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In this work, an equivalent continuum multiscale formulation is presented for the geometrical nonlinear
analysis of the structures with lattice truss materials. This formulation is established by combining the
extended multiscale finite element method and the co-rotational approach. Firstly, the lattice truss unit
cell is equivalent to a continuum coarse element by using a numerical constructed interpolation function
in the local coordinate system. Then the tangent stiffness matrix of this coarse element is derived by
employing the basic idea of the co-rotational approach in the global coordinate system. Thus, the global
nonlinear equilibrium equations of the structure at the macroscopic level can be solved by using the gen-
eral displacement control algorithm to capture the equilibrium path with multiple critical points. After
performing all of the incremental steps and the iterative steps on the macroscopic scale, the microscopic
information, such as the displacement, stress and strain, can be obtained easily by virtue of the afore-
constructed numerical interpolation functions once again. In addition, several numerical examples are
carried out to study the effects of the layout and size of unit cell, investigate the sensitivity of coarse-
scale meshes and verify the validation and efficiency of the presented multiscale formulation.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past few decades, the lightweight materials and struc-
tures are more and more applied in the aerospace industries and
civil engineering areas with the development of manufacturing
technologies [1,2]. As a kind of lightweight materials, lattice truss
materials (as shown in Fig. 1) have received considerable attention
due to their inherent advantages [3–5], such as high stiffness/
strength-weight ratio [6]. As a result of the rapid development of
three-dimensional printing and material preparation technologies,
the construction of lattice truss materials and structures become
much easier in recent years [7–11]. A lattice can be constructed
by a large periodic truss bar with pin-jointed nodes. The lattice
structures can be assembled by many periodic unit cells which
are composed of some elementary truss bars. This type of structure
has lower mass and higher rigidity than traditional ones. Such
structures have been widely applied in civil engineering and they
also have great potential to construct the ultra-large space
structures.
The finite element method (FEM) is usually employed to ana-
lyze the problems of such lattice structures. However, these lattice
structures usually have multiscale features, i.e., the minimum
characteristic size of the lattice truss material is much smaller than
the macroscopic size of the lattice structure. This is to say that each
lattice structure contains numerous elementary truss bars. There-
fore, lots of computational resources will be consumed when using
the traditional FEM to solve the problems of lattice structures.
What’s worse is that the FEM will be failure to do this for some
ultra-large lattice structures due to the limitations of the computer
capability and CPU time. To solve this problem, many continuum
models were developed since the lattices look like continuum
media when they become large [13–15]. Moreau and Caillerie
[15] developed a continuum model based on the homogenization
method for 2D large displacement analysis of lattice truss struc-
ture. Tollenaere and Caillerie [16] studied a two-dimensional
quasi-periodic lattice truss structure and presented a continuous
model derived from the periodic continuous medium homogeniza-
tion. Burgardt and Cartraud [17] provided a general approach to
determine the equivalent beam properties of beam-like lattice
trusses based on the energy equivalence. Elsayed and Pasini [18]
investigated the structural design of the microscopic lattice
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Fig. 1. Photograph of the lattice truss material [12].
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architecture with octet-truss cell and the multiscale design of an
axially loaded member manufactured of this type of cellular solid.

In this paper, an alternative equivalent continuummodel, based
on the extended multiscale finite element method (EMsFEM) [19–
21] and the co-rotational formulation of geometrical nonlinear
problems [22–24], is developed to analyze the geometrical nonlin-
ear problem of lattice truss structure. The EMsFEM was firstly
employed to solve the problems of heterogeneous materials in
computational solid field by Zhang and his co-workers. This multi-
scale method has been successfully applied in simulating the linear
and nonlinear problems of heterogeneous solid materials [25–27],
the mechanical behaviors of bionic nastic materials [28,29], the
thermo-mechanical coupling problems of multiphase solid materi-
als [30,31] and the consolidation behaviors of saturated porous
media [32,33]. The basic idea of this method is to construct multi-
scale base functions on the sub-grid domain. These functions can
capture and bring the microscopic material information to the
macroscopic scale for reducing the overall computational cost effi-
ciently and significantly. In addition, a downscaling computation
technique is also proposed for recovering the microscopic results
of sub grids from the macroscopic scale solutions of overall
coarse-scale mesh. On the other hand, the co-rotational formula-
tion [34–36], as one of common existing formulations to solve
the geometrically nonlinear problems [37], is developed for the
equivalent coarse-scale continuum element in this work. Within
this co-rotational formulation, there are two sets of coordinate sys-
tems: local and global ones. The local framework is fixed on the
coarse-scale continuum element and moves with the rigid body
translation and rotation of this element, while as the global one
is fixed and unchanged all the time during the whole deformation
processes of structure. This co-rotational formulation divides the
whole movement of a finite element into two parts, where one is
the rigid body translation and rotation while the other one is the
deformation in the local coordinate system. After obtaining the
multiscale base functions by the EMsFEM in the local coordinate
system, the periodic lattice truss unit cells can be equivalent to a
continuum element, whose effective local stiffness matrix and
external load vector will be calculated easily and naturally by using
the above-mentioned multiscale base functions. Then the tangent
stiffness matrix and internal force vector of each equivalent contin-
uum element can be obtained in the global coordinate system via
the co-rotational formulation. Thus the global tangent stiffness
and external load vector of the equivalent coarse-scale mesh of
whole structure can also be assembled naturally. After that, the
equilibrium iterative processes for each load incremental step will
be performed to find the complex load-displacement equilibrium
path by employing the frequently used iteration control algorithms
[38], such as the arc-length control methods (ALCM), the general-
ized displacement control method (GDCM), the work control
method (WCM) and the orthogonal residual procedure (ORP).
Due to the excellent merit at capturing complex nonlinear behav-
ior at both load and displacement limit points, the GDCM is
employed in present work. Finally, the desired microscopic results
of any truss element within the unit cell can be recovered easily via
the downscaling calculation. To verify the validation and effective-
ness of this proposed method, some typical numerical examples
are investigated by using both this equivalent multiscale contin-
uum method on the coarse-scale mesh and the traditional FEM
on the full-scale mesh.
2. Briefly review of the EMsFEM

