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A B S T R A C T

This work analyses basic wave properties originating from the interaction between waves and submerged
rigid vegetation. First of all, an analytical framework is presented that describes the propagation and dis-
sipation of waves over a rigid and submerged canopy, where the flow resistance is linearised. A nonlinear
closure term is introduced to ensure that the work done by the linearised flow resistance equals that of the
nonlinear flow resistance. The anisotropic flow resistance is found to have an impact on both the distribu-
tion of velocities and pressure inside the canopy and it partly explains the small decrease in flow velocities
inside the canopy, which was previously observed experimentally.
The following second order wave properties are derived: the wave energy density, the wave energy flux, the
vegetated group velocity of the wave energy density, the radiation stress components parallel and perpen-
dicular to the direction of wave propagation, the Eulerian and Lagrangian Stokes velocities and fluxes. The
additional Stokes drift due to the discontinuity in the velocity field at the top of the vegetation is derived;
the inclusion of this mass flux in the Lagrangian formulation of the Stokes drift is important for the ratio
between the Lagrangian and Eulerian Stokes drifts.
The relation between the wave energy density and the wave energy flux, i.e. the vegetated group velocity
of the wave energy density, is of practical importance for large scale wave modelling. The modification to
the vegetated group velocity relative to that derived from linear wave theory on non-dissipative waves is
described. It is seen that the corrections to linear wave theory are of Hc , where c is in the interval 1.5–2.0.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This work was initially inspired by some previous research efforts.
First of all, Döbken (2015) showed with the help of a simple 1DV
numeric model (Uittenbogaard and Klopman, 2001; Dijkstra and Uit-
tenbogaard, 2010) that the vertical distribution of the Lagrangian
Stokes drift velocity in the presence of vegetation differs from that of
non-dissipative linear wave theory. The most prominent discrepancy
was the local maximum of the Stokes drift velocity adjacent to the
top of the canopy, which was caused by the local and large vertical
gradient in the horizontal velocity.

Furthermore, (Luhar et al., 2010; Van Rooijen et al., 2016) utilised
expressions for the Stokes drift in discussions of the mean flow
properties inside a canopy and for the numerical modelling of the
wave-induced mean setup inside the Generalised Lagrangian Mean
framework (Andrews and McIntyre, 1978). These works relied on a
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magnitude of the Stokes drift obtained from non-dissipative, linear
wave theory.

These combined research efforts led the author to ask the ques-
tions: (i) Is it possible to derive an analytical expression for the
Lagrangian Stokes drift that also has a local maximum around the top
of the canopy? (ii) Based on these results, can it be stated that the
Stokes drift is of the same magnitude with and without the presence
of vegetation? These questions will be answered in the following.

With an analytical solution at hand, it was straightforward to
extend the analysis to additional second order wave properties.
The derivation and application of an expression for the radiation
stress component in the direction of wave propagation was already
reported in Mendez et al. (1998), which is the reason that the focus
in the present work is given to the wave energy density, the wave
energy flux and the related vegetated group velocity.

Large scale numerical modelling of the interaction between
waves and vegetation is conducted over several decades (Dalrymple
et al., 1984; Mendez and Losada, 2004; Suzuki et al., 2011; Cao
et al., 2015; Van Rooijen et al., 2016). These works cover methods
such as the mild slope equations and the wave action equations with
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the common feature that the vegetated group velocity for the wave
energy density is set equal to the group velocity:

cg =
1
2

s

ka=1

(
1 +

2ka=1h
sinh 2ka=1h

)
(1)

where ka=1 is the wave number, s is the cyclic frequency and h
is the total water depth. The relationship between ka=1 and s is
given through the linear dispersion relation for a water depth of h
(see Eq. (20) below). a is defined below.

Gu and Wang (1991) saw that the general wave number over a
permeable sea bed with isotropic resistance differs from ka=1. Con-
sequently, it is natural to ask the following: Since the wave number
is a function of the resistance properties of vegetation or a perme-
able sea bed, will the transport of the wave energy density still be
conducted with the group velocity cg? This leads to related ques-
tions concerning the influence of the vegetation on the wave energy
density and the wave energy flux. These questions will be addressed
in the following.

