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A three dimensional (3D) augmented finite element method (AFEM) for modeling arbitrary cracking
without the need of additional degree of freedom (DoFs) or phantom nodes is presented. Four or three
internal nodes are employed to explain displacement jump due to the weak and strong discontinuity.
In this method, damage and discontinuity are treated from a weak discontinuity to a strong one without
additional degree of freedom and without explicit representation of the crack. A fully condensed elemen-
tal equilibrium equations as mathematical exactness in the piece-wise linear sense is explicitly derived
within AFEM formulation. The method is implemented in ABAQUS 4-node tetrahedron user element with
a local crack tracking method for crack path detection. Through some numerical examples, it is shown
that the 3D AFEM can accurately and efficiently crack initiation and propagation.
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1. Introduction

Accurate assessment of the structural integrity involves the
development of complex progressive damage analysis with high-
fidelity. Since standard finite element method is not suitable to
model strong discontinuity and crack, advanced finite elements
and numerical methods are developed to explicitly take into
account the cracking and damage in the material, e.g., the general-
ized finite element method (GFEM), extended finite element
method (XFEM) [1–8], phantom node method (PNM) [9–14], aug-
mented finite element method [15–18], and meshless methods
[19–25].

The generalized finite element, extended finite element and
phantom node methods have been developed based on theory of
the partition of unity and in essence introduce additional degree
of freedom to account for arbitrary cracking. In the case of individ-
ual crack, these methods are mesh independent and effective. The
shortcomings in these methods are a) the computational cost is
very expensive due to additional degree of freedom, b) multiple
crack interactions have to be established in the framework of these
methods despite some recent articles to deal with multiple crack
interactions [5,26,27]. In this regard approaches such as phase field
[28–30] and embedded discontinuity [31–36] are developed to
cope with arbitrary interacting cracks. Other emerging methods
for failure analyses include the regularized FEM (RxFEM) of Iarve
et al. [37] and the continuum–decohesion FEM by Waas and co-
workers [38].

Phase field model introduces an additional nodal DoF to approx-
imate a fracture surface with a continuous phase-field parameter
and does not need to algorithmically trace fracture. However, the
method is mesh-dependent and requires an extremely refined
mesh to resolve the sharp discontinuity across the crack surfaces
[39]. In embedded discontinuity method, special shape functions
are used to account for the discontinuous crack displacements
within an element [35]. Though, the special care must be taken
for constructing shape functions orthogonality property to avoid
spurious deformation or serious stress locking.

Meshless method which is based on interaction of each node
with all its neighbor is another alternative to cope with arbitrary
cracking problems in solids. The discrete nature of these mesh-
free methods makes it easier in handling multiple crack interaction
problems. Some recent advances in meshless method are the use of
extrinsically enriched methods based on the partition of unity
(PoU) theory [20–22] and the use of weight function enrichment
[24,25].

A crack tracing method is a major part of modeling arbitrary
cracking and is of particular challenge in simulation of 3D solid’s
failure. Many algorithms for tracing crack path have been devel-
oped [39–54]. Four common crack tracking methods are available
including the local tracking method, the non-local tracking
method, the global tracking method, and the level set methods.
Advantages and shortcomings of the tracking methods are
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Table 1
Summary of crack tracking methods.

Tracking
method

Remarks

Local method The crack surface is largely determined by the local elements
immediately ahead of a crack front, subjecting to possible
constraints from its neighboring crack points and surfaces
[7,42,43]. The crack surface is of C0 continuity, the compu-
tational cost is relatively low
Drawback: The method may have difficulty in modeling non-
planar crack

Non-local
method

The crack surface is based on a least-squares fit to extend the
existing crack surface as smoothly as possible [45,46]. Crack
surface has less spurious zick-zack-type crack surfaces
Drawback: The computational cost of this method is high, the
crack surface may deviate from the real path, the complexity
of implementation is relatively high.

Global
method

An additional equation (heat conduction like) is introduced to
track the crack front and provide iso-surface for crack [47,48].
The method is computationally robust and the crack surface
the outcome of the solution of additional equation
Drawback: It is computationally expensive due to the extra
DoFs from heat conduction equation and requires a judicial
choice of an initial boundary condition which is not always
obvious for multiple cracking problems or different material
interfaces.

Level set
method

Signed distance functions is used to describe the crack
surfaces [51–53]
Drawback: There are some issues with freezing the crack
surfaces as a crack grows, and inadequacy of finite element
mesh for accurately solving the differential equations

Fig. 1. Elastic body configuration with an arbitrary discontinuity.
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summarized in Table 1. More details on crack tracking algorithms
are referred to Jager et al. [54]

It is noted that most of the above mentioned tracking methods
(non-local, global, level set) may not be suitable for heterogeneous
materials such as laminated or textile composites. Hence, we apply
local tracking algorithm to trace crack path.

