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To acquire exact solutions of double-functionally graded Timoshenko beam system on Winkler-Pasternk
elastic foundation, which are benchmarks of double-beam systems in the field of engineering, motion dif-
ferential equations of double-beam system are derived using Hamilton’s principle. In this paper, the exact
dynamic stiffness matrix of double-functionally graded Timoshenko beam system on Winkler-Pasternak
under axial loading are established and the damping of the connecting layer is also taken into consider-
ation. The exact natural frequency and buckling load are obtained using Wittrick-William algorithm. To
comprehensively analyze dynamic characteristics of double beam system, the effect of gradient param-
eter, foundation parameters, axial loading and connecting stiffness on the frequency and buckling load is
compared, and the influence of damping factor is also investigated. Finally, dynamic response of double-
beam system is studied using Fourier transformation.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded material [1–6] is a combination of two or
more than two different properties of material according to a cer-
tain law. Two sides of the structure are composed of different
physical properties to make the material components meet the
special requirements of different conditions. The volume fraction
of the component varies continuously in space. The mechanical
properties of the structure can vary continuously at different posi-
tion. Thus, the mutation of physical properties can be eliminated.
Meanwhile, FGM can also reduce or avoid the stress concentration
phenomenon in the components. Functionally graded materials
have the characteristics of high strength, toughness, high temper-
ature resistance and corrosion resistance, which also solves the
problem that uncoordination of thermal expansion coefficient
between the metal and ceramic. Functionally graded materials
have presented the excellent performance in high strength,
mechanical load, thermal load, or under high temperature environ-
ment. Therefore, FGM is considered as the most potential compos-
ite material in the fields of spacecraft, machinery industry and
nuclear industry, and the research on mechanical behavior of func-
tionally graded materials has become a frontier subject in modern
materials science and mechanics.
Free vibration of functionally graded beams was analyzed by
Alshorbagy et al. [7] by using finite element method. Xiang and
Yang [8] used direct analytical method to analyze the vibration
of a laminated FGM Timoshenko beam. Zhu H [9] used the Fourier
series-Galerkin method to investigate the functionally graded
beams. Su H [10] acquired the exact solutions of the functionally
graded Timoshenko beam using dynamic stiffness method. Thai
HT [11] analyzed the bending and free vibration of FGB by using
various higher-order shear deformation beam theories. Lai SK
[12] has investigated the large amplitude vibration of FGB through
accurate analytical perturbation method. Huang Y [13] used a new
approach to analyze the free vibration of axially functionally
graded beams with non-uniform cross section. A large amount of
studies have been done about the beam resting on the Winkler-
Pasternak elastic foundation. Lee [14] studied the free vibrations
of non-uniform beams resting on two-parameter elastic founda-
tion. Wang [15] acquired the exact solutions for Timoshenko
beams on elastic foundations by using Green functions. De Rosa
[16] investigated the influence of Pasternak soil on the free
vibration of Euler beams. Chen W Q [17] used a mixed method to
analyze bending and free vibration of beams resting on a Pasternak
elastic foundation. Ying J [18] obtained the two-dimension
elasticity solutions for functionally graded beams resting on elastic
foundations. In recent years, some higher-order shear deformation
theories and normal deformation theory were proposed.
M Bourada [19] developed a simple and refined trigonometric
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higher-order beam theory to analyze bending and vibration of
functionally graded beams. H Hebali [20] developed a new quasi-
three-dimensional hyperbolic shear deformation theory for the
bending and free vibration analysis of functionally graded plates.
M Bennoun [21] applied a new five-variable refined plate theory
for the free vibration analysis of functionally graded sandwich
plates. SA Yahia [22] developed various higher-order shear defor-
mation plate theories for wave propagation in functionally graded
plates. Z Belabed [23] proposed an efficient and simple higher
order shear and normal deformation theory for functionally graded
material plates. A Mahi [24] developed a new hyperbolic shear
deformation theory for bending and free vibration analysis of iso-
tropic, functionally graded, sandwich and laminated composite
plates. A Hamidi [25] presented a simple but accurate sinusoidal
plate theory for thermomechanical bending analysis of function-
ally graded sandwich plates. High-order beam theories are able
to represent the section warping in the deformed configuration
and have higher accuracy for high order modes, while acquiring
the exact solutions is complex and difficult. For simplicity,
Timoshenko beam theory is considered in this paper. Timoshenko
beam theory requires shear correction factors and is suitable for
composite beams for which the shear correction factors can be
determined.

Double-beam system which consists of two parallel beams con-
nected by elastic layer is an important technological extension in
industrial field such as double-beam cranes, double-beam spec-
trometers, double-beam interferometers, etc. Double-beam sys-
tems are elements of various devices as well as of mechanical,
civil, and aircraft structures. Examples also include aircraft wing
spars, double-beam cranes, railway tracks resting on a foundation,
bridge spans, pipelines, and trusses. Twin beams can also be
encountered in mechanical systems on a smaller scale, for example
linear guideways used in plotters or during such technological pro-
cesses as cutting. Meanwhile, two-beam system such as floating-
slab tracks is widely used to control the vibration from under-
ground trains. Functionally graded material can resist high temper-
ature and reduce stress concentration phenomenon, which has a
wide range of applications in the high-temperature environment.
Therefore, functionally graded double beam system has a broad
prospect of application.

S. Kukla [26] studied the free vibration of the two-beam system
connected by many translational springs. Z. Oniszczuk [27] studied
the free vibration of elastically connected simply supported double-
beam complex system. Recently the double-beam system has been
used as a new type of vibration absorber to control the vibration of a
beam-type structure. Aida [28] et al. analyzed the vibration control
of beams by using two-beam system. Hussein [29] modeled
floating-slab tracks by using two-beam system and the layer was
simulated by the springs and dampers. Shamalta M [30] analyzed
the dynamic response of an embedded railway track by analytical
method. Zhang et al. [31] investigated the vibration and buckling
of a double-beam system under compressive axial loading. Jun Li
[32] established an exact dynamic stiffness matrix to compute the
natural frequency for an elastically connected three-beam system,
which is composed of three parallel beams of uniform properties
with uniformly distributed-connecting springs among them. Ariei
A [33] studied the transverse vibration of a multiple-Timoshenko
beam system with intermediate elastic connections. Simsek M
[34] et al. studied nonlocal effects in the forced vibration of an elas-
tically connected double-carbon nanotube system. Palmeri [35]
used a novel state-space form to study transverse vibrations of
double-beam systems made of two outer elastic beams continu-
ously joined by an inner viscoelastic layer. M. Abu [36] studied
the dynamic response of a double Euler-Bernoulli beam under a
moving constant load.W.-R [37] has investigated bending vibration
of axially loaded Timoshenko beams with locally distributed
Kelvin-Voigt damping. Recently, Simsek [38] studied the dynamics
of elastically connected double-functionally graded beam systems
with different boundary conditions under action of a moving load
based on the Euler beam theory.

