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In this work an approach to predict the strength of notched structures made of quasi unidirectional glass
fibre epoxy is presented. It takes into account the fabric specific behaviour in terms of hardening and soft-
ening. Four macroscopic ply failure modes are considered according to the Hashin criterion, depending on
the direction of loading. Material hardening and softening is implemented according to Continuum
Damage Mechanics. The hardening mechanism is modelled separately for matrix tension and shear.
The softening mechanism is modelled by the incorporation of fracture toughness according to the failure
mode (fibre/matrix failure in tension/compression). A new technique is proposed to determine the frac-
ture toughness from uniaxial tension/compression tests of unidirectional notched laminate specimens.
Special interest is given to the temperature impact on the material properties (elastic parameters,
strengths and fracture energy) in a wide range (�40 �C to 160 �C). Since the interval covers the rubber
temperature of epoxy the approach’s reliability under such conditions is examined as well.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The low specific weight of continuous fibre reinforced plastics
(FRP) offers light weight design opportunities. Therefore, the appli-
cation of FRP materials in automotive engineering is increasing
since the year 2000, as shown by Lässig [1]. Carbon fibre compos-
ites approved well in lightweight structures. Glass fibre epoxy
composites are candidates for cost sensitive applications due to
low production cost. Unidirectional (UD) plies fail catastrophically
at low stresses when loaded transversely to the fibre. This short-
coming is not present at balanced woven fabric. But their mechan-
ical proprieties in warp and weft direction are reduced by towel
crimp (undulation) which is described Puck [2]. As a result they
reach low strengths, compared to fibre parallel loaded UD plies
with the same fibre fraction. In quasi UD woven fabric towel crimp
is less serious, which significantly improves their mechanical prop-
erties as described by Schürmann [3] and Karahan [4]. Quasi UD
refers to strongly unbalanced fabric, where usually around 90% of
fibres are aligned in warp direction. Quasi UD fabric combines
the advantages of UD composites and balanced fabric: Good
mechanical properties in fibre direction, a medium failure strain
when loaded fibre transversely and a very high failure strain when
loaded mainly by shear. This reduces the probability of catas-
trophic failure. To use the benefits of quasi UD glass fibre epoxy
(GF-EP) fabric in structural application, a model is presented pre-
dicting the failure of notched structures under quasi-static loading.
Since epoxy resin is sensitive to elevated temperatures, the model
is validated for room and high temperatures. The influence of fibre
volume fraction on the material properties is considered as well.

2. State of the art

2.1. Experimental

The mechanical behaviour of FRP is very different from metals
since it is anisotropic and inhomogeneous. The failure of FRP is
not determined by a single crack mechanism and its propagation
but rather by several damage mechanisms. In the last years intense
research revealed the failure phenomena of balanced, moderately
unbalanced and quasi UD woven fabric.

Roy [5] examined unbalanced woven carbon fibre epoxy (CF-EP)
fabric with a fibre ratio of 6:1 and compared it to a model laminate,
which only contained crimp in warp direction. Lomov [6] exam-
ined triaxially woven and quasi UD fabric. The triaxial fabric is
based on CF, placed longitudinally and in ±45� direction, which is
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Nomenclature

Abbreviations
FRP fibre reinforced plastics
CF carbon fibre
GF glass fibre
EP epoxy
UD unidirectional
MD multidirectional
FVF fibre volume fraction
CLT Classical Laminate Theory

Symbols and parameters
u fibre volume fraction
T temperature
r Cauchy stress
E elastic Modulus
G shear Modulus
H hardening Modulus
r material strength
D damage parameter
G fracture toughness
g failure energy density
l length

Indices
f fibre
m matrix
t tension
c compression
tan tangent modulus
y yield
0 initial ultimate

eq equivalent
cri critical
th threshold
un unnotched
FEM Finite Element Method
CDM Continuum Damage Mechanics
SR stiffness reduction
RT room temperature
HT high temperature
E-Machine Electric Machine
APDL Ansys Parametric Design Language
e infinitesimal strain
t Poisson’s ratio
C stiffness
A area
n number
l length
d hole diameter
w specimen width
F specimen strength
Dtarget optimization target
1 longitudinal to warp fibres
2 in ply transverse to warp fibres
3 out of ply transverse to warp fibres
El element
IP integration point
cra crack
chr characteristic
exp experiment
sim simulation
no notched
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embedded in EP. In the quasi UD fabric, not only the fibre ratio was
strongly unbalanced, also the warp contained CF and the weft GF.
Bonnafous [7] examined balanced hemp fibre epoxy fabric. Dam-
age mechanisms were acoustically measured on component level
and compared to acoustic emissions of the fabric. Daggumati [8]
examined balanced fabric consisting of GF and a thermoplastic
matrix. Damage initiation and progress were acoustically and visu-
ally measured. It revealed how the damage mechanism of a ply is
influenced by its position in the laminate. Kergomard [9] examined
the influence of crimping on damage mechanisms in quasi UD fab-
ric, which consists of GF-EP with fibre ratio of 87:13. Kasrahan [4]
examined the influence of fibre crimp on the mechanical ply prop-
erties of six fabrics types with an epoxy matrix. Carbon, Aramid
and Glass fibres were used. The quasi UD fabric consists of a carbon
fibre warp with a local fibre volume fraction (FVF) of 0.51 and a
glass fibre weft. Kersani [10] examined quasi UD fabric consisting
of flax and epoxy with a fibre ratio of 955:45. The beginning of fail-
ure in different laminate layups is acoustically measured and com-
pared to the stress strain curves.

Even though structure and components of the examined fabrics
vary, similar damage mechanisms occur. Damage progression in
fabric generally is a multilevel phenomenon, it occurs on the
microscale (fibre, matrix and interface), mesoscale (woven unit cell
or ply level) and macroscale (laminate level).

According to Puck [2] the fabric failure mechanisms on the
microscale are the same as in UD plies: In longitudinally loaded
plies, single fibres break before the load reaches the ply strength.
As described by Schürmann [3] and Talreja [11] this is caused by
the statistical distribution of fibre defects. From this point, cracks
either propagate along the fibre or load perpendicular into the
matrix. As matrix cracks reach adjacent fibres and circumvent
them, they cause fibre bridging. Nevertheless most fibres remain
intact, explaining a nearly constant ply stiffness, until the load
reached the ply strength. At the ply strength, fibre fracture acceler-
ates causing ply stiffness degradation. Due to statistical distribu-
tion of the fibre strength and fibre pull out, cohesive behaviour is
observed until final failure. In transversally loaded plies cracks
nucleate at matrix flaws or fibre matrix interfaces (debonding). A
single crack rapidly splits the (isolated) ply, growing load perpen-
dicular within the matrix and along interfaces. The ply’s stiffness
remains constant until it fails in a brittle mode.

