from Eq. (55) into Eqs.

(66)1, (67) and (68) to yield the following characteristic equation

1 0 0 1 0 1
0 0 0 a2 0 �b2

0 0 0 a4 0 b4

1 1 sinha cosha sin b cosb
0 0 a2 sinha a2 cosha �b2 sin b �b2 cosb
0 0 a4 sinha a4 cosha b4 sinb b4 cosb

��������������

��������������
¼ 0: ð69Þ
ry conditions ðs1 ¼ 0Þ .

with a BC3 case SS boundary conditions with a BC2 case

los [59] Present work Akgöz and Civalek [58] Present work

4.20110 13.76597 11.14825
61.14888 101.82024 67.30866
288.78071 404.43189 258.96628
897.50034 1155.38276 770.34915
2191.24917 2681.96739 1881.66603

3.12159 10.84370 10.46073
33.41908 55.06387 49.19484
121.41988 167.72780 140.00742
319.46022 407.28094 327.41546
703.52068 855.54693 679.93418

2.75100 10.11313 10.06426
25.98219 43.37478 42.58753
78.91961 108.55178 104.55529
174.33277 220.25549 207.72263
331.07539 398.94181 368.98595

2.46740 9.86960 9.86960
22.20661 39.47842 39.47842
61.68503 88.82644 88.82644
120.90265 157.91367 157.91367
199.85949 246.74011 246.74011



1 For the bulking studies of engineering structures, analytical solutions for the
boundary value problems are normally challenging with mathematical difficulties. As
a result, the first several eigenvalues are presented in this paper to investigate, on the
one hand, the effect of physical parameters on the buckling of engineering structures
and on the other hand, to serve as benchmark results for possible comparisons with
other numerical methods.
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The above expression can be simplified as

�a4b4ða2 þ b2Þ2 sinha sin b ¼ 0 ) sinb ¼ 0: ð70Þ
By combining Eqs. (70) and (56)2, we can obtain the analytical

solution for the buckling load as

�N ¼ n2p2ð�l22 þ n2p2Þ
�l22ð1þ n2p2s21Þ

: ð71Þ

Note that when the strain parameter vanishes (i.e., �l2 ! 1), the
above solution reduces to the nonlocal results [14,15,47]. On the
other hand, when the nonlocal parameter is zero (i.e., s1 ¼ 0), the
above result reduces to that of the strain gradient beam model
by Akgöz and Civalek [58] and a similar form by Li and Hu [85].
Moreover, the above result can be further reduced to the classical
buckling load in the absence of all the material length parameters.
The buckling solution in Eq. (71) indicates that the buckling load
increases with the decreasing of the nonlocal parameter s1 and
the strain gradient parameter �l2 .

The second higher-order boundary conditions (BC2) we adopt
are

W 000 ¼ 0 at X ¼ 0 and X ¼ 1: ð72Þ
Substituting Eq. (55) into Eqs. (66) and (72) yields a set of linear

algebraic equations. The buckling load of the beam can be deter-
mined by solving the following characteristic equation

1 0 0 1 0 1
0 0 0 �a2 0 �a2
0 0 a3 0 �b3 0
1 1 sinha cosha sinb cosb
0 0 �a2 sinha �a2 cosha �a2 sinb �a2 cosb
0 0 a3 cosha a3 sinha �b3 cosb �b3 sinb

�������������

�������������
¼ 0: ð73Þ

Or its simplified form as

2a3b3 þ ðb6 � a6Þ sinha sinb� 2a3b3 cosha cosb ¼ 0: ð74Þ
For the reduced case of the pure strain gradient model, it is

again stated that the above characteristic equation is not the same
as that of Akgöz and Civalek [58].