It is noted that analytical solutions to wave propagation over per-
meable layers and vegetation were presented previously (Liu and
Dalrymple, 1984; Gu and Wang, 1991; Méndez et al., 1999, to name
some), but except for the brief outline in Mendez et al. (1998),
the second order (wave-averaged) wave properties do not seem to
have been given any attention. The same mathematical approach
was applied in the works mentioned above for both permeable bed
and vegetated fields. It means that the present work is not exclu-
sively limited to vegetated fields, but is also relevant for submerged,
permeable breakwaters or permeable natural reefs.

The outline of the present work is as follows. In Section 2 the
mathematical framework is presented and the handling of the dissi-
pation due to an anisotropic resistance term is described. A simple
validation against experimental data is presented in Section 2.5. In
Section 4 the vertical variation of velocities and pressure is discussed
along with an example of the phase lags between the horizontal
and vertical velocity components. In Section 5 expressions for the
wave energy density, wave energy flux and vegetated group velocity
are derived and quantified as functions of wave and canopy prop-
erties. The radiation stress components along and perpendicular to
the direction of wave propagation are presented in Section 6. The
horizontal Stokes drift is evaluated in both Eulerian and Lagrangian
frameworks in Section 7 and the vertical Stokes velocity at the free
surface is utilised to link the Eulerian and Lagrangian expressions.
The paper is finalised with a discussion and a conclusion.

2. Mathematical description

The local behaviour of a non-breaking wave field in a canopy con-
sisting of rigid, submerged vegetation is described in this section.
The term local means that effects of the finite length of the canopy
will not be covered here. A finite length was included in the work by
Méndez et al. (1999), and their solution resulted in an expression for
the degree of reflection due to the presence of the canopy (though
not explicitly analysed). This came with a considerable increase in
the complexity of the mathematical description, since evanescence
modes were required to match the solution at the ends of the canopy.
Consequently, the effects of reflected waves and evanescence modes
are omitted in this work. The omission of the evanescence modes are
acceptable, since they decay exponentially away from the ends of the
canopy (Méndez et al., 1999). The reflected wave is omitted in this
work, because the reflection coefficient is assumed small and only
second order properties in the wave height are analysed in this work.

Furthermore, boundary layer effects on top of the vegetation field
and at the bottom are assumed to be negligible in terms of the wave
dissipation. Consequently, these boundary layers will be excluded in
this mathematical treatment. Findings by Liu and Dalrymple (1984)

Fig. 1. Sketch of the physical problem of wave propagation and wave attenuation over
rigid, submerged vegetation.

for percolation in permeable beds showed that the dissipation due to
boundary layers is small in comparison to the dissipation by the per-
meable medium. This finding is also assumed to hold for dissipation
in a submerged canopy.

Rigid vegetation is not the only type of vegetation, but inclusion
of flexibility would greatly increase the complexity of the mathemat-
ical derivations. Furthermore, the concept of effective length of the
vegetation as discussed by Luhar and Nepf (2016) points in the direc-
tion of an engineering treatment of the vegetation as stiff elements.
The validity of the assumptions will be discussed in Section 8.1.

In the following a vector notation will be used for a matter of
compactness of the equations, while a scalar form is used in the sub-
sequent sections. Therefore, the two-dimensional velocity vector is
defined as u = [u; w] and the two-dimensional Cartesian coordinate
as x = [x; z]. Lowercase, bold symbols refer to vector properties and
uppercase, bold symbols refer to tensors properties of rank 2.

2.1. Definition of the mathematical framework

A sketch of the physical system is presented in Fig. 1. The math-
ematical derivation will loosely follow the ideas in Gu and Wang
(1991), Méndez et al. (1999). Only submerged vegetation will be
analysed in this work, consequently 0 < a.