According to Lomov [6], Daggumati [8] and Bonnafous [7] the
woven unit cell’s failure phenomenology can be classified into cer-
tain stages:

� Damage initiation occurs in transversely loaded towels (micro-
cracks) or at towel crossings (micro-delamination).

� Damage progression includes microcrack stopping at adjacent
towels, crack propagation at towel crossings, and crack
combination.

� The final failure mechanism is breakage of the towels in loading
direction. This is to large extent driven by the separation of
crossing towels through micro-delamination.

Lomov [6] observes a nonlinear stress strain curve for fibre
inclined loaded quasi UD plies. The yield point corresponds to
the occurrence of acoustically measured damage. The ply failure
modes are similar to those of UD plies. Karahan [4] loads the quasi
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UD ply by longitudinal tension. Thereby a moderates stiffening in
the stress strain curve is observed. Kersani [10] observes a decrease
of stiffness in the stress strain curve of longitudinally loaded quasi
UD laminate. This is explained by the flax fibre intrinsic nonlinear-
ity. The tension loaded [+45,�45] laminate shows a pronounced
decrease in tangent modulus after circa a quarter of the failure
strain.

2.2. Modelling

The failure analysis of FRP is generally a multiscale problem due
to the inhomogeneous structure and multilevel failure mecha-
nisms. Common levels of modelling are macroscopic (laminate),
mesoscopic (fabric unit cell or ply level) or microscopic
(constituent level). Macroscopic modelling means stress homoge-
nization on laminate level. Such approach is rarely chosen nowa-
days, because modification might be required for each new
laminate layup. Microscopic modelling is usually embedded in
multiscale approaches, which model the interaction between
microscale and mesoscale or macroscale. According to Aboudi
[12] they are classified as hierarchic, synergistic or concurrent,
depending on coupling of, and information transfer between the
scales. A micromodel generally is a unit cell consisting of fibre,
matrix and eventually an interface. Micro-modelling permits mul-
tiscale approaches to account for changes in unit cell composition
in a physical way. Furthermore material failure is analysed in
detail, because it is indicated on component level. A criterion with
different cases for fibre and matrix failure is unnecessary. But mod-
elling the interface and measuring the component properties
remains a challenging task. Transferring properties from micro to
meso-level is often based on the assumption of material periodic-
ity. As soon as failure localizes in a ply, material periodicity cannot
be guaranteed and the composite meso-structure becomes more
important than the microstructure, as stated by Maimi [13]. Fur-
thermore micro-modelling adds significant complexity to the
material model and requires high computational resources. This
is critical in the simulation of larger structures and in fatigue sim-
ulation, where static loading is calculated repetitively. Therefore
modelling on ply level is preferred in this work.

Lomov [6] showed that for quasi UD fabric, on ply level, failure
modes similar to UD plies can be distinguished. Failure including
fracture of the warp equals fibre failure, failure including only frac-
ture of the rare fibres in the weft equals matrix failure. Therefore a
modified Hashin [14] criterion, developed to predict failure in UD
plies, is used here. The criterion is used in its original two dimen-
sional formulation, because the plies are assumed to be in a plain
stress state. Interaction between the plies and the laminate is cal-
culated using Puck’s [2] Classical Laminate Theory (CLT).

Daggumati [8] and O’Higgins [15] examined stacking sequence
effects. Changing the layup of a laminate can affect inter- or
intralaminar failure mechanisms and thereby the laminate
strength, even though the same plies are used. This is obviously
caused by through-the-thickness-interaction of the plies. Since
the CLT assumes plain stress and perfect sticking of the plies, stack-
ing sequence effects are not modelled in this work.

As shown by Mollenhauer [16] the inhomogeneous stress field
in notched laminates permits a strain redistribution. Embedded
plies do not fail immediately but gradually, see e.g. Puck [2], Talreja
[11] and Pinho [17]. In these cases it is crucial to not only model
the material until it reaches the strength, but to include the failure
process.

Techniques to predict the failure of open hole laminates being
of analytical and phenomenological nature have been developed
very early. Wadoups [18] applies Linear Elastic Fracture Mechanics
by assuming the presence of an inherent flaw in FRP. The inherent
flaw is a characteristic length of the composite which is added to
the observable notch. Thereby the strength dependence on the hole
radiusis predicted. Whitney [19] presents two approaches to indi-
cate the failure of open hole laminates, the point stress and the
averaged stress model. The point stress model predicts failure
when the stress of the notched laminate at a certain distance from
the hole exceeds the stress of the unnotched specimen. The aver-
age stress model predicts failure when the stress of the notched
laminate, averaged over a certain distance from the hole, equals
the average stress of the unnotched specimen. The approaches
are fairly accurate for hole notched specimens, see Belmonte [20]
and Camanho [21], but they include semi-empirical parameters
which cannot directly be linked to physical mechanisms. Belmonte
developed a critical damage growth model for GFRP [20] and CFRP
[22] based on physical parameters. It is capable of predicting the
failure of notched laminates, based on unnotched strength and
fracture toughness. But the usage of laminate connected parame-
ters requires new measurements for each notch form and laminate
layup. Approaches which model the damage mechanisms on ply
level are more versatile. Puck [2] states that embedded transversal
plies in cross laminates do not fail completely when the load
reaches the isolated ply strength. Rather they continue to bear
load, which means that their stiffness is reduced gradually. Puck
models this by reduction factors, which are the fraction of actual
to initial elastic parameters. To account for a combined stress state
the factors are given as a function of Puck’s failure criteria factors.
Kennedy [23] uses the reduction factors in the fatigue simulation
of GF-EP quasi isotropic laminates. The reduction factor evolution
of embedded plies is difficult to determine because it must be iden-
tified in laminate measurements. Measuring material softening in
isolated plies is difficult as well, because the actual fracture process
is limited to a narrow band where stress and strain are hardly mea-
sured, as stated by Krüger [24]. Coupling softening and (ply) frac-
ture toughness is a widely used alternative to stress strain
measurements. The coupling is established by assuming equality
of the work, which is required to open a crack and dissipated
energy, which is represented by the area under the stress strain
curve of a material volume subjected to failure, see Harris [25]
and Pinho [26]. In structural application the equivalence is often
assumed for the total failure process, which makes the fracture
toughness a material parameter. Considering the work energy
equivalence in connection with the (areic) fracture toughness in
FEM insures solution objectivity from the element size in localisa-
tion problems. It was firstly applied by Hillerborg [27] for the frac-
ture of concrete. Maimi [13], Camanho [21] and Krüger [24]
thereby predict the failure of notched FRP multidirectional (MD)
laminates. Martin-Santos [42] presents a constitutive model for
the simulation of fabric reinforced laminates. In contrast to the
aforementioned authors he considers the shear nonlinearity. Iso-
tropic, exponential hardening is implemented. As fibre tension
material law, linear and a bilinear softening is considered. It turns
out that bilinear softening provides a better prediction for the
nominal strength of open hole specimens than linear softening.