5.2.3. CC boundary conditions
Finally, we consider a beam with CC boundary conditions. The

lower-order boundary conditions of the beam can be written as

W ¼ W 0 ¼ 0 at X ¼ 0 and X ¼ 1: ð75Þ
The first choice of the high-order boundary conditions (BC1) are

W 00 ¼ 0 at X ¼ 0 and X ¼ 1: ð76Þ
We introduce Eq. (55) into Eqs. (75) and (76), and carry out a

similar procedure presented in Sections 5.2.1 and 5.2.2. After some
mathematical manipulations, we can obtain the following charac-
teristic equation

1 0 0 1 0 1
0 1 a 0 b 0
0 0 0 a2 0 �b2

1 1 sinha cosha sinb cos b
0 1 a cosha a sinha b cosb �b sinb

0 0 a2 sinha a2 cosha �b2 sinb �b2 cosb

��������������

��������������
¼ 0: ð77Þ

Its compact form is

2bða2 þb2Þsinbðcosha�1Þþ2aða2 þb2Þsinhaðcosb�1Þ
þabða2 �b2Þsinhasinb�2a2b2 coshacosbþ2a2b2 ¼ 0 ð78Þ
from which the buckling load can be determined.
The second higher-order boundary conditions (BC2) are

W 000 ¼ 0 at X ¼ 0 and X ¼ 1: ð79Þ
The buckling solution of the above boundary value problems

can be solved by

1 0 0 1 0 1
0 1 a 0 b 0
0 0 a3 0 �b3 0
1 1 sinha cosha sinb cosb
0 1 a cosha a sinha b cos b �b sin b

0 0 a3 cosha a3 sinha �b3 cos b b3 sinb

��������������

��������������
¼ 0: ð80Þ

Its simplified form is

2a3 cosb sinhaþ abða2 þ b2Þ sinha sin b

� 2b3 cosha sin b� 2a3 sinhaþ 2b3 sin b ¼ 0: ð81Þ

For the nonlocal beam model (i.e., �l2 ! 1), we can write down,
according to Eq. (53), the following governing equation:

a4W
0000 þ a2W

00 ¼ 0 ð82Þ
subjected to boundary conditions which are the same as Eq. (75).

This boundary value problems allow us to obtain the following
characteristic equation

sinQðtanQ
2
� Q

2
Þ ¼ 0; ð83Þ

where Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
a2=a4

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N=ð1� �Ns21Þ

q
:

Eq. (83) further indicates that the buckling load is determined
by

sinQ ¼ 0 ) �N ¼ n2p2

1þ n2p2s21
or tan

Q
2
¼ Q

2
: ð84Þ

The numerical results for this case can be clearly seen in Table 3
for s1 ¼ 0:

5.3. Numerical results

In order to illustrate the analytical solutions for buckling prob-
lems of a nonlocal strain gradient beam, we present some numer-
ical examples in this section1. We first attempt to demonstrate the
efficiency and accuracy of the present closed-form buckling solu-
tions. To this end, shown in Table 3 is a comparison between our
numerical results of Eq. (65) without considering the nonlocal
parameter and those of Eq. (58) in Lazopoulos and Lazopoulos
[59]. As expected, the two numerical results have the same buckling
values.

Akgöz and Civalek [58] recently studied the buckling behaviors
of a strain gradient beam and obtained closed-form solutions for
buckling loads under CF and SS boundary conditions, i.e.,

�N ¼ k2ð�l22 þ k2Þ=�l22 ð85Þ
where k ¼ ð2n� 1Þp=2 is for CF boundary conditions and k ¼ np is
for SS boundary conditions.

However, their numerical results are not the same as the pre-
sent results. To demonstrate these differences in detail, we tabu-
late the numerical results of a strain gradient beam in Table 3 for
s1 ¼ 0. As observed in this table, all the buckling loads decrease
,
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with the increasing of the material length parameter �l2. In other
words, the strain gradient beams are stiffer than the classical
beams. However, only for the classical buckling solutions when
�l2 ! 1 can we have the same numerical results. More specially,
the differences between the numerical results of Akgöz and Civalek
[58] and present work are remarkable for higher values of the
strain gradient parameter and the buckling mode numbers. These
differences will be illustrated later with the purpose of clarifying
the effects of two material length parameters and boundary condi-
tions on the buckling of nonlocal strain gradient beams.