In EMsFEM, the bridge between microscopic and macroscopic
levels is built through a multiscale shape function, which is usually
obtained by solving a boundary value problem on a unit cell
domain numerically. Then, the microscopic material properties
could be captured and brought to the macroscopic scale for reduc-
ing the computational cost significantly. After the macroscopic cal-
culation, the constructed multiscale shape function could be used
once again to get the microscopic deformation information of each
unit cell. As shown in Fig. 2, both the upscaling and downscaling
computation processes can be achieved by virtue of the above-
mentioned multiscale shape function.
3. Macroscopic equivalent quantities of the lattice truss unit cell

Generally speaking, three kinds of boundary condition (BC) can
be employed for constructing the numerical multiscale shape func-
tion, i.e., linear, periodic and oversampling oscillating BCs, which
are usually effective for homogeneous, periodic and completely
heterogeneous materials, respectively. In this work, the periodic
BC is adopted since only the periodic microscopic truss unit cells
are taken into account.

The periodic BC is illustrated in Fig. 3, where two corresponding
microscopic nodes located on two opposite edges of the unit cell
are bound by the relative displacements Du and Dv in x and y
directions, respectively. As an example, to construct the multiscale
shape function of macroscopic node 1 in x direction, Du varies
linearly from 1 to 0 along the edge 12 (from the macroscopic node
1–2) and the edge 14. For the other two edges, Du is set as zero. In
addition, another relative displacement Dv is set as zero for all the
edges. To avoid the rigid body movement of unit cell, the macro-
scopic node 3 should be fixed in both x and y directions. After
imposing these relative displacement constraints, the multiscale
shape function of macroscopic node 1 in x direction can be
obtained by solving the static equilibrium equation on the unit cell
domain. For more details, one can refer to our previous work
[25–33].

The above-constructed multiscale shape function vector of the
macroscopic node 1 in the x direction could be denoted as N1x,
which can be further expressed as

N1x ¼
N1xx

N1xy

� �
ð1Þ

where N1xx and N1xy are the components of the vector N1x in x and y
directions, respectively. In addition, the dimension of N1x is 2ns � 1
with ns being the number of microscopic nodes within the unit cell
domain. For illustration purpose, N1x is plotted in Fig. 4.

Similarly, the numerical multiscale shape functions of other
macroscopic nodes can also be obtained by solving the static
equilibrium equations on the unit cell domain with corresponding



Fig. 2. Schematic description of the EMsFEM.

Fig. 3. Illustration of the implementation of the periodic BC.

Fig. 4. Illustration of the constructed mu
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periodic BCs. Thus, the multiscale shape function matrix NE of the
coarse element could be given as

NE ¼
N1xx N1yx

N1xy N1yy

N2xx N2yx

N2xy N2yy

N3xx N3yx

N3xy N3yy

N4xx N4yx

N4xy N4yy

� �
ð2Þ

where N ixy and N iyx (i = 1–4) represent the additional coupling
terms, which can take the Poisson’s effect into account effectively
and improve the computational accuracy significantly [25–33].

By virtue of the constructed interpolation function of coarse ele-
ment, the displacement relationship between the macroscopic
nodes of coarse element and the corresponding microscopic nodes
within the unit cell can be built as

us ¼ NEUE ð3Þ
where us represents the microscopic displacement vector of the
unit cell and UE is the macroscopic displacement vector of the
ltiscale shape functions N1x and N1y .
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coarse element. The dimensions of us and UE are 2ns � 1 and
2nc � 1, respectively, where nc denotes the number of the macro-
scopic nodes of one single coarse element. In this paper, we have
nc ¼ 4 for two-dimensional problems. It should be mentioned that
we usually have ns � nc .

As well known, the static equilibrium equation in finite element
discretization form of the unit cell is given by

K sus ¼ Fs ð4Þ
where K s represents the overall stiffness matrix of unit cell and Fs is
the external force vector which is applied to the unit cell.