The wave motion is described by the velocity potential V above
the canopy, where the velocity field is assumed irrotational and
incompressible, i.e. the solution to V is given by the Laplace
equation:

∇2V = 0 for − ah ≤ z ≤ 0 (2)

The velocity field above the canopy is given as u = ∇V.
The flow inside the canopy is described by the linearised momen-

tum equation based on filter velocities (see e.g. Jensen et al., 2014):

∂

∂t
u
n

= − 1
q

∇p − Cm
∂

∂t
u
n

− Bu‖u‖2

� − 1
q

∇p − Cm
∂

∂t
u
n

− Fu (3)

The second approximation is a linearisation of the nonlinear resis-
tance term as suggested by Sollitt and Cross (1972). The evaluation of
the real-valued friction tensor F is described in Section 2.3. In Eq. (3),
u is the Eulerian filter velocity vector, n is the porosity, t is time, q is
the uniform density of water, p is the pressure in excess of the hydro-
static, Cm is the added mass tensor and B is the resistance tensor for
the quadratic flow resistance. Assuming that u is periodic in time
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with the cyclic frequency s , the following (linearised) expression for
the pressure inside the canopy is obtained:

− 1
q

∇p =
[

1
n

(1 + Cm)s i + F
]

u = Ru (4)

Here, i =
√−1 is the complex number and R is the bulk resistance

tensor:

R =
[

rx 0
0 rz

]
(5)

The resistance tensors Cm and B are defined as

Cm = NA
[

cmx 0
0 cmz

]
and B =

1
2

Nd
[

cDx 0
0 cDz

]
(6)

Here, cmx, cmz, cDx and cDz are inertia and drag coefficients along the x
and z axes and they introduce a possible anisotropy to the resistance
term. N is the number of stems per square meters, A is the horizontal
cross section area of the stems and d is the stem diameter. In the
case of rigid (and vertical) vegetation it is reasonable to assume that
cmz � 0 and cDz � 0, i.e. |rz| < |rx|. Here | • | is the modulus operator on
a complex number. Different cross section geometry of the (vertically
uniform) vegetation can be introduced through the formulation of
Cm and B.

The use of the continuity equation (∇ • u = 0) on Eq. (4) results in
a partial differential equation for the in-canopy pressure field:

∇ • rxR−1∇p = 0 for − h ≤ z ≤ −ah (7)

The bottom boundary condition for p is that the bottom is imper-
meable, i.e.

1
q

∂p
∂z

= −rzw = 0 for z = −h (8)

The classical boundary conditions hold for the free surface:

g = − 1
g

∂V

∂t
for z = 0 (9)

∂V

∂z
= − 1

g
∂2V

∂t2
for z = 0 (10)

Here, g = H/2 exp (i (st − kx)) is the free surface elevation, where
H is the wave height at x = 0 and the wave number is complex:
k = kr + iki. The sub-indices r and i refer to the real and imaginary
parts respectively. The definition of the argument i (st − kx) means
that 0 < kr and ki ≤ 0 for a wave propagating along the positive
x-axis.

It is enforced that the vertical velocity matches at the interface
between the two regions:

− 1
qrz

∂p
∂z

=
∂V

∂z
for z = −ah (11)

Note that Méndez et al. (1999) introduced a scaling of porosity,
because they used the pore velocity field inside the canopy in their
derivations.

The second matching boundary condition is that the pressure is
continuous across the top of the vegetation:

p
q

= −∂V

∂t
for z = −ah (12)

This means there is no boundary condition that enforces a matching
of the horizontal velocity, thus a finite jump in the horizontal velocity
is to be expected. This is consistent with previous works on poten-
tial wave theory and it originates from the omission of the boundary
layer effects around the top of the vegetation (Liu and Dalrymple,
1984).

2.2. The solution

The shape of the solutions to the two regions are assumed as
follows:

V = [A cosh k(ah + z) + B sinh k(ah + z)] ei(st−kx) (13)

and

p
q

= D cosh j(h + z)ei(st−kx) (14)

A, B and D are coefficients, k is the wave number and j is a shape
function for the vertical variation of the pressure inside the canopy.
The argument k(ah+z) in Eq. (13) makes the derivation of the closure
coefficients easier than other choices of the argument, i.e. k(h + z)
(Gu and Wang, 1991). It is observed that Eq. (14) directly fulfills the
boundary condition in Eq. (8). Inserting Eq. (14) into Eq. (7) yields the
following relationship:

k2 =
rx

rz
j2 =

rxr∗
z

|rz|2 j
2 (15)

where it is noted that |j| ≤ |k| for the present application. The
equality holds in the special case of no vegetation or isotropic
resistance. ∗ denotes the complex conjugate.

