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A B S T R A C T

Wave extreme events can be understood as the combination of Storm-intensity, Directionality and Intra-
time distribution. However, the dependence structure among these factors is still unclear. A methodology
has been developed to model wave-storms whose components are linked together. The model is composed
by three parts: an intensity module, a wave directionality module, and an intra-time distribution module.
In the Storm-intensity sub-model, generalized Pareto distributions and hierarchical Archimedean copu-
las have been used to characterize the storm energy, unitary energy, peak wave-period and duration. In
the Directionality and Intra-time sub-models, the wave direction (at the peak of the storm) and the storm
growth–decay rates are linked to the variables from the intensity model, respectively. The model is applied
to the Catalan coast (NW Mediterranean). The outcomes denote spatial patterns that coincide with the
state of knowledge. The proposed methodology is able to provide boundary conditions for wave and near-
shore studies, saving computational time and establishing the dependence of the proposed variables. Such
synthetic storms reproduce the inter-variable co-dependence of the original data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Wave storms strongly perturb the state of coastal environments,
becoming such changes concomitant with episodic coastal hazards
such as coastal flooding and erosion. These extreme phenomena
drive complex hydrodynamic processes whose understanding is
paramount for proper infrastructure design (Goda, 2010). The con-
ventional approach is usually based on the probabilistic definition
of a single parameter, typically the wave height. Other concurrent
components as the duration of the storm, the storm total energy and
the associated wave period influence the final response of a beach or
the damage evolution of a structure (Martin-Soldevilla et al., 2015;
Melby and Kobayashi, 2011). These variables are known to be semi-
dependent (de Waal and van Gelder, 2005; Salvadori et al., 2007),
but the classical methodology either a) assumes one variable to be
stochastic and the other ones to be deterministic or, b) assumes all
variables to be stochastic but completely independent. In the latter
case, the lack of dependence structure hampers finding sets of physi-
cally plausible storm components, and requires expert guidance plus
local knowledge to discern the suitable combinations.
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A common modeling approach is to hindcast high energy events
or to synthesize storms to a representative extreme sea-state, which
is generally predisposed by the degree of knowledge of the area.
For the latter case, dependency structures among the hydrodynamic
variables pose a hurdle, as they tend to be unknown. Exploratory
methods, such as 2D scatter plots, have been widely used as a rule-of-
thumb for the most frequent problem, wave-height vs. wave-period.
However, the interpretation of existing co-dependences among sev-
eral variables is challenging. Recurrently, a wide scatter cloud can
mislead about biased co-dependence structures, due to subjective
criteria. Storm modeling requires to consider a multivariate analy-
sis of storm parameters (Corbella and Stretch, 2012), as univariate
analyses may oversimplify coastal processes, often leading to over or
under-estimation of the storm induced damages.

Specialized statistical techniques such as copulas can be used
for finding existing relationships among storm variables (Genest
and Favre, 2007; Trivedi and Zimmer, 2007) with more objective
criteria. Copulas were once described by Sklar (1959), for bivariate
models. They were popularized in the 1990s in financial, insurance,
econometrical, risk management and actuarial analyses (Cherubini
et al., 2004). Applications can also be found in hydrology (De Michele
and Salvadori, 2003; Salvadori and De Michele, 2004) and more
recently, in coastal engineering (Corbella and Stretch (2012), Wahl
et al. (2011); among others).
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Corbella and Stretch (2012) employed copula based return-
periods to identify the most probable combination of wave-height,
wave-period, storm-duration, and water-level for a given proba-
bility of exceeding at South Africa. The threshold in the peak-
over-threshold method was defined as a critical layer of multiple
dimensions that prescribe both a safe and super-critical combina-
tion of storm conditions. In the study, the extreme events were
fitted to Generalized extreme value distributions (GEVD). They also
noted the importance that their statistical model was constrained,
to avoid unrealistic results. Hence, they proposed wave steepness as
a restriction that can increase model rigidity and enhance system
robustness.

Li et al. (2014) fitted maximum significant wave height, peak-
wave-period and storm-duration measured in the Dutch Coast
with generalized Pareto distributions (GPD). They had used the
Kolmogorov–Smirnov and Chi-square tests to evaluate the goodness-
of-fit. A similar approach had also been followed by Corbella and
Stretch (2013). Salvadori et al. (2014), on the other hand, fitted the
significant wave-height and the duration to a Generalized Weibull
model (GW) distribution and used Akaike Information Criterion (AIC)
to select the suitable copula.

Wahl et al. (2012) applied fully nested Archimedean copulas to
consider both storm surge parameters (defined with the highest
turning point and the intensity) and the wave height, at the German
coast. Nested copulas can characterize multivariate random variables
by determining a priori nesting architecture that composes simpler
copulas structures into larger and more complex ones. Wahl et al.
(2012) firstly characterized the highest turning point and intensity;
and then incorporated the significant wave height.

The main objective of this paper is to propose a methodology
for inferring multivariate wave storm parameters that shares a com-
mon structure. To this aim, one of the main points of the paper has
been to propose a dependence structure that links the parameters
that explain wave storms. The paper is divided into two steps: Model
building and Applicability. The proposed wave storm model has been
split into three modules: intensity, wave directionality and intra-
time storm distributions. This methodology has been tested on the
Catalan coast, a fetch limited environment.

The structure of the paper is as follows: Section 2 deals with
the methods for building the proposed statistical model. Section 3
presents the study area and, Section 4, the database used. Results are
summarized in Section 5 and discussed in Section 6. Finally, Section 7
sets out the conclusions.

2. Methods

2.1. Storm definition and variables

The determination of storms has three criteria: 1) inten-
sity definition and associated threshold, 2) minimum time-lapse
between storms (D∗

min), and 3) minimum duration of the storm
(Dmin). Wave storms are extreme phenomena that can be dealt
with the peak-over-threshold description (Embrechts et al., 1997).
The threshold separates storm conditions from non-storm condi-
tions. The D∗

min helps satisfy independence of the samples. The
independence is one part of the “independent and equidistributed”
assumption for data in many statistical techniques. Dmin discards the
storms of insufficient duration and which are, therefore, of lesser
significance.

The usual procedure associates the threshold with the percentile
90 of the wave height (Bernardara et al., 2014; Eastoe et al., 2013).
Here, other approaches are proposed. For instance, the occurrence in
time of extreme events, for any given geographical location, follows a
Poisson distribution. Therefore, it can be deduced that the time lapse
between storms must be approximately an exponential distribution;
if not, these events are not extreme. Apart from this, the threshold

should belong to the linear segment of a mean-excess wave-height
function (Ortego et al., 2012). At the same time, the events must
be statistically significant in number. The wave-height threshold has
been varied ranging from 1.5 m to 3 m, whose minimum doubles
the mean wave heights (CIIRC, 2010). The finally selected value of
the wave-height threshold is exposed in Section 5 and discussed in
Section 6.

Turning to the independence and equal distribution of storm
samples, neighboring storms are clustered if the D∗ that separates
them is below D∗

min, which means that both episodes belong to the
same storm event. After clustering, each storm can be considered to
be independent from the others. On the other hand, it is assumed
that the marine extreme events are generated by a limited subset of
synoptic conditions (Lionello, 2012), which is true in Western Europe
(Mazas et al., 2014). Therefore, the storms are regarded as identically
distributed.

Three candidates for D∗
min are proposed: 72 h, 48 h, and 12 h.

D∗
min = 72 h is because the two sub-storms in a twin storm tend to be

less than 72 h apart. Approximately 20–30% of the total storm events
on the Catalan coast are twin, depending on the location (Wojtanow-
icz, 2010). The consideration of D∗

min = 48 h is conceptually similar
to Tolosana-Delgado et al. (2011), whereas D∗

min = 12 h is based on
direct observations of Catalan sea-storms. A sensitivity test is per-
formed to select the most correct D∗

min value. The test consists of
representing storms for different values of D∗

min. The D∗
min selected

and the reasons leading to this choice are stated in Section 5 and
discussed in Sub-section 6.1.

D is the duration of the event between the first and last threshold
crossing (Fig. 1a). It is not to be confounded with D∗. The value of Dmin

is given in Section 5.
From each independent storm, the total storm-energy (E), the

maximum storm-unitary-energy (Eu,p), the peak wave period (Tp),
the duration D, the direction of the peak-wave (h∗

p), the growth-rate
and the decay-rate are obtained.

The Storm-intensity sub-model includes E, Eu,p, Tp, and D.
The E is defined as

E =
∫ endT

iniT
H2

m0dt, (1)

where Hm0 is the spectral significant wave-height, and t is time. In
case that the wave-height returns below the threshold, during the
event, the duration and the energy of these low intensity periods are
included in the sums of D and E.

It has been highlighted in Sánchez-Arcilla et al. (2014) that the
capture with numerical models of the peak-wave-height lacks of
exactitude, whereas a better skill is found for the existing temporal
trend. Therefore, a new definition of the m0-wave-height during the
storm peak (Hm0,peak) is proposed through the definition of Eu,p:

Eu,p = max
i

(
mean

(
Eu,(i−1) + Eu,i + Eu,(i+1)

))
, (2)

where Eu is the unitary storm-energy at each hour. The square root
of Eu,p is proposed, here, as an improved definition of Hm0,peak, and is
herein called H∗

p.
The H∗

p synthesizes the energy shortly before and after the peak.
The subset (see Fig. 1b) presents a) point (t − 1): growing to reach
the peak, b) point (t): Storm peak and c) point (t + 1): decreasing
or maintaining. The differential energy at (t + 1) in decreasing or
maintaining the energy is a crucial assumption for point t. The reason
is that Mediterranean storms usually present a sharp gradient during
wave height growth and a milder one during decay. The variables E
and H∗

p provide more complete metrics for the storm hazard rather
than a representative wave height, as they describe the behavior of
the entire storm, rather than a snapshot.
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The Tp relates to the frequency in which the peak of the energy
from the directional wave spectrum is located (Holthuijsen, 2007).
The Tp of our wave-model is the value of the Tp when Eu takes the Eu,p

value. The Tp does not vary much during each storm and its standard
deviation is generally small. The reason of such reduced variation
is a fetch-limited condition of the study area plus the ephemeral
intensity of the storms.

