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This paper presents numerical analyses of elastic and viscoelastic smart flexible and foldable composite
structures under electric field actuation. The studied composites comprise of multiple distributed piezo-
electric patches bonded to the surfaces of in-active thin planar structures (substrates). Upon applications
of electric field input, the planar structures can undergo three-dimensional large rotational deformations
while their strains and stretches remain relatively small. A nonlinear time-dependent electro-mechanical
coupling relation for the piezoelectric patches is considered to simulate more precisely response of piezo-
electric materials when subjected to large magnitude of electric field. Co-rotational Lagrangian finite ele-
ment approach is used for solving the governing equations of the deformations of flexible and foldable
electro-active composite structures. Various three-dimensional shape changes of originally planar struc-
tures are achieved with different arrangements of integrated patches and subjected to different magni-
tude of electric fields. The effect of viscoelastic substrates and time-dependent electro-mechanical
coupling of piezoelectric materials on the deformed shapes is also studied. This analysis can help design-
ers in simulating desired deformed shapes and determining external stimuli to be prescribed prior to fab-
ricating smart and flexible composites.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Structures integrated with smart materials, such as shape mem-
ory, magnetostrictive and piezoelectric materials, known as smart
structures, are appealing for the development of new generation of
autonomous systems with sensing and adaptation ability. Smart
structures that are lightweight, flexible and deformable into vari-
ous configurations find many applications in aerospace industry,
biomedicine and robotics. Examples of applications are morphing
wings, micro air vehicles, soft robots, artificial skins, vascular
stents, and electronic packaging systems. Flexible structures are
macroscopically compliant, which are often in the forms of long fil-
aments and thin sheets that can be deformed into various geomet-
rical shapes. Depending on the geometrical shapes considered,
flexible structures can experience relatively small strains while
undergoing large rotations [1,2]. In this work, we study the defor-
mation of smart flexible planar structures with integrated thin
piezoelectric patches, in which deformations and shape changes
are controlled by electric field inputs prescribed to the piezoelec-
tric actuators. We consider two piezoelectric materials for the
patches, which are, lead zirconate titanate (PZT) ceramics and
active fiber composites (AFC). When piezoelectric ceramics based
actuators are considered, it limits the strains in the flexible
structures and large deformations in such structures are predomi-
nantly due to large rotations. One solution to enhance deforma-
tions in piezoelectric ceramics based actuators is to form active
fiber composites (AFC) which have PZT fibers embedded in a poly-
meric matrix. AFC was originally proposed by Ben and Hagood [3].

Flexible structures are typically undergoing large displacements
(large stretch and/or large rotation) when subjected to external
stimuli, whose motion cannot be sufficiently described based on
linearized kinematics. There have been several studies on analyz-
ing three-dimensional deformation of thin plates and shells with
nonlinear geometries [4–6] mainly under mechanical loads.
Moderate and large deformations of plates are governed by cou-
pled nonlinear differential equations for which analytical solutions
are available only for a few cases involving simple geometries and
loading conditions [7]. There have been limited studies on analyz-
ing nonlinear deformations of plates and shells integrated with
piezoelectric actuator. Chen and Chen [8] studied piezoelectric
layered-plates by adopting von Karman theory and using finite dif-
ference method in order to obtain solutions to the governing equa-
tions for moderate deformations, e.g. von Karman strains. Xue et al.
[9] solved nonlinear partial differential equations for moderate
deflections of thin plates made of piezoemagnetic and piezoelectric
materials under transverse mechanical loads by using Bubnov–
Galerkin method.

One of the commonly used numerical techniques for solving
large deformations of plates and shells is finite element method
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Fig. 1. Stress distribution in the differential plate element due to active
piezoelectric.
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(FEM). In FE analysis with geometric nonlinearity, three Lagrangian
kinematic descriptions have been formulated: (a) total Lagrangian
(TL), (b) updated Lagrangian (UL) and (c) co-rotational (CR). For the
TL approach, the governing equations are written with respect to
the original configuration of the body while for the UL method,
the reference configuration is updated at each step or increment,
and the equations are formulated with respect to the equilibrated
configuration from the previous step. The CR description is based
on a separation of rigid body displacements from the deforma-
tional displacements, which can be used for analyzing structures
undergoing large deformation mainly due to rotations while the
strains remain relatively small. In the CR method, the deforma-
tional component is typically formed based on small strain mea-
sures, although other general strain measures are also possible.
The governing equations are expressed with respect to the current
configuration obtained from the rigid body motion of the original
configuration. The CR formulation was first introduced by Wemp-
ner [10] in 1969 and Belytschko et al. [11] in 1973. Since then, it
has been adopted by researchers for studying deformation of struc-
tures and multi-body systems which often involves large ratio of
rigid body motions to total deformation [12–16]. Felippa and Hau-
gen [17] summarized the existing CR formulations and presented a
unified theoretical framework for co-rotational finite element
(CRFE) in geometrically nonlinear analyses of structures. Recently,
by using the CR formulation, triangular flat shell elements were
constructed by researchers for nonlinear analysis of shells and
plates subjected to small strains and large rotations due to
mechanical loads [18–20]. Cai and Atluri [21,22] considered also
moderate strains by adopting the von-Karman nonlinear strains
in the rotated element frame. In all of the above studies, the CR for-
mulation has been considered for flexible linear elastic bodies
under mechanical loadings. To the best of our knowledge, the CRFE
method has not been used for studying deformations in flexible
elastic as well as viscoelastic composite plates/shells actuated by
non-mechanical stimuli.