In the current paper, we seek to extend 2D augmented finite
element method (AFEM), which has been proven to be able to
account for multiple, arbitrary cracks and crack interactions in
solids with much improved numerical efficiency [15–17] to
account for 3D crack evolution in solids. The AFEM lies in the cat-
egory of the embedded discontinuity method without employing
discontinuous shape functions.

The remainder of this paper is organized as follows: After a
short review of the problem statement and governing equations
in Section 2, we briefly discuss the finite element discretization
within the frame-work AFEM scheme in Section 3. Section 4 dis-
cusses the local crack tracing algorithm used in this study. Then,
several numerical examples will be presented as compared with
other works in Section 5. Finally, Section 6 concludes the paper
with major highlights and numerical achievements.

2. Problem statement

Assume the 3D domain X of Fig. 1 is cut by a discontinuity into
two sub-domains of X+ and X–. The discontinuity is assumed to be
a cohesive crack with interface of Cc ¼ Cþ

c [ C�
c . For C

þ
c ¼ C�

c , the
discontinuity is weak and the interface is connected, while for
strong discontinuity two surfaces are separated. The f and �u are
prescribed traction and displacement on boundary of Cf ; and Cu,
respectively. The strong form of equilibrium equations along with
boundary conditions are

DivðrþÞ ¼ 0 ð8x 2 XÞ Divðr�Þ ¼ 0 ð8x 2 X�Þ
rþ � nþ ¼ fþ ð8x 2 Cþ

F Þ r� � n� ¼ f� ð8x 2 C�
F Þ

ð1Þ

where nþ and n� are the outward normal of discontinuity surfaces,
and rþ and r� are the stresses in subdomains.

From the stress continuity across the discontinuity boundary, it
follows.

uþ ¼ �uþ ð8x 2 CuÞ u� ¼ �u� ð8x 2 C�
u Þ

tþ ¼ rþ � nþ ¼ �t ð8x 2 Cþ
c Þ t� ¼ r� � n� ¼ t ð8x 2 C�

c Þ
ð2Þ

where tþ and t� are the tractions along the discontinuity surfaces
and uþ and u� are the displacement fields in Xþ and X�,
respectively.

The traction is a function of the relative displacements
ðt ¼ tðDuÞÞ between Cþ

c and C�
c , where the relative displacement

is Du ¼ uþ � u�.where uþ and u� are the displacement fields in
Xþ and X�, respectively. The constitutive law for traction-
separation is a piece-wise linear in this study (See Appendix A).

The constitutive law and kinematic equations for subdomain X
with the assumption of small strain and elastic behavior are writ-
ten as

rþ ¼ Cþ : eþ ðin XþÞ r� ¼ C� : e� ðin X�Þ
eþ ¼ eþðuþÞ ¼ ruþ þ ðruþÞT

h i
=2 ðin XþÞ

e� ¼ e�ðu�Þ ¼ ru� þ ðru�ÞT
h i

=2 ðin X�Þ
ð3Þ

where Cþ and C� are the material stiffness tensors of the two sub-
domains traversed by the discontinuity, respectively. They are iden-
tical for homogeneous materials and different for heterogeneous
materials.

The strong form of Eq. (3) can be written into a weak form using
the principle of virtual work.
R
Xþrþ : eþðuþÞdXþ R

Cþ
c
tðDuÞ � dðuþÞdC¼ R

Cþ
F
fþ �uþdC 8uþ 2 uR

X�r� : e�ðu�ÞdX� R
C�
c
tðDuÞ � dðu�ÞdC¼ R

C�
F
f� �u�dC 8uþ 2 u

ð4Þ
3. AFEM formulation for A 3D 4-node tetrahedron

In this section we describe how to augment a 3D tetrahedron
element with only regular nodes and DoFs. More details can be
found in the work of Yang and co-workers [15–18]. A 4-node tetra-
hedron element is chosen to demonstrate the AFEM scheme
(Fig. 2). As cut by a cohesive crack, there are two possibilities for
tetrahedron cut including a) a tetrahedron sub-domain and a
wedge sub-domain (Fig. 2b), b) two wedge sub-domains (Fig. 2c).
Regular or external nodes and internal nodes are shown in cut ele-
ment of Fig. 2. The crack front always resides at element bound-
aries during its propagation [17,18] and it is also assumed that



Fig. 2. Schematic of element augmentation for (a) a regular 4-node tetrahedron element with two possible cut, (b) Element cut with tetrahedron and wedge sub-domains, (c)
Element cut with two wedge sub-domains.
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the existence of a crack front cohesive zone eliminates the crack-
tip singularity [3].