The directionality is represented by the Directionality sub-model,
and it is parameterized with the wave-direction of the storm-peak
(h∗

p). The value of h∗
p is assumed to be constant throughout each indi-

vidual storm-event. Both Tp and h∗
p are values at the H∗

p, as interest
is herein put on the behavior of the most extreme conditions, rather
than on the rest of the storm stages.

Milder slopes during decay have relevant consequences. For
example, consider an emerged dune that collapses at the exact
moment of the storm peak or maximum wave height. The after-effect
(flooding/erosion) would not be the same if the energy started to
decrease at the same rate as the storm growth. A sharp growth leads
to collapse, defense impairment and the decay phase can lead to the
real �infrastructure damage� (Gràcia et al., 2013). A parameter that
considers that effect is sought in this study, while maintaining as
much information of the peak as possible.

The storm wave evolution over threshold is modeled with either
the irregular-trapezoidal or triangular shapes (see Fig. 1c). A the-
oretical basis for the proposal of these two wave-height-evolution
models can be found in Martin-Soldevilla et al. (2015), who con-
ducted a shape analysis for one point at the NW Mediterranean
Sea. This analysis is herein extended on a regional scale. The resid-
uals associated with triangular and irregular-trapezoidal candidate
wave-height-evolution models have been computed. The area below
the hindcasted wave-height-evolution function has been compared
to the area below each one of the candidate wave-height-evolution
models. The area below the wave-height-evolution model is com-
puted with the area within each figure plus the area below the
threshold; the maximum wave-height considered in such calculation
is H∗

p.
After adopting a shape, the D provides two indicators: a) the

percentage of time from the beginning of the storm to the first H∗
p

(growth-rate), and b) the percentage of time from the last H∗
p to the

end of the storm (decay-rate). These are the ratios growth-time/D and
decay-time/D, respectively, that define the storm-shape. The growth-
and decay-rates are characterized by the Intra-time-distribution sub-
model.

The Storm-intensity sub-model might influence the Directional-
ity sub-model and the Intra-time-distribution sub-model. Therefore,
the three sub-models are inter-linked.

2.2. Wave-storm model building

Fig. 2 summarizes the main steps followed for the construction
of the storm-model. There are three sub-models: Intensity (orange
boxes), Wave directionality (olive green boxes) and Intra-time (pur-
ple boxes). Rectangle boxes represent the inputs/outputs, whereas
the parallelogram boxes represent the actions taken.

The storm components have been previously defined in sub-
Section 2.1.

The thresholds for the extreme variables are defined by analyzing
the inter-storm-time-lapse (D∗) and the location of the wave-height-
threshold on a mean-excess Hm0 plot.

In the Storm-intensity sub-model, the univariate probability dis-
tributions of E, Eu,p, Tp, and D are characterized by GPDs, whereas
their joint structures, at each geographical node, are described by
hierarchical Archimedean copulas. The h∗

p, at each node (see Fig. 9),
are fit to mixtures (n ≥ 2) of von Mises distributions (Barnerjee
et al., 2005; Mardia and Jupp, 2009), abbreviated hereafter as mix-
ture of vM, or movM. From the movM at one node, the mean of
each vM distribution is considered a principal direction (PDi) of h∗

p.
These PDi constitute categories for h∗

p. The PDi are linked to E, Eu,p,
Tp, and D through a multivariate logistic model, then the Directional
sub-model is formed.

From the event-time-description associated to the Storm-
intensity sub-model, the storm growth–decay rates are defined, and
linked to D, resulting in the storm Intra-time sub-model.

In summary, the Storm-intensity sub-model generates synthetic
E, Eu,p, Tp, and D that, once introduced into the Storm intra-time
sub-model and the Directional sub-model, generate the growth–
decay rates and the wave directions, respectively. The total set of
storm variables define synthetic storms that, once filtered, are ready
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Fig. 1. a) Definition of variables for a single peak storm, where Hm0 is the wave-height, D is the storm duration, b) definition of the peak-unitary-storm energy, Eu,p , where Eu,i
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Fig. 2. Flow-chart of the methodology used to construct the statistical storm model. The model is composed by three sub-models: intensity (orange), wave directionality (olive
green) and Intra-time (purple). Rectangle boxes represent input/output data whereas the parallelograms represent the actions taken.

for applications desired. Both the model and the SIMAR database
(see Section 3) are validated/compared to the buoy records. Finally,
the model-buoy validation and the SIMAR-buoy comparison are
contrasted to see what kind of residual is introduced in our final
model.

2.3. Storm-intensity sub-model

2.3.1. Univariate marginal distribution: GPDs
The E, Eu,p, Tp and D are sea dynamic variables that take posi-

tive real values; consequently, they can be log-transformed to avoid
scale effects. One of the most widely used distributions to character-
ize wave peaks in a peak-over threshold (POT) approach is the GPD
(Coles, 2001). It is assumed that the events are time points which
have an associated random magnitude, and they also must be inde-
pendent and identically distributed (Coles, 2001; Tolosana-Delgado

et al., 2010). If X is the magnitude of an event and x0 is, at the same
time, a value of the support of X and a threshold, the excess over
the threshold x0 is Y = X − x0, conditioned to X > x0. Therefore,
the support of Y is either [0, ysup] or a positive real line. The GPD
cumulative function is

FY ( y|b, n) = 1 −
(

1 +
n

b
y
)− 1

n

, 0 ≤ y ≤ ysup ,b ≥ 0 , n ∈ R, (3)

and the associated probability density function is

fY ( y|b, n) =
1
b

(
1 +

n

b
y
)− 1

n
−1

, 0 ≤ y < ysup ,b ≥ 0 , n ∈ R, (4)
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where b is the scale parameter and n is the shape parameter. n deter-
mines the domain of attraction of the distribution. For n < 0, the
distribution belongs to the Weibull domain of attraction, and the
support of y is limited, being

[
0, ysup = − b

n

)
. For n> 0, the domain of

attraction is Fréchet, and the support of y is [0, +∞). When n = 0,
the support is infinite and the distribution belongs to the Gumbel
domain of attraction (Coles, 2001; Tolosana-Delgado et al., 2010).
The selection of a physically justified threshold for each variable
enhances tail convergence.

Thresholds have been defined for the GPD of each variable. Dmin

is 6 h, then the threshold of D is set as Dmin, the threshold of E is
computed from H2

0
• Dmin, and the threshold of Eu,p is computed from

H2
0. The thresholds for E and Eu,p are based on their definition. The

relationship of Hm0 to the most widely used significant wave-height
(Hs or H1/3) is Hm0 = H1/3/0.95, (Holthuijsen, 2007). The relationship
of Tp with H1/3 can be approximated by a linear expression, defined
in CIIRC (2010), so the threshold of Tp can be directly computed from
the wave-height threshold.

2.3.2. Dependence structure: the hierarchical Archimedean copulas
(HAC)

The set of storm components has passed a multivariate inde-
pendence test based on the empirical copula process (Genest and
Remillard, 2004). This test provides insight into inter-dependencies
of any subsets of the variables. The resulting graph, the dependo-
gram, displays the subsets on the horizontal axis and the statistic
per subset (the departure from independence) on the vertical axis.
A statistic (vertical line) below the threshold value (bullets) means
a totally independent subset, whereas the length of the vertical
line above the bullet represents the degree of co-dependence of the
variables in the subset (refer to Fig. 4 for an example).

Once the semi-dependence is demonstrated, several meth-
ods are available to model multivariate distributions. Hierarchi-
cal Archimedean copulas are one of them. The copula simplifies
the modeling as it estimates a multivariate distribution once the
marginal distributions of each individual random variables are
determined (Sklar, 1959). Pre-selected distributions separate the
marginals from the dependence structure between the random vari-
ables. Consequently, the dependence modeling through copulas may
be a suitable alternative for building multivariate distributions when
the marginals are known and heavy tailed (de Waal and van Gelder,
2005). Heavy tails are present when extremes are much more diver-
gent from the mean than it would be expected.

The bivariate distribution described by Sklar can be generalized
into a multivariate one. For any multivariate distribution function H
with margins Fj, j ∈ {1, . . . , d}, a copula C can be defined such that

H(x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) , x ∈ R. (5)

Inversely, given a copula C and univariate distribution functions
Fj, j ∈ {1, . . . , d}, an H defined by Eq. (5) is a distribution function with
marginals Fj, j ∈ {1, . . . , d}. Being uj = Fj, a d-dimensional copula is
Archimedean if it admits the representation

C(u; 0) = 0−1 (0(u1) + · · · + 0(ud)) , u ∈ [0, 1]d, (6)

where the generator function 0 is continuous decreasing and convex,
with 0(1) = 0. An example of a generator function is the Gumbel
generator function

0(u) = (− log(u))h, h ∈ [1, ∞), (7)

u is the storm component, and h is the dependence parameter
which indicates independence when h = 1 and total dependence
when h → ∞. The dependence parameter h is distinguished from the
peak-wave-direction h∗

p, in this text, by adding an asterisk to the latter
parameter. Other types of Archimedean copula generator functions,
such as Clayton and Frank, can be referred to in Wahl et al. (2011).

