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A theoretical frame work is developed for strain gage based determination of mixed mode (KI/KII) stress
intensity factors (SIFs) in slant edge cracked plate (SECP) made of orthotropic materials. Using three
parameter strain series around the crack tip and appropriate stress functions, the present formulation
shows that mixed mode SIFs in orthotropic materials could be determined using only four strain gages.
A finite element based methodology is developed to determine the upper bound on the radial location
(rmax) of strain gages ensuring accurate determination of SIFs. Proposed technique is applied to numerical
simulation of [02/90]2S and [0/±45/90]S glass-epoxy SECP laminates to demonstrate accurate determina-
tion of mixed mode SIFs by placing the gages within rmax. Results from the present work provide clear
guidelines in terms of number of strain gages and their suggested locations for accurate determination
of mixed mode SIFs in orthotropic materials.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Fracture mechanics based analysis of orthotropic materials has
been an important area of research in general and the pioneering
work towards the development of fracture mechanics studies of
orthotropic materials was started by Irwin [1] in 1962. Various
other researchers have taken these works further ahead [2–7].
Due to the limitation of analytical methods in dealing with general
crack propagations and inconsistent geometrical and boundary
conditions, several numerical and experimental techniques were
developed by various researchers for solving fracture mechanics
problems of orthotropic materials under mode I and mixed mode
loading. Various numerical methods such as modified crack closure
technique (MCCT) and displacement correlation technique (DCT)
by Kim and Paulino [8], extended finite element method (XFEM)
by Asadpoure and Mohammadi [9] and strong formulation finite
element method (SFEM) based on generalized differential quadra-
ture (GDQ) by Fantuzzi et al. [10] etc. to name a few have been
employed for accurate prediction of SIFs of orthotropic laminates.
In experimental analysis of anisotropic materials various tech-
niques have been reported for measurement of fracture parame-
ters. Baik et al. [11] used the method of caustics to obtain SIFs in
orthotropic materials under mode I and mixed mode static loading
conditions. Yao et al. [12] studied the stress singularities of mode I
crack tip in orthotropic composites using the reflective caustic
technology. Mojtahed and Zachary [13] devised a method for
obtaining mode I SIF in orthotropic materials by using photoelastic
technique. Ju and Liu [14] have used the technique of coherent
grading sensing (CGS) interferometry to experimentally determine
SIF for cracked composite panels (unidirectional graphite-epoxy)
under bending (plane-stress deformation). Khanna et al. [15] used
the technique of transmission photoelasticity to determine the SIF
for cracks in composites. Mogadpalli and Parameswaran [16]
investigated on the application of digital image correlation (DIC)
to determine SIF for cracks in orthotropic composites.

The use of strain gages also forms an important segment in
assessment of fracture parameters because of their economic and
handling feasibility. However, various factors such as high strain
gradients, finite gage size, 3D effects posed limitations in accurate
determination of SIFs using strain gages. The single strain gage
based determination of mode I SIF (KI) of isotropic materials pro-
posed by Dally and Sanford [17] in 1987 (DS technique) took care
of most of the aforementioned difficulties by employing three
parameter strain series equations. Consequently, various other
researchers reported strain gage based methods for the determina-
tion of SIFs for either isotropic or orthotropic materials [18–25].
Amongst them, Shukla et al. [21] were the first to propose a
technique for the determination of KI of orthotropic materials
employing two parameter strain field expressions around the crack
tip. Khanna and Shukla [22] formulated the use of strain gages in
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accurate estimation of dynamic SIFs provided the gages are pasted
within the singularity dominated zone (SDZ). Chakraborty et al.
[24,25] were the first to propose an extension of the DS technique
to orthotropic laminates with single-ended and double-ended
cracks.

Frequent occurrence of mixed mode conditions can be attribu-
ted to the orientations which a crack generally makes with the
loading direction. Researchers have numerically verified the parti-
tion of fracture modes on rigid interfaces in orthotropic laminated
double cantilever beams (DCB) under general loading conditions
that include crack tip bending moments, axial and shear forces
[26,27]. In spite of frequent occurrence of mixed mode conditions,
very few works have been reported with regard to strain gage
based determination of mixed mode SIFs (KI, KII) even in case of
isotropic materials. For example, Dally and Berger (DB technique)
[28,29] were the first to propose an approach involving a strain
series with more number of parameters than that proposed in
the DS technique thus enabling the strain gages to be located at
distances further away from the crack tip. Dorogoy and Rittel
[30] employed a three strain gage rosette to measure KI and KII

by considering a three parameter strain series. Sarangi et al. [31]
proposed modified DB technique incorporating more number of
parameters in the strain series for determination of KI and KII of iso-
tropic materials.