Closely connected to material laws, which contain softening, is
the identification of cohesive laws. Cohesive laws describe the rela-
tion between the stress and crack opening in the fracture process
zone of quasibrittle materials such as FRP. A cohesive law can be
transferred into a material law for finite element analysis, if the
elements’ dimensions are considered. Jacobsen [28] and Gregory
[29] model fibre bridging in double cantilever beams. R-curves
are measured and used to adjust the parameters of a cohesive
law. In both cases different shapes were used and a piecewise
defined law (linear softening followed by a power law softening)
is found to fit experimental data best. Recently some effort has
been made to experimentally obtain the softening law of lami-
nates, which are modelled as one homogenised material. Zobeiry
[38] conducted compact tension and compression tests and
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determined the displacement field by digital image correlation.
This data was used to estimate the size of the fracture process zone
as well as the strains and stresses. Therefore no restriction on the
shape of the material law is made in advance. Their conclusion is
that for tension and also for compression, a trilinear material law
(linear elasticity followed by bilinear softening) is sufficient to fit
the specimen’s load-pin displacement curve. Bergan [39] con-
ducted compact tension tests and modelled them by assuming a
cohesive trilinear law (linear elasticity followed by bilinear soften-
ing). The law’s parameters were determined by two ways: The
J-integral and the modified compliance method. The J-integral
method requires to measure the strain by digital image correlation,
creation of a FEM model and to integrate numerically around the
crack tip, which causes some difficulties. The modified compliance
calibration method is simpler to apply but relies on Linear Elastic
Fracture Mechanics and is therefore less accurate for smaller spec-
imens. Nevertheless both methods deliver similar cohesive laws.
Furthermore Bergan [39] showed that similar cohesive laws are
obtained for different specimen sizes. Thus the identified cohesive
law can be seen as a material property. Ortega [40] as well conduct
compact tension tests to identify the cohesive law of two types of
laminates (glass fabric and glass carbon fabric). An inverse method
is used to identify a piecewise linear law. The number of load-pin
displacement points, used for calibration of the law, determines
the number of segments. For the glass fabric laminate a trilinear
softening law is found to be sufficient. For the glass carbon fabric
laminate a five parameter law is suggested (piecewise constant
stresses connected by an exponential decrease). Furthermore it is
found that for open hole specimens the initial part of the softening
law determines the nominal specimen strength. This conclusion
was already drawn by Maimi [41], who examined the nominal
strength of open hole laminates. Given the specimen geometry,
the material strength and the cohesive law, the specimen strength
is calculated analytically. Four softening shapes are examined:
Constant, linear, exponential and bilinear. In fact the specimen
strength is reached at small crack opening displacements, which
explains the decisive role of the first part of the cohesive law. Thus
the linear, the exponential and the bilinear laws are able to fit the
specimen strength equally well.

In this work the failure process of notched GF-EP specimens is
simulated by means of the Finite Element Method (FEM), which
permits to analyse arbitrary geometries. In contrast to prevailing
research quasi UD woven fabric, instead of UD composite, is con-
sidered. The material model accounts for pre failure nonlinearity
in shear and weft direction. Until now FRP were rather modelled
as linear elastic until the start of the failure process. Latter is here
indicated by a modified Hashin criterion. For each ply failure mode
a separate fracture toughness value is used. Different crack modi
within one failure mode are not distinguished since Sanford [30]
showed that the sum of toughness is constant for different crack
modi in glass fibre reinforced plastics. By dividing the fracture
toughness by a characteristic length the energy density is derived,
which must be dissipated in the failure process of an integration
point. The characteristic integration point length is chosen accord-
ing to the crack band theory of Bažant and Oh [31]. After failure
indication, further strain gradually reduces the elastic parameters,
which are affected by the failure mode. Governing nonlinear mate-
rial behaviour by stiffness reduction generally refers to Continuum
Damage Mechanics (CDM). The final failure co-incidents with
inability of the integration point to carry load. Modelling the fail-
ure process in literature is often restricted to room temperature.
In this work an interval from low (�40 �C) to high temperatures
(160 �C) is considered. As fracture toughness measurements gener-
ally require high effort, an alternative is proposed here: The values
of the failure modi (fibre/matrix, tension/compression) are chosen
to fit the strength of open hole laminates in uniaxial tension/com-
pression tests.

3. Experimental data

Experimental investigations are performed on GFRP laminates
with different layups. The matrix is a high-temperature epoxy-
resin of low viscosity and consists of a resin component (EPIKOTETM

Resin 04434, HEXIONTM) and a hardener component (EPIKURETM

Curing Agent 04434, HEXIONTM). The reinforcing textile is a unidi-
rectional plain weave (VR 434 GI96) with 90% of the fibres aligned
in the main direction while 10% of them are woven transversally
for stabilization. The overall fibre volume fraction of the different
specimens is between 0.5 and 0.6. Resin transfer moulding is used
for fabrication of the specimens. The last tempering step is at
160 �C to receive a glass transition temperature of the same value.

The resulting composite material is referred as ‘‘Bosch GFRP”. To
characterise the material parameters, tension and compression
tests at unnotched specimens were performed. The stress strain
curves are recorded by the measuring of force displacement curves
and by dividing by the initial specimen area/lenght. Fig. 1 shows
the experimental setup for tension and compression.

In compression tests no strain sensors are used, due to the short
free specimen length. Instead the specimen strain was derived
from the machine displacement. Specimen types and performed
experiments are given in Table 1.

Fig. 2 shows the homogenized stress strain curve of tension and
compression tests performed on the Type01 and Type05 specimen
at RT.

The tension curves are linear until the beginning of failure
where the curve becomes smoothly nonlinear. This can be
explained by the gradual fibre fracture process. The hardly present
pre-failure nonlinearity justifies a linear elastic modelling. A knee-
point that is sometimes seen in balanced fabric is not present. For
the compression tests the absolute stress displacement curve is
shown. The pre-failure behaviour is fairly linear.

Fig. 3 shows the homogenized stress strain curve of tension and
compression tests performed on the Type02 and Type06 specimen
at RT.

The specimens in tension show a pronounced kneepoint around
a quarter of the failure strain. Further strain causes a stress
increase with a tangent modulus of roughly the tenth part of the
initial E Modulus. The kneepoint concurs with the occurrence of
load transvers matrix microcracks in the test specimen. Even
though each microcrack covers the crosssection, of the specimen,
the weft fibres prevent it from fracture. Further strain steadily
increases the number of microcracks. Cross laminates made of
UD plies are well-known for analogous phenomena: After a knee-
point in the stress strain diagram of the specimen, microcracks
occur within embedded, transversely loaded plies. The transverse
hardening is modelled linear. For the compression test the absolute
stress displacement curve is shown. The pre-failure behaviour is
fairly linear.