In actuation applications, it is often necessary to apply high
electric field inputs to the piezoelectric components in order to
obtain large deformations. When subjected to high electric fields,
the piezoelectric materials often experience nonlinear electro-
mechanical responses. Tiersten [23] was among researchers who
studied nonlinear electro-mechanical behaviors of polarized piezo-
electric ceramics. He formulated an electro-mechanical constitu-
tive model by considering higher order terms of the electric field
in order to describe the nonlinear electro-mechanical coupling
behavior of piezoelectric ceramics. A limited number of studies
have considered nonlinear electro-mechanical response of piezo-
electric materials due to large electric fields [24–26], but for small
deformations. Mollayousef [27] and Ben Atitallah et al. [28,29]
have studied material characterization of AFC under a wider range
of electro-mechanical inputs. Mollayousef used a unit cell
approach to characterize the electro-mechanical properties of
AFC. Ben Atitallah et al. measured the material properties of AFCs
and showed nonlinear time and temperature dependent response
of the composite under high temperatures and different strain
rates as well as high electric voltages. Tajeddini et al. [30] modeled
the relaxation behaviors of AFCs and predicted the creep response
of the material under different temperatures and stress levels with
a quasi linear viscoelastic (QLV) approach.

In many flexible structures, polymers are widely used for the
substrate because of their capability in undergoing large deforma-
tions and they are generally lightweight. One of the prominent
characteristics of polymers is their viscoelastic behavior. It might
be necessary to consider the time-dependent behaviors in the vis-
coelastic polymeric structures when non-mechanical stimuli are
prescribed in order to obtain shape changes. In this study, 3D
deformations of smart composite structures having polymeric
substrates integrated with piezoelectric patches undergoing large
deformations are studied. Co-rotational finite element (CRFE)
method is used for numerically solving the equations that govern
the deformations of the electro-active composites. Both linear elas-
tic and linear viscoelastic behaviors are considered for the sub-
strates and patches. Nonlinear time-dependent electro-
mechanical constitutive equation is considered for the active
piezoelectric materials. The numerical results of the deformations
and shape changes of smart composite structures are presented.
The manuscript is organized as follows. Section 2 presents general
governing equations of the nonlinear deformations in electro-
active composites. Both piezoelectric ceramics and AFCs are con-
sidered as actuators. Section 3 discusses CRFE method for nonlin-
ear structural analysis. Section 4 discussed the CRFE method for
the electro-active composite plates followed by numerical analyses
of composites plates under various boundary conditions. The study
is wrapped up in Section 5.

2. Governing equations of the nonlinear deformations in
electro-active composite plates

2.1. Piezoelectric ceramic actuators on viscoelastic substrates

The undeformed structure is considered in the shape of slender
flat planar structures which can undergo 3D shape changes. Multi-
ple patches with arbitrary arrangement can be bonded to the top
and bottom surfaces of the substrate symmetrically with respect
to the middle plane of the plate. It is assumed that the patches
are perfectly bonded to the plates. The structure is assumed to
have a uniform thickness. Dimitriadis et al. [31] calculated the
bending load induced to an elastic plate by a pair of electrically
stimulated homogeneous piezoelectric patches bonded perfectly
on its top and bottom. For the elastic plates, we follow a similar
approach and present the formulation for more general case where
the piezoelectric patches are thin and orthotropic. Then, we take
into account time-dependent material properties for the substrate
and adopt the Laplace transformed method for solving governing
equations in case of viscoelastic substrates are considered.

Consider a differential plate element with thickness 2h having
integrated actuators at the top and bottom faces each with thick-
ness t as shown in Fig. 1. Since the patches are assumed perfectly
bonded to the homogeneous substrate, the displacements at the
interfaces of the substrate and the piezoelectric patches are contin-
uous; and due to the differences in the elastic moduli of the
patches and substrate, stress discontinuities arise at the interfaces.
Fig. 1 represents the x-z and y-z stress distributions. The electric
stimulus is prescribed on the top and bottom surfaces of the plate
such that it induces bending moments to the plate. Therefore, the
stress distributions due to the electric stimulus prescribed on the
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top and bottom actuators must be anti-symmetric about the neu-
tral axis in order to create bending moments and curvatures. The
normal stress distributions within the plate resulting from the cou-
ples mx and my per unit length (bending moments) are:Z h

�h
rxzdydz ¼ mxdyZ h

�h
ryzdxdz ¼ mydx

ð1Þ

As we are dealing with thin plates, the transverse shear defor-
mations are considered negligible. The axial in-plane strain distri-
bution is considered small and varies linearly along the thickness
direction, which is expressed as:

ex ¼ zjx; ey ¼ zjy ð2Þ
where jx and jy are the curvatures of the neutral surface of the
plate parallel to the x-z and y-z planes. Considering an isotropic
and linear elastic constitutive model for the substrate, the stress-
strain relations at the interface for the linear elastic plate is

ðrx iÞs ¼
Es

1� m2s
ex i þ msey i
� �

ðry iÞs ¼
Es

1� m2s
ey i þ msex i
� � ð3Þ

where the axial strains are considered continuous at the interface of
the patches and substrates. The subscript i of the stresses and
strains denotes their quantities at the interface and the subscripts
p and s denote the quantities of the piezoelectric material and the
substrate, respectively. E is the elastic modulus and m is the Poisson
ratio. The stress-strain relations of the actuator at the interface is
expressed as

ðrx iÞp ¼
Ep

1� m2p
ex i þ mpey i � ðexÞp � mpðeyÞp
� �

ðry iÞp ¼
Ep

1� m2p
ey i þ mpex i � ðeyÞp � mpðexÞp
� � ð4Þ

where ðexÞp and ðeyÞp denote the unconstrained free strains in the x-
and y- directions, respectively. These strains are due to the applica-
tion of electric fields to the piezoelectric patches, which are defined
in terms of the applied electric field as follows

ep ¼ d13E
e ð5-aÞ

ep ¼ d13E
e þ 1

2
b13E

e 2 ð5-bÞ

where d13 is linear piezoelectric constant and Ee is electric field in
the through thickness direction, z, of the patch, b13 is the higher
order piezoelectric constant. The linear electro-mechanical consti-
tutive relation, Eq. (5-a) is valid for a relatively small electric field
input and the second order term of the electric field is included
for relatively large electric field input, Eq. (5-b).