Substituting Eq. (3) into Eq. (4) and pre-multiplying NT
E on the

both sides of Eq. (4) lead to

KEUE ¼ FE ð5Þ
where KE and FE are the equivalent macroscopic stiffness matrix
and external force vector of the coarse element corresponding to
the unit cell. They could be given by

KE ¼ NT
EKsNE; FE ¼ NT

EFs ð6Þ
By using the constructed multiscale shape function, the hetero-

geneous unit cell will be equivalent as a solid coarse element. In
addition, it should be mentioned that all the quantities described
in this section are derived within the local coordinate frame of
coarse element and the superscript ‘l’ is omitted for simplicity.
4. Multiscale co-rotational formulation

In order to extend the application fields of the EMsFEM to geo-
metric nonlinear problems, the co-rotational formulation is
employed herein. Compared with the typical Total/Updated
Lagrangian formulations, the co-rotational approach is particularly
effective for the large displacement and small strain analysis [34–
37]. Its main idea is to decompose the motion of the element into
two parts. One is the rigid body motion in the global coordinate
system and the other is the pure deformation in the local coordi-
nate system. In this section, a two-scale geometric nonlinear for-
mulation is proposed by combining the above-mentioned
multiscale method and the co-rotational approach. During the
derivations of the tangent stiffness matrices of microscopic truss
element and macroscopic coarse element, two reference coordi-
nate systems are employed herein. The first one is the global frame
labeled by ‘X-Y’ and the other is the local one labeled by ‘x-y’. In
addition, note that in this work the variables with superscripts ‘g’
and ‘l’ represent the quantities described in the global and local
systems, respectively.

4.1. Macroscopic nonlinear calculation of the whole structure with
coarse-scale mesh

In this developed multiscale approach, the heterogeneous unit
cell is equivalent to a homogeneous continuum coarse element.
To investigate the large displacement and small strain problems
of the structures with lattice truss unit cells, the co-rotational
approach is employed herein for calculating the equivalent tangent
stiffness matrix of the macroscopic coarse element. The main idea
of co-rotational approach is to decompose the motion of structure
into two parts. One is the rigid body motion in the global coordi-
nate system and the other is the pure deformation in the local
coordinate system. The pure deformation process is based on the
small strain assumption. Thus the geometric linear theory can be
adopted in the local coordinate system.

In this section, we will derive the tangent stiffness matrix of the
equivalent coarse element within the global coordinate frame and
present the implementation processes of the whole macroscopic
computation as illustrated in Fig. 5. Firstly, the lattice truss unit cell
is equivalent to a coarse element by virtue of the constructed mul-
tiscale shape function in the local coordinate system; Secondly, the
tangent stiffness matrix of the equivalent continuum coarse ele-
ment can be derived by employing the co-rotational approach
and can be assembled to form the overall tangent stiffness matrix
of the whole structure meshed by the coarse elements; Then, the
solving of the geometric nonlinear equations can be performed
on the macroscopic scale which will reduce lots of computation
cost; Finally, the stress and strain solutions of each truss element
on the fine-scale mesh can also be obtained by using the above-
constructed multiscale shape function once again.

In Section 3, the lattice truss unit cell is equivalent to a contin-
uum coarse element by virtue of the constructed multiscale shape
function within the local coordinate frame. In the co-rotational
approach, two sets of coordinate system are shown in Fig. 5, where
the global one is denoted by ‘‘O-XY” and the local one is repre-
sented by ‘‘c-xy”. In Fig. 5, three configurations labeled by ‘‘I”, ‘‘II”
and ‘‘III” represent the initial, temporary and current configura-
tions, respectively. From I to II, the coarse element undergoes a
rigid body motion which can be described by a translation vector
U g

c and a rotation a. From II to III, a pure deformation occurs in
the local coordinate system. The translation vector U g

c can be

expressed as U g
c ¼ Ug

c V g
c

� �T with Ug
c and V g

c are the displace-
ment components in the global X and Y directions of the centroid
of the coarse element, respectively. They can be given by

Ug
c ¼ 1

4

X4
i¼1

Ug
i ; V g

c ¼ 1
4

X4
i¼1

V g
i ð7Þ

where Ug
i and V g

i are the global displacement components of the
node i of the coarse element in the X and Y directions, respectively.

The nodal displacement vector of the node i of the coarse ele-
ment in the local coordinate system is denoted by

U l
i ¼ Ul

i Vl
i

n oT
where Ul

i and Vl
i can be given by

Ul
i

Vl
i

( )
¼ cosa sina

� sina cosa

� �
Xi þ Ug

i � Xc � Ug
c

Yi þ V g
i � Yc � V g

c

( )
� xi

yi

� �
ð8Þ

where Xc and Yc are the global coordinates of the centroid of the
coarse element; Xi and Yi denote the global coordinates of the node
i of the coarse element; xi and yi denote the local coordinates of the
node i of the coarse element; a is the rotation angle of the coarse
element from the state I to II. The value of a can be determined such
that the following expression is minimized, i.e.