Fig. 4 shows the homogenized stress strain curve of the tension
tests performed on the Type04 specimen at RT.

The specimens show a pronounced nonlinear behaviour at one
fifth of the failure strain. The tangent modulus of the following
hardening is very low and decreases with further stain. The nonlin-
earity can only be attributed to shear hardening because the occur-
ring weft stress in this test is lower than the kneepoint stress.
Furthermore the failure strain is much higher than in the Type01
or Type02 specimen.

The tests leave the question whether the nonlinearity in trans-
verse and shear direction is caused by stiffness reduction (damage)
or plasticity. To answer this, cyclic tests on the Type02 and Type04



Fig. 1. Experimental setup for tension (left) and compression tests (right).

Table 1
Test conditions of unnotched specimen types used for material characterization.

Name Layup FVF Temperatures [�C] Test

Type01 [0,0]s 0.41, 0.609 �40, 23, 160 Tension
Type05 [0,0]s 0.609 23, 160 Compression
Type02 [90,90]s 0.41, 0.525 �40, 23, 160 Tension, Cyclic
Type06 [90,90]s 0.525 23, 160 Compression
Type04 [�45,45]s 0.41, 0.57 �40, 23, 160 Tension, Cyclic (only RT)
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Fig. 2. Experimental stress strain curves of unnotched laminates under tensile (left) and compressive (right) longitudinal loading.
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Fig. 3. Experimental stress strain curves of unnotched laminates under tensile (left) and compressive (right) transversal loading.
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specimen are performed. Fig. 5 shows the corresponding stress
strain curves.

The cyclic tests reveal that the nonlinearity is caused by both,
damage and plasticity. In transverse tension the irreversible strain
increases until a certain level, here around 0.1%, further cyclic load-
ing decreases only the modulus. Increasing the strain amplitude in
the shear laminate increases irreversible strain, while decreasing
the modulus as well. For both specimens the same tendency is
observed. At lower strains the irreversible strain (plasticity) is
increased and the modulus is decreased as well (damage). Further
strain decreases mainly the modulus, damage clearly
predominates.

Ply stress and strain is generally considered in the natural coor-
dinate system of a (quasi) UD ply: 1 indicates the warp or fibre
direction (longitudinal), 2 the weft or matrix direction (transverse)
and 3 the thickness direction. To characterise the Bosch GFRP in
plain stress, tension and compression tests on unnotched Type01,
Type02 and Type04 specimens are conducted for low, moderate
and high temperatures. Specimens with a varying global FVF
are also tested. This data permits to model the elastic material



Fig. 4. Experimental stress strain curve of unnotched laminate under tensile
diagonal loading.
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parameters and strengths as a function of the temperature and the
global FVF. The results for the longitudinal elastic modulus E11 and
strength r11 are presented in Fig. 6.

The fitting is done by a polynomial, using FVF and temperature
as variables and determining the parameters by the least squares
method:

f ðu; TÞ ¼ aþ b �uþ c � T þ d �uT þ e � T2 ð1Þ
Temperature is inserted in �C, the FVF u without unit. This

approach was used for elastic parameters and (tension) strengths.
Table 2 summarizes the polynomial parameters for the Bosch
GFRP.

For shear the hardening modulus H12 is given, which is used in
plasticity instead of the tangent modulus G12;tan. In linear harden-
ing the parameters are coupled via

G12;tan ¼ H12 � G12

H12 þ G12
ð2Þ

The influence of temperature and FVF on the Poisson’s ratio and
compression strength is neglected. Therefore they are measured at
RT and a medium FVF. The determined values are summarized in
Table 3.

The out-of-plane Poisson’s ratios m13 and m23 are used in simula-
tion to calculate the normal strain in thickness direction.

4. Modelling

The material model in this work is implemented into the com-
mercial FEM tool Ansys 14.5 via Ansys Parametric Design Language
(APDL) and a usermat subroutine. The simulated laminates are
modelled by SHELL181 elements. Each element contains multiple
layers in thickness direction, which represent the laminate’s plies
and act together according to the CLT. Each layer contains a set
of four integration points, which are equally spaced in the layer’s
midsurface. For the open hole specimens, which are presented in
Section 4.4., free meshing was used in the area around the hole
with a default edge length of 0.2 mm. The material modelling
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Fig. 5. Material response under cyclic loading for transverse tens
incorporates hardening, a failure criterion and softening. The fabric
hardening in transversal tension and shear is actually a combina-
tion of plasticity and damage. However for reasons of simplifica-
tion the hardening is modelled by damage only, which ensures
an efficient and robust simulation. Assuming a plain stress state
the components of the stiffness tensor in the natural coordinate
system are modelled by
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X ¼ 1� m12m21ð1� D11;sÞð1� D22;hÞð1� D22;sÞ ð7Þ

C1212 ¼ 2ð1� D12;hÞð1� D12;sÞG12 ð8Þ

C1112 ¼ C2212 ¼ C1211 ¼ C1222 ¼ 0 ð9Þ
The evolution of the hardening parameters D22;h and D12;h for

matrix tension and shear is outlined in Section 4.1. The evolution
of the softening parameters D11;s, D22;s and D12;s for fibre, matrix
and shear is outlined in section 4.3. Similar models, which do not
consider hardening damage, have been established by Matzen-
miller [32] and Maimi [13].

4.1. Hardening

No interaction between hardening in transverse tension and
shear is assumed. Since it is fairly linear in both cases a tangent
modulus is used, E22;tan for matrix and G12;tan for shear hardening.

In transverse tension, hardening is indicated by a maximum
stress criterion:

r22 P r22;h ð10Þ
The initial matrix hardening strength r22;h is the experimental

matrix yield strength r22;y. In case of hardening, r22;h is updated
by the newly calculated matrix normal stress. The matrix harden-
ing damage Dm;h is calculated by Eq. (11), while e22;y being the yield
point strain.

Dm;h ¼ 1� E22;tan

E22
þ E22;tan

E22
� e22;y
maxðe22Þ �

e22;y
maxðe22Þ ð11Þ

The matrix hardening parameter in the stiffness tensor is cho-
sen according to the sign of the matrix stress.
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ion (Type02, left) and fibre diagonal tension (Type04, right).



Fig. 6. Fit of E Modulus and strength, based on experimental results of unnotched Type01 specimens.

Table 2
Polynomial parameters to fit the Bosch GFRP in dependence of temperature and FVF.