By assuming a linear strain variation in the thickness direction
of the plate and the patches, and imposing the moment equilib-
rium about the neutral axis of the plate in x- and y- directions,
the interface strains can be derived from solving the following sys-
tem of linear equations:

Aðexi þ mseyiÞ ¼ B Epexi þ mpEpeyi � Epð1þ mpÞep
� �

Aðeyi þ msexiÞ ¼ B Epeyi þ mpEpexi � Epð1þ mpÞep
� � ð6Þ

where for the elastic substrate

A ¼ Es

1� m2s
B ¼ �3htð2hþ tÞ

ð2h3 þ 3ht2 þ 2t3Þð1� m2s Þ
ð7Þ
From Eq. (6), the strains exi and eyi are determined, and the cou-
ples mx and my are then obtained as follows

mx ¼ 2h2

3
Es

1� m2s

� �
ex i þ msey i
� �

my ¼ 2h2

3
Es

1� m2s

� �
ey i þ msex i
� � ð8Þ

When the substrate is viscoelastic but the patches are elastic, by
considering a linear viscoelastic constitutive relation for the sub-
strate subjected to small strains under a time-dependent electric
field stimulus, Eq. (6) are rewritten asZ t

0
Aðt � sÞdexi

ds
dsþ mpl

Z t

0
Aðt � sÞdeyi

ds
ds ¼ B EpexiðtÞ þ mpEpeyiðtÞ

�
�Epð1þ mpÞepðtÞ

�
Z t

0
Aðt � sÞdeyi

ds
dsþ mpl

Z t

0
Aðt � sÞdexi

ds
ds ¼ B EpeyiðtÞ þ mpEpexiðtÞ

�
�Epð1þ mpÞepðtÞ

�
ð9Þ

A is time-dependent because of its dependency on the relaxation
function of the substrate, EsðtÞ. It is assumed that the Poisson effect
is constant. The free strain of the elastic piezoelectric material ep is
defined as before which is a function of time if the electric stimulus
changes over time. In a more concise form, Eq. (9) is written as

AðtÞ �DexiðtÞþmsAðtÞ �DeyiðtÞ¼BðEpexiðtÞþmpEpeyiðtÞ�Epð1þmpÞepðtÞÞ
AðtÞ �DeyiðtÞþmsAðtÞ �DexiðtÞ¼BðEpeyiðtÞþmpEpexiðtÞ�Epð1þmpÞepðtÞÞ

ð10Þ
where D denotes the time derivative operator and ‘⁄’ stands for the
convolution integral over [0, t]. In order to solve a set of integral-
differential equations, the Laplace transformed method is used to
transfer the system of integral equations (6) to Laplace domain
and obtain the following algebraic equations

~A~Dexi þ ms~A~Deyi ¼ B Ep
~Dexi þ mpEp

~Deyi � Epð1þ mpÞ~Dep
� �.

s

~A~Deyi þ ms~A~Dexi ¼ B Ep
~Dexi þ mpEp

~Deyi � Epð1þ mpÞ~Dep
� �.

s
ð11Þ

where superscript ‘�’ indicates that the time-dependent function in
Laplace domain. By solving the above equations and then by taking
inverse of the Laplace transform, the time-dependent interface
strains are determined and then in a similar way to the elastic case,
time-dependent induced moments to the substructure are derived.

2.2. AFC actuators on the polymeric substrates

As discussed above in order to create more flexible piezoelectric
ceramics actuators, AFCs have been considered. The AFCs used in
this study are from Advanced Cerametrics Inc. and the material
parameters are obtained from Ben Attitalah et al. [28] and Tajed-
dini et al. [30]. In these experimental studies, AFCs are shown to
experience time-dependent electro-mechanical responses.

The time-dependent relaxation function of the AFC in the fiber
direction, x, is assumed to have the following form:

Ep;xxðtÞ ¼ Eel
p;xx !1 þ

XN
n¼1

!n e�t=sn

 !
ð12Þ

where !1 þPN
n¼1!n ¼ 1 and !1 þPN

n¼1!n e�t=sn is called the nor-
malized relaxation function. Under a uniaxial tensile test in the fiber
direction, the tensile elastic modulus of the AFC in the fiber direc-

tion Eel
pxx is measured as 9.76 GPa. Fig. 2 shows the relaxation data

from experiment and the fitted curve based on the Prony series of
Eq. (12). The calibrated parameters are given in Table 1. For the
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Fig. 2. Time dependent relaxation function at room temperature.

Table 1
Normalized parameters of the relaxation function.

n !n sn (min)

1 0.3934 –
1 0.1449 1.04976
2 0.00277 0.00923
3 0.00069 49.75124
4 0.1771 3.32799
5 0.1078 0.01006
6 0.1759 56.17978
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piezoelectric coefficients of the AFC, the values reported by Khan
et al. [32] are used. The linear piezoelectric coefficient in the fiber
direction (d11) of the AFC is expressed as a time-dependent kernel
function given in Eq. (13) and the material parameters are shown
in Table 2.

dpxxðtÞ ¼ dpxx; 0 þ
XN
n¼1

dpxx; n 1� e�t=kn
� 	 ð13Þ

Based on available experimental data, the nonlinear piezoelec-
tric coefficient (bp11) is assumed to have similar time-dependent
function and differs from the linear coefficient by a constant, which
is calibrated from an instantaneous response of the piezoelectric
material. This approach is similar to the quasi-linear viscoelastic
model, originally proposed by Fung [33]. Fig. 3 shows the experi-
mental data and estimated data from least square algorithm. The

calibrated properties are e ¼ dpxx ;0ðEe þ 2:32� 10�5Ee2 Þ and there-

fore, bpxx ¼ 2:32� 10�5ðm=VÞ � dp11 .
The AFC is considered orthotropic with fibers in x-direction. Due

to lack of experimental data, the properties in directions perpen-
dicular to the fibers are approximated as EpyyðtÞ � ð15=19ÞEpxxðtÞ
[32] and dyxðtÞ � �0:5dxx ðtÞ [34]. The corresponding Poisson’s coef-
ficients (mxy = 0.28 and myx = (15/19) mxy), from [32], of the material
are assumed time-independent.