X4
i¼1

Ul
i

� 	2
þ Vl

i

� 	2
� �

ð9Þ

Taking the variation respect to a and setting the resulting
expression equal to zero lead to

tana ¼
P4

i¼1 xi Yi þ V g
i � Yc � V g

c


 �� yi Xi þ Ug
i � Xc � Ug

c


 �� P4
i¼1 xi Xi þ Ug

i � Xc � Ug
c


 �� yi Yi þ V g
i � Yc � V g

c


 ��  ð10Þ

From the expression (10), two results can be obtained, i.e., a0

and a0 þ p. One is corresponding to the minimization and the other
gives the maximization. Within the global frame, the variational
equation of a single coarse element can be given by

df g
E ¼ K g

EtdU
g
E ð11Þ

where f g
E denotes the internal force vector of coarse element; K g

Et is
the tangent stiffness matrix of coarse element; U g

E is the nodal dis-
placement vector of coarse element in the global frame and can be
written as



Fig. 5. Illustration of the proposed multiscale co-rotational formulation.
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U g
E ¼ Ug

1 V g
1 Ug

2 V g
2 Ug

3 V g
3 Ug

4 V g
4

� �T ð12Þ
In addition, we also have

d U g
E


 �Tf g
E ¼ d U l

E

� 	T
f lE ð13Þ

df lE ¼ TEdf
g
E ð14Þ

f lE ¼ K l
EU

l
E ð15Þ

where f lE is the internal force vector of coarse element in the local
coordinate system; TE represents a pure rigid body translation

matrix; K l
E is the local stiffness matrix of coarse element, which

can be obtained by the first equation in Eq. (6); U l
E is the nodal dis-

placement vector of coarse element in the local coordinate system,
i.e.

U l
E ¼ Ul

1 Vl
1 Ul

2 Vl
2 Ul

3 Vl
3 Ul

4 Vl
4

n oT ð16Þ

After some mathematical operations by using these equations,
we can have

U g
E ¼ TT

EU
l
E ð17Þ

K g
Et ¼ K g

Et1 þ K g
Et2 ð18Þ

where K g
Et1 can be given by

K g
Et1 ¼ TT

EK
l
ETE ð19Þ

in which the translation matrix TE can be determined by

TE ¼ HGT ð20Þ
with

G ¼ diagðH;H;H;HÞ with H ¼ cosa � sina
sina cosa

� �
ð21Þ

H ¼ I � AB ð22Þ

A ¼ �yd1 xd1 �yd2 xd2 �yd3 xd3 �yd4 xd4f gT ð23Þ

B ¼ 1
q

�y1 x1 �y2 x2 �y3 x3 �y4 x4f g ð24Þ

in which I denotes an identity matrix and the expression of q is

q ¼ P4
i¼1ðxixdi þ yiydiÞ where xdi ¼ Ul

i þ xi and ydi ¼ Vl
i þ yi (i = 1–4).

After some algebraic operations, K g
Et2 in Eq. (18) can be given by

K g
Et2 ¼ G �STB� BTSH

� 	
GT ð25Þ

with

HTf lE ¼ n1 n2 n3 n4 n5 n6 n7 n8f gT ð26Þ

S ¼ n2 �n1 n4 �n3 n6 �n5 n8 �n7f g ð27Þ
Once we get the equivalent tangent stiffness matrix K g

Et of the
coarse element, the overall tangent stiffness matrix K g

Ct of the
whole structure with coarse-scale mesh can also be assembled by

K g
Ct ¼ ANE

E¼1 K g
Et


 � ð28Þ

where ANE
E¼1 represents the matrix (or vector) assemble operator and

NE denotes the number of the coarse element in the coarse-scale
mesh. Similarly, the internal force vector f g

C and external load vector
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F g
C of the whole structure meshed by the coarse-scale grids can also

be assembled as

f g
C ¼ ANE

E¼1 f g
E


 �
; F g

C ¼ ANE
E¼1 F g

E


 � ð29Þ

where f g
E and F g

E can be obtained by f g
E ¼ TT

Ef
l
E and F g

E ¼ TT
EF

l
E,

respectively, where F l
E can be calculated according to the second

equation in Eq. (6).
After obtaining the tangent stiffness matrix, the internal force

vector and the external load vector of the whole structure meshed
with the coarse-scale grids in the global coordinate system, the
equilibrium iterations during the geometric nonlinear analysis
can be performed only on the macroscopic level, which will save
lots of computation cost since the nonlinear equations are only
solved on the macroscopic scale. Furthermore, the microscopic
stress and strain information can be obtained through the down-
scaling computation based on the macroscopic displacement solu-
tion. In this paper, the generalized displacement control method
(GDCM) is employed for solving the macroscopic nonlinear equa-
tions with multiple extreme points. The implementation processes
are described as follows.

For the kth iteration step of the jth incremental step, the nonlin-
ear equilibrium equation of the structure on the macroscopic scale
can be written as

K g
Ct


 � j
k�1 DU g

C


 � j
k ¼ F g

C


 � j
k � f g

C


 � j
k�1 ð30Þ

where DU g
C represents the incremental displacement vector of the

macroscopic nodes on the coarse-scale mesh. The initial values of
the quantities in Eq. (30) are set as the convergent values in the last

incremental step, i.e., K g
Ct


 � j
0 ¼ K g

Ct


 �j�1, F g
C


 � j
0 ¼ F g

C


 �j�1,

f g
C


 � j
0 ¼ f g

C


 �j�1, U g
C


 � j
0 ¼ U g

C


 �j�1.
The external load vector can be rewritten in the incremental

form as

F g
C


 � j
k ¼ F g

C


 � j
k�1 þ DF g

C


 � j
k ð31Þ

Furthermore, the above equation can be rewritten as

F g
C


 � j
k ¼ F g

C


 � j
k�1 þ k j

k
bF g
C ð32Þ

where k j
k denotes the incremental loading factor of the kth iteration

in the jth incremental step and bF g
C is the reference load vector.