Material parameter [MPa] a b c d e

E11 1575.243 70342.666 �47.469 55.667 0
r11;t;0 230.961 1375.571 0.709 �4.553 0
E22 �5024.628 35674.026 73.718 �178.343 �0.219
E22;tan �2132.021 6937.132 16.919 �35.401 �0.008
r22;y 56.879 2.327 �0.091 0.025 0
r22;t;0 �10.974 174.521 0.489 �1.141 0
G12 �2444.473 11732.656 1.375 �38.902 0
H12 �798.373 1874.313 �1.438 1.242 0
r12;y �73.86 201.5 0.195 �0.644 0
r12;0 �16.448 129.452 �0.009 �0.312 0

Table 3
Material parameters of the Bosch GFRP not fitted to temperature and FVF.

r11;c;0 [MPa] r22;c;0 [MPa] m12 m13 m23

667 200 0.31 0.35 0.4

134 D. Flore et al. / Composite Structures 160 (2017) 128–141
D22;h ¼ Dm;h;r22 > 0
0;r22 6 0

�
ð12Þ

Shear hardening is calculated analogous, apart from using the
absolute shear stress. Since is not distinguished between positive
and negative shear, shear hardening parameter in the stiffness ten-
sor D12;h always equals the shear hardening damage. Matrix hard-
ening only occurs as long as matrix failure has not been active,
shear hardening only as long as fibre tension, matrix tension and
matrix compression failure has not occurred.

4.2. Failure criteria

Our experiments confirm the findings of Lomov [6]: The ply fail-
ure modes of quasi UD fabric are analogue to UD FRP. Wei [33] suc-
cessfully used the Hashin criterion [14] even for balanced fabric.
Therefore the Hashin criterion is chosen here to indicate start of
the failure process. Fibre or matrix mode in tension or compression
is distinguished. In contrast to the original criterion, fibre tension
failure is only predicted when fibre stress exceeds half of the fibre
tension strength. It insures that fibre failure is always driven by
fibre tension, because shear stress driven fibre failure was not
observed in experiments. The threshold value is chosen this way,
because Schürmann [3] states that fibre fracture starts as longitu-
dinal tension reaches half of the ply strength.

Fibre tension failure r11 > 0:5r11;t

r11

r11;t;0

� �2

þ r12

r12;0

� �2

¼ 1 ð13Þ
Fibre compression failure r11 6 0

r11

r11;c;0

� �2

¼ 1 ð14Þ

Matrix tension failure r22 > 0

r22

r22;t;0

� �2

þ r12

r12;0

� �2

¼ 1 ð15Þ

Matrix compression failure r22 > 0

r22

r22;c;0

� �2

þ r12

r12;0

� �2

¼ 1 ð16Þ

The simplified matrix compression failure criterion is used,
because experiments indicated that two times the shear strength
2r23;0 fairly equals the transversal strength r22;c;0. The same simpli-
fication is also used by Shokrieh [34].

4.3. Softening

Fracture toughness is included to the FEM simulation by the
Crack Band Theory [31]. The main idea is that the failure process
localises in the smallest unit of calculation due to softening. There-
fore the fracture energy in FEM must be dissipated on integration
point level, which requires a quantity of the unit energy density.
The energy density is calculated by dividing the physical fracture
toughness of the failure mode by a numerical characteristic length.

g ¼ G
lchr

ð17Þ

The characteristic length generally is connected to one integra-
tion point (IP), where the FEM calculates stresses and strains. It is
assumed, that the IPs are equally spaced in the two dimensional
elements. Therefore the area connected to one IP is calculated as
AIP ¼ AEl=nIP . The mean ‘‘IP edge length” of a quadrilateral element
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is calculated as lIP ¼ ffiffiffiffiffiffi
AIP

p
. This is a good estimation, as long as the

element shape is close to a square. Generally it must be considered
that the fracture plane is placed arbitrary in the element area. In
this case the crack and IP length are coupled via projection.

lcra ¼ lIP
cosð/Þ ð18Þ

/ is the inclination between crack and IP edge, the maximum is
p=4. To account for this in the mean, the characteristic length is
calculated as

lchr ¼ 4
p

Z p
4

0
lcrad/ ¼ 1:12

ffiffiffiffiffiffi
AEl

nIP

s
ð19Þ

Considering this the characteristic length in triangular elements

is 1:52
ffiffiffiffiffi
AEl
nIP

q
, according to Maimi [35].

The validity of a criterion for a certain failure mode marks the
beginning of the material softening, similar to Puck’s reduction fac-
tor approach [2]. While softening, the shape of the stress strain
curve can be linear, progressive (above linear), regressive (below
linear) or multilinear. Maimi [35] and Krüger [24] use a regressive
evolution, except for fibre tension where softening initially evolves
linear. A progressive softening evolution can be found in Matzen-
miller [32]. Pinho [17] use linear softening to model the degrada-
tion of embedded plies. As outlined in the literature review,
recently some effort has been done to obtain the cohesive law in
laminates. A bilinear softening law appears appropriate to describe
most of the experiments. Nevertheless linear softening is used
here. In this case softening damage generally evolves according
to the following equations, derived from Ansys [36].

D ¼ ecrieq

etheq
� ðe

th
eq � e0eqÞ
ecrieq � e0eq

ð20Þ

When the Hashin criterion is fulfilled for a certain failure mode,
the initial equivalent strain e0eq and the threshold strain etheq are set

to the current equivalent strain: e0eq ¼ etheq ¼ eeq. The critical equiva-

lent strain ecrieq is calculated as

ecrieq ¼ 2 � g
req

ð21Þ

The equivalent stress req and the equivalent strain eeq are calcu-
lated according to the particular failure mode. Here denotes the
McCauley brackets which gives the term in brackets, if it is positive
and otherwise zero.

Fibre tension failure

eeq;ft ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he11i2 þ 2e212

q
ð22Þ

req;ft ¼ hr11ihe11i þ r122e12
eeq;ft

ð23Þ

Fibre compression failure

eeq;fc ¼ �he11i ð24Þ

req;ft ¼ �hr11i ð25Þ

Matrix tension failure

eeq;mt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he22i2 þ 2e212

q
ð26Þ

req;ft ¼ hr22ihe22i þ r122e12
eeq;mt

ð27Þ
Matrix compression failure

eeq;mc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�e22i2 þ 2e212

q
ð28Þ

req;ft ¼ h�r22i � he22i þ r122e12
eeq;mc

ð29Þ

The equivalent strain is calculated continuously. If it exceeds
the threshold strain, the threshold is updated and damage
increased until it reached a maximum of 0.9999. A positive damage
rate insures the fulfilment of the second law of thermodynamics,
for details see Maimi [13]. The so calculated fibre/matrix tension/
compression damage variables Dft , Dfc , Dmt and Dmc are incorpo-
rated to the stiffness according to the sign of fibre and matrix
stress.