Using the principle of virtual work, the weak form of the equi-
librium equations for the subdomains shown in Fig. 2 can be writ-
ten as

Lþ � dþ ¼ Fþ
ext þ Fþ

int

L� � d� ¼ F�
ext þ F�

int

(
ð5Þ

where Da is the material stiffness matrix of subdomain a(a = +, �).

The La ¼ R
Xa
e

Ba� �TDaBadX is the stiffness matrix equivalent to sub-

domain a(a = +, �), Faext ¼
R
Ca
F

Na� �TfadC is the equivalent external

nodal force on subdomain a(a = +, �) and Faint ¼
R
Ca
c

Na
coh

� �TtadC is

the equivalent internal nodal force obtained from the cohesive
stresses along the cohesive crack. Na

coh is the interpolation matrix
of the cohesive crack plane and Ba represents the strain matrix.
Symbols with subscript ‘‘ext” and ‘‘int” signify quantities at ‘‘exter-
nal” or ‘‘internal” nodes in the corresponding subdomains of cut ele-
ment in Fig. 2. The reader can find more detailed of these definitions
in the work of Yang and co-workers [15–18].

It is assumed that while the conformity of the internal DoFs cor-
responding to the internal nodes (dþ

int and d�
int) is not imposed, the

inter-element continuity is enforced only through the external
nodal DoFs (dþ

ext and d�
ext) [17,18]. This assumption states that Faext

is only a function of external DoFs (dþ
ext and d�

ext) and Faint is only
a function of internal DoFs (dþ

int and d�
int). Hence, one can rewrite

Eq. (5) as

Lþ
11 Lþ

12

Lþ
21 Lþ

22

" #
dþ
ext

dþ
int

( )
¼ Fþ

ext

Fþ
int

( )

L�
11 L�

12

L�
21 L�

22

� �
d�
ext

d�
int

� �
¼ F�

ext

F�
int

� �
8>>>><
>>>>:

ð6Þ

where Laij (i, j = 1, 2) are the sub-matrices of stiffness matrix La, i.e.,

La ¼ La11 La12
La21 La22

� �
. It is noted that La11 and La22 are the sub-stiffness

matrix related to the external and internal nodes of the subdomain
a, respectively. Using stress continuity across the cohesive crack
plane, internal nodal forces at subdomains are linked as
F�
int ¼ �Fþ

int ¼
R
Cc
ðNcohÞTtdC.

The displacements of internal nodes are obtained following the
same procedure explained in Refs. [17,18] as

dþ
int

d�
int

( )
¼ �A�1 � ðI� a � ðW�

22Þ�1Þ 0

0 B�1 � ðI� a � ðWþ
22Þ�1Þ

" #
S0
S0

� �

þ �A�1 � a � ðW�
22Þ�1 � L�

21 �A�1 � Lþ
21

�B�1 � L�
21 �B�1 � a � ðWþ

22Þ�1 � Lþ
21

" #
d�
ext

dþ
ext

� �

ð7Þ
where

S0 ¼AeR
T �Tcoh �r0;a¼AeR

T �Tcoh �a0 �Ncoh �R;Wþ
22 ¼ Lþ

22þa;W�
22 ¼ L�

22þa

A¼Wþ
22�a � ðW�

22Þ�1 �a;B¼W�
22�a � ðWþ

22Þ
�1 �a

r0 ¼fsgnðdsAÞðŝði�1Þ
sA �aðiÞ

sAd
ði�1Þ
sA Þ;

sgnðdtAÞðŝðj�1Þ
tA �aðjÞ

tAd
ðj�1Þ
tA Þ;ðr̂ðk�1Þ

A �aðkÞ
nAd

ðk�1Þ
nA Þ; . . .gT

a0 ¼Diag½aðiÞ
sA ;a

ðjÞ
tA ;a

ðkÞ
nA ;a

ðlÞ
sB ;a

ðmÞ
tB ;aðnÞ

nB ; . . .�

and I is the identity matrix, R represents the rotation matrix and Ae

is the crack surface area. Tcoh signifies the respective integration
matrix associated with the cohesive stress integration. r0 and a0

are cohesive stress and slope of cohesive segment (See Appendix
A), respectively.

The relationship between cohesive stresses and the local cohe-
sive displacements at any point on the crack plane is given in
Appendix A. It is noted that a three-point (A, B, C) integration
scheme reported in [55] is chosen for the tetrahedron-wedge cut
configuration (Fig. 2b) for triangular crack plane, while a standard
4-point Gaussian quadrature (A, B, C, and D) with iso-parametric
mapping is used for the wedge-wedge cut configuration and
quadrilateral crack plane (Fig. 2c).