Strain gage based applications require strain gages to be placed
at locations away from the crack tip and the measured strains are
then equated with suitable analytical expressions to extract the
SIFs. However, the extent of radial distance of the strain gage from
the crack tip is important as it dictates whether the selected ana-
lytical expression can be represented by the measured strains.
Moreover, 3D effects and high strain gradients affect the accuracy
of the measured strains if the strain gage(s) are placed very near to
the crack tip [17,21,32]. In case of orthotropic materials, the radial
distance of the strain gages should be at least equal to the thick-
ness of the plate to avoid the 3D effects [21]. Sarangi et al. [26] esti-
mated the permissible extent of the radial locations of strain gages
ensuring accurate determination of mixed mode SIFs in isotropic
materials. Chakraborty et al. [24,25] reported estimation of valid
radial locations and orientation for a strain gage ensuring accurate
estimation of KI in orthotropic laminates. Small gage length gages
are used to minimize the strain gradients effect [17,29].

Therefore, while development of suitable methodology for
strain gage based determination of SIFs is important, it is also
extremely important that the locations and orientations of the
strain gages are known apriori ensuring accurate determination
of SIF. Literature review reveals that though there are number of
papers on determination of SIFs using strain gages and minimizing
the number of strain gages for isotropic materials, there are only a
counted few for orthotropic materials. In addition, analysis of
notched/cracked composites has been an important area of
research from the view point of delamination initiation from such
notches/cracks under loading. Even though there has been numer-
ical work on prediction of delamination initiation from such
notches/cracks [33–35], in spite of the fact that strain gage based
determination of SIFs is simple [36], there have been few works
available in this direction [21–23]. One of the reasons for this is
the fact that unlike isotropic materials, there has been lack of
proper theoretical development for orthotropic materials support-
ing strain gage based determination of SIFs and providing guideli-
nes for exact number of strain gages required and their locations
facilitating accurate measurement of SIFs. Only recently, based
on Irwin’s stress function Chakraborty et al. [24] extended the DS
technique [17] and proposed an appropriate theoretical develop-
ment for measurement of KI using a single strain gage. But till date,
there has been no theoretical development reported for providing
guidelines in measurement of mixed mode SIFs (KI/KII) for
orthotropic materials using minimum number of strain gages and
their recommended location, whereas the same has been devel-
oped for isotropic materials [29,31]. Therefore, the present paper
aims at developing a suitable analytical framework for determina-
tion of mixed mode (I/II) SIFs using minimum number of strain
gages in an orthotropic laminate. It also aims to propose a method-
ology to determine the maximum radial location (rmax) within
which the strain gages should be placed to ensure accurate deter-
mination of KI and KII using a three parameter strain series. Numer-
ical simulations performed to substantiate the theoretical
development are also presented which will provide guidelines
and recommendations in terms of number of strain gages to be
used and their optimal radial locations ensuring accurate values
of KI and KII for conducting strain gage based experiments for a
given configuration. The paper is organized as follows; the theoret-
ical formulations are presented in Section 2. Section 3 gives
detailed analysis of the numerical simulations and the correspond-
ing results. Section 4 presents the concluding remarks.

2. Theoretical formulation

2.1. Strain gage techniques for determination of KI and KII

In 2D bodies, mixed mode loading indicates simultaneous
occurrence of opening mode (mode I) and shearing mode (mode
II) for which both KI and KII are required to describe the conditions
near the crack tip. Employing the Westergaard’s approach, Irwin
[1,2] suggested stress functions for symmetric and skew-
symmetric loading for orthotropic materials. For orthotropic mate-
rials, the present work uses the modified mode I stress function
proposed by Shukla and co-workers [21] in line with the general-
ized Westergaard approach [37] as

FI ¼ 1
2

ReZIðz1Þ þ ReZIðz2Þ
n o

� b
2a

ReZIðz1Þ � ReZIðz2Þ
n o

� b
2a

ReYIðz1Þ � ReYIðz2Þ
n o

ð1Þ

For mode II, the modified stress function as per generalized
Westergaard approach [37] may be written as

FI ¼ 1
2

ReYIIðz1Þ þ ReYIIðz2Þ
n o

� 1
2a

ImZIIðz1Þ � ImZIIðz2Þ
n o

� 1
2a

ReYIIðz1Þ � ReYIIðz2Þ
n o

ð2Þ

where ZI;IIðziÞ and ZI;IIðziÞ are the first and second integrals with
respect to ziði ¼ 1;2Þ of a complex function ZðziÞ and ziði ¼ 1;2Þ is
given by

z1 ¼ xþ iy1 ¼ xþ iðbþ aÞy ¼ r1eih1 and

z2 ¼ xþ iy2 ¼ xþ iðb� aÞy ¼ r2eih2 ð3Þ

and, YI;IIðziÞ is another analytical function used in conjunction with
the standard Westergaard stress function ZðziÞ. Additionally, other
parameters are defined as