Most common Archimedean copulas have constrained multi-
variate dependence structures, as they usually depend on a single
parameter of the generator function. Moreover, they are insensitive
to variable permutation, which implies that all margins of the same
dimension are equal, deeming them unable to model asymmetries
in the variable co-dependences (Hofert and Machler, 2011). Hierar-
chical Archimedean copulas (HAC, see Fig. 3 for an example) can be
a useful tool to overcome these drawbacks, by nesting simple 2D-
Archimedean copulas into multilayer tree structures that are fitted
in a recursive way (Okhrin et al., 2013).

The hierarchical structure of the HAC provides a series of
advantages: a) it is more flexible and intuitive than the simple
Archimedean copulas, b) it can model asymmetries in the variable
co-dependences, unlike simple Archimedean copulas, c) there is a
marginal cumulative distribution function at each node of the tree,
d) it requires less parameters than other kinds of copulas (e.g. ellip-
tical copula), and e) when basing each copula on a single generator
function, the copula parameters rise as the level increases, enabling
simpler dependence analyses.

Different generator functions can be used to obtain the h at each
nesting level of a HAC. Extreme storms present a typical pattern of
producing extreme values for most storm components, such as E, Eu,p,
Tp and D above a certain threshold. Then, the most suitable HAC type
is Gumbel (when a generator function is used at all the levels of nest-
ing of a HAC, this generator function gives its name to this HAC). The
Gumbel HAC includes such upper extreme dependence (Salvadori
et al., 2007). Other HACs, such as the Clayton and Frank HACs, may
also be employed, as discussed in Wahl et al. (2012). Hence, although

logE logD

logEu,p

logTθ = 2.15

θ = 4.44

θ = 1.16

logE logD

logT logEu,pθ = 3.9

θ = 1.58

(a) (b)

Fig. 3. Types of HAC trees obtained for the Catalan Sea. a) Type-A: HAC structured with 3 levels of variable dependencies (at node N1), b) type-B: HAC structured with 2 levels of
variable dependencies (at node N7). The upmost level is the �root�. The variables sequentially cluster according to their dependence (h) with other variables.
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the Gumbel type is selected a priori for this study, goodness-of-fit-
tests are also applied to Clayton and Frank HAC types, with the aim
of verifying the suitability of Gumbel.

The aggregation at each nesting level depends on a parameter
e. If the absolute difference of the dependence parameters of two
subsequent nodes is smaller than e (see Eq. (8)),

∣∣h1 − h2
∣∣ < e, (8)

the aggregation method �mean�, the one used here, equates the e

to the average value between the hs.
An example of a four-dimensional HAC can be

C(u1, u2, u3, u4) = C3
{
C2(u1, u2, u3), u4

}
= 0−1

3

{
03 ◦ C2(u1, u2, u3) + 03(u4)

}
. (9)

If the copula tree (see Fig. 3) spreads its “branches” upside down,
the lowest hierarchical level would be the tip of the branches. At
such lowest hierarchical level, the parameter of any pair of the given
variables is estimated. The couple with the strongest dependence is
aggregated and substituted by a joint pseudo-variable (Okhrin et al.,
2013). For example, let E and D share a common dependence param-
eter h(E,D) = 4.44. Let it be the highest valued dependence parameter
among all the pairs of variables. The pair of variables (E, D) can be
substituted by the pseudo-variable

Z(E,D)
def
= 0−1

ĥ(E,D)

[
0
ĥ(E,D)

{
F̂D(D)

}
+ 0(ĥE,D)

{
F̂E(E)

}]
. (10)

At the next level, the parameter of all the pairs of variables
and pseudo-variables is again evaluated. This procedure is contin-
ued until the highest hierarchical level (i.e. the root) is reached (see
Fig. 3).

Several approaches can be found in the literature to determine the
HAC agreement with data. Chen et al. (2004) proposed a dimension-
free goodness-of-fit test which has been adopted to construct the
HACs. The graphical test detailed in Okhrin and Ristig (2012) has been

applied to check the goodness-of-fit at each nesting-level. It is com-
plemented with quantitative values from a parameter k2 (Gan et al.,
1991).

Okhrin and Ristig (2012) compare the model probability-
distribution with the empirical probability-distribution. The expres-
sion of an empirical copula is

Ĉ(u1, . . . , ud) = n−1
n∑

i=1

d∏
j=1

I
{

F̂j(Xij) ≤ uj

}
, (11)

where n is the sample size, d is the number of variables, F̂j(Xij) is the
empirical marginal distribution function of a variable Xij, and uj is a
vector belonging to the interval [0, 1]. I is a unit function (it is 1 when
the argument is true, and 0, when the argument is false), so that the
product represents the unit function of the AND combination of all
the j conditions

F̂j(Xij) ≤ uj.

Gan et al. (1991)’s k2 quantifies the agreement of the analysis at
each nesting level. Each one of these levels only has two variables,
then the criterion is herein restricted to 1D dimension comparisons.
k2 takes values in [0, 1], the larger the number, the highest the
similarity of the vectors involved.

Here, h of different Gumbel copulas are not easily compara-
ble, as the support of h is semi-infinite. Thus, h are transformed
into Kendall’s t, or Kendall’s rank correlation coefficient (Kendall,
1937), the support of which is [0, 1). The value 1 is excluded for
corresponding to the infinity value in h.

Once HAC structures are obtained for each node, t(E,D) values are
obtained through ordinary kriging (OK) (Wackernagel, 2003), along
the Catalan coast, in order to visually identify the spatial distribution
of the co-dependences of E and D. This approximation remains valid
for zones where the observed hydrodynamic patterns do not differ
excessively, and offers estimations at unsampled areas.

2.4. Linking wave-direction to Storm-intensity: the wave directional
sub-model

It is not possible to include the h∗
p and the growth–decay rates

into the HAC in the Storm-intensity sub-model, since these storm-
components do not have a support in the space of the real numbers.
However, according to results from dependograms, directionality
and growth–decay rates are not entirely independent from the
Storm-intensity model. Therefore, the directionality and the growth–
decay rates are compelled to relate to the Storm-intensity sub-model
via a regression model, although not through a HAC structure.

The standard approach transforms a continuous variable into a
predefined set of categories. Usually, the reference coordinate sys-
tem (i.e. North) and some predefined bins divide the wave-rose
into 16 sectors. This poses a problem when the wave-directions are
near the boundaries between two sectors, and can mislead regard-
ing contingency. It is, then, crucial to select a set of categories
based on the data itself. Both reference and bin size can be estab-
lished with movM distributions. This type of distributions allows a
more flexible definition of the wave-direction contingency, as ele-
mentary distributions are not assumed constant over preassigned
subintervals. What is more, it can be transformed into categories of
principal wave-directions (PD), simplifying the prediction of wave-
directions.
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In this methodology, wave-directions are first characterized with
movM distributions (Barnerjee et al., 2005; Mardia and Jupp, 2009),
whose probability distribution function of a mixture of k elements is

f
(

x|Ĥ
)

=
k∑

h=1

ahfh

(
x|ĥh

)
, k ∈ N, (12)

being x a circular variable, with lh as the hth mean, and jh as the
hth “standard deviation”. The ah are the mixture probabilities, they
are non-negative and sum to one; by definition, the mode with the
largest ah is the principal direction. ĥh = (lh, jh) for 1 ≤ h ≤ k, and
Ĥ =

{
a1, . . . ,ak, ĥ1, . . . , ĥk

}
. Ĥ represents the mixture probabilities,

as well as the means and standard deviations of the vM distributions
in the mixture. Both ĥ and Ĥ have hats, in order to distinguish them
from the peak-wave-directions (h∗

p) and HAC parameters (h).
An Expectation maximization (EM) approach is used for maximiz-

ing the expectation of Eq. (12). With the constraints on the vMF mean
and deviance, lT

hlh = 1 and jh ≥ 0, the expression of the mixture
probabilities ah is:

ah =
1
n

n∑
i=1

p
(

h|xi, Ĥ
)

, n ∈ N, (13)

where n is the total number of elements in the sample, x is the angle,
and Ĥ is the parameter appearing in Eq. (12), and described above.
p

(
h|xi, Ĥ

)
is the probability of appearance of the h vM distribution,

given the angle xi and the parameter Ĥ.
From the soft EM framework used here, the distribution

p
(

h|xi, Ĥ
)

is given by

p
(

h|xi, Ĥ
)

=
ahfh

(
xi|Ĥ

)
k∑

l=1
alfl

(
xi|Ĥ

) , (14)

where ah, xi, k, and Ĥ are the same variable as in Eqs. (12) and 13,
and f (xi|Ĥ) is the probability distribution function of xi, given Ĥ. The
soft EM framework, assigns soft (or probabilistic) labels to each point
given by Eq. (14). Other candidates can be the hard, or “winner takes
all”, EM, but the soft EM is selected for its flexibility, in comparison
with the hard EM.