As mentioned earlier, these studies primarily focused on beam
system made of homogeneous material. Inhomogeneous material,
such as functionally graded material, is rarely involved. At the
same time, main solution method these studies based on depends
on numerical solution, such as finite element method, but the pre-
cision of numerical method cannot be gauranteed. Thus, it is essen-
tial to acquire exact solutions which can be benchmarks of double-
beam systems made of functionally graded materials. Elastic foun-
dation model can be used to simulate the interactions between
beam system and elastic medium, B Bouderba [39] delt with the
thermomechanical bending response of functionally graded plates
resting on Winkler-Pasternak elastic foundations. Meziane [40]
presented an efficient and simple refined shear deformation theory
for the vibration and buckling of exponentially graded material
sandwich plate resting on elastic foundations under various
boundary conditions. M Zidi [41] studied the bending response of
functionally graded material plate resting on elastic foundation.
ND Duc [42] investigated the nonlinear dynamic response of
eccentrically stiffened functionally graded double curved shallow
shells resting on elastic foundations. ND Duc [43] studied the non-
linear response of thick functionally graded double-curved shallow
panels resting on elastic foundations and subjected to thermal and
thermomechanical loads. ND Duc [44] studied the nonlinear
response of panels resting on elastic foundations, which account
for higher order transverse shear deformation and panel-
foundation interaction. ND Duc [45] studied nonlinear response
of imperfect eccentrically stiffened FGM cylindrical panels on elas-
tic foundation subjected to mechanical loads. ND Duc [46] devel-
oped an analytical approach to investigate the nonlinear static
buckling and post-buckling for imperfect eccentrically stiffened
functionally graded thin circular cylindrical shells surrounded on
elastic foundation with ceramic–metal–ceramic layers. ND Duc
[47] analyzed nonlinear stability of the imperfect FGM cylindrical
panel reinforced by eccentrically stiffeners on elastic foundations.
ND Duc [48] investigated the linear stability analysis of eccentri-
cally stiffened FGM conical shell panels reinforced by mechanical
and thermal loads on elastic foundation. ND Duc [49] used third
shear deformation shell theory to investigate nonlinear thermal
dynamic behavior of imperfect functionally graded circular cylin-
drical shells eccentrically reinforced by outside stiffeners and sur-
rounded on elastic foundations. Recently, Duc ND [50] studied
nonlinear thermo-electro-mechanical dynamic response of shear
deformable piezoelectric Sigmoid functionally graded sandwich
circular cylindrical shells on elastic foundations. However, the
studies about the double-functionally graded beams system rest-
ing on Winkler-Pasternak elastic foundations are very rare.
Because of the widely application of functionally graded
Timoshenko beam in engineering field, the author formulates the
exact dynamic stiffness matrix of the two-beam system resting
on Winkler-Pasternak elastic foundation under the axial loads,
and the damping of connection layer is also taken into considera-
tion when analyzing the dynamic response of the structure. Finally,
buckling of double-functionally graded Timoshenko beam system
is also analyzed. The concept of the dynamic stiffness matrix
method was first proposed by Kolousek [51] in the early 1940 s.
This method is a powerful tool to solve the problem of structural
vibration in engineering, especially in the need to obtain higher
order natural frequency and higher accuracy. The dynamic stiffness
matrix method [52–58] is also commonly referred to as an exact
method. Thus, the dynamic stiffness matrix of the two-beam sys-
tem is established to analyze the effect of parameters on dynamic
characteristic and buckling of the system.
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2. Theory and formulation

2.1. 1motion differential equations

Fig. 1 shows that the two functionally graded Timoshenko
beams are connected by the elastic connection. This two-beam sys-
tem rests on the elastic foundation under axial forces N. The Win-
kler elastic layer between the two beams can be simulated by the
tension spring, and the spring stiffness of per unit length is K. The
elastic foundation is made of two layers which are Winkler layer
and shearing layer. The two functionally graded Timoshenko
beams have the same length L, width b and thickness h. Assuming
that the material properties of the two beams are the same, and the
material properties are elastic modulus EðzÞ, shear modulus GðzÞ,
poisson’s ratio m and mass density qðzÞ. For the common FGM
beam, the bottom surface is made of metal materials and the top
surface is made of ceramic materials. The middle part of beam is
the mixture of two materials. Because the values of possion’s ratio
m of metal materials and ceramic materials are close, the Poisson’s
ratio v of the beam is regarded as a constant value. And the mate-
rial properties varying along the thickness direction satisfy power-
law [1] form except for poisson’s ratio m. Therefore, the properties
of the functionally graded Timoshenko beam need to satisfy:

PðzÞ ¼ ðPt � PbÞVt þ Pb ð1Þ
where PðzÞ is the material property including elastic modulus, shear
modulus and mass density. Pt is the property at the top surface, and
z
y
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Fig. 1. An elastically connected double-functionally graded Timoshenko beam
system on the elastic foundation under the axial forces.
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Fig. 2. The effect of the gradient index
Pb is the properties at the bottom surface. where Vt is the volume
fraction of material component. Assuming the origin of coordinates
is established on the central axis of the functionally graded
Timoshenko beam, volume fraction Vt which is the power function
along the thickness direction can be given by power-law [1]:

Vt ¼ z
h
þ 1
2

� �k

ðk P 0Þ ð2Þ

where k is the gradient index. Fig. 2 shows the influence of gradient
index k on the volume fraction Vt .

According to the theory of functionally graded Timoshenko, v
and w are the displacements of the point on the neutral axis along
the y and z directions. uy anduz are the displacements of the point
on the cross section perpendicular to the neutral axis along the
y and z directions. Thus,

uyðy; z; tÞ ¼ vðy; tÞ � z/ðy; tÞ ð3Þ

uzðy; z; tÞ ¼ wðy; tÞ ð4Þ
where / is the bending rotation of the cross-sections. According to
the theory of elasticity, the relationship between strain and dis-
placement is given as:

eyy
cyz

( )
¼

@uy
@y

@uy
@z þ @uz

@y

8<
:

9=
; ¼
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@y � /

( )
ð5Þ

where eyy is the normal strains and cyz is shear strain. According to
Hooke’s law:

ryy

syz

� �
¼ EðzÞ 0

0 GðzÞ

� � eyy
cyz

" #
ð6Þ

where ryy; syz are the normal and shear stresses of the functionally
graded Timoshenko beam. Using the above constitutive relation-
ships, the strain energy Ps and kinetic energy T of double-
functionally graded Timoshenko beam systems can be expressed as:

Ps ¼ 1
2
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k on the volume fraction function.



H. Deng et al. / Composite Structures 160 (2017) 152–168 155
T ¼1
2

X2
i¼1

Z L

0
I0 ð@wi

@t
Þ
2

þð@v i

@t
Þ
2

 !
�2I1

@v i

@t

� �
� ð@/i

@t
Þþ I2 � ð@/i

@t
Þ
2

" #
dy

ð8Þ
where subscripts 1 and 2 denote the upper beam and lower beam.
And

Ii ¼
R
ziqðzÞdA; Ai ¼

R
ziEðzÞdAði ¼ 0;1;2Þ

A3 ¼ R jGðzÞdA ð9Þ

where j is the shear coefficient andj ¼ 5=6. The work done by axial
forceN can be expressed as:

Pp ¼ 1
2

X2
i¼1

Z L

0

�
Nð@wi

@y
Þ
2�
dy ð10Þ

The elastic potential energy of elastic foundation is donoted by

Pf ¼ b
2

Z L

0

�
Kww2

2 þ Ksð@w2

@x
Þ
2�
dx ð11Þ

where Kw;Ks are the parameters of the elastic foundation. Potential
energy induced by the elastic layer between the beams can be
expressed as

Uel ¼ 1
2

Z L

0
Kðw1 �w2Þ2dx ð12Þ
A ¼
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Hamilton’s principle states:

d
Z t2

t1

ðT � Uel þPp �Pf �PsÞdt ¼ 0 ð13Þ

Where t1 and t2 are the time interval, and d is the usual variational
operator. The governing differential equations of motion can be
obtained by Eq. (13) through the application of symbolic
computation:

�I0€v1 þ A0v 00
1 þ I1€/1 � A1/

00
1 ¼ 0 ð14Þ

�I0 €w1 þ A3w00
1 � A3/

0
1 � Kðw1 �w2Þ � Nw00

1 ¼ 0 ð15Þ

I1€v1 � A1v 00
1 þ A3w0

1 � I2€/1 þ A2/
00
1 � A3/1 ¼ 0 ð16Þ

�I0€v2 þ A0v 00
2 þ I1€/2 � A1/

00
2 ¼ 0 ð17Þ
�I0 €w2 þ A3w00
2 � A3/

0
2 þ Kðw1 �w2Þ �Nw00

2 þ ðKsw00
2 � Kww2Þ � b ¼ 0

ð18Þ

I1€v2 � A1v 00
2 þ A3w0

2 � I2€/2 þ A2/
00
2 � A3/2 ¼ 0 ð19Þ

The axial force F1; F2, shear force S1; S2 and bending moment
M1;M2 are obtained as:

Fi ¼ �A0v 0
i þ A1/

0
i; Si ¼ �A3w0

i þ A3/i;Mi ¼ A1v 0
i � A2/

0
i; ði ¼ 1;2Þ

ð20Þ
Assuming harmonic oscillation so that

v iðy; tÞ ¼ ViðyÞeixt; wiðy; tÞ ¼ WiðyÞeixt ; /iðy; tÞ
¼ UiðyÞeixtði ¼ 1;2Þ ð21Þ

where Vi;Wi and Ui are amplitudes of v i;wi;/i, andx is the circular
frequency. Differential equations of state space can be obtained by
substituting Eq. (21) into Eqs. (14)–(19):

@v
@y

¼ A � v ð22Þ

where v is state space vector, and v ¼ ½W1;U1;V1; S1;M1; F1;

W2;U2;V2; S2;M2; F2�T . T denotes transpose and Si;Mi; Fiði ¼ 1;2Þ
are the amplitudes of shear force, bending moment and axial
force.where
where

a1 ¼ �A�1
3 ; a2 ¼ A0

A2
1 � A0A2

; a3 ¼ A1

A2
1 � A0A2

; a4 ¼ A2

A2
1 � A0A2

a5 ¼ x2I0; a6 ¼ x2I2; a7 ¼ �x2I1
ð23Þ

kiði ¼ 1 . . .12Þ are the twelve eigenvalues of matrix A. Thus, Eq. (22)
can be solved by using differential equation theory:

ViðyÞ ¼
X12
j¼1

Pijekiy; WiðyÞ ¼
X12
j¼1

Qije
kiy; UiðyÞ ¼

X12
j¼1

Rijekiyði ¼ 1;2Þ

ð24Þ
where Pij;Qij;Rij are the constants, and the relationship between the
constants can be obtained as:

Pij ¼ aijRij;Qij ¼ bijRijði ¼ 1;2; j ¼ 1; . . .12Þ ð25Þ
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Fig. 3. The boundary conditions for the displacements and forces of the two beam
system.
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where

aij ¼
x2I1 þ A1k

2
j

x2I0 þ A0k
2
j

ði ¼ 1;2; j ¼ 1; . . .12Þ ð26Þ

bij ¼
x2I2 þ A2k

2
j � A3

kjA3 �x2I1aij � k2j A1aij

ði ¼ 1;2; j ¼ 1 . . .12Þ ð27Þ

And the relationship between R1j and R2j can be obtained through
Eq. (15)

R2j ¼ cjR1jðj ¼ 1; � � �12Þ ð28Þ
where

cj ¼
1

Kb2j
�x2I0b1j � k2j A3b1j þ A3kj þ Kb1j þ k2j N1b1j

h i
ð29Þ

Similarly, the amplitudes of shear force, bending moment and
axial force can be obtained by Eq. (19):

Fi ¼ �A0v 0
i þ A1/

0
i ¼

X12
j¼1

ðA1kj � A0kjaijÞRijekjy ði ¼ 1;2Þ ð30Þ

Mi ¼
X12
j¼1

ðA1kjaij � A2kjÞRijekjy ði ¼ 1;2Þ ð31Þ

Si ¼
X12
j¼1

ð�A3bijkj þ A3ÞRijekjy ði ¼ 1;2Þ ð32Þ
2.2. Dynamic stiffness formulation

The length of functionally graded beam is L. To obtain the
dynamic stiffness matrix of two-beam system, the natural bound-
B1 ¼

b11 b12 b13 b14 b15 b16 b17 b18 b19 b110 b111 b112

b21c1 b22c2 b23c3 b24c4 b25c5 b26c6 b27c7 b28c8 b29c9 b210c10 b211c11 b212c12
1 1 1 1 1 1 1 1 1 1 1 1
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
a11 a12 a13 a14 a15 a16 a17 a18 a19 a110 a111 a112

a21c1 a22c2 a23c3 a24c4 a25c5 a26c6 a27c7 a28c8 a29c9 a210c10 a211c11 a212c12

2
666666664

3
777777775

ð40Þ
ary conditions for forces and displacements at the end of the beam
are applied. According to Fig. 3, the boundary conditions for forces
and displacements are:

x ¼ 0 : W1 ¼ W11; W2 ¼ W21; U1 ¼ U11; U2 ¼ U21

V1 ¼ V11; V2 ¼ V21

x ¼ L : W1 ¼ W12; W2 ¼ W22; U1 ¼ U12; U2 ¼ U22

V1 ¼ V12; V2 ¼ V22

ð33Þ
B2 ¼

b11ek1L b12ek2L b13ek3L b14ek4L b15ek5L b16ek6L b17ek

b21c1ek1L b22c2ek2L b23c3ek3L b24c4ek4L b25c5ek5L b26c6ek6L b27c7e
ek1L ek2L ek3L ek4L ek5L ek6L ek7L

c1ek1L c2ek2L c3ek3L c4ek4L c5ek5L c6ek6L c7ek7

a11ek1L a12ek2L a13ek3L a14ek4L a15ek5L a16ek6L a17ek

a21c1ek1L a22c2ek2L a23c3ek3L a24c4ek4L a25c5ek5L a26c6ek6L a27c7e

2
666666664
x ¼ 0 : S1 ¼ S11; S2 ¼ S21; M1 ¼ M11; M2 ¼ M21F1 ¼ F11; F2 ¼ F21

x ¼ L : S1 ¼ �S12; S2 ¼ �S22; M1 ¼ �M12; M2 ¼ �M22

F1 ¼ �F12; F2 ¼ �F22

ð34Þ
Force vector F and displacement vector d are defined as:

d ¼ ½W11;W21;U11;U21;V11;V21;W12;W22;U12;U22;V12;V22�T
ð35Þ

F ¼ ½S11; S21;M11;M21; F11; F21; S12; S22;M12;M22; F12; F22�T ð36Þ

Vector R is defined as:

R ¼ ½R11;R12;R13;R14;R15;R16;R17;R18;R19;R110;R111;R112�T ð37Þ
According to Eqs. (24)–(28), The relationship between d and R

can be expressed as

d ¼ B � R ð38Þ
where

B ¼ B1

B2

� �
ð39Þ
Matrix B2 can be derived as

B2 ¼ B1 � E ð41Þ

where

E ¼ ½ek1L; ek2L; ek3L; ek4L; ek5L; ek6L; ek7L; ek8L; ek9L; ek10L; ek11L; ek12L�T ð42Þ

Thus
7L b18ek8L b19ek9L b110ek10L b111ek11L b112ek12L

k7L b28c8ek8L b29c9ek9L b210c10ek10L b211c11ek11L b212c12ek12L

ek8L ek9L ek10L ek11L ek12L

L c8ek8L c9ek9L c10ek10L c11ek11L c12ek12L
7L a18ek8L a19ek9L a110ek10L a111ek11L a112ek12L

k7L a28c8ek8L a29c9ek9L a210c10ek10L a211c11ek11L a212c12ek12L

3
777777775

ð43Þ
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Similarly, according to boundary condition of force in Eq. (34).The
relationship between F and R can be expressed as:

F ¼ A � R ð44Þ
The element of matrix A is given by

A1j ¼�A3b1jkjþA3 A2j ¼ð�A3b2jkjþA3Þcj
A3j ¼A1kjaij�A2kj A4j ¼ðA1kjaij�A2kjÞcj
A5j ¼A1kj�A0kjaij A6j ¼ðA1kj�A0kjaijÞcj
A7j ¼�ð�A3b1jkjþA3ÞekjL A8j ¼�ð�A3b2jkjþA3ÞcjekjL
A9j ¼�ðA1kjaij�A2kjÞekjL A10j ¼�ðA1kjaij�A2kjÞcjekjL
A11j ¼�ðA1kj�A0kjaijÞekjL A12j ¼�ðA1kj�A0kjaijÞcjekjLðj¼1;2; . . . ;12Þ

ð45Þ
According to Eq. (44) and Eq. (38), the relationship between force
vector F and displacement vector d can be derived as:

F ¼ K � d ð46Þ
where K is dynamic stiffness matrix of two-beam system and can be
expressed as:

K ¼ A � B�1 ð47Þ
It is clear that the dynamic stiffness matrix K is frequency

dependent. The formation method of the global dynamic stiffness
matrix which can be obtained through assembling element
dynamic stiffness matrix is similar to the finite element method.
To compute the frequencies and mode shapes of the two-beam
system, the well-established algorithm of Wittrick-Williams need
to be applied.