According to Eq. (30), we have

K g
Ct


 � j
k�1 DU g

C


 � j
k ¼ k j

k
bF g
C þ R g

C


 � j
k�1 ð33Þ

where

R g
C


 � j
k�1 ¼ F g

C


 � j
k�1 � f g

C


 � j
k�1 ð34Þ

Then, the Eq. (33) can be decomposed into two parts, i.e.

K g
Ct


 � j
k�1 DbU g

C

� 	 j

k
¼ bF g

C ð35Þ

K g
Ct


 � j
k�1 DU g

C


 � j

k ¼ R g
C


 � j
k�1 ð36Þ

In this way, the overall incremental displacement can be given
by

DU g
C


 � j
k ¼ k j

k DbU g
C

� 	 j

k
þ DU g

C


 � j

k ð37Þ

Thus, the macroscopic overall displacement of the structure can
be updated by

U g
C


 � j
k ¼ U g

C


 � j
k�1 þ DU g

C


 � j
k ð38Þ
Similarly, the total external load can be updated by

F g
C


 � j
k ¼ K j

k
bF g
C ð39Þ

where K j
k is the loading factor, which can be calculated by

K j
k ¼ K j

k�1 þ k j
k ð40Þ

The incremental loading factor k j
k is an unknown parameter

which should be determined by an additional constraint condition

[38]. For the generalized displacement control method (GDCM), k j
k

can be calculated according to a generalized stiffness parameter

(GSP). For the 1st iteration of each incremental step, k j
1 can be given

by

k j
1 ¼ k11

ffiffiffiffiffiffiffiffiffiffiffi
jGSPj

p
ð41Þ

where k11 is a given initial incremental loading factor and GSP is
defined as

GSP ¼
D bU g

C

� 	1

1

� �T

D bU g
C

� 	1

1

� �
DbU g

C

� 	j�1

1

� �T

DbU g
C

� 	 j

1

� � ð42Þ

For the kth (k P 2) iteration of each incremental step, k j
k will be

obtained by

k j
k ¼

DbU g
C

� 	j�1

1

� �T

DU g
C


 � j

k

n o
DbU g

C

� 	j�1

1

� �T

DbU g
C

� 	 j

k

� � ð43Þ

The implementation processes of the proposed multiscale co-
rotational formulation based on the GDCM are introduced in detail
as follows and the corresponding flow chart is also given in Fig. 6.

5. Numerical validations

In this section, several numerical examples are carried out to
verify the effectiveness of the proposed method and investigate
the size effects of the lattice truss microstructures as well as the
coarse-scale mesh sensitivity. In the following examples, the
‘ECMM’ represents the result obtained based on the coarse-scale
mesh by using the proposed multiscale formulation, while the
‘FEM-F’ and ‘ANSYS’ are the solutions obtained based on the full
scale (fine-scale) mesh. Actually, ‘FEM-F’ is the result computed
by combining the traditional FEM and co-rotational approach,
while ‘ANSYS’ denotes the result calculated by the commercial
software ANSYS. The co-rotational formulation of ‘FEM-F’ are given
in the appendix. In addition, the parameters employed in these
examples are all dimensionless.

Example 1. A cantilever beam (as shown in Fig. 7) subjected a
uniform force on its right end is studied to investigate the effect
of the number of truss materials within the unit cells and the effect
of the coarse-scale mesh sensitivity on the computation results.
Two microstructures with different truss distributions and proper-
ties are taken into account as shown in Fig. 8, where the Young’s
moduli of the truss materials in Fig. 8 are all 1:0� 109 except for
the red inclined trusses in Microstructure B. The Young’s moduli
of the red inclined trusses are 5:0� 109. The truss cross sectional
area is 7:854� 10�7 in this example. Microstructures A and B rep-
resent the homogeneous and heterogeneous unit cells. In this
example, we firstly investigated the effect of the unit cells with dif-
ferent number of trusses on the computation results based on a
fixed coarse-scale mesh (38� 4). Then, we analyzed the coarse-
scale mesh sensitivity based on a fixed fine-scale mesh (the num-



Fig. 6. The flow chart of the proposed multiscale co-rotational formulation.

Fig. 7. A cantilever beam with 38� 4 coarse elements.
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ber of coarse elements is changed and the number of fine elements
is unchanged for different sizes of unit cells). It should be men-
tioned that the external distributed force q is 125 for Microstruc-
ture A, while it is set to 100 for Microstructure B.