5.3.1. Effect of the strain gradient parameter
In the literature, numerous works have studied the boundary

value problems of strain gradient beams and nonlocal beams. For
the former beam models, there exist alternative higher-order
boundary conditions, and as a result, effects of the higher-order
boundary conditions on the static and dynamic behaviors of beams
should be carefully investigated to demonstrate the main differ-
ences. However, recent works relating to this issue have not been
well documented [58,59]. On the other hand, the nonlocal beam
models will also introduce nonclassical boundary conditions, as
suggested by the modified variational principles [47,93,95–97].
These nonclassical boundary conditions certainly affect the
mechanical behaviors of beams, and thus worth a further study.
The nonlocal strain gradient beam models, as a combination of
these two elastic theories, feature the above two beam models.
Therefore, the boundary value problems of the proposed beam
models should be carefully studied.

Fig. 2 plots the buckling loads of nonlocal strain gradient beams
as functions of the material length parameters for different mode
numbers and higher-order boundary conditions. It is found that
Fig. 2. Effects of the higher-order boundary conditions on the first three buckling loads
boundary conditions and (c) CC boundary conditions.
� The buckling loads decrease with the increase of the dimension-
less strain gradient parameter, which, remembering Eq. (36)3,
indicate that the inclusion of the strain gradient parameter
makes the beams stiffer than that of the classical beams.

� For CF beams, the buckling loads calculated by BC3 are slightly
larger than those calculated by BC1, and are remarkably larger
than those calculated by BC2. From the mechanical points of
view, the stiffer the higher-order boundary conditions, the lar-
ger the buckling loads. As a result, the explanations for these
observations are that higher-order boundary condition
W 00ð1Þ ¼ 0 from Eq. (64)2 in BC3 is stiffer than that of
W 000ð1Þ ¼ 0 from Eq. (58)2 in BC1, and W 00ð0Þ ¼ 0 from Eq.
(58)1 in BC1 is stiffer than that of W 000ð0Þ ¼ 0 from Eq. (61)1 in
BC2. For SS and CC boundary conditions, the buckling loads pre-
dicted by BC1 are larger than those predicted by BC2, as also
evidenced by the expressions of the higher-order boundary con-
ditions (see, e.g., Eqs. (67) and (72), and Eqs. (76) and (79)).

� The influence of the adopted higher-order boundary conditions
on the critical buckling loads is more remarkable for beams
with CC boundary conditions. This means that the critical buck-
ling loads for beams with clamped ends are more sensitive than
those with other constrains.

5.3.2. Effect of the nonlocal parameter
Fig. 3 displays the buckling loads of nonlocal strain gradient

beams as functions of the material length parameters for different
mode numbers and higher-order boundary conditions. Similar con-
clusions in accord with Section 5.3.1 can be drawn. Noteworthy,
there exists one opposite conclusion that the inclusion of the non-
local parameter makes the nonlocal strain gradient beams softer;
this conclusion is the same with those reported for nonlocal beams
in the literature [14,15,19,45–47,93,98].
of nonlocal strain gradient beams for s1 ¼ 0:05. (a) CF boundary conditions, (b) SS



Fig. 3. Effects of the higher-order boundary conditions on the first three buckling loads of nonlocal strain gradient beams for �l2 ¼ 10. (a) CF boundary conditions, (b) SS
boundary conditions and (c) CC boundary conditions.

Table 4
Comparisons of buckling parameters between the nonlocal strain gradient beam models with the classical solutions for the same values of the two material length parameters
(�l�1
2 ¼ s1).

s1

0 0.05 0.1 0.2

n Classical resultsa BC1 BC2 BC1 BC2 BC1 BC2

CF boundary conditions
1 2.46740 2.73135 2.46588 3.01925 2.45533 3.53802 2.37622
2 22.20661 24.39820 22.08452 25.52183 21.29312 22.56250 17.49515
3 61.68503 66.81101 60.75967 64.81754 55.65779 57.16417 44.62507
4 120.90265 128.39493 117.45737 119.02403 103.69327 113.51766 91.51941

SS boundary conditions
1 9.86960 9.86960 9.82132 9.86960 9.50487 9.86960 7.79622
2 39.47842 39.47841 38.72520 39.47841 34.59492 39.47841 23.32515
3 88.82644 88.82644 85.1725 88.82644 69.98060 88.82644 48.70934
4 157.91367 157.91351 147.07911 157.91351 116.07657 157.91351 94.10167

CC boundary conditions
1 39.47842 48.33421 39.47842 57.46162 39.47842 69.41978 39.47842
2 80.76291 98.06520 82.01347 112.13209 84.00135 124.76962 86.22035
3 157.91367 189.68094 157.91367 210.26177 157.91367 226.76438 157.91367
4 238.71806 283.77547 241.54126 307.28378 244.02449 322.48482 245.58726

a Numerical results calculated by Eqs. (84) and (85).