Due to non-linear nature of Eq. (7), a consistency-check based
solving algorithm developed by Yang and colleagues [15–18] is
employed for solving Eq. (7). In this method the internal nodal dis-
placements (Eq. (7)) is solved analytically through a simple consis-
tency checking procedure instead of solving the incremental form
of the elemental equilibrium. The detailed consistency-check
based algorithm is reported in [17,18].
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Once a solution is guaranteed from Eq. (7), submatrices of Eq.
(6) are defined. Then, by eliminating internal displacements from
Eq. (6), fully condensed equilibrium equation without any internal
forces and displacement can be obtained as follows [17,18]

F�
ext

Fþ
ext

� �
¼ L�

11 � L�
12 � B�1 � L�

21 �L�
12 � B�1 � a � ðWþ

22Þ�1 � Lþ
21

�Lþ
12 � A�1 �a � ðW�

22Þ�1 � L�
21 Lþ

11 � Lþ
12 � A�1 � Lþ

21

" #
d�
ext

dþ
ext

� �

�
L�
12 � B�1 � I� a � ðWþ

22Þ�1
h i

0

0 �Lþ
12 �A�1 � I� a � ðW�

22Þ�1
h i

2
64

3
75 S0

S0

� �

ð8Þ
4. Crack tracking

One of the important essentials in three dimensional crack
propagation is the determination of normal of the crack plane.
The literature contains noteworthy works related to crack tracing
schemes with their on advantages and drawbacks [39–54]. We
employ a local tracking algorithm with maximum principle stress
direction as criterion for normal of crack plane. Crack propagation
starts if crack tip stress exceeds the cohesive strength. Different
possibilities in which an element can be traversed by a crack is
shown in Fig. 3a. Element with one existing crack is possibly has
triangle or quadrilateral crack plane. In this case, the crack plane
normal must be calculated ensuring the crack surface continuity
between the existing crack and the new crack plane. The crack
plane of an element with more than one crack edge is fully known.

For the case with one existing crack, we applied special treat-
ment to maintain crack continuity. It should be noted that crack
plane determined by maximum principle stress direction in the
current element may not have the existing crack front. To maintain
the crack continuity, a local coordinate system ðe1; e2; e3Þ is defined
on the existing crack edge (Fig. 3b) with e3 perpendicular to the
plane of the neighbor element fully cut by crack; e2 along the crack
front (e.g. Y 0 in Fig. 3b); and e1 ¼ e2 � e3. The continuity between
the existing and new crack plane dictates that the out-normal
direction of the new crack plane must be in parallel with the plane
spanned by e1 and e3 (X0 � Y 0 plane). If the principle stress direc-
tion in the current element is not parallel with the X 0 � Y 0 plane,
we simply project principle stress onto the X0 � Y 0 plane and use
the projected direction as the out-normal of the new crack plane,
as shown in Fig. 3b. This is totally local treatment guaranteeing
C0 continuity of the crack plane across elements.

It is noted that a numerical treatment in the crack tracking algo-
rithm is considered to avoid a potential crack plane cutting directly
(a) 
Fig. 3. a) Schematic of possible element cut by crack p
into an elemental node. If that situation takes place, the volume of
one of the subdomains becomes zero, causing severe difficulty in
numerical convergence. In this work, once this condition is
detected, the crack plane is slightly rotated about the crack front
line. The rotation maintains vertical distance between modified
crack plane and the node 1/20th of the smallest edge length of
the element.

5. Numerical examples and discussions

In this section, the 3D AFEM is applied to four examples to
investigate its numerical performance. The AFEM method is imple-
mented into user-defined element (UEL) of commercial FE package
ABAQUS. The presented computations are performed on a Dell pre-
cision T1700 (�64 bit) mobile workstation with Intel Core i7–4790
CPU @ 3.6 GHz and with 32 GB of RAM. The considered examples
are the simulation of a single-edge notch beam, a double-
notched shear beam, fiber/matrix interface debonding and kinking
and open hole tension of a cross-ply laminate.

5.1. Single-edge-notched beam test

A single-edge-notched beam is subjected to bending loading as
presented in Fig. 4. According to the experimental tests reported in
[56,57], two different geometries are modeled including model D1
with the width of D = 75 mm, and model D2 with the width of
D = 150 mm. Two different types of each model are considered
for fracture analysis using AFEM. In the first type (Type I), the
top left of the beam is free to move vertically without any restric-
tion (Fig. 4a), while in the second type, the vertical movement of
the top left of the beam is prevented (Fig. 4b). In both cases, the
beam is simply supported at the bottom and loaded downward
by a displacement-controlled loading at the top. The notch depth
is 0.5D, except for Type 2 of the small model (Model D1), it is
0.6D. The material properties are: Young’s modulus E = 38 Gpa,
Poisson’s ratio m ¼ 0:18, cohesive strength of 3 Mpa, and fracture
toughness of 69 N/m [56].