The wave-direction is decomposed into the sine and cosine of
the angle, and these two elements are then fit by movM. The cor-
responding movM parameters can be used to generate synthetic
pairs of sine–cosine that can be combined to estimate the synthetic
wave-direction. The Watson’s two-sample uniformity test then helps
identifying the strictly necessary number of modes in the movM
distribution (Pewsey et al., 2013). By doing so, it improves goodness-
of-fit, whereas avoiding over-fitting. This test checks whether two
groups are extracted from a common distribution. The criterion for
the goodness of fit is set as the statistic U2 to be smaller than 0.152,
which corresponds to p-value = 0.1. When this criterion is met, it
means the absence of significant difference between the empirical
distribution and the model distribution.

The means lk of each movM are considered as principal directions
(PDk). These PDk delimit a set of categories. Hence, the continuous
wave-direction in each storm is labeled by a category that bonds
the “influence area” of one of the k vM distributions in the mixture.
The main advantage of this approach is that the categorization of
this variable is data-dependent, so the ranks can be related to the
Storm-intensity sub-model.

The relationship between the predicted PDk categories and the
variables from the Storm-intensity sub-model (logE, logEu,p, logT,
logD) is built with a multinomial logistic model (Hosmer et al., 2013).

A multinomial logistic model consists of a regression model where the
dependent variables (i.e. PDk) are categories and the explanatory vari-
ables can be continuous. Particularly, the predictors used in the multi-
nomial logistic model are E, Tp and D. Eu,p is not non-significant as a
predictor. Therefore, the multinomial model predicts the probabilities
that a particular PDk can happen under certain intensity quantities,
then joining directional patterns with its associated E, Tp and D.

2.5. Intra-time distribution sub-model

This sub-model is linked with the Storm-intensity sub-model via
the D. A polynomial function is adopted; it predicts the growth–
decay rates from a given D. Other variables from the Storm-intensity
sub-model do not show clear relationship to the growth–decay rates.

A polynomial function is sufficiently flexible capturing the inner
structure within D intervals vs. the growth–decay rates. What is
more, a suitable relationship is a third degree polynomial function,
where the independent variable is D: f(D) = a0 +a1D +a2D2 +a3D3.

2.6. Wave storm generator

Once our model is built, the applicability consists of generating
synthetic storms, whose parameters are related. These storms have
been produced by recursive simulations that consider the nested
structure of the HAC model, as well as the links between our three
sub-models. The storms are generated for given design return peri-
ods (Tr) until there is approximately a sample with more than 1000
storms, at each node. The selected tolerance for the error in joint and
marginal Tr, in the storm generation, is 20%. This degree of tolerance
is suggested by an estimate of observational residuals in the Catalan
Sea (Sánchez-Arcilla et al., 2008a, 2014).

There is not a unique correct design Tr, since in a multidimen-
sional space there is no single total order. There is a variety of failure
modes and diverse probabilities of failure that combine the existing
parameters. Several criteria exist to define a multivariate (n-variate)
Tr (Salvadori and De Michele, 2010), and four representative expres-
sions are listed below. These Tr take into consideration the various
storm descriptors in the Storm-intensity sub-model.

The Kendall Tr (Salvadori et al., 2007) is:

Trk =
1

k • (1 − F (x))
, k∈R , x = (x1, . . . , xi, . . . , xn) ∈ R

n, (15)

where k is the annual occurrence of storms, x is the storm compo-
nents characterized by HACs, and F(x) is

F(x) =
1
n

n∑
i=1

F(Xi < xi), (16)

where k is the same concept as in the Kendall’s Tr, ui is the cumula-
tive probability of a 1D-variable, I is the unit interval [0, 1], the critical
threshold t ∈ I is given by t = inf

{
s ∈ I : KC(s) = p

}
= K[−1]

C (p),
where KC is the Kendall coefficient.

Two other possible ways to compute the joint Tr are via the mean
value of the marginal Tr (Eq. (17)) or the geometric mean value of the
marginal Tr (Eq. (18)):

Tr =
1
n

∑n

i=1
Tr,i(x) , x ∈ R, (17)

Tr = n

√∏n

i=1
Tr,i(x) , x ∈ R, (18)

where Tr,i is the Tr of x. x is a storm component and Tr,i is calculated
by means of Eq. (15).



J. Lin-Ye, et al. / Coastal Engineering 117 (2016) 138–156 145

All these different definitions of Tr bring forth the need for fur-
ther research into multivariate Tr, as the currently available tools
are mostly statistical theoretical artifacts based on the not always
true assumption that high values of variables are dangerous. All
four definitions of Tr have been tested on, and, finally, Eq. (17) is
selected for presenting a better approach to physical measurements.
See Section 5 for results, and Section 6 for the discussion.

For a contingency study, the storm components are considered
truncated. So pie-charts can be applied to represent which intervals
are more frequent than others. A pie-chart leads to visually assess
the different categories and the relative weights over a total simu-
lated number of storms. For the case of of wave-height, the Hs are
within 3–3.5 m, and these values constitute the principal category.
This visualization of the frequencies leads to a simple interpretation
of the storm component interactions among themselves, thus aid-
ing to find representative scenarios given a Tr. The 1, 2, 5, 10, 25
year return periods have been selected for synthetic data cluster-
ing, as they are routine in infrastructure design. The life-time of a
hard coastal protection infrastructure (e.g. revetment, groin) may be
established as 25 years (DGP, 2001), whereas soft coastal protection
(e.g. nourishment, dune building) is associated with lower Tr (5 or 10
years) (García-León et al., 2015; Sánchez-Arcilla et al., (2016). Direct
applications of this methodology can provide hydrodynamic loads
for infrastructure design and diagnosis.

3. Study area

The Catalan coast is part of the north-western Mediterranean Sea
(see Fig. 5). This water body is characterized by its semi-enclosed
nature, the orographic patterns, air-sea temperature differences and
the passage of low pressure centers from the Atlantic (Lionello,
2012). The main morphological features are the existence of moun-
tain chains parallel and close to the coast, the Pyrenees Mountains
to the north, and the Ebre river valley to the south. These orographic
discontinuities, together with the major river valleys, allow for strong
winds to be channeled down to the coast (Grifoll et al., 2015).

The Catalan coastal winds are typically low to medium, on aver-
age, ranging up to 11.05 ms (Sánchez-Arcilla et al., 2008b). The most
frequent and intense wind is the Tramuntana (N), appearing from
November to March. It has been observed that it is the major forc-
ing for the northern and central Catalan coastal waves. From latitude
41◦N southward, the principal wind direction is the Mistral (NW). It
is channeled by the western Pyrenees and the Ebre valley. The NW
winds are formed by the superposition of gap and downhill flows
from the Pyrenees. A secondary wind mass, the Ponent, comes from
the depressions in northern Europe and sweeps the entire Iberian
Peninsula from west to east.

Eastern winds are frequent during the summer. They are com-
monly triggered by an intense high-pressure area on the British
Islands. Another origin is a high level of cold air pool deepening
over the Mediterranean Sea, which leads to cyclo-genesis, resulting
in the passage of a low off the Catalan coast (Bola nos et al., 2009;
Lionello, 2012). Winds are more variable for higher intensities. Thus,
some relatively large wind modulus-variability is generated during
storms (Bolaños, 2004). Wave-directions are directly correlated with
wind-direction, except the angle 50◦ of waves, which can be gen-
erated by winds in the sector NNW-ENE, approximately. This might
be explained by the orientation of the coast-line, all winds, at some
point, seems to create an alongshore wave-train.

The Catalan coast has a micro-tidal environment (Lionello, 2012).
The slope of the bathymetry is relatively steep in the north, while it
becomes milder to the south. This has a direct impact on how waves
behave when reaching the coast, as the bathymetry has an effect on
the type of the impacting wave, and the beach slope determines the

vulnerability to flooding. Waves on the Catalan Sea also have a crit-
ical effect on sediment-transport, as the short wave-lengths do not
allow the beach sediment to restore itself during summer-time.

For fetch limited environments, direct correlation has been
observed between wind and wave-directions, this suggests that the
local wind is the main forcing for waves at the Catalan Sea, rather
than distant winds, so we stress on the difference between local
(which generate wind-waves) and distant winds (which generate
swell-waves). This reinforces the idea that storm-waves at the
Catalan coast are driven by mesoscale processes that span the
entire fetch, whereas the swell contributions can be considered as
secondary.

According to Bola nos et al. (2009), who used XIOM buoy data, the
largest waves come from the east, caused by the joint action of the
most significant fetches and winds. In further analysis with depen-
dograms, it can be specified that such directionality is most evident
for Tp, at almost the entire Catalan coast. The directionality of Hm0 is
limited to nodes N4, N5, C2, C4, S1 and S4.

The mean significant wave-height (Hs) is 0.72 m from Barcelona
City northward (the quantile 75 of Hs is qHs ,75 = 0.89 m, Hs,max =
5.85 m), and 0.78 m southward (qHs ,75 = 0.98 m, Hs,max = 5.48 m).
The extreme values are approximately seven times the average val-
ues. In fact, the standard deviation is relatively high, being 30% of
the mean. What can be expected is that a structure can be severely
challenged by storms of higher Tr. Northern storms might be slightly
more hazardous, as it is observed here that Hs,max are 0.37 m higher
at northern sites than southern ones.

The mean peak-wave-period (Tp) is 5.85 s on the northern Catalan
coast (qTp ,75 = 6.73 s, Tp,max = 15.87 s) and 5.62 s on the southern
Catalan coast (qTp ,75 = 6.65 s, Tp,max = 14.1 s) (CIIRC, 2010). In this
case, standard deviation is double mean value. However, the quantile
75, the maximum and the mean are of a similar order of magnitude.
The Tp, including the mean and maximum values, is geographically
homogeneous.