D11;s ¼
Dft;r11 > 0
Dfc;r11 6 0

�
ð30Þ

D22;s ¼
Dmt;r22 > 0
Dmc;r22 6 0

�
ð31Þ

The shear damage is calculated as maximum damage of these
failure modes. This is a difference to Ansys [36] where the shear
damage is calculated by multiplying the damage variables. Thus
the shear modulus will be damaged twice if damage in fibre ten-
sion and matrix tension is present. However a double amount of
shear damage in such case could not be verified by experiments
and therefore the following equation is used.

D12;s ¼ maxðDft ;Dfc;Dmt;DmcÞ ð32Þ
A multiple/parallel shear degradation by more than one failure

mode is thereby neglected.

4.4. Calibration process for fracture energy

The material parameters derived so far allow simulation of
unnotched specimens. The failure process occurring in notched
specimens differs because the inhomogeneous stress strain state
permits stress strain redistribution. To examine this, notched spec-
imens were tested, whose geometry is presented in Fig. 7.

Apart from the hole, the specimen geometry is the same as the
unnotched plies. Two diameters were tested for most specimen
types with a diameter to width ratio (d/w) of 0.1 or 0.3, to gain
comprehensive data. The hole diameter in UD laminates is 1 mm
or 3 mm, the diameter in MD laminates 2 mm or 6 mm.

In Fig. 8 the measured relative specimen strengths are com-
pared to results from literature obtained with other composites.
Here rno is the strength of the notched specimen and run is the
strength of the unnotched specimen. For both, notched and
unnotched specimens, the gross cross section is considered.

Thus the straight dashed line refers to a material which is com-
pletely insensitive to notches while the dotted line refers to a hole-
sensitive material. This quite common representation can also be
found in Lee [37]. The Bosch GFRP in some experiments even lies
above this line. The phaenomena that notched FRP laminates
sometimes reach higher relative strengths in static tension, or
residual strengths after fatigue loading than unnotched laminates,
is referred to as notch paradoxon, see e.g. Waddoups [18]. In terms
of relative strength the Bosch quasi UD GFRP performs very well
compared to balanced woven GF-EP [20], balanced woven CF-EP
[22], UD GF-EP [15] and UD CF-EP [15,21].

First approaches to predict the strength of notched laminate by
FEM simulation included linear elasticity until failure and a classi-
cal stiffness reduction approach: The elastic parameters are fully
degraded according to the failure mode indicated by the Hashin



Fig. 7. Geometry of notched UD laminate (left) and MD laminate (right) specimens.
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criterion. The simulated specimen strengths turned out to be in the
zone of hole-sensitive, brittle materials, indicated in Fig. 8, and
thus far below experiments. An example is given in Fig. 9 by the
curves ‘Sim SR’.

Including weft and shear hardening increases the simulated
strength, which is illustrated by the curves ‘Sim SR + Hard’ in
Fig. 9. In longitudinal tension the material mainly fails due to warp
tension. Thus weft and shear hardening contribute little to the
specimen strength and it remains far below the experimental data.
In transverse tension the material mainly fails due to weft tension.
Thus hardening significantly raises the specimen strength. How-
ever it clearly remains lower than the experimental one and the
curve shapes diverge.

Realistic specimen strengths are simulated only after the incor-
poration of softening by CDM (‘Sim CDM’). By defining the IP fail-
ure energy density the fracture toughness governs the stiffness
degradation. A slower softening counters localization and permits
continuous stress strain redistribution to undamaged IPs. Thus it
raises the specimen strength, compared to the stiffness reduction
approach, which causes a sudden localization. The fracture tough-
ness values were not determined experimentally but fitted to cer-
tain experiments. The process is outlined below.

Incorporating hardening to CDM simulations marginally adjusts
the strength (‘Sim CDM + Hard’). Rather it alters the stress strain
curve shape in tests where hardening is clearly present, which
can be seen in Fig. 9, right. It might be interesting to note that hard-
ening only alters the stress strain curve when softening is incorpo-
rated as well. An explanation is that including softening spreads
the failure process. This causes many elements to harden parallel,
thus the individual hardening curve is observable on specimen
level.
The fracture toughness values were not measured traditionally.
Instead they were determined to fit the strength of the notched UD
laminates with two hole diameters, which can be seen in Fig. 10 on
the left. These simulations are sensitive to fibre tension, matrix
tension and matrix compression fracture toughness. The failure
modes occur despite longitudinal/transversal specimen loading
due to the hole induced inhomogeneous stress state.

The minimised target value is the sum of squared relative spec-
imen strength differences of experiment and simulation. The
experimental strength of specimen i is denoted by Fexp;i, the simu-
lated strength by Fsim;i. i ¼ 1 refers to Type01 and i ¼ 2 to Type02.

Dtarget ¼
X2
i¼1

Fexp;i;d¼1 � Fsim;i;d¼1

Fexp;i;d¼1

� �2

þ Fexp;i;d¼3 � Fsim;i;d¼3

Fexp;i;d¼3

� �2

ð33Þ

Both diameters d ¼ 1 and d ¼ 3 are considered because using
only one diameter and therefore two specimens would not allow
determining three toughness values. The aforementioned simula-
tions are not sensitive to fibre compression toughness Gfc . This
value is therefore chosen to fit the compression strength of a
notched laminate in longitudinal loading. The thereby determined
fracture toughness values are given in Table 4.
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To summarize the results, experimental and simulated
strengths of calibrated specimens are given in Table 5

The UD specimen types to calibrate fracture toughness values
are not unambiguous. It is also conceivable to determine the values
by means of four hole notched UD laminates having one diameter,
each loaded longitudinal/transverse in tension/compression. But
the main idea is, that the exact specimen geometry is not decisive,
as long it is significant to the desired fracture toughness value. Irre-
spective of the used UD laminates the proceeding has certain
advantages compared to traditional fracture toughness measure-
ments. Introducing an open hole into a UD laminate is much sim-
pler than introducing a sharp crack to a fracture toughness
specimen. Ordinary tension and compression tests can be con-
ducted quick and easy, compared to traditional compact tension
and compression tests. Especially when the orthotropic material
Table 4
Fracture toughness values derived by notched UD laminate multi-target optimization.

Gft [kJ/m
2] Gfc [kJ/m2] Gmt [kJ/m2] Gmc[kJ/m2]

78.06 17.97 7.23 60
behaviour is considered, evaluation of the traditional tests takes
much effort, see e.g. Pinho [26], who numerically calculates the J-
Integral in dependence of the crack length.