The stress-strain relations for the AFC incorporating time-
dependent electro-mechanical effect are written as:
Table 2
Parameters of the Prony series for piezoelectric coefficient.

n dpxx; n (pm/V) kn (min)

0 110 –
1 10 0.2
2 120 1
3 10 10
4 140 60
rxið Þp ¼
1

1�mxymyx
Epx �Dexiþm12Epy �Deyi�Epx �Depx�m12Epy �Depy
� �

;

ryi
� �

p ¼
1

1�mxymyx
Epy �Dey iþm12Epy �Dexi�Epx �Depy�m12Epy �Depx
� �

ð14Þ
From the equilibrium conditions and considering the continuity

condition at the interface, the following sets of equations in terms
of unknowns strains ey i and ex i are:

EsðtÞ
1� m2pl

� jgEp xðtÞ
1� mxymyx

 !
� Dex iðtÞ þ msEsðtÞ

1� m2s
� jgmxyEp yðtÞ

1� mxymyx

� �

� Dey iðtÞ ¼ jg

1� mxymyx
�Ep xðtÞ � Dep xðtÞ � m12EpyðtÞ � Dep yðtÞ
� �

;

EsðtÞ
1� m2pl

� jgEp yðtÞ
1� mxymyx

 !
� Dey iðtÞ þ msEsðtÞ

1� m2s
� jgmxyEp yðtÞ

1� mxymyx

� �

� Dex iðtÞ ¼ jg

1� mxymyx
�Ep yðtÞ � Dep yðtÞ � mxyEp yðtÞ � Dep xðtÞ
� �

ð15Þ
where

ep x
¼
Z t

0
dxxðt � sÞ @F

e

@Ee
x

@Ee
1ðsÞ
@s

ds

ep y
¼
Z t

0
dyxðt � sÞ @F

e

@Ee
y

@Ee
1ðsÞ
@s

ds
ð16-aÞ

and the nonlinear electric field measure in Eq. (16-a) is given as

Fe ¼ Ee
x þ 2:32� 10�5ðm=VÞEe 2

x ð16-bÞ
By solving Eq. (15) in Laplace domain, the induced time-

dependent moments to the substrate can be determined.

3. CRFE methods for nonlinear deformations of electro-active
composite structures

Using the CRFE approach, 3D deformations of smart thin planar
structures undergoing small strains but large rotations due to
electro-mechanical input are studied. The CR formulation is based
upon an explicit separation of rigid body motions, including trans-
lations and rotations, from the total deformations. The benefit
gained through this approach is that an existing linear finite ele-
ment method is used for the deformational part of motion, while
a nonlinear analysis is incorporated for the rigid body motions.
The CRFE formulation is documented in details in [20,35]. A sum-
mary of the approach and main formulas required in the present
analyses are discussed as follows.



Fig. 4. Co-rotational element kinematics.
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The kinematics of CR formulation is shown for an element in
Fig. 4. The element in its initial configuration is denoted by C0.
The motion of the element under an applied load transforms the
body to a deformed configuration CD. The rigid-body motion expe-
rienced by the element brings the initial configuration to the co-
rotated configuration CR (shown in dashed line).

Two types of coordinate systems are considered: global coordi-
nate system defined by the triad of unit orthogonal vectors (i, j, k)
and local coordinate system of the element including the initial
coordinate system ðe0

1; e
0
2; e

0
3Þ and co-rotated coordinate system

ðe1; e2; e3Þ which are the reference coordinate system for both CR

and CD. Regarding the notations used for variables, the superscripts
0 and R correspond to the variables at the initial and co-rotated
configurations, respectively. Variables without superscript corre-
spond to the deformed configuration. Subscripts correspond to
the starting and ending points of the vector. Over bar ’ - ’ denotes
a variable in the local coordinate system. Numerical subscripts of
the vectors and matrices refer to the node numbers. For example,
in Fig. 4, R2 is the rotational orientation of the node 2, Rd2 is the
deformational rotation of the node and R0 is the rigid-body rota-
tion of the node.

A vector x in the global coordinate system is related to its
expression in the local coordinate as follows

�x0 ¼ T0x;
�x ¼ Tx

ð17Þ

where T0 and T are the transformation tensors of a location in C0

and CD, from the global to local coordinate systems which are
expressed as

T0 ¼ e0
1 e0

2 e0
3

� 	T ð18Þ

T ¼ e1 e2 e3½ �T ð19Þ
The displacement of a node a is decomposed into rigid-body

and deformational components:

ua ¼ ura þ uda ð20Þ
where

ura ¼ xR
a � x0

a

uda ¼ xa � xR
a

ð21Þ

Similarly, the rotation of the node Ra can be decomposed into a
rigid-body rotation R0 for nodal rotation in C0 ! CR and a deforma-
tional rotation Rda as

Ra ¼ RdaR0 ð22Þ
In the co-rotated local coordinate system of the element, the
deformational displacement vector �pd including translational and

rotational degrees of freedom of the element, �pd ¼ �uT
d
�hTd


 �T , is
related to the element internal force �f and element stiffness matrix
�K in a linearized form as follows

�f ¼ �K�pd ð23Þ
Since the problem involves small strains and small deforma-

tional degrees of freedom, a linear FE formulation is used in order
to form �f and �K of the element in the local coordinate system for CD

which are typically defined as the following integrals over the vol-
ume of the element Xe:

�f ¼
Z
Xe

�BT �rdV ; �K ¼
Z
Xe

�BT �D�BdV ð24Þ

where �B is the strain-displacement relations matrix, �r is the stress,
V is the volume and �D is the elasticity matrix.