To investigate the effect of the number of trusses within the
unit cells, a 38� 4 coarse-scale mesh (Fig. 7) and two microstruc-
tures (Fig. 8) with different layouts are taken into account. In this
analysis, the reference solutions (‘FEM-F’ and ‘ANSYS’) will be dif-
ferent for different kinds of unit cells since the coarse-scale mesh is
unchanged (38� 4) while the layout of unit cell is changing for dif-
ferent unit cells. Therefore, the fine-scale (full scale) mesh corre-
sponding to each unit cell as shown in Fig. 8 is different. To
verify the validation of the proposed method, those results
obtained by the proposed multiscale formulation based on the
coarse-scale mesh are compared with the reference solutions
labeled by ‘FEM-F’ and ‘ANSYS’ calculated on the fine-scale mesh.
The comparison is plotted in Figs. 9 and 10. One can see that the
results obtained by the traditional FEM and co-rotational formula-
tion are exactly the same as those calculated by the commercial
software ANSYS. This indicates that the co-rotational formulation
of the truss element given in Appendix A is correct. For different
unit cells, the multiscale computation results at the load factor
k ¼ 1 are compared with their corresponding reference ones. Their
relative errors of the displacement of Point A in the negative y
direction are also plotted in Fig. 11. For Microstructure A, the rela-
tive error is slightly reduced from 2% for nf ¼ 2 to 1.7% for nf ¼ 16
(nf denotes the layout of unit cell as shown in Fig. 8). For
Microstructure B, it reduces from 5.4% for nf ¼ 2 to 3.3% for
nf ¼ 16. From the results shown in Fig. 11, we can also conclude
that: (1) the proposed formulation can obtain enough accurate
results by comparison with the reference ones since all of the rel-
ative errors are less than about 5%; (2) the selection of the number
of trusses within the unit cells has little effect on the computation
accuracy for the homogeneous microstructure, which it has signif-
icant effect on the computation accuracy for the heterogeneous
microstructure; (3) the unit cell with more trusses can improve
the corresponding computation accuracy. It should be mentioned
that this proposed method is different with the well-known com-
putational homogenization method [39–41], in which there is
one key assumption that the governing length scales are well sep-
arated, i.e., ‘discrete � ‘micro � ‘macro. However, there is no such an
assumption in our proposed multiscale formulation.

On the other hand, to investigate the effects of the coarse-mesh
sensitivity and the size selection of unit cell on the computation
results based on the same lattice truss structure, the cantilever
beam shown in Fig. 7 is re-meshed on the coarse scale. The grids
for these different meshes are 304� 32, 152� 16, 76� 8 and
38� 4, respectively. Since these coarse-scale meshes are corre-
sponding to a same lattice truss structure, the unit cells for these
coarse-scale meshes are also different and they are depicted in
Fig. 12, where the unit cells (a), (b), (c) and (d) are corresponding
to the aforementioned coarse-scale meshes, respectively. The
results obtained by the proposed multiscale formulation based
on the four different coarse-scale meshes and their corresponding
unit cells are compared with the reference ones based on the full
scale mesh (see Figs. 13 and 14). These results indicate that



Fig. 8. Two different microstructures.

Fig. 9. Comparison of the displacement of Point A in the negative y direction for
Microstructure A.

Fig. 10. Comparison of the displacement of Point A in the negative y direction for
Microstructure B.
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increasing the number of the coarse elements will not improve the
accuracy of the computation results for a same lattice truss struc-
ture, but increasing the size of unit cell will improve it signifi-
cantly. Furthermore, this conclusion will be also validated by
Fig. 15, where the relative error of the displacement of Point A in
the negative x direction are plotted. With the increase of the size
of unit cell, the relative error is significantly reduced from 20.63%
to 1.73% for Microstructure A and from 43.6% to 6.7% for
Microstructure B. This is to say that increasing the unit cell size
can improve the accuracy of computation results obtained by the
proposed multiscale formulation. The reason behind this is that
the heterogeneity of the unit cell with less trusses is stronger
and it is not suitable to be equivalent as a continuum coarse ele-
ment [25–33].

Example 2. A L-shape frame depicted in Fig. 16 is considered
herein to investigate the validation and the computational effi-
ciency of the proposed multiscale method. In this example, the
Young’s modulus and the cross-sectional area of truss are
1:0� 106 and 7:854� 10�7, respectively. The sizes of the computa-
tional model are L1 ¼ 2:16 and L2 ¼ 0:24. The dimension of the unit
cell is 0:06� 0:06.

The displacement results of Point A in the x direction obtained
by the proposed method and ANSYS are plotted in Fig. 17, from
which we can see that these two results agree very well. The dis-
placement of Point A in the x direction at q ¼ 0:5 is 1.622 for the
multiscale solution ‘ECMM’ and it’s 1.637 for the reference result
‘ANSYS’. The relative error between them is about 0.92%, which
indicates that the proposed multiscale method can provide high
accuracy results by comparison with the reference one. In addition,
Table 1 is listed to show the high computation efficiency of the
proposed formulation. From the data in the table, we can see that
there are 115 and 41 load steps for the solutions ‘ECMM’ and
‘ANSYS’, respectively. While their computation time are 17 s and
1579 s. Then the average computation time for each load step for
these two approaches are about 0.15 s and 38.51 s. This is to say
that more than 99% of the computation time for each load step



Fig. 11. Relative error of the displacement of Point A in the y direction with
increasing the number of trusses in the unit cell.

Fig. 12. Four unit cells for Microstructures A and B.

Fig. 13. Comparison of the displacement of Point A in the negative x direction for
the structure with different coarse-scale meshes for Microstructure A.
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Fig. 14. Comparison of the displacement of Point A in the negative x direction for
the structure with different coarse-scale meshes for Microstructure B.