Insertion of the assumed shape for V and p into the matching
conditions (Eqs. (11) and (12)) yields

A = i
cosh jh (1 − a)

s
D (16)

and

B = − 1
rz

j sinh jh (1 − a)
k

D (17)

The free surface boundary conditions yield an expression for D and
the modified dispersion relation in the presence of vegetation (see
also Gu and Wang, 1991, for the case of isotropic resistance). D is
given as

D =
gH
2

[
1 + s i

rz
j
k tanh jh (1 − a) tanhakh

]−1

cosh jh (1 − a) coshakh
(18)

The dispersion relation reads:

s2 − gk tanhakh

=
isj
rzk

tanh jh (1 − a)
[
gk − s2 tanhakh

]
(19)

In the limit of vanishing flow resistance (rx = rz = is) the dis-
persion relation Eq. (19) reduces to the linear dispersion relation:

s2 = gk tanh kh (20)

for any value of a.
The evaluation of the linearised resistance tensor F will be dis-

cussed in the following section, but it is worthwhile to note that F is
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based on a nonlinear matching of the work done by the vegetation
due to the two resistance terms Fu (linear) and Bu‖u‖2 (nonlinear).
This means that the magnitude of F, amongst others, becomes a func-
tion of the wave height, H. Consequently, the first order solution
to the wave propagation in a rigid, submerged canopy is amplitude
dispersive due to a nonlinear closure. Amplitude dispersion only
appears as a third order contribution in the classical Stokes per-
turbation solutions for non-dissipative waves (Madsen and Schäffer,
1998).

2.3. Equivalent resistance coefficient

The equivalent (real-valued) resistant coefficients in F = [ fx0; 0fz]
are defined such that the linearised work done on the vegetation
over one wave period is identical to the work done by the nonlinear
resistance formulation, see Sollitt and Cross (1972). This approach is
used as a standard approach for the analytical description of inter-
action between waves and permeable structures (Madsen, 1983;
Dalrymple et al., 1991) and also utilised in the analytical work for the
interaction between waves and vegetation fields (Asano et al., 1992;
Méndez et al., 1999).

Consequently, F is found from the following equality:

∫ −ah

−h
Re[u]T (BRe[u]‖Re[u]‖2)dz =

∫ −ah

−h
Re[u]T (FRe[u])dz (21)

Here, the overbar means period averaging.
Eq. (21) contains diagonal components fx and fz in F as unknowns,

but since the flow resistance in the vertical direction will be assumed
negligible ( fz = 0), the equivalent quadratic resistance coefficient in
the horizontal direction ( fx) is straightforward to evaluate through
an iterative solution procedure similar to the one outlined in Madsen
(1983).

Note that this closure introduces a higher order effect into the
solution, therefore the solution will be amplitude dispersive at low-
est order.

2.4. Definitions

A couple of definitions are introduced below to obtain simpler
expressions in the following sections; recall that the velocity vec-
tor is given as u = [u; w]. First, the primary variables above the
vegetation (−ah ≤ z ≤ 0) read:

u+ = U+eih

= −ik [A cosh k (ah + z) + B sinh k (ah + z)] eih (22)

w+ = W+eih

= k [A sinh k (ah + z) + B cosh k (ah + z)] eih (23)

p+ = P+eih

= −is [A cosh k (ah + z) + B sinh k (ah + z)] eih (24)

where h = st − kx. Inside the canopy the primary variables read:

u− = U−eih =
ik
rx

D cosh j (h + z)eih (25)

w− = W−eih = − j

rz
D sinh j (h + z)eih (26)

p− = P−eih = D cosh j (h + z)eih (27)

The sub-indices + and − will throughout the remainder of this text
refer to properties above or inside the canopy respectively. Omission
of the sub-index refers to both regions.