The element considered in this study is a three-node linear pla-
nar element with six degree of freedom per node which is obtained
by combining the Discrete Kirchhoff Theory (DKT) plate bending
element [36] and optimal membrane element [37], as shown in
Fig. 5. It is noted that shear locking could occur in bending domi-
nant structures, which could be solved by considering reduced
integration or modifying the shape functions of the element. How-
ever, this option is not being considered in the present study since
our main focus is to highlight the use of nonlinear electro-active
materials for inducing three dimensional shape reconfigurations.
We avoid shear locking by choosing appropriate geometrical
parameters. In the next step of the CRFE, the local quantities and
tensors for each element should be transformed to the global coor-
dinate system and also the rigid body motion of each element
should be added before assembling and obtaining the total dis-
placement and internal force vectors and stiffness matrix for the
entire structure. The routine process of adding of rigid body
motions and the CRFE related tensor transformations are given in
Appendix A. This approach leads to nonlinear equations for which
an incremental and iterative solution is used.

Next, the CRFE formulation is extended for the deformations of
smart composite plates when the viscoelastic thin substrate is con-
sidered. A general constitutive relation for a linear viscoelastic
material is written as:

rðx; tÞ ¼
Z t

0
Gðt � sÞ @eðx; tÞ

@s
ds ð25Þ

or in tensorial component form is



Fig. 5. (a) Plate bending element and (b) Membrane element.
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rijðx; tÞ ¼
Z t

0
Gijklðt � sÞ @eklðx; tÞ

@s
ds ð26Þ

where G is time-dependent relaxation tensor of the material. As we
deal with a plane stress condition two scalar indices are considered,
i; j; k; l ¼ x; y. In the FE formulation and incremental iterative
process, the incremental quantities are expressed in terms of a
discrete interval of time. To obtain small deformational
displacements of an element, the incremental form of the viscoelas-
tic constitutive equation is done similar to the procedure performed
by Zocher et al. [38] and presented here briefly. The incremental
stress during time increment Dt from tn to tn+1 on interval
[tn, tn+1] is written as

Dr ¼
Z tnþ1

0
Gðtnþ1 � sÞ @eðx; tÞ

@s
ds�

Z tn

0
Gðtn � sÞ @eðx; tÞ

@s
ds ð27Þ

or

Drij ¼
Z tnþ1

tn

Gijklðtnþ1 � sÞ @eklðx; sÞ
@s

dsþ
Z tn

0
DGijkl

@eklðx; sÞ
@s

ds

ð28Þ
The following series of exponential function is chosen for

describing the components of the material relaxation tensor:

Gijkl ðtÞ ¼ Gijkl1 þ
XNijkl

m¼1

Gijkl me
� t
qijklm ð29Þ

In calculating the integrals in Eq. (27), @e=@s is approximated as
a constant, e�, and De ¼ e�Dt over the interval [tn, tn+1]. Thus, an
incremental form of the constitutive Eq. (27) can be written as

Dr ¼ G0e� þ DrR ð30Þ
where

G0 ¼
Z tnþ1

tn

Gðtnþ1 � sÞds ;

DrR ¼
Z tn

0
Gðtnþ1 � sÞ � Gðtn � sÞ½ � @eðx; tÞ

@s
ds

ð31Þ

For FE implementation, the principle virtual work, similar
to the elastic problem, for time-dependent deformations at t + Dt
areZ
Xe
ðrt þ DrÞðêt þ DêÞdV ¼

Z
@Xe

ttþDtwtþDtdSþ
Z
Xe
qqtþDtwtþDtdV

ð32Þ
where t and q are the surface traction and body force vectors,
respectively; q is the density of the medium and w is a vector of
arbitrary admissible displacement functions and each component
of ê is defined in terms of components of w as êij ¼ 0:5ðwi;j þ wj;iÞ .
By considering the equilibrium condition at the previous time t
and substituting Eq. (30) into the equation, Eq. (33), the equilib-
rium equation at current time isZ
Xe
DêG0DedV ¼

Z
@Xe

ttþDtDwdSþ
Z
Xe
qqtþDtDwdV

�
Z
Xe
DêrtdV �

Z
Xe
DêDrRdV ð33Þ

The incremental strain is given as

De ¼ BDu; Dê ¼ BDw ð34Þ
where u is the displacement of the element,

Du ¼ NDUn; Dw ¼ NDWn ð35Þ
where Un and Wn are the nodal displacement vectors of the element
and N is the shape function matrix. By replacing Eqs. (34) and (35)
and rearranging, the Eq. (33) is written asZ
Xe

ðBDWnÞTG0BDUn dV ¼
Z
Xe

ðBDWnÞTrtdV

þ
Z
Xe

ðBDWnÞTDrRdV

þ
Z
@Xe

ðNDWnÞTttþDtdS

þ
Z
Xe

ðNDWnÞTqqtþDtdV ð36Þ

It is noted that DWn is arbitrary, it is simplified as KDUn ¼ F for
the element. In the CRFE approach, this gives the force and stiffness
of the element in a co-rotated configuration CR. The aforemen-
tioned CRFE formulations are then used in the same way as for
the elastic case in order to obtain the structural stiffness matrix
and force vector.

The Newton-Raphson iterative algorithm with load control is
adopted to determine the displacement solution of the structure
under applied loads. Briefly, due to nonlinearity of the problem,
the solution obtained by an increment-iterative process is as fol-
lows: Consider the equilibrium point of the structure after n load
steps with known equilibrated displacement solution UðnÞ, struc-

tural tangent stiffness KðnÞ
St and internal force FðnÞ

St in the first itera-
tion of (n + 1)th increment, the following equation is considered
as the predictor:

dUðnþ1Þ
ð1Þ ¼ ðKðnþ1Þ

Stð1Þ Þ
�1ðkðnþ1ÞFextÞ ð37Þ

where dUðnþ1Þ
ð1Þ is the initial guess of the structure’s incremental dis-

placement by using KðnÞ
St at the end of nth increment as the trial for

tangent stiffness Kðnþ1Þ
St due to the (n + 1)th incremental load



Table 3
Properties of the components of the smart plate.

Patch (PZT G-1195) [23] Substrate

d31 = d32 = 180 pm/V, d36 = 0 Epl = 2 GPa
b31 = 8 � 10�4 p m2/V2 mpl = 0.1
Ep = 63 GPa tpl = 5 mm
mp = 0.28
tp = 0.5 mm
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kðnþ1ÞFext; Fext is the total external load applied to the structure and
kðnþ1Þ is the load factor of the (n + 1)th load step. The subscripts and
superscripts in the parentheses stand for the iteration number and
increment number, respectively.