The NW waves are the highest in Tortosa cape, while the eastern
and southern waves are steepest in Llobregat delta (Bola nos et al.,
2009). There is also a weakly linear relationship between the mean
wave-period (Tz) and the Hs, that is, for each increase in 2 s of Tz, Hs

increases by 1 m.
The study area is divided into hydro-dynamically homogeneous

sectors of similar lengths (see Fig. 5). The northern sector (N-) spans
the area from the border with France (42.44◦N, 3.18◦E) to the Mataro
Port (41.53◦N, 2.44◦E), the central sector (C-) extends from the
Mataro Port to the Segur de Calafell port (41.19◦N, 1.61◦E), and the
southern sector (S-) ranges from the Segur de Calafell port to the bor-
der with the Autonomous Community of Valencia (40.53◦N, 0.52◦E).
The sector boundaries are political frontiers and locations of change
in beach orientation. Each sector features a mean shoreline orien-
tation that determines “a posteriori” whether a simulated synthetic
storm (see Section 2) will reach the coastline.

4. Data source, and explanatory analysis of the storms

The training set that the proposed statistical model uses comes
from the SIMAR dataset (Gomez and Carretero, 2005). The data con-
sist of wave-hindcast-simulations by WAM (WAMDI Group et al.,
1988) and WAVEWATCH3 (Tolman, 2009), fed with HIRLAM wind
fields (Unden et al., 2002). SIMAR provides consistent, gap-less and
spatially dense time series. A series of nodes are selected to represen-
tatively cover each one of the abovementioned sectors. This results
in 6–8 nodes being assigned to each sector. N1 is near Creus Cape and
S7 is well below Ebre Delta (see Fig. 5). SIMAR nodes are located at
−50 m depth, which are intermediate waters, in this area.

The hindcast ranges from the 14th January 1996 to the 25th
February 2013. Data in some nodes extend to the 22nd January 2014.
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Fig. 5. Map of the study area showing wave measurement networks (XIOM and PdE), and the SIMAR nodes. The color lines of the regions (red, orange, green, blue and purple) and
the colored areas (red, yellow and blue) cluster the coast into the three sectors: North (France to Mataro harbor), Central (Mataro harbor to Segur de Calafell harbor) and South
(Segur de Calafell harbor to the Autonomous Community of Valencia).

SIMAR provides a variety of wave-spectra-parameters, such as Hm0

and Tp, among other information, including incoming wave direction
and moment in time. The time resolution before June 2000 is of 3 h
and changes to 1 h thereafter. Spline-interpolation has been applied
to discretize all time-series with the same temporal resolution.

Storms are obtained from the SIMAR dataset with the method-
ology described in Section 2. Explanatory analysis shows that the
quantiles 50 of E, H∗

p, Tp and D are spatially uniform, whereas their
quantile 85 present more geographical heterogeneity: higher values
in the north, lower values in the south and in the Roses Bay (see
Fig. 5); specifically, the E, D, and Hm0 decrease approximately 25%
southward and in the Roses Bay, while the Tp increases 10% in the
same direction. The northern part of the Catalan coast (above 41.2◦N)
has higher waves in its strongest storms, reaching values above 4
m. Storms in these locations also have a longer D, surpassing 50 h.
The Tp, on the other hand, are larger from 41.8◦N southward. Note
that the quantiles under 50, the quantiles 15 of E, H∗

p, Tp and D, for

instance, are also spatially homogeneous, but they are ignored, as
they are influenced greatly by the selected GPD thresholds.

Both PdE (�Puertos del Estado� or State harbors) and XIOM
buoy records (see Fig. 5 and Table 1) are used for model valida-
tion. The selected buoys are located at similar positions to the SIMAR
nodes. XIOM buoys provide Hm0, mean wave period (Tm), and date.
For the sake of comparison with SIMAR dataset, the relation Tm/Tp =
0.8 (Goda, 2010) is considered.

5. Results

Fig. 6a through h, and Fig. 7a and b show a threshold iteration
test on the nearest PdE and SIMAR nodes to the Barcelona City. This
location is chosen for being the geographical centroid of the Cata-
lan coast. The storm-threshold is named h0. Following to the criteria
mentioned in Section 2, the selected value for h0 is 2.2 m. On the
other hand, the most adequate D∗

min is 12 h.

Table 1
Buoy location and data availability. All the considered buoys are directional.

Buoy Longitude (◦E) Latitude (◦N) Depth (m) Data availability

PdE-Palamos 3.19 41.83 90 26/03/2010 to 30/06/2011
XIOM-Blanes 2.82 41.65 74 13/07/2007 to 31/12/2012
PdE-Barcelona I 2.15 41.29 50 08/03/2004 to 22/12/2013
PdE-Barcelona II 2.20 41.32 68 08/03/2004 to 30/11/2011
XIOM-Llobregat 2.14 41.28 45 05/02/2004 to 31/12/2012
XIOM-Tortosa 0.98 40.72 60 15/06/1990 to 31/12/2012
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Fig. 6. Q–Q plot of the observed D∗ (x-axis) and D∗ from the corresponding best-fit exponential model (y-axis). The red line represents null residuals (1:1 ratio), while the circles
are the scatter points. From a) to d), the time lapses are obtained using a storm-threshold of: 1.5 m, 2.1 m, 2.2 m, and 3 m, respectively, for C3 node. From e) to h), it is the same
for the PdE-Barcelona-II buoy node.

The numbers of storms, at each node, are listed on Table 2. The
northern zone is the stormiest whereas lower number of storms
were found at the south, coinciding with the state of the art
(Sánchez-Arcilla et al., 2008b). The GPD threshold of D is considered
to be Dmin = 6 h, the threshold of E is H2

0
• Dmin = 29.4 m2 h, and the

threshold of Eu,p is H2
0 = 4.84 m2. The threshold of Tp corresponding

to H1/3 = 0.95 • Hm0 is 8.17 s (CIIRC, 2010). E, Eu,p, Tp and D are well
fit by GPD, with the selected thresholds (see parameters in Table 3).

The joint structure of the Storm-intensity sub-model is compared
through goodness-of-fit plots for the Gumbel, Clayton and Frank
HACs. The three HACs present similar qualitative behavior and k2

parameter value. Then, the Gumbel type HAC is selected for being
able to include upper extreme dependence. The “mean” aggregation
method, in combination with the Gumbel type HAC, is adopted, for
providing the best fit.

Two Gumbel HAC tree types (A and B) are observed (see Fig. 3),
based on the co-dependence of Eu,p to E and D. Type A HAC-trees
differ slightly from type B HAC-trees. In type A trees, Eu,p has a

stronger relationship with E and D. There is no clear spatial pattern
in how A and B trees are distributed (see Table 4), but there is strong
co-dependence between D, E, and Eu,p; fact that is corroborated by
the dependograms (see Fig. 4). The dependence parameter of logD
and logE (h(logE,logD)), or, in other words, that of D and E (hD,E), is trans-
formed into a t value (Kendall, 1937). This t, which has been called
t(E,D), is kriged on the −50 m bathymetry (see Fig. 8). It is detected
that this dependence has a tendency to decrease southward (see
Fig. 8).

The contingency of h∗
p is shown in Fig. 9 and Table 5. It is observed

that the principal l is, from N1 to N6, approximately 330◦–20◦
(except at N3). Central nodes (N7 to S2) are heavily influenced by
easterly waves, whereas southern nodes (S3 to S7) suffer more het-
erogeneous influences. The secondary direction at N1 to S6 is eastern
waves, whereas it becomes predominantly southern waves from
N7 southward. The wave-contingency at N3 is similar to neighbor-
ing nodes, only that the principal and second directions are at the
opposite direction than at node N2, for instance. It is observed that
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Fig. 7. Mean-excess-plot of Hm0 for the a) SIMAR node C3 and b) PdE-BCN-II buoy node. The red line represents the log-transformed number of events over a given threshold,
while q50, q5 and q95 are the quantiles 50, 5 and 95, of Hm0.
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Table 2
Number of storms per node.

Node Storms Node Storms Node Storms Node Storms

N1 471 N6 201 C3 75 S3 44
N2 467 N7 134 C4 49 S4 31
N3 88 N8 62 C5 77 S5 59
N4 255 C1 60 S1 42 S6 73
N5 348 C2 99 S2 65 S7 52

most nodes have bi-modal wave-directions, coinciding with (Alomar,
2012; Bola nos et al., 2009). The coefficients of the multivariate logit
function to predict h∗

p, from logE, logEu,p, logT and logD, are listed on
Table 6.

Regarding the residuals associated with the triangular and
irregular-trapezoidal candidate wave-height-evolution models, both
the overestimation and underestimation residuals are well below
3m • h (that is considerably inferior to the area below the Hm0 time-
series’ curve) and range from a quantile 10 of 20.20m • h to a quantile
90 of 157.65m • h. The trapezoidal model overestimates in 0–1m • h
more than the triangular model, and the triangular underestimates
in 0–1m • h more than the trapezoidal model. Therefore, the trape-
zoidal model is selected as overestimation has been considered to be
less harmful than underestimation, assuming that both residuals are
of the same order of magnitude.

The growth–decay rates are assessed with heat-maps, whose
“affection areas” are defined with a bandwidth of radius = 5 h (see
Fig. 10). When several points are inside the “affection area” of one
point, the frequency for such pairing is higher and the area becomes
“darker”. The coefficients of third degree polynomial that relates D
and growth are shown on Table 7.