The integration over the vertical is needed to analyse the vari-
ous period averaged and depth integrated quantities. The following
integrals are defined above the canopy:

C1,+ =
∫ 0

−ah
cosh k(ah + z) cosh∗k(ah + z)dz

=
1

4krki
[kr sin 2kiah + ki sinh 2krah] (28)

Here, k = kr + iki and cosh∗ refers to the complex conjugate of
the cosine hyperbolic. Similarly three additional integrals are defined
above the canopy:

C2,+ =
∫ 0

−ah
sinh k(ah + z)sinh∗k(ah + z)dz

=
1

4krki
[ki sinh 2krah − kr sin 2kiah] (29)

C3,+ =
∫ 0

−ah
cosh k(ah + z)sinh∗k (ah + z)dz

=
1

4krki
[ki(cosh 2krah − 1) + ikr(cos 2kiah − 1)] (30)

C4,+ =
∫ 0

−ah
sinh k (ah + z )cosh∗k (ah + z)dz = C∗

3,+ (31)

Inside the canopy, the following two integrals are defined:

C1,− =
∫ −ah

−h
cosh j(h + z) cosh∗

j(h + z)dz

=
1

4jrji
[jr sin 2ji(1 − a)h + ji sinh 2jr(1 − a)h] (32)

C2,− =
∫ −ah

−h
sinh j(h + z) sinh∗

j(h + z)dz

=
1

4jrji
[ji sinh 2jr(1 − a)h − jr sin 2ji(1 − a)h] (33)

2.5. Basic validation

Sánchez-González et al. (2011) performed a large number of
experimental studies on the wave attenuation over a canopy that
represents the species Posidonia oceanica. The canopy was 9 m long
and had a vegetation density of 40,000 stems/m2. Each stem was 0.1
m long and the cross section measured 3 mm × 0.1 mm. This yielded
a porosity of 0.98 inside the canopy. In this basic validation four of
their tests with a water depth of 0.3 m and a regular wave period of
1.25 s are compared with the experimental results.

The resistance coefficients are set to cmx = cmz = cDz = 0. In
works with permeable, coastal structures the added mass coefficient
is typically written as (Van Gent, 1995):

cmx = c
1 − n

n
(34)

Here c = 0.34 was used. Therefore, cmx = 0.004; thus it can safely
be neglected. Further, it is estimated that the Keulegan–Carpenter
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Fig. 2. A comparison between the analytical model and the experimental data by
Sánchez-González et al. (2011). Full line: Including the correction factor of 1.7. Dashed
line: Without the correction factor.

number is in the order of 50 or larger, thus the forces on the
vegetation are drag-dominated (Sumer and Fredsøe, 1999).

The expression for the drag coefficient derived by Sánchez–
González et al. (2011) was used, which reads

c̃Dx =
22.9

KC1.09
where KC =

uaT
b

(35)

Here, KC is the Keulegan–Carpenter number, ua is the velocity at the
top of the canopy based on non-dissipative linear wave theory, and
b = 3.0 mm is the dimension of the vegetation. c̃Dx in Sánchez–
González et al. (2011) is derived based on linear wave theory without
the presence of vegetation, i.e. the velocities will be smaller with the
present theory and it must be expected that c̃Dx < cDx. In the present
case, a constant and ad-hoc scaling factor of 1.7 has been applied to
all four cases. Whether this scaling factor is generally applicable has
not been investigated.

The results are shown in Fig. 2 and it is seen that for all four wave
heights, the theoretical model reproduces the experimental data. It
should be noted that the decay is based on the wave properties at
x = 0 m, i.e. the effect of the gradual decay of the wave height, and
thus the rate of dissipation is not included.

The results without the correction factor of 1.7 are also included
in Fig. 2 as dashed lines. It is clearly observed that the drag coef-
ficients taken directly from Sánchez-González et al. (2011) are too
small for the present theory, where the reduction of the in-canopy
velocity is a part of the solution.

3. Common parameters in the numerical examples

Throughout the remainder of this work, cDx = 1.0 will be used for
simplicity in the numerical results together with cmx = cmz = cDz =
0. Furthermore, the rigid vegetation has a uniform cross section over
its length, and the cross section is assumed circular with a diame-
ter of d = 0.01 m. The number of stems are fixed to 0, 300, 900
and 1500. This equals to porosities of 1.000, 0.929, 0.976 and 0.882,
respectively.

The use of a constant drag coefficient irrespectively of the wave
height and period does not match the dependency of the KC-number
as found by e.g. Sánchez-González et al. (2011), but the results will
still show the correct qualitative behaviour.