Two different meshes are analyzed in each model including
5874 and 8422 tetrahedron elements for model D1, and 6238
and 9052 tetrahedron elements for model D2. The mesh sizes are
considerably smaller than the cohesive zone size or fracture pro-
cess zone size, which according to the order-of-magnitude estima-
tion lcoh ¼ CIcE=2r̂2, is about lcoh ¼ 145 mm. To compare with
experimental data, the crack initiation location is set to be on the
bottom surface where the notch is located. The procedure of crack
initiation and propagation from the initiation spot is automatically
(b) 

lane, b) Illustration of crack propagation scheme.



(a) (b) 
Fig. 4. Schematic drawing of single-edge-notch beam a) Type I: The left top is free to move vertically; b) Type II: vertical displacement of top left is restricted.

(a) (b) 

(c) 
(d) 

Fig. 5. Comparison of numerical reaction force versus CMOD with experimental test data reported by Galvez et al. 2001 [56], a) Model D1 with D = 75 mm, Type I; b) Model
D1 with D = 75 mm, Type II; Model D2 with D = 150 mm, Type I; c) Model D2 with D = 150 mm, Type II.
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determined by maximum principle criterion. Load versus crack
mouth opening displacement (CMOD) and crack path trajectories
are compared with the test data reported in Ref. [56].

Fig. 5(a-b) compares the 3D AFEM simulated load vs. CMOD
curves with the test results obtained by Galvez et al. [56] for Model
D1 (D = 75 mm), Type I and II with two different mesh sizes. The
3D AFEM load-displacement curves obtained with the two meshes
are all consistent with the test data and they are in fair agreement
with test results. As presented in Fig. 5(c-d), the results are per-
tained to Model D2 (D = 150 mm), Type I and II for two different
mesh sizes. Although the peak loads are underestimated or overes-
timated by about 10% for large model (Model D2), the overall char-
acteristics of the curve remain consistent with test data. Also, in
numerical predictions of large model, the load-CMOD curve is
slightly descending faster than that of test data. As pointed out
in Ref. [56], the reason may be related to the fact that the fracture
energy of mixed mode in large specimen is higher in small
specimen.

Fig. 6a–b shows the experimental envelope and the numerical
prediction of the crack paths for the two different models. The
numerical crack path are consistent with the experimental
recorded crack envelope.



(a) 

(b) 

(c) 
Fig. 7. a) Schematic drawing of doubled-edge-notched beam under four point shear
test (All dimensions in mm); b) Comparison of three-dimensional AFEM simulated
load-displacement curve with experimental data and numerical results of Ref. [58],
c)Size effect and instability analysis.

(a) 

(b) 
Fig. 6. Comparison of numerical crack path with experimental crack path reported
by Galvez et al. 2001 [56], a) Model D1 with D = 75 mm, Type I; b) Model D1 with
D = 75 mm, Type II; Model D2 with D = 150 mm, Type I; c) Model D2 with
D = 150 mm, Type II.
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5.2. Double-notched shear beam test

In this numerical example, the crack propagation process in a
double-notched four point shear beam specimen reported Bocca
et al. [58] is simulated. The geometry, boundary conditions and
loading of the double-notched beam are shown in Fig. 7a. Material
properties are E ¼ 27 GPa; m ¼ 0:1, fracture energy of
CIc ¼ CIIc ¼ 100 N=mm and cohesive strength of r̂ ¼ 2 Mpa. The
mesh sizes are noticeably smaller than the cohesive zone size or
fracture process zone size, which according to the order-of-
magnitude estimation lcoh ¼ CIcE=2r̂2, is about lcoh ¼ 335 mm
roughly twice the beam height. To compare with experimental
data, the crack initiation location is set to be on the bottom surface
where the two notches is are located. Initiation and propagation of
the cracks are totally automatic in the 3D AFEM obtained by stress
criterion.

This example is well-known to mixed mode fracture of brittle
material with instability in load-deflection curve. A snap-back
behavior in the load-deflection curve results in global instability
and difficulty in numerical convergence. The snap-back behavior
is linked to the material properties and dimension of the specimen.
Usually for large specimen and small fracture toughness, instability
and snap-back is imminent. The arc-length method available in the
ABAQUS simulation package is used to capture this behavior. The
beam is discretized into two different meshes with 5680 and
9407 tetrahedron elements.

Fig. 7b shows the simulated load-displacement responses as
compared with test data and numerical simulation reported in
Ref. [58]. The current simulation results are comparable with the
numerical results reported in Ref. [58]. However, except for the
peak load magnitude, the numerical results of pre-peak and post
peak snap-back are qualitativly in fair agreement with test data.
The predictied peak loads in both 3D AFEM and numerical reuslts
of Ref. [58] are higher than the experimental peak load. This could
be due to the fact that the assumed fracture toughness is at the
higher bound for concretes and the mode I fracture energy is usu-
ally different from the mode II fracture energy.