tan h1 ¼ ðbþ aÞ tan h ; tan h2 ¼ ðb� aÞ tan h

r21 ¼ r2ðcos2 hþ ðbþ aÞ2 sin2 hÞ; r22 ¼ r2ðcos2 hþ ðb� aÞ2 sin2 hÞ

2b2 ¼ a66 þ 2a12
2a11

þ
ffiffiffiffiffiffiffi
a22
a11

r
; 2a2 ¼ a66 þ 2a12

2a11
�

ffiffiffiffiffiffiffi
a22
a11

r
;

a11 ¼ 1
EL

; a12 ¼ �mLT
EL

; a22 ¼ 1
ET

; a66 ¼ 1
GLT

; ð4Þ
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where, E; m; and G denote Young’s modulus, Poisson’s ratio and
shear modulus respectively, L and T represent longitudinal and
transverse directions respectively. In the absence of body forces,
the stress components under mode I/II loading can be obtained
from the functions FI;II (Eqs. (1) and (2)) as

ðrxÞI;II ¼ @2FI:II=@y2; ðryÞI;II ¼ @2FI;II=@x2; ðsxyÞI;II ¼ �@2FI;II=@x@y

ð5Þ
The stress strain relations for a 2D orthotropic body under plane

stress conditions are

ex ¼ a11rx þ a12ry; ey ¼ a12rx þ a22ry and cxy ¼ a66sxy ð6Þ
Using Eqs. (5), (6) along with Eqs. (1) and (2), the strain

components for mode I are

exx ¼ ða� bÞ
2a

a12 � a11ðaþ bÞ2
n o

Re ZIðz1Þ

þ ðaþ bÞ
2a

a12 � a11ðb� aÞ2
n o

Re ZIðz2Þ

þ b
2a

fa11ðaþ bÞ2 � a12gRe YIðz1Þ

þ b
2a

fa12 � a11ðb� aÞ2gRe YIðz2Þ

eyy ¼ ða� bÞ
2a

fa22 � a12ðaþ bÞ2gRe ZIðz1Þ

þ ðaþ bÞ
2a

fa22 � a11ðb� aÞ2gRe ZIðz2Þ

þ b
2a

fa12ðaþ bÞ2 � a22gRe YIðz1Þ

þ b
2a

fa22 � a12ðb� aÞ2gRe YIðz2Þ

cxy ¼
a66
2a

ða2 � b2ÞfIm ZIðz1Þ � Im ZIðz2Þg

� a66b
2a

ðbþ aÞIm YIðz1Þ � ðb� aÞIm YIðz2Þf g

ð7Þ
Fig. 1. (a) Co-ordinate system (b) slant edge cracked lam
and the strain components corresponding to mode II are

exx ¼ ð1� aÞ
2a

a11ðaþ bÞ2 � a12

n o
Re YIIðz1Þ

� ð1� aÞ
2a

fa11ðb� aÞ2 � a12gRe YIIðz2Þ

þ 1
2a

a11ðaþ bÞ2 � a12
n o

Im YIIðz1Þ

� 1
2a

a11ðb� aÞ2 � a12
n o

Im YIIðz2Þ

eyy ¼ ð1� aÞ
2a

a12ðaþ bÞ2 � a22
n o

Re YIIðz1Þ

� ð1� aÞ
2a

a12ðb� aÞ2 � a22
n o

Re YIIðz2Þ

þ 1
2a

a12ðaþ bÞ2 � a22
n o

Im ZIIðz1Þ

� 1
2a

a12ðb� aÞ2 � a22
n o

Im ZIIðz2Þ

cxy ¼
ð1� aÞ
2a

a66 ðb� aÞIm YIIðz2Þ � ðbþ aÞIm YIIðz1Þf g

þ a66
2a

ðbþ aÞRe ZIIðz1Þ � ðb� aÞRe ZIIðz2Þf g:

ð8Þ

The complex analytical functions for opening mode, ZIðziÞ and
YIðziÞ and those for shearing mode, ZIIðziÞ and YIIðziÞ are given by

ZIðziÞi¼1;2 ¼
XN
n¼0

Anz
n�1=2
i

ZIIðziÞi¼1;2 ¼
XN
n¼0

Cnz
n�1=2
i

and

YIðziÞi¼1;2 ¼
XM
m¼0

Bmzmi

YIIðziÞi¼1;2 ¼
XM
m¼0

Dmzmi

ð9Þ

Substitution of Eq. (9) in Eqs. (7) and (8) and superposition of
mode I and mode II strain components leads to the exact represen-
tation of the strain field under mixed mode loading conditions.
Considering a three parameter strain series for mode I ðA0; A1; B0Þ
and mode II ðC0; C1; D0Þ, the normal strain along aa0 (Fig. 1) for a
strain gage at point P ðr; hÞ may be written as
inate specimen (c) typical FE mesh of the specimen.
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Inspection of Eq. (10) indicates that terms containing B0;D0

become zero if

tan/ ¼ � a11
a12

ð11Þ

Again, terms containing A1 will be zero if the coefficient of A1 in
Eq. (10) is made zero.