The solution is updated as Uðnþ1Þ ¼ UðnÞ þ dUðnþ1Þ
ð1Þ and then, the

tangent stiffness and internal force of the structure is updated.
Starting from the 2nd iteration, the following equation is solved
for each iteration (i)

dUðnþ1Þ
ðiÞ ¼ Kðnþ1Þ

St ðiÞ

� ��1
kðnþ1ÞFext � FSt ðiÞ
� �

ð38Þ

and as for the first iteration, Uðnþ1Þ is updated and Kðnþ1Þ
St and FSt are

calculated for the next iteration. This process is repeated until a
convergence criterion is met. The following convergence criterion
is considered

kdUðnþ1Þ
ðiþ1Þ k

kUðnþ1Þk 6 10�3 ð39Þ

To improve the computational efficiency, the load control strat-
egy is adopted in which the magnitude of the load increment is
adjusted depending on convergence rate in previous step: a maxi-
mum allowable iteration imax is chosen for a single load step; For
the nth load step, if convergence occurs after j iterations, for the
n + 1th step, the magnitude of load factor kðnÞ is adjusted as follows

kðnþ1Þ ¼ imax

j

� �2

kðnÞ ð40Þ

For example, if at the nth load step, convergence occurs after
smaller number iterations than imax, the load factor is increased
for the next load step.

4. Boundary value problems

First, the CRFE solution for electro-active composite plates is
reduced to analyze responses of a homogeneous elastic beam. This
is done in order to compare the numerical responses with the ana-
lytical solution based on Reissner’s theory [39] for a cantilever
beam under a bending moment equal to 1.5 KN-m along its free
edge, as shown in Fig. 6. The elastic modulus and Poisson ratio of
the beam are taken as 10 MPa and 0.1 respectively. It is seen that
the CRFE solution is in an excellent agreement with the analytical
solution, implying the accuracy of the numerical approach.

In next examples, deformation analysis of smart composite
structures with multiple pairs of active piezoelectric patches is
performed. The materials properties of the elastic patch and sub-
strate are presented in Table 3. For all boundary value problems,
Fig. 6. Comparison of predicted deformed configuration of the beam by CRFE
method with Reissner’s theory approach.
convergence study is preformed to evaluate the size of elements
needed for discretizing the domain for obtaining accurate numer-
ical results.

4.1. Smart elastic plates

Fig. 7 shows the configuration of a composite plate with one
pair of patches stimulated by electric field with various magni-
tudes when a nonlinear behavior is considered for the piezoelectric
material. The green-color region shows the part of plate covered by
the patch. One can see the effect of magnitude of electric stimulus
on the deformations of the plate. The amount of applied electric
field is kept lower than the coercive strength of the piezoelectric
material, which is higher than 1.44 MV/m for PZT G-1195 [40]. This
reconfiguration under different magnitudes of stimulus can resem-
ble morphing shape change of wing structures.

In Fig. 8a and b respectively, linear and nonlinear electro-
mechanical responses of piezoelectric material as actuators are
compared. Under the same magnitude of electric field, Ee = 1.3 -
MV/m, there is a significant effect of the nonlinear electro-
mechanical behavior of the actuators on deformed configuration
of the structure. Figs. 9 shows the corresponding axial strain distri-
butions along the longitudinal direction of the plate corresponding
to the deformed plate in Fig. 8b. As seen, the strain magnitude over
the covered areas with patches is relatively small for the plate that
experiences large rotation which shows the possibility of using
piezoelectric materials that is limited in small strain to achieve
large rotation in structures.

4.2. Smart viscoelastic plates

In this section, several boundary value problems are presented
to examine the deformations of smart plates comprising of vis-
coelastic homogeneous substrates and piezoelectric actuators.
Both elastic piezoceramic patches and viscoelastic AFCs subjected
Fig. 7. Configuration of the cantilever plate under various magnitude of electric
stimulus.



Fig. 8. Configuration of a cantilever shell under actuation of three pairs of
piezoelectric patches with (a) linear behavior (b) nonlinear behavior in terms of
electric field.

Fig. 9. Axial strain distribution (ex) of the cantilever shell under actuation of three
pairs of piezoelectric patches nonlinear behavior in terms of electric field.

Fig. 10. Configuration of the smart viscoelastic shell under actuation of one pairs of
piezoelectric patches at different actuation time, T.
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to electric stimuli are considered. The relaxation function of the
isotropic substrate is expressed as

EplðtÞ ¼ GðtÞ ¼ 0:4þ 1:6e�t GPa ð41Þ
The Poisson ratio of the viscoelastic substrate is assumed time-

independent and the same as for elastic substrate, given in Table 3.
The materials properties of the piezoelectric and AFC patches and
thickness of the components are the same as before. Again, a non-
linear response of piezoelectric material in terms of electric field is
taken into account.
The electric field stimulus is modeled with a time dependent
function defined in Eq. (42) which has a continuous time derivative
in the interval [0t] so that the Laplace transformation can be used
during the considered interval for solving the governing interval
equations.

EeðtÞ ¼ Ee
mð1� e�t=tr Þ ð42Þ

A viscoelastic plate with one pair of piezoceramics patches is
subjected to time-dependent electric field as described in Eq.
(42) with Ee

m ¼ 1:1 MV=m and tr ¼ 0:02 s for total actuation time
T. Thus, the load almost reaches to Ee

m and remains constant in less
than 0.1 s. The configuration of the plate for different times is
shown in Fig. 10. As seen, the curvature of the plate increases grad-
ually at early time but it almost remains unchanged after T = 0.5 s
and so the configuration of the structure remains constant
although the relaxation modulus of the viscoelastic plate decreases
over time, Eq. (41). The reason is that the during stress relaxation
within the substrate, interaction between the substrate and the
patch also decreases under constant stimulus and because the
induced moment from the activated patch also depends to the
relaxation function thus, the induced moment from the activated
patch to the substrate decreases whichmakes up for rigidity reduc-
tion of the structure and so the shape remains constant. Fig. 11
shows the induced moments to the substrate under the aforemen-
tioned electric stimulus, Eq. (41). Since the electric stimulus in the
beginning reaches from zero almost to its maximum, the induced
moment increases at first and later it decreases with time because
the stimulus remains almost constant and the relaxation function
decreases.