In addition to load–displacement curve, an instability analysis is
numerically performed to study the fracture of material with snap-
back response. According to Bocca’s work [58], an instability
parameter is defined as SIns ¼ CIC =r̂D with D as the width of the
model. The results are presented in Fig. 7c. In this figure the ordi-
nate corresponds to a dimensionless load defined as P=r̂D2, while
the abscissa is the dimensionless deflection defined as d=D with d



(a) 

(b) 
Fig. 8. a) Schematic drawing of single fiber/matrix model along with boundary conditions, b) 3D AFEM simulate nominal stress versus nominal strain for three different
meshes (Mesh1: 4650 elements; Mesh2: 11111 elements; Mesh3: 27094 elements) along with contour plot of debonding, crack initiation and propagation for Mesh3.
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as deflection of load point. The results of Fig. 7c are obtained by
changing the fracture toughness in the instability parameter (SIns).
It is seen that as instability parameter increases, the snap back
effect reduces and more stable crack propagation is expected.
The figure also reveals that for instability parameter roughly
greater than SIns �> 7:5� 10�4, the snap-back is not probable.
The current results are consistent with instability region reported
by Bocca et al. [58].

5.3. Coupled fiber–matrix interface debonding and kinking

In this numerical example, the capability of 3D AFEM is demon-
strated by single fiber–matrix debonding and kinking. As shown in
Fig. 8, a cube of 1 mm� 1 mm� 1 mm with a fiber of 0.5 mm in
diameter in the center is considered for debonding and kinking
example. The fiber volume fraction is 19.63%. Boundary conditions
are shown in Fig. 8a. Three different mesh sizes are considered to
simulate the problem including Mesh1 = 4650, Mesh2 = 11111,
and Mesh3 = 27094. The Young modulus and Poisson’s ratio for
fiber are E = 40 Gpa and v = 0.33, respectively. And, for matrix,
Young modulus and Poisson’s ratio are E = 4 Gpa and v = 0.4,
respectively. The cohesive strength and fracture energy for matrix
are 50 Mpa and 250 N/m, respectively. The process of crack initia-
tion and kinking is automatic in the model. Since it is not possible
to display UEL results in ABAQUS viewer, to visualize the user ele-
ment output (strains) in ABAQUS viewer, a dummy overlaid mesh
with very small Young’s modulus (10�15) is defined.

To account for interfacial debonding, zero thickness cohesive
elements are inserted between matrix and fiber. However the lin-
ear triangular traction-separation cohesive law is very common



Fig. 9. Schematic drawing of open-hole tension model with specified boundary
conditions.

Table 2
Material properties for HTA/6376 carbon/epoxy [62,64].

E11 (Gpa) E22 = E33
(Gpa)

G12 = G13

(Gpa)
G23 (Gpa) v12 = v13 v23

139 10 5.2 3.48 0.3 0.51
GIc (N/m) GIIc (N/m) r̂n (Mpa) ŝs ¼ ŝt

(Mpa)
260 1002 30 60
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and simple to be implemented for debonding, in this work, for bet-
ter consistency and accuracy of capturing debonding, the potential
based cohesive law of Paulino and co-workers [59,60] is used.
Appendix B gives a summary of this method. It is out of the scope
of the current work to discuss about potential based cohesive laws
and the details are refereed to Paulino’ work [59,60].

Once debonding starts at the interface, crack is initiated at the
most critical matrix element close to interface with maximum
local stress. In order to impose debonding earlier than matrix
cracking, the interfacial strength of the interface elements (roughly
30 Mpa) are assumed smaller than cohesive strength of matrix.
This assumption is in accordance with 2D AFEM numerical work
of Liu et al. [16,17] which the debonding initiates around 30 Mpa
of nominal stress.

The simulated nominal stress versus strain is plotted in Fig. 8b
along with contour of maximum principle strain for different
stages of loading. Roughly around nominal strain of 0.7%, the inter-
face is debonded and shortly followed by kinking cracks at 0.75%
strain. For the coarse mesh, cracks propagate quickly with drop-
off in stress–strain curve. However, for two other finer mesh,
cracks gradually propagates followed by a nonlinear response of
the material till about 0.8% of nominal strain. With further increas-
ing the load, more cracks developed and composite response starts
to drop off. It is seen that for all meshes, the predicted composite
modulus is approximately 5.2 Gpa with 7% difference with the
composite elastic modulus obtained from lower-bound estimation
(4.86 Gpa). Despite the difference among meshes, the composite
response is qualitatively is similar. Quantitatively, the results of
simulated composite elastic modulus is in a reasonably agreement
with lower-bound based modulus. We need to emphasis that the
crack processing (initiation and propagation, location of kinking)
are calculated by the program according to local stress criterion.
In each increment, for those elements whose maximum principle
stress exceeds the cohesive strength, the program searches the ele-
ment with maximum crack initiation index (ratio of maximum
principle stress to the cohesive strength). Once the element with
maximum crack initiation index is detected, a crack cuts that ele-
ment. Also, when one crack is initiated, the balance of failure con-
ditions at other location is changed. Therefore, it is expected that
the crack initiation and propagation is not symmetric.