Using Eq. (4) in Eq. (10) and equating the coefficient of A1 to
zero leads to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ ðbþ aÞ2 sin2 h
� �

4

r 1
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1�mLTmTL
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a�b
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2 tan�1ððbþ aÞ tan hÞ� �� �h i
� 1
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1þmLTð Þ ffiffiffiffiffimTL

p
� �

1
2a sin
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þ
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cos2 hþ ðb� aÞ2 sin2 h
� �
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1�mLTmTL
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aþb
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2 ðtan�1ððb� aÞ tan hÞÞ� �h i
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p
� �

1
2a sin

1
2 tan�1 ðb� aÞ tan hð Þ� �� �h i

8><
>:

9>=
>; ¼ 0

ð12Þ
Solution of Eq. (12) gives the values of h for which coefficient of
A1 becomes zero. Using h from Eq. (12) and / from Eq. (11), the
strain expression eaa contains only the terms with coefficients
A0; C0 and C1. The normal strain eaa at a point with radial location
r, on the positive gage line (+ve values of h and /)) and the normal
strain ebb at a point with radial location r on the negative gage line
(�ve values of h and /) (Fig. 1(a)) can be written as
A0

a12 cos2 /þ a22 sin
2 /

� �
a�b
2a

1ffiffiffiffi
r1

p cos h1
2 þ aþb
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1ffiffiffiffi
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� �
þ a66 sin/ cos/ a2�b2

2a

� �h i
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p sin h2
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2

� �
8<
:

9=
;

eaa;bb ¼ �C0

1
2a ða12 cos2 /þ a22 sin
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2 � 1ffiffiffiffi
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p sin h2

2

� �
þ a66 sin/ cos/

2a

� �
ðbþaÞffiffiffiffi

r1
p cos h1

2 � ðb�aÞffiffiffiffi
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p cos h2
2

h i
8<
:

9=
;
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1
2a ða12 cos2 /þ a22 sin

2 /Þ ffiffiffiffiffi
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p
sin h2

2 � ffiffiffiffiffi
r1

p
sin h1

2

� �
þ a66 sin/ cos/

2a

� �
bþ að Þ ffiffiffiffiffi

r1
p

cos h1
2 � ðb� aÞ ffiffiffiffiffi

r2
p

cos h2
2

� �
8<
:

9=
;
ð13Þ
where, + sign and � sign correspond to eaa and ebb respectively.
Thus, a strain gage placed at a radial distance r from the crack tip
on a line making an angle of h and gage orientation / either on
the positive or the negative gage line with the crack axis measures
strains containing only the terms A0; C0 and C1. Using relations from
Eq. (4) in Eq. (13) and adding eaa and ebb and multiplying with

ffiffiffi
r

p
results in
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ðeaa þ ebbÞ
ffiffiffi
r

p
I1

¼ A0 ð14Þ

which contains only coefficient pertaining to mode I loading. Simi-
larly, subtracting ebb from eaa (from Eq. (13)) and multiplying withffiffiffi
r

p
using Eq. (4) gives

ðeaa � ebbÞ
ffiffiffi
r

p
I2

¼ C0 þ C1r
I2

I3 ð15Þ

which now contains only coefficients relating to mode II loading.
Here, I1; I2 and I3 are functions of the material properties
ðEL; ET ; mLT ; GLTÞ and h and /. The coefficients A0 and C0 are deter-
mined from the best fit plots of the quantities on the L.H.S of Eqs.
(14) and (15) which in turn can be used to estimate the mixed mode
SIFs ðKI; KIIÞ as
KI ¼

ffiffiffiffiffiffiffi
2p

p
A0 and KII ¼

ffiffiffiffiffiffiffi
2p

p
C0 ð16Þ
2.2. Determination of maximum permissible radial location rmax

In cracked orthotropic materials, the minimum radial distance
ahead of the crack tip for pasting strain gages to avoid 3D effects
[21] is

rmin ¼ thickness of the specimen ðtÞ ð17Þ
The maximum radial distance of the strain gages from the crack

tip, rmax is the extent of validity of the three parameter strain series
represented by Eq. (13) along the positive and negative gage lines.
However, this may be different along the positive (rþmax) and
negative (r�max) gage lines and the maximum permissible radial
distance is

rmax ¼ minimum rþmax; r
�
max

� � ð18Þ
Consequently, the optimal or valid radial locations ri for all

strain gages are given by

rmin 6 ri 6 rmax ð19Þ
The quantities on LHS of Eqs. (14) and (15) are computed from

the eaa and ebb values evaluated at radial locations along the posi-
tive and negative gage lines (OM and ON in Fig. 1(b)) using finite
element analysis (FEA) of a given cracked configuration. The values
of the coefficients A0, C0 and C1 are obtained using the best-fit
regression of the plots of Eqs. (14) and (15). Using these values,
the RHS quantities of Eq. (13) are compared with the LHS quanti-
ties obtained from FEA (i.e. eaa and ebb) by plotting against the
radial distance from the crack tip for all the points on the positive
and negative gage lines. The point of deviation of the RHS of Eq.
(13) from finite element (FE) values of eaa and ebb (determined
using a relative error criterion of 1%) gives rþmax (along positive gage
line) and r�max (along negative gage line) and rmax is obtained from
Eq. (18). From, Eqs. (14) and (15) it is clear that two strain gages are
to be pasted on each gage line within the estimated rmax for the
determination of KI and KII using the proposed technique.