2.3. Dynamic stiffness formulation using precise integration method

Formation of dynamic stiffness matrix in 2.2 section is an exact
method. However, stiffness matrix can also be obtained in a more
convenient method using precise integration method. According to
Eq. (22), v can be computed as following:

vðyÞ ¼ eAyvð0Þ ð48Þ
Although above form is concise, precise and efficient computa-

tion of matrix exponent is difficult. Matrix exponent can be com-
puted by precise integration method, while computational
stability cannot be guaranteed, especially for special kind of matri-
ces. This method may lead to inaccurate results or error results.
Recently, Tan and Wu [62] proposed an efficient method to com-
pute matrix exponent, which combines PIM and Pade approxima-
tion. The procedure of computing the exponential matrix can be
given as follows.

T ¼ expðAyÞ ¼ Iþ Ta ð49Þ
where

Ta ¼ ½Iþ D0
pqðAyÞ�

�1½N0
pqðAyÞ � D0

pqðAyÞ� ð50Þ

D0
pqðAyÞ ¼

Xq
j¼1

ðpþ q� jÞ!q!
ðpþ qÞ!j!ðq� jÞ! ð�AyÞ j

N0
pqðAyÞ ¼

Xp
j¼1

ðpþ q� jÞ!p!
ðpþ qÞ!j!ðp� jÞ! ðAyÞ

j

ð51Þ

T can be computed using PIM as follows.

Ta1 ¼ Iþ Iþ D0
pq

y

2N H
� �� ��1

N0
pq

y

2N A
� �

� D0
pq

y

2N H
� �� �

ð52Þ

Taðiþ1Þ ¼ 2Tai þ Tai � Taiði ¼ 1;2; . . . ;N � 1Þ ð53Þ
T ¼ Iþ TaðNþ1Þ ð54Þ
The computational accuracy of PIM can be determined by

parameters p, q and N. These parameters can be determined by
adaptive algorithms of selecting parameters [54]. Eq. (48) can also
be expressed as:

X
�FR

� �
¼ T11 T12

T21 T22

� �
XL

FL

� �
ð55Þ

where XR; FR are the state vectors of the displacement and force at
the right end of the element and XL; FL are the vectors at the left
end of the element. After transformation, Eq. (55) can take the fol-
lowing form,

FL

FR

� �
¼ K11 K12

K21 K22

� �
XL

XR

� �
ð56Þ

where

K11 ¼ �T�1
12 � T11;K12 ¼ T�1

12 ;K21 ¼ T21 þ T22T
�1
12 T11

K22 ¼ �T22T
�1
22

ð57Þ

Therefore, dynamic stiffness matrix can be obtained by Eq. (57).
Although this is a numerical method, results are close to exact
solutions if appropriate parameters are selected.

2.4. Winkler layer between two beams with viscous damping

When the viscous damping of the Winkler layer between two
beams is taken into consideration, the motion differential
equations can also be obtained:

�I0€v1 þ A0v 00
1 þ I1€/1 � A1/

00
1 ¼ 0 ð58Þ

�I0 €w1 þ A3w00
1 � A3/

0
1 � Kðw1 �w2Þ � Nw00

1 � cð _w1 � _w2Þ ¼ 0

ð59Þ

I1€v1 � A1v 00
1 þ A3w0

1 � I2€/1 þ A2/
00
1 � A3/1 ¼ 0 ð60Þ

�I0€v2 þ A0v 00
2 þ I1€/2 � A1/

00
2 ¼ 0 ð61Þ

� I0 €w2 þ A3w00
2 � A3/

0
2 þ Kðw1 �w2Þ � Nw00

2 þ ðKsw00
2 � Kww2Þ

� bþ cð _w1 � _w2Þ ¼ 0 ð62Þ

I1€v1 � A1v 00
1 þ A3w0

1 � I2€/1 þ A2/
00
1 � A3/1 ¼ 0 ð63Þ

where c is a viscous damping factor per unit length. The dynamic
stiffness of the two-beam system can be obtained through replacing
the stiffness K with the complex stiffness K þ icx.

2.5. Frequency response function of two-beam system

The frequency response function matrix H(x) of two-beam sys-
tem can be obtained by inverse of global dynamic stiffness matrix
D(x):

½HðxÞ� ¼ ½DðxÞ��1 ð64Þ
2.6. Boundary conditions of two-beam system

Boundary conditions of two-beam can be derived by Eq. (13). In
this paper, the boundary conditions of hinged-hinged, clamped-
hinged, clamped-clamped, clamped-free are considered. For differ-
ent conditions, the force and displacement of two-beam system
should satisfy:

Clamped : V1 ¼ W1 ¼ U1 ¼ V2 ¼ W2 ¼ U2 ¼ 0
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Hinged : V1 ¼ W1 ¼ M1 ¼ V2 ¼ W2 ¼ M2 ¼ 0 ð65Þ

Free : F1 ¼ S1 þ N
@W1

@y
¼ M1 ¼ 0; F2 ¼ S2 þ N

@W2

@y
¼ M2 ¼ 0
Fig. 4. The double beam system under moving load.
2.7. Application of the Wittrick-William algorithm [59]

For free vibration, after applying boundary conditions, the glo-
bal dynamic stiffness matrix K(x) needs to satisfy [59]:

KðxÞd ¼ 0 ð66Þ
where d is modal shape vector. In order to obtain the natural fre-
quency of the structure, the dynamic stiffness matrix K(x) should
satisfy:

jKðxÞj ¼ 0 ð67Þ
Wittrick-William algorithm (W-W) is an efficient algorithm for

solving Eq. (54). This algorithm does not directly compute the nat-
ural frequency of the structure. In fact, this method is a counting
algorithm. According to Wittrick-William algorithm, the number
of frequencies which are lower than the given value x⁄ can be
given by

Jðx�Þ ¼ J0ðx�Þ þ s Kðx�Þf g ð68Þ
where J0ðx�Þ is the total number of frequencies of individual ele-
mentwith fixed boundary conditionswhich are lower than the given
valuex⁄. s{K(x⁄)} is the number of negative elements on the leading
diagonal of KD; KD is the upper triangular matrix which can be
obtained through the Gauss elimination method, and J; J0; s Kðx�Þf g
are integers. The number of natural frequencies in any frequency
range can be obtained by Wittrick-William algorithm. The dichot-
omy is the simplest way to solve the structural frequency. However
the computational efficiency of the dichotomy is low. Recently, Yuan
Si [60] have proposed a new method named Second order mode-
finding method to compute the frequencies and mode shapes effi-
ciently. Due to the limited space of the article, the detailed compu-
tational procedure can be found in the literature [60].