4. Vertical variation of pressure and velocities

The vertical variation of the primitive variables u, w and p are
briefly described in this section through a plot of the magnitude of
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Fig. 3. Variation in the primitive variables as a function of the number of stems, N.
h = 1 m, H =0.2 m, a = 0.3, T = 7 s. All variables are depicted for x = 0. A: The
absolute value of the nondimensional horizontal velocity. B: The absolute value of the
nondimensional vertical velocity. C: The phase lags of the horizontal velocity with the
free surface (full line) and the vertical velocity with the free surface (dashed line). D:
The nondimensional pressure.

these variables: U, W and P. The velocities are made non-dimensional
with the velocities based on non-dissipative linear wave theory:

U0 =
pH
T

cosh ka=1h
sinh ka=1h

W0 =
H
2
s (36)

Here, ka=1 is the solution to the linear dispersion relation. The non-
dimensional pressure is given as (|P| − P0)/DP, where P0 and DP are
given as

P0 = qg
H
2

and DP = P0 − qg
H
2

1
cosh ka=1h

(37)

The phase lag between the velocity coefficients U and W and the
free surface is also depicted in Fig. 3, where the phase lags are defined
as follows:

vU = arctan
Im[U]
Re[U]

and vW = arctan
Im[W]
Re[W]

− p

2
(38)

Note that the phase lags of P relative to the free surface was also
computed, but not depicted, since it was less than 1◦.

The variation of the (filter) velocities are in line with the expec-
tations, namely that there is a reduction of the horizontal (filter)
velocity inside of the canopy. The increase in the horizontal veloc-
ity above the canopy follows from the shortening of the waves
with increasing density of the canopy. The vertical velocity simply
decreases from the free surface to vanish at the bottom.
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The pressure inside of the canopy increases with an increase of
the density of the canopy. This is explained by Eq. (15) and this
increase in pressure with increase in flow resistance can (partly)
explain the relative smaller reduction in the horizontal velocity
inside the canopy in the case of waves in comparison with pure cur-
rent, see Luhar et al. (2010). The physical explanation is that since
the vertical velocity only decreases a little with an increasing den-
sity of the canopy, the reduction in the horizontal velocity must be
small as well (due to the continuity equation). As a result, the pres-
sure must increase to overcome the additional flow resistance inside
of the canopy.

Finally, it is observed that the phase lags (Fig. 3C) are not zero as
soon as N > 0. vW = 0 at z = 0 due to the free surface boundary con-
dition, while vU is practically piecewise constant inside and above
the vegetation. Since |vU − vW| 	= 90◦ it holds that uw 	= 0. This
term represents a shear stress due to the organised orbital motion.
This term was already analysed previously for dissipation of wave
energy in boundary layers and due to wave breaking (Deigaard and
Fredsøe, 1989) and in the context of wave dissipation over canopies
in Luhar et al. (2010). This term will contribute to the vertical shear
stress distribution over the entire water column and it is currently
being analysed by the author.

5. Wave energy density and wave energy flux

Large scale spectral wave models like SWAN and XBeach solve for
the transformation of spectral wave energy under the influence of
sources and sinks such as wind, bottom friction, wave breaking and
vegetation (Suzuki et al., 2011; Van Rooijen et al., 2016). The spatial
change in the wave energy density – an transport equation for wave
action – relies on the relation

Ef = cf E (39)

where Ef is the wave energy flux, cf is a transport velocity and E is the
energy density in the wave (Holthuijsen, 2007)1 . The magnitude of
cf is the group velocity from non-dissipative linear wave theory (cg),
which is defined Eq. (1). The validity of having cf = cg for dissipa-
tive waves propagating over a canopy is analysed in this section. The
recent work by Cao et al. (2015), where dissipation due to vegetation
is included in the mild slope equations, also rely on the assumption
cf = cg.