3. Numerical results and discussions

For the slant edge cracked plates (SECP) subjected to uniform
tensile stress (Fig. 1(b)), rmax values have been determined and
Table 1
Geometric, loading and material parameters for the specimens (Ref. Fig. 1).

Laminate Specification bðmmÞ a=b h=b mLT

½02=90�2S Glass-epoxy 150 0.2–0.7 1 0.163
½0=� 45=90�S Glass-epoxy 0.304
numerical simulations have been performed for determination of
mixed mode SIFs of orthotropic materials using the proposed
method. The FEA for all the configurations have been performed
using commercial FE software ANSYS

�
[38] employing eight noded

isoparametric elements and collapsed quarter point elements have
been used to capture the

ffiffiffi
r

p
singularity around the crack tip [39].

Two types of SECP laminates viz. ½02=90�2S and ½0=� 45=90�S made
of glass epoxy have been considered. In order to understand the
effect of crack inclination angle (w) and relative crack size (a=b)
on rmax and to study the efficacy of the present method in
determination of mixed mode SIFs over a wider range of crack
configurations, different values of w and a=b are considered for
both the laminates. The applied load, material and geometric
parameters for all the specimens considered in all the examples
are listed in Table 1. Corresponding to these properties, the values
of gage orientation, / (from Eq. (11)) and gage line orientation, h
(from Eq. (12)) are calculated as 68:01� and 54:27�, respectively
for the ½02=90�2S glass-epoxy SECP laminate. Similarly, for
the½0=� 45=90�Sglass epoxy SECP laminate the values of gage ori-
entation, / and gage line orientation, h are calculated as 61:13�

and 64:5�, respectively. Fig. 1(c) shows a typical finite element
mesh used where the bottom edge of the plate is completely
constrained and a uniform tensile stress is applied on the top edge.
Consecutive nodes along the positive and negative gage lines are at
equal distances from the crack tip simulating the strain gages to be
pasted at equal distances (Eqs. (14) and (15)).

3.1. Example 1: General procedure for determination of rmax

In order to validate the proposed approach and to demonstrate
the general procedure of determination of rmax; for the accurate
measurement of mixed mode SIFs using strain gages, SECPs made
of ½02=90�2S and½0=� 45=90�Sglass epoxy with w ¼ 45� and
a=b ¼ 0:5 are considered in this section. Other properties corre-
sponding to these configurations are given in Table 1.

Following the procedure described in Section 2.2, the values of
strains, eaa and ebb of the nodes along the positive and negative
gage lines are obtained from the FEA. Fig. 2(a) and (b) show the
plots of ðeaa þ ebb=I1Þ

ffiffiffi
r

p
and ðeaa � ebb=I2Þ

ffiffiffi
r

p
respectively versus

radial distance ðrÞ with their respective straight line fits for the
½02=90�2S glass-epoxy SECP. The values of the coefficients A0;C0

and C1 for the best fit plots along with the correlation coefficient
ðR2Þ are also shown in Fig. 2(a) and (b). It can be noticed from
Fig. 2(a) that the slope of the best fit line to the data is almost
nearer to zero as predicted by the theory. Fig. 2(c) and (d) show
the comparison of the strain values eaa and ebb along the positive
and negative gage lines respectively obtained from the FEA and
those obtained using Eq. (13). It may be pointed out that the coef-
ficients used in Eq. (13) are obtained from the best fit plots in Fig. 2
(a) and (b). As the estimated coefficients are accurate, both eaa and
ebb variations along gage line are congruent to those obtained from
Eq. (13) in Fig. 2(c) and (d) respectively till the point of deviation.

For the ½02=90�2S glass-epoxy SECP, the radii corresponding to
the points of deviation between the FE strains and the best fit
strains along the positive gage line ðrþmaxÞ and along the along the
negative gage line ðr�maxÞ are shown in Fig. 2(c) and (d). These
ðrþmaxÞ and ðr�maxÞ represent the extents of validity of the three
EL ðGPaÞ ET ðGPaÞ GLT ðGPaÞ r ðMPaÞ t ðmmÞ
33.3 24.6 5.2 1 1
23.24 23.24 8.91