2.8. Buckling analysis of two-beam system

For the buckling analysis of two-beam system, the governing
equations of two-beam system can be obtained through setting
the inertia term to zero in Eqs. (14)–(19). Thus,

A0v 00
1 � A1/

00
1 ¼ 0 ð69Þ

A3w00
1 � A3/

0
1 � Kðw1 �w2Þ � Nw00

1 ¼ 0 ð70Þ

�A1v 00
1 þ A3w0

1 þ A2/
00
1 � A3/1 ¼ 0 ð71Þ

A0v 00
2 � A1/

00
2 ¼ 0 ð72Þ

A3w00
2 � A3/

0
2 þ Kðw1 �w2Þ � Nw00

2 þ ðKsw00
2 � Kww2Þ � b ¼ 0 ð73Þ

�A1v 00
1 þ A3w0

1 þ A2/
00
1 � A3/1 ¼ 0 ð74Þ

The static stiffness matrix KðNÞ of the two-beam system under
the axial forces is obtained by setting the frequency term x2 to
zero in dynamic stiffness matrix. Similarly, the global stiffness
matrix can be assembled by element stiffness matrix. By applying
boundary conditions, which is similar to the finite element
method, global stiffness matrix KðNÞ should satisfy [59]:

KðNÞd ¼ 0 ð75Þ
where d is the displacement vector. To obtain the buckling load N of
the double-beam system, the stiffness matrix KðNÞ should satisfy:
jKðNÞj ¼ 0 ð76Þ
It is clear that the lowest positive solution of Eq. (76) is the crit-

ical buckling load of the two-beam system, and Eq. (76) can also be
solved by the Wittrick-William algorithm mentioned in 2.7.

2.9. Dynamic characteristics of double beam system under moving
load

In this section, we analyze the dynamic characteristics of dou-
ble functionally graded beam system under moving load. The stan-
dard linear solid model [35] is applied to simulate the dynamic
behavior of the viscoelastic inner layer, which is made of Maxwell’s
element and elastic spring as shown in Fig. 4. According to litera-
ture [35], the complex-valued stiffness between two layers can
be expressed as:

kinnðxÞ ¼ K0 þ K1
isx

1þ isx
ð77Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
is the imaginary unit and s is the relaxation time of

the viscoelastic material. The relationship between force and dis-
placement can be obtained as [35]:

Finn ¼ K̂inn � _drðtÞ ¼
Z t

�1
K̂innðt � sÞ _drðsÞds ð78Þ

where ⁄ denotes the convolution operator, the over-dot represents
derivative with respect to time t. drðtÞ is the pertinent displacement.

K̂innðtÞ is the relaxation function and can be derived as,

K̂innðtÞ ¼ F�1 1
ix

kinnðxÞ
� �

ð79Þ

where F�1 represents inverse Fourier transform. The moving load on
the upper beam can be expressed as follows

Fðx; tÞ ¼ f � eiXtdðx� vtÞ ð80Þ
where f is moving force amplitude and d represents dirac function.
X and v are harmonic excitation frequency and moving speed.
External force potential energy can be expressed as:

Uext ¼ �
Z L

0
Fðx; tÞ �w1ðx; tÞdx ð81Þ

Using Hamilton’s principle, we can obtain

d
Z t2

t1

ðT � U � UextÞdt ¼ 0 ð82Þ

Through the symbolic operation, Eq. (82) can be written as
following:

�I0€v1 þ A0v 00
1 þ I1€/1 � A1/

00
1 ¼ 0 ð83Þ

�I0 €w1 þ A3w00
1 � A3/

0
1 � K̂innðtÞ � ð _w1 � _w2Þ � Nw00

1 þ Fðx; tÞ ¼ 0

ð84Þ
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I1€v1 � A1v 00
1 þ A3w0

1 � I2/
00
1 þ A2/

00
1 � A3/1 ¼ 0 ð85Þ

�I0€v2 þ A0v 00
2 þ I1€/2 � A1/

00
2 ¼ 0 ð86Þ

�I0 €w2þA3w00
2�A3/

0
2þ K̂innðtÞ � ð _w1� _w2Þ�Nw00

2þðKsw00
2�Kww2Þ �b¼0

ð87Þ

I1€v2 � A1v 00
2 þ A3w0

2 � I2/
00
2 þ A2/

00
2 � A3/2 ¼ 0 ð88Þ

where * denotes the convolution operator. Transforming above
equations from the time domain t to the frequencyx, we can obtain

@v
@x

¼ �A � v þ F ð89Þ

where F ¼ ½0;0; 0; Fðx;xÞ;0; 0;0;0; 0;0;0; 0�T and v ¼ ½W1;U1;V1; S1;

M1; F1;W2;U2;V2; S2;M2; F2�T . For example, W1ðx;xÞ can be trans-
formed from w1ðx; tÞ using Fourier transform. �A can be obtained
from Eq. (22) by replacing variable K with kinnðxÞ. After transforma-
tion from the space-frequency domain ðx;xÞ to the wavenumber-
frequency ðn;xÞ, Eq. (75) can be transformed into such form

in � E � �v ¼ �Aðn;xÞ � �v þ �Fðn;xÞ ð90Þ

where �Fðn;xÞ ¼ ½0;0;0;4p2dðxþ nv �XÞ; 0;0;0; 0;0;0; 0;0�T . E is
12 � 12 unit matrix, Eq. (90) can also be written as

ðin � E� �Aðn;xÞÞ � �v ¼ �Fðn;xÞ ð91Þ
where i is

ffiffiffiffiffiffiffi
�1

p
. Solving for v from above equation

�v ¼ ðin � E� �Aðn;xÞÞ�1�Fðn;xÞ ð92Þ
Therefore, ~v can be computed through transforming above

equation from wavenumber-frequency to wavenumber-time,

~v ¼ ðin � E� �Aðn;x ¼ X� nvÞÞ�1~F ð93Þ

where ~F ¼ ð0;0; 0;2p � eiðX�nvÞt;0;0;0;0;0; 0;0;0ÞT . Thus, v can be
derived using Fourier transformation from wavenumber-time
domain to space-time domain

v ¼ 1
2p

Z þ1

�1
~v � einxdn ð94Þ

Equation above can be solved using fast discrete Fourier inverse
transform. For example,

vðx; tÞ ¼ 1
2p

Z þ1

�1
Vðn; tÞdn � Dn

2p
XN

j¼�Nþ1

Wðnj; tÞeinjx ð95Þ

where

nk ¼ ðk� NÞDn� Dn
2

; k ¼ 1;2; . . . ;2N ð96Þ

Substituting Eq. (96) into Eq. (95),

vðxm; tÞ � Dn
2p
X2N
k¼1

Vðnk; tÞeinkxm ð97Þ

where

xm ¼ ðm� NÞDx;m ¼ 1;2; � � � ;2N ð98Þ
and

Dx � Dn ¼ p
N

ð99Þ

Thus,

Dx ¼ p
NDn

ð100Þ
nkxm ¼ � N � 1
2

� �
ðm� NÞp

N
þ ðk� 1Þðm� NÞp

N
ð101Þ

Using Eq. (101) and Eq. (97), vðxm; tÞ can expressed as following:

vðxm; tÞ � Db
2p

e�iðN�1
2Þðm�NÞp=NX2N

k¼1

Vðnk; tÞeiðk�1Þðm�NÞp=N ð102Þ

Eq. (94) can be computed following above procedure. We need
to mention that the number of sampling points should be large
enough to obtain accurate results. To aviod aliasing, sampling fre-
quency 2p=Dn should satisfy Nyquist criterion [53]. However,
when moving speed increases, sampling frequency must increase
to aviod aliasing. Therefore, convergence of results should be
tested.