The wave energy density is given as (Mei, 1999):

E =
∫ g

−h
qgzdz +

q

2n

∫ −ah

−h
Re[u]2 + Re[w]2dz

+
q

2

∫ g

−ah
Re[u]2 + Re[w]2dz

=Ep + Ek,− + Ek,+ (40)

Here, Ep is the potential wave energy density, and Ek,− and Ek,+ the
kinetic wave energy densities inside and above the canopy. The pres-
ence of 1/n in the second term is due to the influence of the porosity
on the kinetic energy inside the canopy. In this work, only submerged
vegetation is considered, thus 0 < a. Therefore, the potential wave
energy takes the classical form (Mei, 1999):

Ep =
∫ g

−h
qgzdz =

1
16

qgH2e2kix (41)

1 The methods actually solve for the transport of the quantity Es , but this is of no
importance in this context.

The contributions to the kinetic wave energy density is defined
as follows to ease the description of the remaining second order
quantities:

Ek = Ek,u− + Ek,w− + Ek,u+ + Ek,w+ (42)

Each of these terms are given as follows:

Ek,u− =
q

2n

∫ −ah

−h
Re[u]2dz = q

DD∗

4n
kk∗

rxr∗
x

C1−e2kix (43)

Ek,w− =
q

2n

∫ −ah

−h
Re[w]2dz = q

DD∗

4n
jj∗

rzr∗
z

C2−e2kix (44)

Ek,u+ =
q

2

∫ g

−ah
Re[u]2dz � q

2

∫ 0

−ah
Re[u]2dz

= q
kk∗

4
(
AA∗C1+ + BB∗C2+ + AB∗C3+ + A∗BC∗

3+
)

e2kix (45)

Ek,w+ =
q

2

∫ g

−ah
Re[w]2dz � q

2

∫ 0

−ah
Re[w]2dz

= q
kk∗

4
(
AA∗C2+ + BB∗C1+ + A∗BC3+ + AB∗C∗

3+
)

e2kix (46)

The wave induced energy flux to second order is given as (Mei,
1999):

Ef =
∫ 0

−h
Re[p]Re[u]dz (47)

In this case, the effect of the porosity cancels out and the energy flux
integrated over the entire water column is found as:

Ef =
2

kk∗ (skrEk,u+ − nIm [kr∗
x ] Ek,u−) (48)

In the limit of no vegetation and deep water it follows that

Ef = 2
s

kr
Ek,u+ =

1
2

cE = cgE (49)

since 4Ek,u+ = E in deep water and c = s/kr is the propagation
speed. It also holds that cg = c/2 in deep water. Thus the present
theory conforms with linear (non-dissipative) wave theory as exem-
plified by a comparison with deep water wave theory.

In this work, the vegetated group velocity of the wave energy
density will be given based on its dynamic definition (Mei, 1999):

cf =
Ef

E
(50)

The kinematic definition of the group velocity (Mei, 1999)

cd =
∂s

∂k
(51)

will also be addressed. An analytical solution for cd based on the
extended dispersion relation in Eq. (19) has not been found, because
the resistance coefficients rx, rz, j and the closure in Eq. (21) all
depend on s . As a result hereof, it has not been possible to iso-
late s . The derivative ∂s/∂k was evaluated numerically. Note that
cf = cd = cg in the limit of non-dissipative waves, i.e. ki = 0.
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Fig. 4. A: The variation in the total, normalised wave energy density as a function of
a and N. B: The ratio between the kinetic and potential energy as a function of a and
N. Increasing line thickness refers to an increasing wave height. Thin: H = 0.01 m.
Medium: H = 0.10 m. Thick: H = 0.20 m. h = 1.0 m and T = 4.0 s.

An alternative expression for cf can be obtained by analysing the
partial differential equation for the transport of the wave energy
density:

∂Ef

∂x
=

∂cf E
∂x

= −2nfxEk,u− (52)

The dissipation term on the right-hand side was obtained by insert-
ing the solution to the wave problem into the linearised part of Eq.
(21) and keeping fz = cDz = 0. Assuming that cf is locally constant,
the following expression is obtained:

cf = − nfxEk,u−
kiE

(53)

The numerical values for the two expressions of cf (Eqs. (50) and (53))
were found to be identical. Consequently, the wave energy flux can
also be written as

Ef = − nfx

ki
Ek,u− (54)

(under the assumption that fz = 0.) This expression can only be eval-
uated as long as ki < 0, i.e. in the presence of vegetation. It will,
however, be seen in the following that Ef has the finite limit from
classical non-dissipative linear wave theory as ki → 0.