Fig. 2. Plots for ½02=90�2S glass-epoxy SECP with a=b ¼ 0:5: Determination of (a) A0 (b) C0 and C1, (c) rþmax and (d) r�max.
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parameter strain series along the positive and negative gage lines
respectively. In this case rþmax is 29.2 mm and r�max is 25.3 mm and
following Eq. (18), the rmax is 25.3 mm within which the strain
gages should be pasted along both the gage lines for accurate esti-
mation of SIFs. The value of rmax has been arrived at after conduct-
ing proper convergence study using various gradations of mesh
density. Following the same steps, the plots of ðeaa þ ebb=I1Þ

ffiffiffi
r

p

and ðeaa � ebb=I2Þ
ffiffiffi
r

p
versus radial distance ðrÞ and the plots of eaa

and ebb along the positive and negative gage lines are obtained
from the FEA as shown in the Fig. 3(a-d). Form these plots, the val-
ues rþmax (=18.35 mm) and r�max (=26.5 mm) are obtained as shown
in Fig. 3(c-d) and following Eq. (18), the value of rmax for the
½0=� 45=90�S glass-epoxy SECP is obtained as 18.35 mm.

3.2. Example 2: Validation of the strain gage technique for the
determination of mixed mode SIFs

In order to numerically simulate the strain gage based determi-
nation of KI and KII following the proposed method using four
strain gages (two along positive gage line and two along negative
gage line), strain values at nodes along the gage lines are consid-
ered to be strain gage readings. Using these strain values, SIFs have
been calculated using Eqs. (14)–(16). For this purpose, the config-
urations analyzed in Example 1 are considered here. Further, to
understand the importance of rmax on the accuracy of determina-
tion of SIFs, these strains (representing strain gage readings) are
obtained for five different combinations of strain gage placements
starting with case 1, where both the strain gages along the gage
lines are placed within rmax (following Eq. (19)) till case 5, where
both the strain gages are placed outside rmax and other three inter-
mediate combinations. These combinations are shown in Tables 2
and 3 for the laminates ½02=90�2S and ½0=� 45=90�S respectively.
The values of KI and KII determined employing the displace-
ment extrapolation technique using nodal displacement values of
the crack tip elements obtained from FEA [40] for the ½02=90�2S
glass-epoxy SECP is found to be 19:17 MPa

ffiffiffiffiffiffiffiffiffi
mm

p
and

8:27 MPa
ffiffiffiffiffiffiffiffiffi
mm

p
respectively. For the ½0=� 45=90�S glass-epoxy

SECP the values of KI and KII are found to be 19:24 MPa
ffiffiffiffiffiffiffiffiffi
mm

p

and 8:68 MPa
ffiffiffiffiffiffiffiffiffi
mm

p
respectively. These values are used as refer-

ence solutions to test the accuracy of the simulated values of KI

and KII determined employing the proposed technique. Tables 2
and 3 show the% relative error of the numerically simulated KI

and KII values with the reference solutions for all the five cases
of strain gage placement for the SECP laminates ½02=90�2S and
½0=� 45=90�Srespectively. It could be observed that in both the
laminates, the errors in KI=KII measurement are very low when
the strain gages (simulated by nodal strains eaa and ebb) are placed
within rmax (optimal gage locations) and the errors are much higher
when the strain gages are placed outside rmax. In the case of
½02=90�2S SECP KI; KII laminate, the minimum error is as low as
0.52% and the maximum error is as high as 22.2%. On the other
hand for ½0=� 45=90�SSECP laminate, the minimum and maximum
errors are 0.69% and 29.03% respectively. It was also observed that
even when one of the strain gages is placed outside rmax, keeping
the other within rmax (along both the gage lines) the error jumps
from a mere value of 2.4–9.7%. This shows that the placement of
strain gages within rmax following the proposed Eq. (19) is of
utmost importance for accurate estimation of SIFs.

3.3. Example 3: Determination of KI, KII and rmax for different mixed
mode configurations

Using the present method, mixed mode SIFs KIð and KIIÞ for the
SECPs made of ½02=90�2S and ½0=� 45=90�Sglass-epoxy laminates



Fig. 3. Plots for ½0=� 45=90�S glass-epoxy SECP with a=b ¼ 0:5: Determination of (a) A0 (b) C0 and C1, (c) rþmax and (d) r�max.

Table 2
KI and KII obtained for different cases of strain gage placements for ½02=90�2S glass-epoxy SECP laminate ðrmax ¼ 25:3 mm;a=b ¼ 0:5;w ¼ 450 ;KIref ¼ 19:17 MPa

ffiffiffiffiffiffiffiffiffi
mm

p
;

KIIref ¼ 8:27 MPa
ffiffiffiffiffiffiffiffiffi
mm

p Þ.

Case r1 and r2 (mm) eaa ebb KI (MPa
ffiffiffiffiffiffiffiffiffi
mm

p
) % Rel. err. KII (MPa

ffiffiffiffiffiffiffiffiffi
mm

p
) % Rel. err.