2.10. Interval analysis of double beam system under moving load with
uncertain-but-bounded parameters

To analyze dynamic response of double beam system under
moving load with uncertain parameters, Eq. (93) can be rewritten
as:

Z � v ¼ F ð103Þ
where Z can be expressed as

Z ¼ in � E� �Aðn;x ¼ X� nvÞ ð104Þ
Assume that parameters of beam system are uncertain-but-

bounded vector a, which can be expressed as:

aI ¼ ½alower ;aupper� ð105Þ
where alower and aupper represent the lower and upper bounds of the
uncertain parameter vector a. Z and v are complex matrix and com-
plex vector respectively. Thus, Eq. (103) can be rewritten as:

ðZreal þ i � ZimagÞ � ðvreal þ i � vimagÞ ¼ Freal þ i � Fimag ð106Þ
The above equation can be expressed as:

Zreal �Zimag

�Zimag Zreal

� � vreal

vimag

� �
¼ Freal

Fimag

� �
ð107Þ

With the interval extension, Eq. (107) can be rewritten as:

ẐðaIÞv̂I ¼ F̂ ð108Þ
where v̂I is the theoretical solution set, which can be expressed as:

v̂I ¼ ½v̂l; v̂u� ð109Þ
To solve Eq. (108), interval matrix ẐðaIÞ can be approximated by

using Taylor series expansion:

ZðaIÞ ¼ ZðamÞ þ
Xk
i¼1

DaIi
@ZðamÞ
@ai

¼ Zm þ DZI ð110Þ

where am is the interval mean value of the interval vector aI. aIi rep-
resents interval parameter aiði ¼ 1 � � � kÞ. DaIi can be expressed as:

DaIi ¼ ½�Dai;Dai� ð111Þ
Therefore, we can obtain:

am ¼ ðalower þ aupperÞ=2Da ¼ ðaupper � alowerÞ=2 ð112Þ
Inserting Eq. (110) into Eq. (108),

ðẐm þ DẐIÞ � ðv̂m þ Dv̂IÞ ¼ F̂ ð113Þ
Thus,

v̂m þ Dv̂I ¼ ðẐm þ DẐIÞ
�1
F̂ ð114Þ



Table 1
Comparison of frequencies ðrad=sÞ under the S-S boundary condition.

K (N/m) 1 (Present) 1 (Ref) 2 (Present) 2 (Ref) 3 (Present) 3 (Ref)

1� 105 48.8632 48.9 90.6621 90.7 183.1910 183.2

2� 105 66.2746 66.3 101.2112 101.2 188.6054 188.6

3� 105 79.1256 79.9 110.6031 110.6 193.7911 193.8
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If the spectral radius of matrix ðZmÞ�1DZ is less than 1, equation
above can be rewritten as follows using Neumann series:

v̂m þ Dv̂I ¼ ðẐmÞ
�1
F̂þ

X1
c¼1

ðẐmÞ
�1ð�DZIðZmÞ�1ÞcF̂ ð115Þ

Ignoring the higher order terms, the equation above can be sim-
plified as follows:

v̂m ¼ ðZmÞ�1F̂ ð116Þ

Dv̂I ¼ �ðẐmÞ
�1
DZIv̂m ð117Þ

Substituting Eq. (110) into Eq. (117), we can obtain:

Dv̂I ¼ �ðẐmÞ
�1 Xk

i¼1

DaIi
@ZðamÞ
@ai

 !
v̂m ð118Þ

It is clear that Dv̂I is a monotonic function with respect to DaIi.
Therefore, the lower and upper bounds can be expressed as:

v̂lower ¼ v̂m � ðẐmÞ
�1 Xk

i¼1

DaIi
@ZðamÞ
@ai

v̂m

����
����

 !�����
����� ð119Þ

v̂upper ¼ v̂m þ ðẐmÞ
�1 Xk

i¼1

DaIi
@ZðamÞ
@ai

v̂m

����
����

 !�����
����� ð120Þ

where j � j represents the absolute value. The interval of vðx; tÞ can
be obtained through Eq. (102).The derivative of matrix Z with
respect to ai can be expressed as:

@ZðamÞ
@ai

¼ � @�AðamÞ
@ai

ð121Þ
3. Numerical results and discussion

To verify the correctness of the results in this paper, numerical
results of free vibration of simply supported beams are
compared with literature [27]. In literature [27], the material of
two-beam system is homogeneous. The values of parameters
are: E ¼ 1� 1010 N=m2;A ¼ 5� 10�2, I ¼ 4� 10�4, L ¼ 10 m,
q ¼ 2� 103 kg=m3, Ks ¼ Kw ¼ 0, where A and I are area and
moment of inertia. The results of first three natural frequencies
are compared in table 1. From table 1, it is observed that the pre-
sent numerical results are in good agreement with literature [27].

To analyze the buckling and dynamic characteristics of
two-functionally graded Timoshenko beam system, the
geometrical properties of two-beam system are as follows:
b ¼ 0:1 m;h ¼ 0:1 m. The material properties of metal are:
Table 2
The fundamental non-dimensional natural frequency k of two-beam system under CC bou

L=h k ¼ 0:1 k ¼ 0:2 k ¼ 0:5

10 11.4911 11.1001 10.1613
20 6.0066 5.7966 5.2946
50 2.4398 2.3543 2.1503
100 1.2609 1.2203 1.1238
Em ¼ 70 Gpa, mm ¼ 0:23, qm ¼ 2700 kg=m3. The material properties
of ceramic are: Ec ¼ 380 Gpa, mc ¼ 0:23 Gpa, qc ¼ 3800 kg=m3 and
shear coefficient j ¼ 5=6.
3.1. Vibration analysis of two-beam system

The non-dimensional natural frequency of the two-beam sys-
tem can be defined as:

k ¼ xL20
h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm=Em

q
ð122Þ

where L0 and h0 are constants as follows:

L0 ¼ 1m; h0 ¼ 0:1m

The effects of the slenderness ratio L=h and gradient parameter
k on the fundamental non-dimensional natural frequency of two-
beam system are showed in Tables 2–5. The stiffness of Winkler
elastic layer between two beams is K ¼ 105 N=m and the axial
force N ¼ 0. The parameters of the foundation are Ks ¼ Kw ¼ 0.
According to Tables 2–5, for different slenderness ratio
L=hðL ¼ 1 mÞ, the fundamental frequency decreases with the
increase of gradient parameter k under different boundary condi-
tions. It is noticeable that increase of gradient parameter k can both
increase the bending stiffness and the mass of the two-beam sys-
tem, while the effect of the mass increase is more significant com-
pared to bending stiffness, and the boundary condition has great
influence on the fundamental frequency. The slenderness ratio
obviously affects non-dimensional natural frequency as shown in
Tables 2–5. In general, with the increase of slenderness ratio,
non-dimensional natural frequency decreases rapidly.

It is clear that the Winkler layer between the two beams greatly
affects the frequencies corresponding to reverse modes of double
beam, but have little effect on other forms of vibration modes.
Fig. 5 shows the influence of the stiffness K of connecting layer
on the fundamental frequency of two-beam system under different
boundary conditions. The length of two-beam system is L ¼ 5 m.
Parameters of the foundation are Ks ¼ Kw ¼ 0:01 Gpa and the axial
force N ¼ 0. The other parameters are the same as before. It is seen
that the increase of the stiffness of the connecting layer can
increase the fundamental frequency under different boundary con-
ditions. C; F;H denote clamped, free and hinged.

Fig. 4 plots the effect of elastic foundation parameters Kw;Ks on
the non-dimensionless fundamental frequencykof the two-beam
system under the boundary condition CAC and HAH. The length
of two-beam system is L ¼ 5 m and gradient parameter k ¼ 1.
The stiffness of elastic layer is K ¼ 105 N=mand the axial force is
N ¼ 0. The range of Kw;Ks is 0.01–0.1 Gpa. It is clear that with
ndary conditions.

k ¼ 1 k ¼ 2 k ¼ 5 k ¼ 10

9.1798 8.3394 7.8333 7.5356
4.7751 4.3412 4.1064 3.9697
1.9399 1.7660 1.6757 1.6233
1.0257 0.9465 0.9082 0.8858



Table 3
The fundamental non-dimensional natural frequencies k of two-beam system under HH boundary conditions.