5.4. Open hole tension of a cross-ply laminate

In this section, fracture and multiple cracking of an open hole
cross ply carbon fiber epoxy laminate HTA/6376 ([902/02]s)
subjected to static tensile loading is simulated with AFEM. Trans-
verse and splitting cracks are modeled using 3D AFEM within plies.
As presented in Fig. 9, due to symmetry, only a quarter of the spec-
imen is molded with symmetric boundary conditions. In the
model, only two plies with the thickness of 0.25 mm for each direc-
tion is considered because there are two plies of 0� or 90� stacked
together. To account for delamination, zero thickness cohesive ele-
ments are inserted in fiber/ matrix interface. The model is meshed
with 15967 tetrahedron elements with mesh size of roughly
0.25 mm around hole which is an adequate mesh size for the lam-
inate material. The material properties of HTA/6376 is summarized
in Table 2 [62–64]. For fiber directions of 0� ply, once the fiber
direction strain reaches the failure strain (ef = 1.5% [62]), elastic
modulus E11 is reduced to small value indicating fiber failure.
The interface strength is reduced by factor 2 for better convergence
in the simulation as suggested Ref. [65,66]. Similar to Fang et al.
[67] work, splitting and transverse direction cracks initiate if quad-
ratic criterion of Eq. (9) is satisfied. Transverse and splitting cracks
then follows the fiber direction as the propagation direction.

ryy

r̂

� 	2
þ sxy

ŝs


 �2

þ sxz
ŝt


 �2

P 1 ð9Þ

where ryy is transverse normal tensile stress, and s12 and s13 are
shear stresses in XY and XZ plane, respectively.

It is noted that the location of transverse intra-ply and splitting
cracks are automatically determined by the program according to
elemental local stresses. The only constrain is that the spacing
between matrix cracks is enough to make sure each element and
its nodes support one crack (here 0.6 mm for meshes around the
hole with �0.25 mm sizes.

The plot of laminate stress–strain response is presented in
Fig. 10a along with test data reported in Ref. [62]. The strain data
in this figure are related to the location of �12 mm away from
the center of the hole. The simulation results with arbitrary crack-
ing reasonably correlates with test data. Although the damping fac-
tor and implicit dynamic options offered in ABAQUS are used for
better convergence, simulation runs up to about 80% of final load-
ing when the program cannot converge due to excessive damage of
fiber failure and rise-up of matrix cracks. It is noted that a well-
designed, robust and efficient numerical algorithm is needed to
handle complex damage including transverse cracks, interface
delamination and fiber rupture.

The predicted crack evolution at different laminate load level of
40%, 60%, and 80% is shown in Fig. 10b (white dashed line as split-
ting and transverse cracks). The contour plot of Fig. 10 is pertained
to maximum principle strain. According to simulated results, first
crack occurs in 0o ply as the splitting crack at the load level of
roughly 35% of final loading and propagates along the fiber direc-
tion. Around 40% of loading splitting and two transverse cracks ini-
tiate at different locations. As the applied load is increased
to � 60% of loading, the splitting and more transverse cracks initi-
ate and propagate in the laminate. Also, delamination area (marked
as yellow area in Fig. 10b) grows along with other damages. At the
80% of final load level, splitting crack, transverse cracks, and
delamination significantly propagate along the fiber directions.
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6. Conclusions

In the current paper, arbitrary cracking in solids is simulated
by 3D AFEM without the need for additional DoFs. The formula-
tion is implemented into UEL subroutine of ABAQUS with a 4-
node tetrahedron element. The 3D AFEM introduces internal
node-pairs with normal displacements as internal nodal DoFs.
The internal node-pairs are ultimately condensed at elemental
level using a consistency-check based condensation algorithm.
Hence, the crack displacements are natural results of the elemen-
tal equilibrium. The crack surface evolution is computed and
recorded using a local tracking technique. Within several numer-
ical examples, the capabilities of 3D AFEM is demonstrated.
(a)

(b)
Fig. 10. a) Predicted stress–strain curve with test data of Ref. [62]; b) AFEM predicted cra
are splitting and transverse cracking while the yellow region is delamination area. (For in
the web version of this article.)
Particularly, the global instability (snap-back) numerical example
(double notch shear beam) and cracking in cross ply composite
laminate show the effectiveness of AFEM. Also, it should be men-
tioned that augmentation procedure can be extended to other
types of 3D elements.