Fig. 15. The variation of the relative error of the displacement of Point A in the
negative x direction with the increase of the number of DOFs of unit cell (TND
shown in the figure represents the total number of the DOFs of the corresponding
coarse-scale mesh).

Fig. 16. Computational model: (a) L-shape frame with the coa
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can be saved by employing the proposed multiscale co-rotational
formulation.

Example 3. In this example, the structural instability analysis
[42,43] will be investigated by using the proposed multiscale for-
mulation. A C-shape structure with two kinds of unit cells is car-
ried out to verify the validation and efficiency of the proposed
method for the geometrical nonlinear problem with multiple crit-
ical points. The computational model is depicted in Fig. 18, where q
is a uniform external force and the dimensions of unit cells are
0:12� 0:12. In unit cell (a), all of the trusses have the same prop-
erties, i.e., Young’s modulus and the cross-sectional area are
1:0� 109 and 7:854� 10�7, respectively. In unit cell (b), the prop-
erties of the black thin trusses are the same as those in unit cell (a),
while the Young’s modulus and the cross-sectional area of the red
thick trusses are 5:0� 109 and 7:854� 10�7 respectively.
rse-scale mesh and its boundary conditions; (b) Unit cell.

Fig. 17. Comparison of the displacement of Point A in the x direction.

Table 1
Comparison of the computational efficiency for the L-shape frame.

Number of Total DOFs Number of Load Steps CPU time

ECMM 770 115 17 s
ANSYS 332,162 41 1579 s



Fig. 18. C-shape structure and the unit cells.

Fig. 19. Load-displacement curve of the structure with unit cell (a).

Fig. 20. Load-displacement curve of the structure with unit cell (b).
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The equilibrium paths of the structures with two different unit
cells are depicted in Figs. 19 and 20, from which we can observe
that the paths have multiple critical points and the results calcu-
lated by the proposed method based on the coarse-scale mesh is
quite consistent with those computed by ANSYS based on the full
scale mesh. This verifies the validation of the presented multiscale
formulation. In addition, for the structure with unit cell (a), the
uniform distributed forces q at the first inflection point are 82.83
and 82.16 for the proposed multiscale solution ‘ECMM’ and the ref-
erence result ‘ANSYS’, respectively. The relative error between
them is about 0.81%. For the structure with unit cell (b), they are
59.61 and 57.48 for the results ‘ECMM’ and ‘ANSYS’, respectively.
Correspondingly, the relative error is about 3.71%, which is much
higher than that for the structure with unit cell (a). The reason
behind this can be found from the size effect analysis in Example
1, where the proposed multiscale formulation will provide more
accuracy results when the unit cell has higher density of the truss.
Furthermore, in order to study the computational efficiency of the
presented method, the comparison of the computation cost is
shown in the Table 2, from which we can conclude that the pre-
sented formulation has a high efficiency. The reason behind this
has been mentioned above, i.e., the material microscopic proper-
ties are captured and brought to the macroscopic scale by virtue
of the numerically constructed base functions easily and then the
original nonlinear problems can be solved on the macroscopic
scale. Moreover, all the iteration computation can be performed
only on the macroscopic scale (coarse-scale mesh), which will save
lots of computational cost. After obtaining the convergent macro-
scopic computation result, the microscopic information can also
be retrieved by virtue of the constructed multiscale base functions
easily.



Table 2
Comparison of the computational efficiency of the C-shape structure.

Unit cells Methods Number of Total DOFs Number of Load Steps CPU time

(a) ECMM 1446 2060 270 s
ANSYS 530,018 161 17,408 s

(b) ECMM 1446 1860 262 s
ANSYS 144,050 221 4781 s
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6. Conclusions

In this work, an equivalent continuum multiscale method
(ECMM) is developed by combining the extended multiscale finite
element method (EMsFEM) and the co-rotational formulation for
the geometrical nonlinear analysis of the structures with lattice
truss unit cells. Firstly, the basic ideas of the EMsFEM is briefly
reviewed. Then, the macroscopic equivalent quantities in the local
system of the unit cell are determined. Next, the co-rotational for-
mulation is adopted to obtain the tangent stiffness matrix in the
global system of the equivalent continuum coarse element and
the overall tangent stiffness matrix of the structure at the macro-
scopic level in the global system could be assembled naturally.
Finally, the nonlinear equilibrium equations of the structure at
the macroscopic level can be solved by employing the general dis-
placement control method and the results of each microscopic
node and truss element within the unit cell can also be calculated
easily by using the downscaling computation.