Fig. 12 shows numerical simulation of the lateral deformations
of a wing concept for micro UAVs (Fig. 12a) by considering piezo-
electric actuators and viscoelastic substrate. Similar to previous
case, it is seen that deformation of the structure increases fast for
0 < T < 0.05 s due to an increase of applied electric field but then
remains almost constant for T > 0.05 s. The fact that under a con-
stant electric stimulus input prescribed to the elastic piezoelectric



Fig. 13. Configuration of the smart viscoelastic plate under actuation of one pair of
AFC patches at different actuation time, T.

Fig. 14. Configuration of the smart viscoelastic shell under actuation of four pairs of
AFC patches at (a) T = 0.1 s and (b) T = 1 s.

Fig. 12. (a) A UAV concept and (b) configuration of the smart viscoelastic shell
under actuation of two pairs of elastic piezoelectric patches at different actuation
time, T.

Fig. 11. Induced moment to the substrate under the electric stimulus Ee(t).
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actuators, the configuration of the viscoelastic structure is almost
time-independent or stable over time is important in practice. This
enables engineers to use polymers in design of for example light-
weight structures with desired shape changes under certain mag-
nitudes of stimulus without being concerned about time effect
on their configurations.

In the following examples, we consider the actuators made of
AFCs with viscoelastic effects. A slender viscoelastic plate with
one pair of AFC patches is subjected to time-dependent electric field
as described in Eq. (42) with Ee

m ¼ 0:5 MV=m and tr ¼ 0:02 s. The
configurations of the plate for different times are shown in Fig. 13.
As seen, the curvature of the plate increases over time but its rate
of increase reduces gradually. For large enough T, the configuration
of the structure almost does not change, which is at the relaxed con-
ditions for both the actuator and substrate. Unlike the platewith the
elastic piezoelectric-ceramics patches, the effect of the viscoelastic
AFC patches on the deformation is observed. In this case the signif-
icant time-dependent effect is due to the piezoelectric coefficient of
the AFC that change with time (Eq. (13)). The piezoelectric effect of
the AFC leads to an increase of the inducedmoment to the substrate
over time. As time increases, reduction of the rate of the piezoelec-
tric effect is seen until it becomes almost constant and thus, the
deformation of the structure does not increase noticeably after
some time.

In Fig. 14, another example of a viscoelastic plate actuated by
four active pairs of AFC patches with Ee

m ¼ 0:5 MV=m is shown. Over
time, the four arms along four edges of the square-shape base fold
gradually which can resemble a self-folding actuated structure.

Finally, in the following two examples, twisting configurations
of two smart viscoelastic plate after T = 0.1 s and 1 s with two pairs
of quadrilateral-shape patches stimulated in the same directions
(Fig. 15) and opposite directions (Fig. 16) are shown from different
view angles. It is seen that different arrangements of AFC patches
can induce various three-dimensional shape changes in the origi-
nally planar structures.



Fig. 15. Configuration of the smart viscoelastic shell under actuation of two pairs of
AFC patches at T = 0.1 s and 1 s form two view angles (a,b).

Fig. 16. Configuration of the smart viscoelastic shell under actuation of two pairs of
AFC patches in opposite directions at T = 0.1 s and 1 s form two view angles (a,b).
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5. Conclusion

Deformation analyses of smart flexible and foldable electro-
active composites have been performed in this study. The compos-
ite structures comprise of thin planar substrates integrated with
piezoelectric actuators perfectly bonded to the top and bottom sur-
faces of the substrates. The actuators considered here are piezo-
electric ceramics, which is elastic, and AFC, which is viscoelastic.
Nonlinear electro-mechanical responses are considered for both
piezoelectric ceramics and AFC since for actuating purposes rela-
tively large electric field is often prescribed. Viscoelastic behaviors
are considered for the polymeric substrates. By prescribing electric
field inputs to the actuators the planar composite structures can be
formed into three-dimensional shapes predominantly by rotations
while the in-plane strains and stretch remain small. The CRFE
method has been adopted for the large deformation analyses of
the electro-active composite structures.

Several arrangements of piezoelectric patches and different his-
tory of electric field inputs have been considered in order to obtain
various shape changes in the planar structures. The effects of vis-
coelastic substrates and nonlinear electro-mechanical coupling
properties on the deformed shapes have been examined. It is
concluded that when elastic piezoelectric patches, such as
piezoelectric ceramics, are bonded to viscoelastic substrates the
time-dependent deformations in the overall structures are negligi-
ble since the resulting bending moments required to induce rota-
tions to the structures decrease simultaneously with stress
relaxation in the viscoelastic substrates. However, significant
time-dependent deformations are observed when the viscoelastic
AFC patches are considered, in which the structures continue to
experience shape changes even after the electric field input is com-
pletely prescribed. The nonlinear electro-mechanical coupling
behaviors of the actuators significantly influence the deformed
shapes of the structures. The presented methods and examples of
boundary value problems discussed in this study can help design-
ers in simulating desired deformed shapes and determining place-
ments of piezoelectric patches external stimuli to be prescribed
prior to fabricating smart and flexible composites. The analyses
can also help in selecting materials for both substrates and actua-
tors during the design of foldable and flexible composite
structures.
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Appendix A.