Our model has been validated by buoy data (see Figs. 13 and 14).
Figs. 13 and 14 are then contrasted with Figs. 11 and 12. The amount
of residuals present in our model is comparable to the one present
in the SIMAR database. Tp shows a poorer fit (see Figs. 13c and 14c).
The same poor fit is present in Figs. 11c and 12c. This behavior can
be explained because the wave-model (WAM and WAVEWATCH)
considers a priori a parametrized wave-spectra. Such spectra have

a predefined shape that does not necessarily represent the real sea
state (Alomar et al., 2014; Pallarés et al., 2014). The method of repre-
senting the wave-contingency with the principal directions seems to
be useful to represent the wave-contingency (see Fig 11g). Regard-
ing the SIMAR model, wave-directions from node N5 seems to differ
significantly from the records of the nearest buoy, which suggests
sensitivity of the wave-direction registry to the location of the node.
The predicted growth and decay suffer rotation from the perfect fit,
in the Q–Q plot, that is, central values are better fit than extreme ones
(see Figs. 13e, f, 14e and f). Nonetheless, this better fit of the cen-
tral values is also present for the node N5 in the SIMAR model (see
Fig. 11e and f). Ergo, the SIMAR E, Eu,p, Tp, D and h∗

p are well validated
by the buoy datasets (see Figs. 11 and 12).

Storms simulated from the statistical model developed herein
have been classified according to Tr (Eq. (17)), and represented in a
series of pie-charts along the coast. It can be observed, for example,
that E for a Tr of 5 years is mainly of the highest values at nodes N1
through N4 (except at Roses Bay, N3), whereas the more southern
coastal tracts present less E (see Fig. 15). Similar gradation occurs to
D (see Fig. 15d), whereas a milder one occurs to H∗

p (see Fig. 15b)
and none is observed in Tp (see Fig. 15c). In general, the same spatial
gradations are observed at each respective storm component for any
one of the Tr from 1 to 25 years.

6. Discussion

The discussion section will be divided into two parts: the first
one will discuss the results from the proposed methodology (Model

Table 3
Parameters of the GPD adjusted to each SIMAR node: location (l), scale (s), and shape (n). The E is the storm energy, Eu,p is the maximum unitary storm energy, Tp is the peak-
wave-period associated to H∗

p , and D is the storm duration. The h0 = 2.2 m is the wave height threshold. The Dmin = 6 h is the required minimum storm duration or duration
threshold. The Tmin = 8.17 s is the Tp threshold, obtained from CIIRC (2010).

GPD parameters

log E (l = Dmin • H2
0) log Eu,p (l = H2

0) log T (l = Tmin) log D (l = Dmin)

Node s n s n s n s n

N1 2.65 −0.54 1.01 −0.34 0.10 −0.00 1.94 −0.50
N2 2.57 −0.52 0.98 −0.32 0.10 −0.02 2.00 −0.57
N3 2.42 −0.72 0.71 −0.30 0.33 −0.79 1.91 −0.76
N4 2.32 −0.50 0.81 −0.24 0.15 −0.24 1.83 −0.54
N5 2.37 −0.48 0.91 −0.27 0.14 −0.23 1.86 −0.55
N6 2.27 −0.55 0.81 −0.24 0.17 −0.29 2.08 −0.76
N7 2.36 −0.63 0.81 −0.26 0.25 −0.53 1.88 −0.72
N8 2.54 −0.75 0.81 −0.27 0.28 −0.53 1.77 −0.68
C1 2.31 −0.68 0.79 −0.25 0.31 −0.59 1.43 −0.56
C2 2.32 −0.61 0.85 −0.24 0.29 −0.61 1.72 −0.62
C3 2.20 −0.62 0.83 −0.25 0.27 −0.48 2.02 −0.99
C4 2.21 −0.64 0.81 −0.22 0.26 −0.47 1.87 −0.90
C5 2.24 −0.63 0.82 −0.24 0.21 −0.34 1.90 −0.87
S1 2.07 −0.76 0.66 −0.22 0.16 −0.12 1.53 −0.75
S2 2.20 −0.68 0.76 −0.25 0.17 −0.21 1.99 −0.95
S3 2.23 −0.76 0.71 −0.25 0.14 −0.08 1.78 −0.86
S4 2.04 −0.74 0.67 −0.23 0.16 0.01 1.99 −1.09
S5 1.87 −0.61 0.64 −0.20 0.28 −0.48 1.50 −0.68
S6 1.87 −0.59 0.68 −0.23 0.24 −0.38 1.45 −0.62
S7 1.64 −0.49 0.65 −0.20 0.16 0.00 1.31 −0.65
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Table 4
Parameters of HACs. The selected copula type is Gumbel-HAC, and the aggregation method is “mean”. These parameters can be used to compare different locations.

Node Tree type h(E,D) h((E,D),Eu,p) hroot Node Tree type h(E,D) h((E,D),Eu,p) hroot

N1 A 1.16 2.15 4.44 C3 A 1.27 2.03 3.79
N2 A 1.22 2.23 4.47 C4 A 1.29 1.97 4.17
N3 A 1.14 1.87 4.89 C5 B 1.62 3.54
N4 A 1.27 2.10 4.54 S1 B 1.48 3.74
N5 A 1.45 2.10 4.66 S2 A 1.18 1.81 3.74
N6 B 1.67 4.08 S3 A 1.33 1.92 3.69
N7 B 1.58 3.90 S4 B 1.55 4.30
N8 A 1.43 1.98 3.92 S5 A 1.22 2.01 4.47
C1 A 1.23 1.94 3.95 S6 A 1.29 1.84 4.11
C2 A 1.23 2.03 4.36 S7 A 1.59 2.19 3.89

Building and Validation, in Fig. 2), whereas the second one will focus
on the Wave-storm-generator.

6.1. The statistical model

This paper has proposed a statistical model that feeds upon a
dataset from a wave-model (Section 3) which reproduces the main
processes within the study area (Lionello, 2012). The Mediterranean
Sea is characterized by local constraints, such as mountain chains
that funnel wind fluxes in a manner that limits the storm-pattern
modes (Sánchez-Arcilla et al., 2008b). The Balearic Islands also trig-
ger wave transformation-processes. At the south-most part of the
central sector, the beach shoreline orientation induces a shelter-
ing effect from northerly and easterly waves. It can be seen from
Fig. 5 that the north-most part of the central sector is not sheltered
from wave-storms. Strong forcings from the north and east direc-
tions cause the wind to exchange bursts of momentum with waves.
The north direction has shorter fetch, while the east direction has
different fetches depending on the location of the cyclo-genesis.

In a further consideration, the role of the sea level within a
storm, especially when dealing with its consequences, is undeniable.
Some authors (Masina et al., 2015) detected a considerable positive
correlation between the peak water level (PWL) and the Hs. However,
other authors (Mendoza et al., 2011) support the premise that the
sea water level is independent from the storm conditions. This paper
is based on the definition of storm-waves, therefore, it has focused
only on storm-wave components, neglecting the effects of the water
level.
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The perception threshold in the Catalan Sea is Hs = 2.0m (Hm0 ≈
2.1 m) (Bola nos and Sánchez-Arcilla, 2006; DGP, 1992) and is intro-
duced as an initial value in the iteration. The goodness-of-fit of
observations to exponential models yield residuals to be analyzed.
In the Q–Q plots present in Fig. 6a and e, as the threshold is low,
these residuals are large, meaning that the corresponding D∗ does
not belong to exponential distributions. When the threshold rises, as
observed in Fig. 6c, d, g, and h, the residuals are minimized.

Bernardara et al. (2014) discussed that a limitation to this rise
in threshold is the statistical significance in number of events over
the threshold. It is observed in Fig. 7a and b that it is not recom-
mended to go further than Hm0 = 3 m. Model validation has served
to refine the value to Hm0 = 2.2 m. This result intends to com-
plement Sánchez-Arcilla et al. (2008a), which proposed Hs = 2.0
m based on mean-excess plots and Kolmogorov–Smirnov goodness-
of-fit tests. The threshold Hm0 = 2.2 m is adequate because a) the
associated D∗ is close to be exponentially distributed, b) the thresh-
old falls in the linear part of the mean-excess-graphs, and c) the
resulting storms are statistically significant in number. Please note
that the fit to the exponential distribution is not perfect, so the
excess-over-threshold plot has been crucial in the selection of the
storm-threshold.

On the other hand, the sensitivity test on D∗ has shown that 12
h is the most adequate value, since 48 or 72 h leads to unrealistic
storms that differ from field observations. Once storms are defined,
it can be perceived that, in general, the northern Catalan coast is
stormier than the southern one (see Table 2). N3 behaves differently
as it is located inside the Creus Cape (see Fig. 5), which shelters the
area from cyclonic activity.

The validation of our model by the buoy records helps identify the
sources of residuals in our model. For instance, the lesser similarity
of Tp in our model to the buoy recorded Tp partly comes due to the
difficulties of modeling this parameter with state-of-the art wave-
models (Pallarés et al., 2014; WISE Group, 2007). Another possible
explanation is that, for a given Hm0, the Tp depends heavily on fetch
length and its origin. However, the influence of the Tp is not filtered
by the intensity threshold.

Residuals in the growth–decay rates come from two main
sources: physical and numerical. A physical source of residuals
appears as offshore and onshore winds show distinct growth–decay
rates, depending on remarkable differences in fetch extension. These
differences can be compensated by uneven wind intensities, but their
effect remains in the growth and decay rates.