Several numerical examples were implemented to investigate
the layouts and the size effects of unit cell. The results indicated
that the effects of different unit cell layouts on the computation
accuracy are not obvious for the case with fixed coarse-scale mesh.
However, increasing the unit cell size will improve the accuracy
significantly for the case with fixed fine-scale mesh. Furthermore,
the validation and efficiency of the proposed multiscale formula-
tion were also investigated by comparison with the results of the
traditional FEM and ANSYS on the fine-scale mesh.
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Appendix A. Co-rotational formulation of 2D truss element

The description of 2D truss element configurations is shown in
Fig. A1, where the movement of truss element is divided into two
parts, i.e., firstly the truss element moves to a temporary configu-
ration from the initial one through a rigid body motion and then
the truss element undergoes a pure deformation from the tempo-
rary configuration to the current one. During the pure deformation
processing, the geometric linear theory could be employed to
describe the movement of the truss element in the local coordinate
system. Thus, the stress-strain relationship of truss element can be
given by

rl ¼ Eel ðA1Þ
where r and e are the stress and strain of the plane two-node truss
element, respectively. E denotes the Young’s modulus of the truss
element and the superscript ‘l’ represents the local system. The
strain el can be expressed as
el ¼ ul
2 � ul

1

l0
ðA2Þ

where ul
i (i = 1–2) represents the nodal displacement of the truss

element described in the local system and l0 denotes the length of
truss element. For convenience, Eq. (A2) can be rewritten in the
matrix form as

el ¼ 1
l0

cl

 �T

ul ðA3Þ

with

cl ¼ f�1 1 0 0 gT; ul ¼ ul
1 ul

2 v l
1 v l

2

� �T ðA4Þ

The internal force vector f li in the local frame can be given by

f li ¼ A0Eelcl ðA5Þ
where A0 represents the cross section of the truss element.

By virtue of the transformation matrix T between the local and
global frames, the global internal force vector f g

i and nodal dis-
placement vector u g can be obtained by

f g
i ¼ TTf li; u g ¼ TTul ðA6Þ

where

T ¼

cos h 0 sin h 0
0 cos h 0 sin h

� sin h 0 cos h 0
0 � sin h 0 cos h

26664
37775 ðA7Þ

According to Eq. (A6), we have

df g
i ¼ TTdf li þ dTTf li ðA8Þ
By using Eq. (A5), the expression of df li can be obtained as

df li ¼
@f li
@ul

dul ¼ K ldul ðA9Þ

where K l denotes the stiffness matrix of truss element in the local
coordinate system and can be written as

K l ¼ 1
l0
EA0 cl


 �
cl

 �T ðA10Þ

Substituting the relation dul ¼ Tdu g into Eq. (A9) and the first
term of the right hand side of Eq. (A8) results in

TTdf li ¼ TTK lTdu g ¼ K g
1 du

g ðA11Þ
where K g

1 is the first part of the tangent stiffness matrix of truss ele-

ment and can be given as K g
1 ¼ TTK lT .

In the second part of the right hand side of Eq. (A8), dTT can be
given by

dTT ¼

� sin h 0 � cos h 0
0 � sin h 0 � cos h

cos h 0 � sin h 0
0 cos h 0 � sin h

26664
37775dh ðA12Þ



Fig. A1. Description of the movement of truss element.

Fig. A2. Illustration of dh.
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where dh, illustrated in Fig. A2, denotes a small angle change of the
truss element in the current configuration.

The normal vector of the truss element in the current configu-
ration could be written as

n ¼ 1
ln

�y021 x021f gT ðA13Þ

where y021 ¼ y02 � y01 and x021 ¼ x02 � x01 with x0i; y
0
i


 �
being the global

nodal coordinates of the truss element in the current configuration.
ln is the length of the truss element in the current configuration.

Since dh is an infinitesimal quantity, dh can be obtained by

dh ¼ da=ln ¼ nTdu g
21


 �
=ln ¼ yT

21du
g


 �
= l2n
� 	

ðA14Þ

where the meaning of da is depicted in Fig. A2; du g
21 and yT

21 are
expressed as

du g
21 ¼ dug

21 dv g
21

� �T
; y21 ¼ y021 �y021 x021 �x021f gT ðA15Þ

with ug
21 ¼ ug

2 � ug
1 and v g

21 ¼ v g
2 � v g

1 .
Substituting Eqs. (A5), (A12) and (A14) into the second part of

the right hand side of Eq. (A8) leads to

dTTf li ¼
A0Eel

l2n

�sinh 0 �cosh 0
0 �sinh 0 �cosh

cosh 0 �sinh 0
0 cosh 0 �sinh

26664
37775clyT

21du
g ¼K g

2du
g

ðA16Þ
According to the geometric relationship of the truss element in

the current configuration, the expressions of sin h and cos h can be
easily obtained. After some basic algebraic operations, the second
part of the tangent stiffness matrix of truss element can be given
by
K g
2 ¼ A0Eel

l3n

ðy021Þ2 �ðy021Þ2 �x021y
0
21 x021y

0
21

�ðy021Þ2 ðy021Þ2 x021y
0
21 �x021y

0
21

�x021y
0
21 x021y

0
21 ðx021Þ2 �ðx021Þ2

x021y
0
21 �x021y

0
21 �ðx021Þ2 ðx021Þ2

266664
377775 ðA17Þ

By substituting Eqs. (A11) and (A16) into Eq. (A8), we have

df g
i ¼ TTdf li þ dTTf li ¼ K g

1 þ K g
2


 �
du g ¼ K g

t du
g ðA18Þ

where K g
t is the tangent stiffness matrix of the truss element and

can be given by K g
t ¼ K g

1 þ K g
2 .

After obtaining the tangent stiffness matrix of the truss ele-
ment, the above co-rotational formulation can be performed based
on the fine-scale mesh and the resulting solution will be seen as
the reference solution for comparison purpose.
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