1 r1 ¼ 7:03 1.81E�04 8.82E�04 19.07 0.52 8.35 0.91
r2 ¼ 10:23 1.53E�04 6.86E�04

2 r1 ¼ 10:23 1.53E�04 6.86E�04 19.00 0.91 8.39 1.51
r2 ¼ 12:28 1.41E�04 5.99E�04

3 r1 ¼ 12:28 1.41E�04 5.99E�04 18.92 1.31 8.47 2.42
r2 ¼ 17:15 1.22E�04 4.53E�04

4 r1 ¼ 17:15 1.22E�04 4.53E�04 17.72 7.58 9.07 9.69
r2 ¼ 30:0 9.72E�05 2.40E�05

5 r1 ¼ 30:0 9.72E�05 2.40E�05 17.32 9.67 10.10 22.12
r2 ¼ 36:0 9.01E�05 1.79E�05

Table 3
KI and KII obtained from different cases of strain gage placements for ½0=� 45=90�S glass-epoxy laminate ðrmax ¼ 18:3 mm;a=b ¼ 0:5;w ¼ 450 ;KIref ¼ 19:24 MPa

ffiffiffiffiffiffiffiffiffi
mm

p
;

KIIref ¼ 8:68MPa
ffiffiffiffiffiffiffiffiffi
mm

p Þ.

Case r1 and r2 (mm) eaa ebb KI (MPa
ffiffiffiffiffiffiffiffiffi
mm

p
) % Rel. err. KII (MPa

ffiffiffiffiffiffiffiffiffi
mm

p
) % Rel. err.

1 r1 ¼ 6:23 1.81E�04 8.82E�04 19.12 0.62 8.74 0.69
r2 ¼ 8:06 1.53E�04 6.86E�04

2 r1 ¼ 8:06 1.53E�04 6.86E�04 19.04 1.04 8.54 1.61
r2 ¼ 11:16 1.41E�04 5.99E�04

3 r1 ¼ 11:16 1.41E�04 5.99E�04 18.94 1.56 8.42 2.99
r2 ¼ 14:7 1.22E�04 4.53E�04

4 r1 ¼ 14:7 1.22E�04 4.53E�04 18.2 5.40 9.41 8.41
r2 ¼ 25:2 9.72E�05 2.40E�05

5 r1 ¼ 25:2 9.72E�05 2.40E�05 17.14 10.91 11.2 29.03
r2 ¼ 30:5 9.01E�05 1.79E�05
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(Fig. 1(b)) with a=b ¼ 0:5 are determined for w ¼ 15� � 75� (in
steps of 15�) and are compared with the reference values as shown
in Table 4. Here, in each case, both the strain gages (simulated by
nodal strain) along both the gage lines are considered to be placed
within the respective rmax. Fig. 4(a) and (b) show the variations of
KI and KII with w obtained using the present technique for
a=b ¼ 0:5 for ½02=90�2S glass-epoxy and½0=� 45=90�S glass-epoxy
SECP laminates respectively. Similar trends in the variation of KI

and KII with w have also been observed for other values of a=b. In
all the cases, KI decreases steadily with the increase in w, whereas
Fig. 5. Variation of rmax=b with crack inclination angles ðwÞ for different a=b

Table 4
Mixed mode SIFs for different crack inclination angle for ½02=90�2S and ½0=� 45=90� S glass

Laminate Specification Angle, w KI (MPa
ffiffiffiffiffiffiffiffiffi
mm

p
)

Present method Ref. value

½02=90�2S Glass-epoxy 15� 39.22 39.15
30� 30.1 29.93
45� 19.25 19.17
60� 10.78 10.57
75� 4.19 4.06

½0=� 45=90�S Glass-epoxy 15� 39.39 39.38
30� 29.72 29.8
45� 19.12 19.24
60� 10.39 10.5
75� 4.27 4.21

Fig. 4. Variation of KI and KII (MPa
ffiffiffiffiffiffiffiffiffi
mm

p
) with crack inclination angles ðwÞ
KII increases and reaches a maximum at w ¼ 45�, and then
decreases as expected [41] thus again reinforcing efficacy of the
present approach. Values of and KII obtained using the numerical
simulation of the present method for both the laminated SECP
for different values of crack inclination angle, w along with the
errors are listed in Table 4. The results in Table 4 clearly show that
highly accurate values of both KI and KII can be obtained using the
proposed strain gage technique over a wide range of crack inclina-
tion angle. Fig. 5(a) and (b) show the variation in rmax=b with w for
different a=b ratios for ½02=90�2S and ½0=� 45=90�S glass epoxy SECP
for (a) ½02=90�2S glass-epoxy SECP; (b) ½0=� 45=90�S glass-epoxy SECP.

-epoxy laminates.