Although the formulation presented in this work is specific to
the tetrahedron element cut by a single cohesive crack, there is
no technical difficulties to extend the augmentation procedure to
multiple cracking and interactive cracking, given the successful
implementation and demonstration reported in the 2D AFEM
[17]. Finally, multiple cracking and interactive cracking are recom-
mended to be explored within AFEM as well as robust and rigorous
numerical algorithm handling numerical convergence issues in
 
ck evolution at different load level of 40%, 60% and 80% of final loading. Dashed lines
terpretation of the references to color in this figure legend, the reader is referred to
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composite laminate with networks of complex matrix cracks and
debonding.
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Appendix A

A.1. Linear constitutive law for cohesive interface

In the current work, as presented in Fig. A1, we employed a
mixed-mode linear traction-separation cohesive law. Parameters
dnc, dtc and dsc are the critical normal and two shear crack displace-
ments under pure modes beyond which the complete fracture
takes place. The r̂, ŝsandŝt are cohesive normal and shear strength
for mode-I, mode-II, and mode III traction-separation laws. Also,
dn1, ds1 and dt1 are crack initiation displacements where softening
starts. The superscripts i, j and k are free indices denoting the linear
segment number in the respective traction-separation laws

Cohesive stresses are related to cohesive strength, critical and
initial displacements as follows [17,18]
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where the slopes of the cohesive segments aðiÞ
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where r̂ð0Þ ¼ ŝð0Þt ¼ ŝð0Þs ¼ 0 and dð0Þn ¼ dð0Þt ¼ dð0Þs ¼ 0 .
Total traction-separation work absorbed during fracture con-

sists of the work of mode I, work of mode II (GII) and the work of
Mode 3 (GIII). Total fracture energy can be expressed,

G ¼ GIðdnÞ þ GIIðdsÞ þ GIIIðdtÞ ðA3Þ
(a) (b

Fig. A1. The mode I (a), mode II (b), and mode III (c) traction-se
It is noted that the fracture energy of each mode is the area
under traction-separation law. A fracture energy-based failure cri-
teria can be written as [18]

GIðdncÞ=CIC þ GIIðdscÞ=CIIC þ GIIIðdtcÞ=CIIIC ¼ 1 ðA4Þ
where CIC, CIIC and CIIIC are fracture energy at failure under the
pure opening and pure shear traction-separation laws the linear-
elastic-fracture mechanics(LEFM) context. The reader is referred
to [17,18] for more details.

Appendix B

B.1. A potential based cohesive model

The interfacial debonding of fiber/matrix in the current work is
simulated using potential based cohesive law by Paulino and
coworkers [59–61]. Following the same notation of Refs. [59–61],
the potential energy of cohesive zone is as follows

WðDn;DtÞ ¼ minð/n;/tÞ þ Cn 1� Dn

dn


 �a m
a
þ Dn

dn


 �m

þ h/n � /ti
� �

� Ct 1� jDt

dt
j


 �b n
b
þ jDt

dt
j


 �n

þ h/t � /ni
" #

ðB1Þ

where non-dimensional parameters m and n are a function shape
parameters a and b indicating the shape of traction-separation.
Parameters /; andC are fracture energy and energy constant and
D; andd represents displacements and critical displacement for nor-
mal and shear separation.

The critical or final normal and shear opening width are

dn ¼ /n
rn
aknð1� knÞa�1 a

m þ 1
� �

a
m kn þ 1
� �m�1

dt ¼ /t
rt
bktð1� ktÞb�1 b

n þ 1
� �

b
n kt þ 1
� �n�1 ðB2Þ

where kn and kt are initial slope indicator.
For equal normal and tangential fracture energies (/n ¼ /t),

energy constants are

Cn ¼ �/n
a
m

� 	m

;Ct ¼ b
n


 �n

ðB3Þ

Non-dimensional parameters m and n are

m ¼ aða� 1Þk2n
ð1� ak2nÞ

;n ¼ bðb� 1Þk2t
ð1� bk2t Þ

ðB4Þ

It is noted that the shape parameters control the softening
region of traction-separation curve. If they are equal to 2, the shape
of traction separation yields to linear triangular shape. The poten-
) (c) 

paration laws of the mixed-mode CZM used in this study.
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tial based cohesive model implemented in UEL (user element) of
ABAQUS by Ref. [61] is linked to 3D AFEM written in user element
as well.
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