L=h k ¼ 0:1 k ¼ 0:2 k ¼ 0:5 k ¼ 1 k ¼ 2 k ¼ 5 k ¼ 10

10 5.3099 5.1475 4.8066 4.5049 4.2530 3.9723 3.6978
20 2.6867 2.6043 2.4315 2.2796 2.1541 2.0155 1.8774
50 1.0899 1.0574 0.9896 0.9304 0.8822 0.8292 0.7759
100 0.6259 0.6133 0.5878 0.5667 0.5509 0.5349 0.5167

Table 4
The fundamental non-dimensional natural frequencies k of two-beam system under CH boundary conditions.

L=h k ¼ 0:1 k ¼ 0:2 k ¼ 0:5 k ¼ 1 k ¼ 2 k ¼ 5 k ¼ 10

10 8.1161 7.8415 7.1961 6.5400 5.9877 5.6316 5.3935
20 4.1681 4.0249 3.6895 3.3509 3.0704 2.8998 2.7846
50 1.6877 1.6302 1.4957 1.3604 1.2494 1.1837 1.1389
100 0.8996 0.8737 0.8139 0.7553 0.7092 0.6847 0.6676

Table 5
The fundamental non-dimensional natural frequencies k of two-beam system under CF boundary conditions.

L=h k ¼ 0:1 k ¼ 0:2 k ¼ 0:5 k ¼ 1 k ¼ 2 k ¼ 5 k ¼ 10

10 1.9040 1.8370 1.6770 1.5118 1.3745 1.3023 1.2605
20 0.9591 0.9257 0.8454 0.7627 0.6943 0.6589 0.6385
50 0.4159 0.4041 0.3766 0.3492 0.3280 0.3190 0.3137
100 0.3632 0.3615 0.3569 0.3514 0.3470 0.3473 0.3463
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Fig. 5. The influence of the stiffness K on fundamental frequency of two-beam system: (a) clamped-free (b) clamped-clamped(c) hinged-hinged (d) clamped-hinged.
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Fig. 7. The influence of the compressive axial force on fundamental frequency of two-beam system: (a) clamped-clamped (b) hinged-hinged.

162 H. Deng et al. / Composite Structures 160 (2017) 152–168
the increase of the parameter Kw;Ks, the fundamental frequency of
the two-beam system will increase, because the increase of the
stiffness of the elastic foundation will increase the stiffness of
the whole system. However, fundamental frequency keeps almost
constant when the values of the Kw;Ks approximate 0:1 Gpa. Fig. 6
shows that the effects of Winkler layer and shear layer on funda-
mental frequency are close. Fig. 7 plots the effect of compressive
axial force on the fundamental frequency of the two-beam system
under CAC and HAH boundary conditions. Fig. 7 shows that
increasing the compressive axial force lead to the decrease of sys-
tem stiffness.

Figs. 8 and 9 shows that the effect of viscous damping factor c
on the frequency response function of the two-beam system under
CAC and HAH boundary conditions, where foundation parameters
are Ks ¼ 0:01 Gpa;Kw ¼ 0, gradient parameter is k ¼ 1, and the
axial force is N ¼ 0. Figs. 8 and 9 show the origin FRF of transverse
displacement at position 1 and the cross-point FRF at position 2
under the excitation at position 1 along the z direction. Position
1 and position 2 denote the midpoints of two beams as shown in
Fig. 1. It is observed that the damping factor has a significant effect
on the second-order frequency, because second-order mode is a
reverse mode of two beams and the value of the frequency increase
with the increase of the damping factor c. However, for fundamen-
tal frequency, the damping factor only affects the peak value of fre-
quency response function. Because the mode shape of fundamental
frequency is a similar mode of two beams along the same direction,
the damping factor has a little influence on the value of fundamen-
tal frequency. It is obvious that the amplitude of the cross-point
FRF decreases compared to the origin FRF due to the damping layer
between the two beams. Similar mode denotes deflections of two
beams towards the same direction, while reverse mode denotes
deflections of two beams towards opposite direction as shown
below:

upperbeam

lowerbeam

upperbeam

lowerbeam

reverse
similar

In order to investigate the effect of gradient parameter k on
dynamic characteristic of two-beam system with damping, the loss
factor g of the system can be defined as [61]
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Fig. 8. The influence of the damping factor c on the amplitude and phase of FRF under CAC boundary condition: (a) origin FRF (b) cross-point FRF.
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g ¼ Imðx2
nÞ

Reðx2
nÞ

ð123Þ

where x2
n is the nth complex natural frequency. Fig. 10 shows the

influence of gradient parameter k on the loss factor g of the system
under CAC and H-H boundary conditions. Damping factor c is
103Ns=m. The stiffness of elastic layer is K ¼ 105 N=m and founda-
tion parameters are Ks ¼ 0:01 Gpa and Kw ¼ 0. It can be observed
that the increase of gradient parameter k can increase the loss factor
of the two-beam system, and the parameters of foundation have
great effect on the loss factor.

3.2. Buckling analysis of two-beam system

In this section, numerical results of buckling analysis of two-
beam system are analyzed. The length of the beam is L ¼ 5 m ,
the geometrical properties of two-beam system are as follows:
b ¼ 0:1 m;h ¼ 0:1 m. The material properties of metal are:
Em ¼ 70 Gpa, mm ¼ 0:23, qm ¼ 2700 kg=m3. The material properties
of ceramic are: Ec ¼ 380 Gpa, mc ¼ 0:23 Gpa, qc ¼ 3800 kg=m3 and
shear coefficient j ¼ 5=6. The non-dimensional buckling load can
be defined as:

p� ¼ pL2

p2EmI
ð124Þ

where I is cross sectional moment of inertia.
Tables 6–8 show that the buckling load decreases with the
increase of the gradient parameter k under different boundary con-
ditions. It can also be observed that the increase of the connecting
stiffness K will increase the buckling load. For different foundation
parameters, the effect of stiffness Ks of shear layer on buckling load
is similar to the effect of stiffness Kw of Winkler layer according to
Tables 6–8.
3.3. Dynamic characteristic analysis of double-beam system under
moving load

In this section, the geometry dimensions of double beam system
are b ¼ 0:1 m;h ¼ 0:1 m for both beams. The material properties of
metal are Em ¼ 70 Gpa, mm ¼ 0:23 and qm ¼ 2700 kg=m3. Similarly,
the material properties of ceramic are Ec ¼ 380 Gpa, mc ¼ 0:23
qc ¼ 3800 kg=m3 and shear coefficient j ¼ 5=6. Winkler-type equi-
librium modulus is K0 ¼ 30 kN=m2, and Maxwell’s parameter is
K1 ¼ 5K0. Relaxation time is s ¼ 0:2 s for inner layer. The elastic
foundation parameters are Ks ¼ Kw ¼ 0:01 Gpa. Axial load is N ¼ 0.
Characteristic parameters of moving load are f ¼ 1000 N and
X ¼ 0. (a) v ¼ 50 m=s;t ¼ 0:1 s (b) v ¼ 200 m=s;t ¼ 0:1 s

According to Fig. 11, displacement responses corresponding to
different speeds are shown. It is noticeable that the track deflection
is close to deformation of the structure under static load, when the
speed of moving load is far lower than critical speed. However,
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Fig. 9. The influence of the damping factor c on the amplitude and phase of FRF under H-H boundary condition: (a) origin FRF (b) cross-point FRF.
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when the speed of load exceeds critical speed, structure begins to
vibrate in wide area as shown in Fig. 11(b). In Fig. 11, the dotted
line represents lower beam and the solid line denotes upper beam.
It is clear that different values of gradient parameter have a signif-
icant effect on the deflection of double-beam system. Displace-
ment of upper beam in time domain can be seen in Fig. 12.



Table 6
The non-dimensional buckling load P⁄ of two-beam system under CC boundary conditions.