X.-J. Xu et al. / Composite Structures 160 (2017) 366–377 375
5.3.3. Comments on previous works
In the literature, numerous works demonstrate that, when the

two material length parameters are the same, the classical solu-
tions characterizing the buckling [85], vibration [86,87] and wave
propagation [84,88] will be obtained. However, our closed-form
solutions for buckling problems of nonlocal strain gradient beams
are proved this to be not always the case. As a result, it is of great
importance to address the issue: does the nonlocal strain gradient
solutions reduce to the classical solutions when the two material
length parameters are the same, at least for beam buckling
problems.
Table 4 lists the calculated values of the buckling loads of non-
local strain gradient beams as functions of the same material
length parameters. It is observed from this table that

When the material length parameters are the same but with
vanishing values (i.e., l2 ¼ s1 ¼ 0), our numerical results for three
typical boundary conditions can recover to the classical solutions.
The classical solutions can also be seen for SS beams with the first
choice of the higher-order boundary conditions (BC1).

When the nonzero material length parameters equal to each
other (i.e., �l�1

2 ¼ s–0), the buckling solutions do not recover to
the classical solutions; the values of the critical buckling load
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increase with the increasing s1: However, for the higher modes, the
values of the buckling load appear to have the opposite tendency
for the CF and CC boundary conditions.

For the same material length parameters, the values of the
buckling loads of the nonlocal strain gradient beams are not the
same. The possible reason is that the classical buckling modes do
not satisfy the buckling modes of strain gradient beams. In general,
the values of BC1 are larger than those of BC2.

In general, it is found from this table that the classical and the
nonclassical solutions are not always the same when the two
material length parameters are equal to each other. This conclusion
is clearly not in accord with those published works [84–88]. Fur-
thermore, the present closed-form solutions are useful for the
choices of the shape functions applied in the finite element meth-
ods and Garlerkin methods to highlight the differences of higher-
order boundary conditions considered.
6. Conclusions

Based on the nonlocal strain gradient theory, the governing
equations of motion of nonlinear Euler–Bernoulli beams are
derived. Then, these equations are used to determine all possible
(lower-order and higher-order) boundary conditions by the WRAs.
These derivations, on the one hand, allow us to derive the bound-
ary conditions for nonlocal beams, and on the other hand, they
enable us to obtain the boundary conditions for the strain gradient
beams. The bending deflections of a nonlocal strain gradient beam
subjected to the distributed load are analytically obtained. Mean-
while, the boundary value problems of the buckling behaviors of
nonlocal strain gradient beams are studied. In conclusion, the main
findings of this work are summarized as follows:

� Reformulation of the boundary value problems of nonlinear
Euler–Bernoulli beams (see Eqs. (20), (21) and (31)) within
the framework of the nonlocal strain gradient theory.

� The bending deflections of nonlocal strain gradient beams sub-
jected to the distributed load are found to be independent of the
choices of higher-order boundary conditions. The stiffening and
softening behaviors of beams are observed by comparing the
effect of the two material length parameters.

� The buckling loads are affected by the choices of the higher-
order boundary conditions. When the two material length
parameters are the same, the buckling loads of nonlocal strain
gradient beams are not always the same; this conclusion is
not the same as those reported in the literature.

The authors believe that by utilizing the WRAs, the present
work can be extended to the studies of dynamic boundary value
problems for rods, beams, plates and shells. As a result, further
work is needed to provide WRAs as a useful tool for the engineer-
ing structures such as functionally graded materials and piezoelec-
tric materials.
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