KII (MPa
ffiffiffiffiffiffiffiffiffi
mm

p
)

% Rel. error Present method Ref. value % Rel. error

0.19 5.43 5.31 2.25
0.58 7.75 7.59 2.11
0.39 8.27 8.14 1.59
1.89 6.84 6.72 1.78
2.99 3.83 3.74 2.41

0.02 5.45 5.52 1.26
0.27 7.73 7.58 1.97
0.62 8.73 8.68 0.57
1.06 7.00 6.87 1.89
1.42 3.89 3.95 1.51

for (a) ½02=90�2S glass-epoxy SECP; (b) ½0=� 45=90�S glass-epoxy SECP.



Table 5
Variation of the rmax=b with a=b of the ½02=90�2S and ½0=� 45=90�S glass-epoxy SECP
configuration with w ¼ 45�

Laminate Specification a=b rmaxðmmÞ rmax=b

½02=90�2S Glass-epoxy 0.2 17 0.113
0.3 19.5 0.13
0.4 23.2 0.155
0.5 25.3 0.168
0.6 16.6 0.110
0.7 13.8 0.092

½0=� 45=90�S Glass-epoxy 0.2 12.6 0.084
0.3 16.6 0.11
0.4 22.7 0.151
0.5 18.4 0.123
0.6 11.8 0.079
0.7 9.7 0.065
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laminates respectively. In both the cases of SECP laminates, it may
be observed that for a particular a=b ratio, though initially rmax is
almost independent of, it shows a gradual decline with further
increase in w. For the SECP, as the crack inclination angle increases,
the positive gage line moves towards the boundary edges. How-
ever, up to w ¼ 45�, the boundary effects being negligible, there
is minimal or no variation in rmax. But beyond 45�, the positive gage
line inches much closer towards the boundary and therefore, there
is a decline in the rmax value with increase in w due to significant
boundary effects.

Apart from w, the a=b ratio also affects the values of rmax and
hence the valid gage locations. For example, Table 5 shows the
rmax values with different a=b for w ¼ 45� for both ½02=90�2S and
½0=� 45=90�S glass epoxy SECP laminates. The variation of rmax=b
with a=b for different values of w for ½02=90�2S and ½0=� 45=90�S
glass epoxy SECP laminates are shown in Fig. 6(a) and (b) respec-
tively and in the both the cases the trends followed are same as
reported by Chakraborty et al. [24,25] for mode I configurations.
The value of rmax increases with increasing a=b, reaches a maxi-
mum and decreases as the crack tip approaches boundary leading
to inverted bell shaped curves. It may be attributed to the fact that
at low values of a=b when there is insignificant boundary effects,
the changes in rmax is controlled by changes in a=b: However, as
the crack tip proceeds towards the outer boundaries, the net liga-
ment length decreases and a point is reached when the controlling
parameter is shifted from the crack length to the net ligament,
b� a and rmax decreases.
Fig. 6. Variation of rmax=b with a=b for different w for (a) ½02=9
4. Conclusions

A simple, robust and practically feasible strain gage technique
has been developed for the first time for the accurate determina-
tion of mixed mode SIFs (KI and KII) in orthotropic laminates. The
proposed theoretical framework not only allows determination of
mixed mode SIFs (KI and KII) using strain gages in orthotropic
materials but also allows to calculate the valid radial locations
of the strain gages ensuring accurate determination of KI and
KII. As the proposed strain gage technique depends on three
parameter representation, it allows the gages to be placed reason-
ably far away from the crack tip. Further, the proposed technique
needs only four strain gages for determination of mixed mode
SIFs. A finite element based methodology is also developed to
evaluate the extent of radial locations of the strain gages ðrmaxÞ
which ensure accurate determination of KI and KII for orthotropic
laminates. Numerical experimentations have been performed on
½02=90�2S and ½0=� 45=90�S glass- epoxy SECP laminates to vali-
date the developed theory. Results show that the strains com-
puted at points within rmax follow the theoretical predictions
which validate the proposed method. It was observed that rmax

depends both on the crack inclination angle (w) and on the rela-
tive crack length (a=b). Up to w ¼ 45�, rmax remains almost same
but beyond that rmax shows a sharp decrease. For a given w,
rmax initially increases with the increase in a=b and then
decreases. Numerical simulations show that while the computed
values of KI and KII obtained from the simulated readings of
strain gages placed within rmax are highly accurate, a very high
error ({>}29%) results when the gages are placed outside rmax.
Simulations have been carried out to show the robustness of
the proposed method over a range of crack inclination angles.
An extremely important recommendation from the present study
is that while conducting strain gage based experiments, the radial
locations where the strain gages need to be placed are dependent
on the crack configurations (relative crack size and crack angle)
and arbitrarily placing the strain gages will lead to highly erro-
neous results. The present work provides a robust method for
prior determination of such optimal locations for a given config-
uration. The proposed method will be immensely useful for
experimental stress analysts in accurate determination of mixed
mode SIFs in orthotropic composites using strain gages as the
rmax value for a given configuration could be easily calculated
using a simple FEA.
0�2S glass-epoxy SECP; (b) ½0=� 45=90�S glass-epoxy SECP.
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