KðN=mÞ k ¼ 0:1 k ¼ 0:2 k ¼ 0:5 k ¼ 1 k ¼ 2 k ¼ 5 k ¼ 10

Ks = 0.01
Kw = 0

105 20.1663 18.4066 14.6961 11.4558 9.0844 7.7792 7.1408

2� 105 20.5832 18.8232 15.1118 11.8703 9.4973 8.1906 7.5519

3� 105 20.8407 19.0804 15.3685 12.1260 9.7520 8.4443 7.8043

Ks ¼ 0
Kw ¼ 0:01

105 20.2364 18.4767 14.7665 11.5264 9.1554 7.8504 7.2121

2� 105 20.8207 19.0677 15.3496 12.1083 9.7355 8.4287 7.7892

3� 105 21.2735 19.5132 15.8011 12.5582 10.1834 8.8746 8.2338

Ks ¼ 0:01
Kw ¼ 0:01

105 20.2638 18.5041 14.7938 11.5537 9.1825 7.8773 7.2389

2� 105 20.9239 19.1693 15.4525 12.2108 9.8375 8.5299 7.8900

3� 105 21.4861 19.7256 16.0128 12.7689 10.3928 9.0825 8.4406

Table 7
The non-dimensional buckling load P⁄ of two-beam system under HH boundary conditions.

KðN=mÞ k ¼ 0:1 k ¼ 0:2 k ¼ 0:5 k ¼ 1 k ¼ 2 k ¼ 5 k ¼ 10

Ks ¼ 0:01
Kw ¼ 0

105 5.7422 5.3401 4.5631 3.3957 3.4467 2.9867 2.6488

2� 105 6.1848 5.7836 5.0057 4.3782 3.8890 3.4287 3.0907

3� 105 6.4255 6.0243 5.2464 4.6188 4.1296 3.6692 3.3311

Ks ¼ 0
Kw ¼ 0:01

105 5.8958 5.4946 4.7168 4.0893 3.6000 3.1401 2.8025

2� 105 6.6802 6.2790 5.5011 4.8732 4.3832 3.9232 3.5858

3� 105 7.2893 6.8881 6.1101 5.4819 4.9913 4.5312 4.1940

Ks ¼ 0:01
Kw ¼ 0:01

105 5.9261 5.5250 4.7471 4.1196 3.6302 3.1703 2.8326

2� 105 6.7941 6.3929 5.6149 4.9859 4.4967 4.0364 3.6988

3� 105 7.5226 7.1214 6.3432 5.7148 5.2237 4.7629 4.4232

Table 8
The non-dimensional buckling load P⁄ of two-beam system under CH boundary conditions.

KðN=mÞ k ¼ 0:1 k ¼ 0:2 k ¼ 0:5 k ¼ 1 k ¼ 2 k ¼ 5 k ¼ 10

Ks ¼ 0:01
Kw ¼ 0

105 10.7088 9.8225 7.9808 6.3950 5.2246 4.5019 4.1020

2� 105 11.1334 10.2468 8.4041 6.8168 5.6448 4.9203 4.5189

3� 105 11.3863 10.4994 8.6560 7.0677 5.8946 5.1691 4.7671

Ks ¼ 0
Kw ¼ 0:01

105 10.7985 9.9123 8.0712 6.4859 5.3162 4.5934 4.1930

2� 105 11.4318 10.5452 8.7031 7.1166 5.9451 5.2187 4.8147

3� 105 11.9213 11.0341 9.1905 7.6020 6.4276 5.6970 5.2890

Ks ¼ 0:01
Kw ¼ 0:01

105 10.8267 9.9405 8.0993 6.5139 5.3440 4.6211 4.2206

2� 105 11.5377 10.6510 8.8085 7.2216 6.0495 5.3223 4.9176

3� 105 12.1388 11.2513 9.4068 7.8171 6.6412 5.9085 5.4990

(a) 50 / , 0.1v m s t s (b) 200 / , 0.1v m s t s
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(a) different parameter k                     (b) different relaxation time ( 1)k

100 150 200 250 300 350 400
1

2

3

4

5

6

7

8

9

10

11
x 10

-3

velocity(m/s)

m
ax

im
um

 d
is

pl
ac

em
en

t(
m

)

k=0.1
k=1
k=10

100 150 200 250 300 350 400
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

velocity(m/s)

m
ax

m
iu

m
 d

is
pl

ac
em

en
t(

m
)

160 180 200
0.008

0.01

0.012

0.014

0.016

relaxation time 0.5s
relaxation time 0.2s
relaxation time 1s

Fig. 13. Maximum track vibration displacement corresponding to different moving speeds.

(a) wavenumber domain (b) space domain

-3 -2 -1 0 1 2 3
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

wavenumber (rad/m)

di
sp

la
ce

m
en

t 
(m

)

-4000 -3000 -2000 -1000 0 1000 2000 3000

-1.5

-1

-0.5

0

0.5

1

1.5

x 10
-3

x(m)

di
sp

la
ce

m
en

t(
m

)

1000 1500 2000 2500
-5

0

5
x 10

-4

Fig. 14. Transverse displacement response of upper beam ðv ¼ 200 m=s;k ¼ 0:1; t ¼ 10 sÞ: (a) wavenumber domain (b) space domain.

166 H. Deng et al. / Composite Structures 160 (2017) 152–168



(a) wavenumber domain (b) space domain

-3 -2 -1 0 1 2 3
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

wavenumber (rad/m)

di
sp

la
ce

m
en

t(
m

)

-500 0 500 1000 1500 2000 2500 3000
-8

-6

-4

-2

0

2

4

6

x 10
-4

x(m)

di
sp

la
ce

m
en

t(
m

)

14001600180020002200

-1

0

1

2

x 10
-4

Fig. 15. Transverse displacement response of upper beam ðv ¼ 180 m=s;k ¼ 0:1; t ¼ 10 sÞ: (a) wavenumber domain (b) space domain.
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Fig. 13 shows maximum transverse displacement of upper
beam corresponding to different speeds, where peaks of curves
represent critical speed. As we can see from the Fig. 13(a), when
the moving speed approximates critical speed of the track, ampli-
tude of structure will increase sharply. Meanwhile, with the
increase of the gradient k, critical speed will increase significantly,
and the vibration amplitude will decrease. In Fig. 13(b), it is found
that relaxation time s only affects the value of peak, while it has no
effect on the critical speed. Figs. 14 and 15 present transverse dis-
placement response of upper beam, where Fig. 15a and b represent
response in wavenumber domain and space domain respectively.
According to Fig. 15, the critical speed of track is 189 m/s when
k ¼ 0:1. Therefore, the range of response is relatively narrow when
moving speed less than critical speed. In comparison, track will
vibrate in large spatial range as show in Fig. 14b when moving
speed (200 m/s) exceeds critical speed.
4. Conclusion

In this paper, To acquire exact solutions of double-functionally
graded Timoshenko beam system on Winkler-Pasternk elastic
foundation, which are benchmarks in the field of engineering, the
exact dynamic stiffness matrix of the double-functionally graded
Timoshenko beam system on Winkler-Pasternak foundation under
axial loading is established. The results obtained by dynamic
stiffness method are in great agreement with previous studies.
Thus, the correctness and effectiveness of the method was demon-
strated. After comprehensive study of this beam system, we can
conclude that:

1. With the increase of gradient parameter k, the fundamental fre-
quency of the two-beam system decreases under different
boundary conditions.

2. The stiffness of connecting layer has great influence on the
reverse modes of two beams, and the increase of the stiffness
can significantly increase the frequencies of the two-beam
system.

3. the increase of the parameters of elastic foundation will
increase the frequencies of two beam system and the effects
of Winkler layer and shear layer on fundamental frequency
are close.
4. The damping factor of connecting layer has great influence on
the FRF, with the increase of the damping factor, the peaks of
the FRF will decrease. And damping factor greatly affects the
frequencies of reverse modes.

5. The increase of gradient parameter k can increase the loss factor
of the two-beam system.

6. The buckling load decreases with the increase of the gradient
parameter k under different boundary conditions.
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