Some remarks follow, which consider the calibration process.
Open hole UD laminates often fail due to ply splitting when loaded
longitudinally and not due to fibre failure. This behaviour would
prohibit an accurate calibration of the fibre tension fracture tough-
ness. In this case another specimen geometry must be chosen, in
which significant fibre failure occurs. For the Bosch GFRP we do
not see significant ply splitting in the open hole specimen. An
example is given in Fig. 12. As outlined in the literature review,
another point concerning the open hole specimen is, that the ulti-
mate load (the point used to adjust the fracture toughness) is often
reached well before the cohesive law is exhausted at any point of
the specimen. Calibrating the fracture toughness to the specimen
strength could therefore cause an error. With the Bosch GFRP,
the specimen stress curve is met fairly well, also after the ultimate
load, where the fibre damage variable reaches one in many integra-
tion points. This implies that the fracture toughness error is accept-
able. If there was significant deviation from the experiment at
decreasing specimen stress, the problem could be solved by cali-
brating the fracture toughness not only to the ultimate stress,
but also to stresses, which appear later in the curve. In cases where



Table 5
Comparison of experimental and simulated specimen strengths after fracture toughness calibration.

Type01, d = 1 mm Type01, d = 3 mm Type02, d = 1 mm Type02, d = 3 mm Type05, d = 1 mm Type05, d = 3 mm

Fexp [MPa] 754.1 528.5 73.1 57.1 540.4 435.1
Fsim [MPa] 716.0 465.0 74.6 56.7 606.9 464.8
Failure [%] �5.05 �12.02 2.01 �0.66 12.31 6.48

Fig. 12. Spatial damage evolution in unnotched and notched laminates under
tensional loading: Dmt (left), Dmt (middle) and Dft (right).
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the agreement between simulation and experiment is still not sat-
isfying, a bilinear softening approach could be used.

5. Results

It is of great importance that the fracture toughness values
derived by notched UD laminate calibration are generally applica-
ble. Therefore results of UD and MD laminates not used for calibra-
tion and an E-Machine rotor structure are presented in this chapter
to validate the CDM model as well as the new calibration method.

5.1. Notched laminate

The validation on specimen level is performed using various
layups and hole diameters. The notched laminates used for valida-
tion are summarized in Table 6.

The stress strain curves of the notched Type09 laminate with
diameters of 2 and 6 mm loaded in tension are presented in Fig. 11.

The stress strain curves in simulation and experiments show
some difference in the failure process, but the laminate strengths
agree well for simulations independent of hardening incorporation.
In the following hardening is neglected because the main goal of
this work is the prediction of the ultimate stresses. If the shape
Table 6
Notched laminates used for validation.

Type Layup Hole d [mm]

Type01 [0/0]s 1, 3
Type02 [90/90]s 1, 3
Type03 [10/�10/10/�10]s 2, 6
Type06 [90/90]s 1, 3
Type07 [0/0/90/90] s 6
Type09 [0/90/10/�10]s 2, 6
Type17 [60/�60/20/�20/0]s 6

Table 7
Strength comparison of notched laminates tested for validation at RT.

Type03,
d = 2 mm

Type03,
d = 6 mm

Type06,
d = 1 mm

Type06,
d = 3 mm

Fexp [MPa] 595.8 434.0 188.6 135.1
Fsim [MPa] 658.9 503.8 184.0 139.0
Failure [%] 10.45 15.89 �2.42 2.9
of the stress strain curve was considered, modelling of hardening
would be important, in cases where hardening is visible on speci-
men level. An example is the tensional loading of the notched
Type02 specimen that can be seen in Fig. 9.

The comprehensive data of notched laminate strengths tested
for validation at RT is given in Table 7.

Three to five tests were conducted for each laminate type. The
presented laminate strength is the mean value. The results agree
well for the Type06, Type09 and Type17 specimen. Especially the
hole diameter has small influence on the agreement. This empha-
sises that the fracture toughness is a material parameter. The
Type03 simulation exceeds the experimental strength by more
than 10%. The laminate consists of [10,�10] plies. Simulation of
the unnotched laminate with the Hashin criterion overestimates
the experimental strength by 6.6%. This indicates that the failure
is at least partly caused by the Hashin criterion and not by the frac-
ture toughness. Thus it is assumed that the simulation accuracy
could be improved by a better modelling of the transition between
fibre and matrix failure mode at small fibre load inclination. Simu-
lation of the Type07 (cross) laminate underestimates the experi-
mental strength by almost 30%. The unnotched laminate strength
is not reached in simulation as well, with 9% the failure is signifi-
cant. Additionally a strong stacking sequence effect is observed
in cross laminates: If plies of the same kind are blocked together,
as apparent in Type07, laminate is notch insensitive and the
notched strength is high. If the stacking is changed to an alternat-
ing sequence the laminate is notch sensitive and the notched
strength is low, see O’Higgins [15]. The fracture toughness can
not incorporate such effect, because it was calibrated at UD speci-
mens. Neglecting stacking sequence and through-thickness effects
is a general problem of plane stress ply modelling. Approaches to
model stacking sequence effects anyway, e.g. by adapting the ply
strength according to its position in the laminate, are presented
by Camanho [21] and Pinho [17].

By FEM simulation it is not only possible to calculate the ulti-
mate stress or stress strain curves, but to predict the spatial dam-
age evolution as well. An example of this is given in Fig. 12.
u T [�C] Load

0.609 160 Tension
0.525 160 Tension
0.566 23 Tension
0.517 23 Compression
0.6 23 Tension
0.578 23 Tension
0.6 23 Tension

Type07,
d = 6 mm

Type09,
d = 2 mm

Type09,
d = 6 mm

Type17,
d = 6 mm

334.5 474.2 346.0 252.7
239.2 486.3 352.2 258.5
�28.56 2.5 1.73 2.08
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The unnotched [10]8 laminate obviously fails by matrix tension
mode and therefore the matrix tension damage parameter is
shown. The damage evolves along the fibre. The matrix tension
damage parameter is also shown in the unnotched [45,�45]2s lam-
inate. Since the laminate is symmetric the simulation predicts a
symmetric damage field. In fact the specimen always has imperfec-
tion which causes an asymmetric damage field. Still it can be seen
that the damage evolves along the fibre in simulation and experi-
ment. The fibre tension damage parameter is shown in the notched
laminate [0]4. The damage evolves cross like from the notch to the
specimen edges. This is predicted fairly well by the simulation.

High temperatures are often critical in FRP, because polymers
are usually temperature sensitive. The resin material behaviour
changes significantly when it reaches the rubber temperature.
Since high temperatures can not be excluded in some applications,
it is of interest how the simulation behaves in this case. Fig. 13
shows the stress strain curves of the notched Type01 specimen.