The numerical residuals in the growth–decay rates come from
the third-grade polynomial, used to link growth–decay rates to D,
and from the SIMAR dataset. The limitations of SIMAR datasets in
representing growth–decay rates might be due to the fact that wave-
models usually introduce residuals when reproducing sharp gradi-
ents (Cavaleri, 2009; Sánchez-Arcilla et al., 2014). This limitation may
be partly alleviated with the novel terms for the wave-action-balance
equation (Zieger et al., 2015), that show better agreement with
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recent measurements. Also, at the study area, storm-wave patterns
can be affected by current intensifications originated in the joint
action of sustained winds from the NE–SE plus a shelf narrowing
effect (Mestres et al., 2016). Thus, coupling the wave-model with
a high resolution circulation model may improve the results. The
shortcoming of the third-degree polynomial is that it has difficulties
reflecting a link of the growth–decay rates for a D below 100 h, where
a dense cloud of values is present (see Fig. 10); further research
on the intra-time distribution module is on-going. Apart from these
issues, the statistical model reproduces the prominent features at
the study area, and the storm components show agreement with the
buoy records.

It can be inferred from the HAC results (see Table 4) that the
strongest dependent variables are logD and logE. This dependency

structure is consistent with physical observations, as the most endur-
ing storms are usually those which have higher hydrodynamic forc-
ings. It can be argued that, as E is integrated over D, the correlation
between them has to be the most prominent. The outcomes also
show that, despite some dependence that exists between Eu,p and
the E or the D, the dependence among Eu,p and (E, D) is weaker. This
behavior can be explained due to the point-based definition of Eu,p

that presents more variability than the integrated values of E and D,
that features lower variability. It can be observed how t(E,D) increases
northward (Fig. 8), implying more correlation between durations
and northern storm magnitudes. At nodes where type A trees are
prevalent, not only E, but also H∗

p is co-dependent on D.
Please regard that h∗

p is the direction of the storm-peak, and there-
fore represents the storm at its peak, rather than being a mean

Table 5
The wave directions at each node derive into pairs of (sin, cos). The set of sines and the set of cosines are characterized by seldom movM distributions. Means (l) of the movM
distributions are provided for each principal direction (PD).

Mean (l) [◦] Mean (l) [◦]

Node PD1 PD2 PD3 Node PD1 PD2

N1 344 84 C3 78 198
N2 353 76 C4 81 196
N3 73 353 C5 81 220
N4 11 78 S1 91 195
N5 15 76 S2 85 203
N6 23 88 S3 183 88
N7 74 33 205 S4 94 176
N8 81 200 S5 82 320
C1 84 198 S6 334 77
C2 70 205 S7 74 109
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Table 6
Coefficients of the multivariate logit function to predict h∗

p from logE, logEu,p , logT and logD. If there are three principal directions (PD), the function always uses the most principal
component as a reference and displays the prediction for the other components (see column “PD#”).

Node PD# Intercept alogE alog Eu,p alogT,1 alogT,2 alogT,3 alogD, , alogD,2 alogD,3

N1 2 −1.26 25.38 −63.57 92.02 14.70 −4.37 −21.49 −8.15 3.84
N2 2 −1.10 3.37 −45.61 78.22 13.03 −5.25 −7.70 −10.36 0.96
N3 2 −0.10 −21.12 0.05 −19.67 −0.31 3.74 25.05 −1.53 1.15
N4 2 −0.47 −11.27 5.63 15.35 4.40 −0.57 3.48 0.04 1.80
N5 2 −0.74 −4.10 −8.34 17.40 11.11 0.83 −1.63 −4.04 −1.53
N6 2 −0.34 28.49 −5.24 −0.10 7.76 −0.79 −21.77 −6.14 4.94
N7 2 −0.10 −61.42 17.76 −1.56 0.21 −3.80 45.05 0.46 −0.08
N7 3 −0.99 −63.15 23.87 −13.30 −9.98 −5.55 49.31 −3.11 0.66
N8 2 −1.66 −36.08 12.13 −6.08 −9.84 −8.40 25.42 −3.25 1.99
C1 2 −1.12 −36.46 12.11 1.74 −4.65 2.91 24.59 −1.72 −1.32
C2 2 −1.36 −35.21 13.17 −1.91 −8.35 −1.57 23.79 −5.83 −1.29
C3 2 −1.62 −37.34 12.22 7.13 −9.50 6.30 22.78 −2.36 −6.66
C4 2 −1.77 −6.53 5.34 0.69 −9.34 1.90 4.30 0.40 −3.56
C5 2 −0.19 −21.52 12.48 −16.53 2.32 −14.11 11.23 3.30 −6.14
S1 2 −1.22 21.23 −8.58 −3.61 4.73 −8.45 −16.31 −1.53 −4.63
S2 2 1.05 56.13 −22.29 −29.22 23.29 −10.70 −39.64 3.25 −0.43
S3 2 −1.80 −22.87 14.49 35.72 −29.01 9.78 18.48 3.96 7.55
S4 2 −2.75 26.24 −6.02 −4.28 −5.24 −5.97 −31.02 −13.96 −10.79
S5 2 4.01 40.45 −21.28 −64.86 43.36 −13.80 −35.83 −2.55 −2.51
S6 2 −3.65 −13.77 4.41 60.06 −31.89 15.36 26.01 8.89 9.07
S7 2 3.83 55.13 −17.94 −65.67 50.19 −25.26 −37.77 4.19 2.63

direction of the event. The East is one of the principal h∗
p, and

the main effective h∗
p at a great part of the Catalan coast. Waves

that blow northward from the Gulf of Lyon tend to veer counter-
clockwise and do not impact at the Catalan coast (Bola nos et al.,
2009). The coastline orientation (from N6 northward) is the reason,
as despite having more recorded storms at the SIMAR points, the
effective storms obtained with synthetic simulations were not as
significant in number than the other southern points. Due to larger
fetch, from N6 northward, northern h∗

p are dominating. From N7
southward, the southern waves gain importance. The buoy used to
validate either SIMAR or our data should be as close as possible to
the node in the model to validate, as h∗

p is considerably sensible to
location.

The intercept of the growth-rate is, generally, 0.46, as well as the
intercept of the decay-rate (see Table 7). Both growth- and decay-
rates are considerably independent of D for durations under 100
h. However, for D > 100 h, while the growth-rate becomes asymp-
totic to 0.8, the decay-rate becomes asymptotic to 0.2. That is, under
this condition of D, more durable storms tend to also present higher
growth-rates and lower decay-rates. Such large growth-rate and
small decay-rate contradict the common phenomenon. The high
Tr events recorded at the Catalan coast (November 2001, October
2003 and December 2008) are scarce, but reflect this sharp gradient
response, veered by the pulsative wind momentum.

Eqs. (17) and 18, of Tr, by being arithmetic and geometric aver-
ages, respectively, set physical constraints on each marginal variable.
This equalizes the marginal Tr of each variable to the total Tr of the
storm, as real maritime storms present such equivalence between
marginal and total Tr. For example, when the Tr of a storm is 10 years,
the storm should not have a Hm0 of Tr = 50 years and a D of Tr = 1
year. The Tr from Eq. (17), in particular, provides the best constraints
to the Tr of each integrating marginal storm component.

E and D can reach significantly large values with increasing Tr at
the North (see Fig. 15a and d). Eastern storms generated at the Lig-
urian Sea are the most energetic and lasting storms due to the fetch
distance (near 600 km). For Tr = 5 years (see Fig. 15 and the section
below), larger D can significantly affect E, as Hm0 appears to be more
spatially uniform along the Catalan coast.

6.2. Application

In order to visualize the potential of the methodology used, an
example of the characterization of storms for a Tr = 5 years is pre-
sented. The 5-year Tr has been selected because it is an extreme
condition in which a) SIMAR dataset has a representative num-
ber of samples and b) the order of magnitude of such category
has been analyzed in detail for the study area (Mendoza et al.,
2011; Sánchez-Arcilla et al., 2008b). As to provide suitable data for
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Fig. 10. Heat map of a) dimensionless growth-rate vs. D, and b) decay-rate vs. D, at node C3. Greater density is represented by darker blue color.
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Table 7
Parameters of the function f(D) = a0 + a1D + a2D2 + a3D3, where D is storm duration, and f(D) is either growth or decay-rate.

Growth rate Decay rate

a0 a1 a2 a3 a0 a1 a2 a3

N1 0.48 −0.52 0.10 −0.39 0.45 0.85 −0.29 0.51
N2 0.48 −0.48 0.25 −0.57 0.45 1.09 −0.56 0.78
N3 0.48 −0.46 0.24 −0.55 0.45 1.17 −0.62 0.81
N4 0.47 −0.45 0.40 −0.68 0.45 1.35 −0.91 1.07
N5 0.47 −0.52 0.61 −0.82 0.45 1.48 −1.11 1.21
N6 0.47 −0.58 0.67 −0.90 0.45 1.50 −1.15 1.30
N7 0.47 −0.50 0.61 −0.86 0.45 1.47 −1.13 1.31
N8 0.47 −0.47 0.62 −0.89 0.45 1.46 −1.13 1.33
C1 0.47 −0.45 0.61 −0.90 0.45 1.45 −1.12 1.34
C2 0.46 −0.47 0.64 −0.92 0.45 1.47 −1.15 1.36
C3 0.46 −0.47 0.65 −0.94 0.46 1.49 −1.18 1.40
C4 0.46 −0.47 0.65 −0.94 0.46 1.50 −1.19 1.41
C5 0.46 −0.51 0.69 −0.97 0.46 1.56 −1.24 1.46
S1 0.46 −0.52 0.70 −0.98 0.46 1.59 −1.27 1.48
S2 0.46 −0.53 0.71 −1.00 0.46 1.59 −1.27 1.49
S3 0.46 −0.52 0.71 −1.00 0.46 1.61 −1.29 1.52
S4 0.46 −0.52 0.72 −1.02 0.46 1.63 −1.31 1.53
S5 0.46 −0.55 0.75 −1.04 0.46 1.66 −1.33 1.54
S6 0.46 −0.60 0.79 −1.07 0.46 1.70 −1.35 1.55
S7 0.46 −0.61 0.80 −1.08 0.46 1.71 −1.35 1.53

elements on the coast, the land originated storms (non-effective
storms) are filtered from the set of synthetic storms. Note that, as
the principal directions at some nodes might be land-generated, the
number of effective storms decreases considerably after the filtering,
compared to other nodes.