This appendix summarizes the formulation in CRFE method
[20,35]. In CR formulation, in addition to pseudo-vector ha for the
rotational degrees of freedom of node a, rotation vector xa is uti-



290 V. Tajeddini, A. Muliana / Composite Structures 160 (2017) 280–291
lized which denotes an instantaneous rotation axis about which
the rotational angle h is measured. For an iterative incremental
solution, the incremental deformational rotation d �xda is related
to d�hda as follows

d�hda ¼ Hð�hdaÞd �xda ðA1Þ
where

Hð�hdaÞ ¼ @�hda
@ �xda

¼ I3 � 1
2
spinð�hdaÞ þ gspinð�hdaÞ2 ðA2Þ

I3 is 3 � 3 identity matrix,

spin �hda
� � ¼ 0 ��hdaz �hday

�hdaz 0 ��hdax
��hday �hdax 0

0
B@

1
CA ; ðA3Þ

and

g ¼ 1� 1
2
�hda cot 1

2
�hda

� �
�h2da

ðA4Þ

To ensure numerical stability, for small �hda, say �hda 6 3	, a trun-
cated Taylor series of g is used:

g ¼ 1
12

þ 1
720

�h2da þ
1

30;240
�h4da þ

1
1;209;600

�h6da þ � � � ðA5Þ

The increment of the deformational displacement vector is

expressed by ddd ¼ duT
d dxT

d


 �T which according to Eq. (A1) relates

to d�pd ¼ d�uT
d d�hTd


 �T as

d�pd ¼ Hd�dd ðA6Þ
where

�H ¼ diag I3 �H1 I3 �H2 I3 �H3
� 	 ðA7Þ

consists of submatrices I3 and nodal submatrices
�Ha ¼ �Hð�hdaÞ ða ¼ 1; 2; 3Þ.

One of the main auxiliary matrices in the CR formulation is
called projector matrix �P which is formed to extract the deforma-
tional parts of the translations and rotations from the total transla-
tions and rotations of the element:

d�dd ¼ �Pd�d ðA8Þ
The derivation of �P is explained in details in [17,18] and is not

repeated here. A submatrix of the projector matrix, �Pab is expressed
as follows

�Pab ¼ Uab þ �Sa�Gu;b 03

��Gu;b dabI3

 !
; ða; b ¼ 1; 2; 3Þ ðA9Þ

where

Uab ¼ dab�1
3

� �
I3 ; �Sa ¼ spinð�xaÞ¼

0 ��xaz �xay
�xaz 0 ��xax
��xay �xax 0

0
B@

1
CA ðA10Þ

and �Gu;b is the gradient of incremental rigid-body rotation of the
element with respect to the nodal displacement vector for node b
in the local coordinate system. At each node, �Gu;b is defined as

�Gu;1 ¼ 1
2A

0 0 �x23
0 0 �y23
0 �2A=l12 0

0
B@

1
CA ; �Gu;2 ¼ 1

2A

0 0 �x13
0 0 �y13
0 �2A=l12 0

0
B@

1
CA;

�Gu;3 ¼ 1
2A

0 0 �x21
0 0 �y21
0 0 0

0
B@

1
CA ðA11Þ
where A is area of the element and
�xij ¼ �xi � �xj ; �yij ¼ �yi � �yj ði; j ¼ 1; 2; 3Þ in which �x and �y are the local
coordinates of the element nodes.

Having local internal force vector of the element �f from linear
FE formulation, because of virtual work invariance under rigid

body motion, ddTf ¼ d�pT
d
�f, one can obtain internal force vector of

an element in global coordinate system, f, by using projector and
transformation tensors as follows

f ¼ TT
el
�PT �HT�f ðA12Þ

where Tel is composed of the transformation submatrices T given in
Eq. (20) as follows:

Tel ¼ diag½T T T T T T� ðA13Þ
Taking the variation of f results in the consistent tangent matrix

of the element:

df ¼ dTT
el
�PT �HT�f þ TT

eld
�PT �HT�f þ TT

el
�PTd�HT�f þ TT

el
�PT �HTd�f

¼ ðKGR þ KGP þ KGM þ KMÞdd ¼ KTdd ðA14Þ
As seen in the equation above, the tangent stiffness of the ele-

ment in the global coordinate system includes four terms. The first
three terms, KGR þ KGP þ KGM , are the components of geometric
stiffness, KG, and the fourth term KM is known as material stiffness.
KGR is the rotational geometric stiffness expressed as

KGR ¼ �TT
el
�Fnm

�GTel ðA15Þ
where

�G ¼ �Gu;1 03
�Gu;2 03

�Gu;3 03
� 	

;

�Fnm ¼ spinð�np;1ÞT spinð �mp;1ÞT . . . spinð�np;3ÞTspinð�np;3ÞT
h iT ðA16Þ

where �np;a and �mp;a are the force and moment components of vector
�fp ¼ �PT �HT�f. KGP is the equilibrium projection geometric stiffness
expressed as

KGP ¼ �TT
el
�GT�FT

n
�PTel ðA17Þ

where

�Fn ¼ spinð�np;1ÞT 03 spinð�np;2ÞT 03 spinð�np;3ÞT 03

h iT
ðA18Þ

KGM is the moment-correction geometric stiffness due to variation
of H and expressed as

KGP ¼ TT
el
�PT�L�PTel ðA19Þ

where

L ¼ diag 03
�L1 03

�L2 03
�L3

� 	T ðA20Þ
where the nodal submatrix �La is

�La ¼ gð�hda �maI3þ�hda �mT
a �2 �ma

�hTdaÞþlspinð�hdaÞ2 �ma
�hTda�

1
2
spinðmaÞ

� 

�Hð�hdaÞ

ðA21Þ
g is defined already in Eq. (30) and l ¼ dg=d�hda=�hda.

The material stiffness matrix is obtained by congruential trans-
formation of the local stiffness �K to the global frame:

KM ¼ TT
el
�PT �HT �K �H�PTel ðA22Þ

Finally, the following expression gives the tangent stiffness of
the element in the global coordinate system:

KT ¼ TT
el

�PT �HT �K �H�Pþ �PT�L�P� �GT�FT
n
�P� �Fnm

�G
� �

Tel ðA23Þ
Once the internal force and tangent stiffness for each element

are defined, the structural stiffness KSt and internal force FSt are
formed for the entire structure.
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