For the influence of temperature on the fracture toughness
some considerations must be made in advance. The calibration
process for the fracture toughness resulted in Gft = 78.06 kJ/m2

and Gmt 7.23 kJ/m2. In fibre direction the Bosch GFRP has a fibre
volume fraction of 0.54 and in the transverse direction the fibre
volume fraction is about 0.06. This pair of values is presented in
Fig. 14. It can be seen that the fracture toughness is increased by
increasing the fibre volume fraction in the loading direction. Hav-
ing no fibres in the transverse direction the fracture toughness is
about 0.27 kJ/m2 according to Camanho [21]. Even though it is
well-known that fracture toughness results from the interaction
of fibre, matrix and interface, we here assume that the fracture
toughness is mainly influenced by the fibres. Their properties
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Fig. 14. Relation between fracture toughness and fibre volume fraction.

Table 8
Strength comparison of notched laminates tested for validation at HT.

Type01, d = 1 mm, HT Type01, d = 3 mm,

Fexp [MPa] 493.4 381.5
Fsim [MPa] 555.63 353.39
Failure [%] 12.61 �7.37
however are hardly influenced by temperatures around 160 �C.
Thus the fracture toughness values, calibrated at room tempera-
ture, are held constant at high temperatures.

All the other parameters are calculated using Eq. (1). Due to the
polynomial approach, experimental and simulated elastic modulus
differs. Apart from this the stress strain curve prediction in Fig. 13
is fairly good for both diameters. The specimen strengths for the
notched UD laminates in transverse and longitudinal tension at
160 �C in experiment and CDM simulation are given in Table 8.

The simulated specimen strengths deviate from the experimen-
tal data by 8–16%. Still the accuracy is good, considering the large
temperature difference of 137 K. If the fracture toughness was gov-
erned by the epoxy matrix, much higher deviations would be
expected. It follows that mainly fibres influence the fracture tough-
ness in the matrix tension and fibre tension failure mode. This
justifies neglecting fracture toughness adjustment in many
applications.

5.2. Structure

Another advantage of the FEM is the ability of calculating arbi-
trary geometries and notch shapes. Only this permits to predict the
failure in complex structures. Hence a sector of an E-Machine rotor
is simulated to validate FEM and CDM coupling and the fracture
toughness calibration. The task of the rotor is to carry magnets
and to transform the magnetic force into a driving torque. The
main loading is caused by centrifugal forces. The rotor has a
quasi-isotropic stacking of 24 layers whereat each layer is rotated
HT Type02, d = 1 mm, HT Type02, d = 3 mm, HT

51.5 41.4
59.56 45
15.66 8.57

Fig. 15. Two different testing setups for the rotor disc.



Fig. 16. Rotor structure: Force displacement curve for R-Type1 and R-Type2.
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15� to its neighbour layer. Furthermore the rotor has symmetrical
layup. Two different setups are tested that can be seen from Fig. 15.
In the first, tension is applied via one magnet on the rotor segments
(R-Type1), in the second via two magnets (R-Type2).

The simulation of the quasi-static loading is done using the
CDM model without hardening and also using the stiffness
reduction model. Fig. 16 compares force displacement curves in
experiment and simulation.

Again a stiffness reduction approach drastically underestimates
the maximum force, incorporation of CDM leads to realistic values.
Since four layered UD laminates were used for calibration, whereas
the rotor consists of 24 layers, the good results in terms of maxi-
mum force confirm that the derived fracture toughness values
can be regarded as material parameters. The simulated (CDM)
force displacement curve of R-Type1 agrees well with experiments.
The sudden drop after maximum force in the R-Type2 CDM simu-
lation curve is not seen in experiments and requires further exam-
ination. The experimental fracture pattern is compared to the
damage evolution simulated by the CDM approach. The results of
R-Type1 are given in Fig. 17, those of R-Type2 in Fig. 18.

The spatial damage evolution of R-Type1 is predicted well by
the simulation. The damage process starts at the inner rotor cor-
ners and evolves diagonally to the edge of the outer circle.
Fig. 17. Structure R-Type1: Experimental fracture pattern (left) and simulative
damage evolution (right).

Fig. 18. Structure R-Type2: Experimental fracture pattern (left) and simulative
damage evolution (right).
The damage in the R-Type2 simulation localises at the narrow
transition from the inner circle to the radial bar. This explains
the sudden force drop after fracture of the transition. On the other
hand the experimental fracture pattern reveals that damage rather
evolves radial within the bar, instead of only localizing at the root
of the bar. This explains the gradual force degradation in the force
displacement diagram.

6. Conclusion

This work shows, that implementing a simple CDM model into
FEM simulation not only permits the realistic calculation of
notched laminate strengths, but also to simulate more complex
structures reasonably. The behaviour of quasi UD GF-EP is exam-
ined experimentally. In longitudinal tension, compression and
transverse compression linear elastic behaviour is observed. The
material behaviour in transverse tension and shear loading is non-
linear. In both cases a yield point is followed by hardening which
can be regarded as linear. The material is characterised in a wide
temperature range and in dependence of the global FVF. Tests on
notched laminates show that the quasi UD GF-EP is rather notch
insensitive, in some cases the true specimen strength even
exceeded those of unnotched laminates, which is referred to as
notch paradoxon. The strength prediction of open hole UD and
MD laminates by means of the FEM is examined comprehensively.
The key findings of this work are presented in the following:

(1) The comparison of simulations and experiments clearly
shows that complete a stiffness reduction after element fail-
ure, indicated by a modified Hashin criterion, underesti-
mates the specimen strength. Incorporating hardening can
lift the calculated strength moderately; still it remains below
the measured strength. To calculate realistic values it is
mandatory to include the material failure process by CDM
into FEM simulations. Additional incorporation of hardening
alters the stress strain curve in cases where hardening is
observable on specimen level. The Adjustment of the speci-
men strength is moderate. Fracture toughness turns out to
be the decisive parameter in terms of notched laminate
strength simulation.

(2) A new approach is presented to determine the fracture
toughness values for the four failure modes fibre/matrix ten-
sion/compression. Laborious fracture toughness tests are
avoided. Instead ordinary tension/compression tests on
notched UD laminates are used in combination with a
multi-target analysis to calibrate the fracture toughness val-
ues. The values determined in this manner are used in the
simulation of MD laminates. The calculated specimen
strengths reasonably agree with experiments, which



D. Flore et al. / Composite Structures 160 (2017) 128–141 141
indicates that the calibration approach is capable of deter-
mining useful fracture toughness values. This is emphasised
by the simulation of an E-Machine rotor structure.

(3) The fracture toughness values derived from RT tests are also
applied to simulate longitudinal loading of notched lami-
nates at the epoxy’s rubber temperature (160 �C). The stress
strain curves agree well. Thus it follows that the fracture
toughness in this case is not determined by the temperature
sensitive matrix but rather by the fibres.

The presented method to calibrate fracture toughness values
and their insensitivity to high temperatures contribute to use the
benefits of quasi UD GF-EP fabric (cost efficiency and notch insen-
sitivity) and FRP in general in structural application.
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