Our model provides joint combinations of E, Eu,p, Tp, D, h∗
p and

growth–decay rates. The outcomes of the model can be exam-
ined at Fig. 15. The seven predicted variables are summarized in
pie-charts, the categories of which describe the differences and prin-
cipal patterns that appear on a particular node. One of the main
findings of this paper is that, rather than a single value that rep-
resents a particular category (i.e. a Tr) for a specific wave compo-
nent, a range of plausible values can be considered, instead. Note,
however, that within this plausible range, there may be various
intervals of disparate frequency (i.e. particular intervals shown in

the pie-charts). The seven variables are linked via statistical mod-
els and it appears that a wide range of possibilities satisfy the
clustering criteria. A description of the general study area is pro-
vided, whereas numeric outcomes are given for an example-node,
N5.

The Storm-intensity sub-model provides the first variables of
the synthetic storms generated by our model. Fig. 15b shows that
the H∗

p can range from 2.2 m (by definition) to over 8 m. The high-
est waves are located in the northern coast-sector, and decreases
southward, just as described in Section 5. mode

(
H∗

p

)
at node N5 is

(6, 7.5]m (mode(H1/3) = (5.7, 7.1]m). Fig. 15c shows that Tp is inde-
pendent from the location along the coast. The mode(Tp) at node
N5 is (11, 12.5]s. D presents a clear boundary at node C2: south-
ward of node C2, storms generally span 48 h (2 days) of duration
(see Fig. 15d). The mode(D) is >96 h. Fig. 15a shows a geographical

************** * * * * * *

*

100 400 700
0

1000

2000

3000

4000

Buoy E [m2

H
. E

 [m
2

p=0.96
***************

** * * *

*

6 8 10 140

20

40

60

80

100

Buoy Eu,p [m2]

H
.E

u,
p

[−
m

2 ]

p=0.58
*

* * * * * ****
*****

***
**

*

7.5 8.5 9.5 11.0

6

8

10

12

B. Tp [log−s]

H
.T

p
[lo

g−
s]

p=0.03

**********
**** * * * * *

*

*

20 60 100

50

100

150

B. D [hr]

H
. D

 [h
r]

p=0.95

*
**
***

* * * * **
***
**
**

*
*

0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

B. growth rate [Adim.]

H
. g

ro
w

th
 r

at
e 

[A
di

m
.]

p=0.18

*
**

***
**
***

* * * **
**
**
*

0.1 0.3 0.5 0.7
0.0

0.2

0.4

0.6

0.8

1.0

B. decay rate [Adim.]

H
. d

ec
ay

 r
at

e 
[A

di
m

.]

p=0.49

Probability distributions

N

E

(a) (b) (c)

(e) (f) (g)

(d)

Fig. 11. Q–Q plots of PdE-Palamos buoy vs. the SIMAR node N5. The x-axis is buoy data, and the y-axis is the hindcasted data (SIMAR). The orange lines in g) is the buoy h∗
p ,

whereas the purple line is the SIMAR h∗
p . The red straight line in the rest of the plots represents the perfect fit. “p” is the p-value, the higher it is, the better the fit.
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Fig. 12. Q–Q plots of PdE-Barcelona-II buoy vs. the SIMAR node C3. The graphs are represented with the same elements (e.g. line color) than for the PdE-Palamos buoy.

distribution that is clearly the result of a combination of the effects of
both Hm0 and D. The mode(E) at node N5 is <2000 m2 h. The above-
mentioned large values for mode (D) and mode (Et) are due to the
effects of the GPD extreme value functions and the Gumbel HAC,
and they surpass physical constraints to such storm components, so
the values of 96 h and 2000 m2 h are to be used for mean-D (D̄) and
mean-E (Ē), respectively. These values reinforce the existing idea that
storm magnitudes at the northern part of the coast are higher than
at the rest of the coast.

The Directionality sub-model specifies that the h∗
p along the Cata-

lan coast are mainly eastern directions (see Fig. 15e). At node N5, in
particular, the principal peak-wave direction is 76.27◦ (see Table 5);

this is the PC2 at node N5, but regard that PC1 is not an effective
wave-direction.

The Intra-time distribution sub-model reproduces higher growth-
rates than decay ones (see Fig. 15f and g). The exception is at the
Northern nodes, where longer fetches exist and thus, a wider variety
of wave ages can be found. The growth–decay rates are geographi-
cally uniform, although this is due to an above-mentioned limitation
of the SIMAR model and the Intra-time distribution sub-model. The
growth-rate to consider at node N5 is (0.5, 0.6], and the decay-rate
is (0.3, 0.4].

The results from our model are compared to the conventional
engineering approach, where, given a Tr and a location, a Hs is
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Fig. 13. Q–Q plots for the validation of the node N5 our model by the PdE-Palamos buoy data. The x-axis is the buoy data, and the y-axis is the model generated data. In Fig. g),
the blue line represents the model h∗

p and the orange line represents the buoy h∗
p . “p” is the p-value, the highest it is, the better the fit.
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Fig. 14. Q–Q plots for the validation of the node C3 our model by the PdE-Barcelona-II buoy data. Graphs are represented with exactly the same elements (e.g. line color) than for
the N5 case.

obtained, followed by the Tp. The conventional method presents the
following 90% confidence interval, for Tr = 5 years, Hs = (4.3, 5) m,
and Tp = (12.4, 12.8) s (CIIRC, 2010). The D is usually considered as
24 h in the Catalan Sea. The storm wave-height evolution is usually
modeled by an isosceles triangle where the height is the maximum
Hs. In this case, the conventional Ē is (491.7, 726)m2 h, and other
information such as incoming wave-direction can be obtained from
contingency tables in the literature.

The storms from our model are consistent with the values pro-
vided in Mendoza et al. (2011), Sánchez-Arcilla et al. (2008b). The Hs

and the Tp in our model are slightly larger than in the conventional
methodology, in this case, without significant physical implications.
Ē and D̄ from our model, although considerably larger, are possi-
bly more accurate than their classical counterparts, and the same
applies to the growth–decay rates. Also, D = 24 h is an average
duration, while D = (114, 168] h derives from the SIMAR dataset.
h∗

p is an extra information provided here and which is not so much
considered in the conventional approach. Most importantly, the con-
ventional methodology can hardly reflect the probable behavior of
the storm, mainly because it ignores the variable interactions and
feedbacks.

7. Conclusions

The statistical wave-storm model proposed is composed by
three sub-modules: a) Storm-intensity, b) Wave-directionality and
c) Intra-time distribution. In these sub-modules, waves have been
defined by a set of storm-components (E, Eu,p, Tp, D, h∗

p and growth–
decay rates), representing their nature in a more accurate manner.
Our model is well validated by buoy records, whereas main sources
of residuals are related to growth–decay rates.

Storms have been defined with a threshold of Hm0 = 2.2 m,
which has been obtained after testing on D∗, plus Hm0 excess-over-
threshold plots.

In the Intensity sub-model, the marginal distributions of each
variable are characterized by GPDs, whereas dependences among
the variables are represented by HACs. The best fitting HAC type
is Gumbel. It is observed that the strongest dependence may be
between E and D. Two HAC structures are observed along the
Catalan coast: type A and type B, depending on the degree of
semi-dependence between Eu,p and (E, D). The semi-dependence

parameter t(E,D) increases northward. Therefore, northern E and D
present more correlation.

Wave-directions are described via movM. The movM distribu-
tion is selected using a statistic from the Watson test as conver-
gence criteria. The principal peak-wave incoming-direction, h∗

p, at
N1 to N6 are, by decreasing order of importance, North and East;
whereas eastern and southern directions are predominant from N7
to S7.

The most appropriate model for wave-height evolution is the
irregular-trapezoidal model. On the other hand, the growth–decay
rates are related to the rest of the storm components through a poly-
nomial relationship with D. A mean behavior of D for D < 100 h is
reproduced by the model, although for greater D the model tends to
predict higher growth rates and lower decay rates.

One feature of our model is its ability to generate synthetic storm
conditions and to classify them by Tr; these storms are evaluated in
the form of pie-charts. In general, for a Tr of 5 years, storms at the
northern Catalan coast have greater E, D, and Hm0; while Tp are sim-
ilar to central or southern Catalan coasts. Also, the principal h∗

p is
eastern and the growth and decay rates approximate 0.55 and 0.35,
respectively.
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Fig. 15. Storm components predicted by the proposed model, for Tr of 5 years, and at each studied node: a) energy (E), b) maximum wave-height (H∗
p), c) peak-period (Tp), d)

duration (D), e) wave-direction at peak (h∗
p), f) growth-rate, and g) decay-rate. Pie-charts represent the frequency of a subset of intervals for each storm component.
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