5.1. Results

The variation in E/Ea=1 and Ek/Ep as a function of a, N and H is
depicted in Fig. 4. It is first of all seen that the wave energy den-
sity decreases with higher vegetation (decreasing a) for a fixed value
of H. Since the potential energy (see Eq. (41)) is constant, it means
that the kinetic energy decreases with higher vegetation; this is seen
from Fig. 4B, where the ratio between Ek and Ep is depicted.

Furthermore, the effect of the number of stems is also included
in Fig. 4. It is seen that the more dense the canopy, the larger the
difference between Ep and Ek. This is in contrast to the solution in
the absence of vegetation, where these two energies are identical; a
property that is retrieved for a = 1. It was noted in Philips (1980)
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Fig. 5. A: The variation in the total, normalised wave energy flux as a function of a
and N. B: The variation in the vegetated group velocity, cf , as a function of a and N.
The vegetated group velocity is defined in Eq. (50). Increasing line thickness refers to
increasing wave height. Thin: H = 0.01 m. Medium: H = 0.10 m. Thick: H = 0.20 m.
h = 1.0 m and T = 4.0 s.

that the equality Ep = Ek holds for “any conservative dynamical sys-
tem undergoing small oscillations”. In the present case, however, the
system is neither conservative nor undergoing small oscillations. The
latter due to the nonlinear closure term; see Section 2.3.

The variation in the energy flux, Ef/Ef,a=1, and the vegetated
group velocity, cf/cf,a=1 are depicted in Fig. 5 as a function of H, N
and a. It is observed that the energy flux decreases for an increasing
height of the vegetation; the quantity cf,a=1 is the same for all val-
ues of N and H. This means that a, N and H all have an effect on the
energy flux.

The variation of cf as a function of the wave period is depicted in
Fig. 6. Largely the same behaviour as observed in Fig. 5B is found here,
but there are additional observations. For the short wave periods of
1.0 s and 2.0 s, there are local maxima in cf, which are larger than
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Fig. 6. The relative vegetated group velocity (cf/cf,a=1) as a function of the
wave period, wave height, vegetation height and vegetation density. The arrows point
to the colour of a given wave period. h = 1.0 m. Full line: H = 0.1 m. Dashed line:
H = 0.2 m. A: N = 300 stems/m2. B: N = 1500 stems/m2.



64 N. Jacobsen / Coastal Engineering 117 (2016) 57–69

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

N = 0
N = 300
N = 900

N = 1500

, [-]

c
f
/c

δ,
c

f
/c

f, 
  =

1,
 [

-]
α

α
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the vegetated group velocity for no vegetation. This behaviour is
ascribed to the fact that the waves are in, or close to, deep water con-
ditions for T = 1.0 s and T = 2.0 s when a = 1. An increase in
the vegetation height is qualitatively identical to a decrease in the
water depth, which leads to shorter waves; see discussion regard-
ing the term “effective water depth” in Losada et al. (1997). It is well
known from classical linear wave theory that the group velocity has
a local maximum between deep and shallow water and this similar
effect is observed here with a change in the properties of the canopy.
A decrease of almost 15% is seen in cf relative to a = 1 is observed for
h = 1.0 m and H = 0.1 m in the shallow water limit; a discrepancy
that increases with an increasing wave height.

A comparison between the two definitions of the group velocity,
see Eqs. (50) and (51), is presented in Fig. 7 for T = 4 s and H = 0.1 m
in a water depth of h = 1.0 s. It is clearly seen that cf 	= cd. Con-
sequently, the wave energy density is not transported by the group
velocity as defined by the differentiation ∂s/∂k. In the case of N = 0
the solution cf = cg = cd is retrieved.

The dashed lines in Fig. 7 depicts the ratio cf/cf,a=1, thus it is seen
that the cd is practically equal to the group velocity as evaluated by
Eq. (1) up to a certain height of the vegetation; in this case a = 0.6.
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Fig. 8. The vertical variation in the vertical wave energy flux as a function of a and N.
Thin line: a = 0.3. Medium line: a = 0.6. Thick line: a = 0.9. In all cases, H = 0.1 m
and h = 1.0 m as in Fig. 3. A: T = 1.0 s. B: T = 7.0 s.

The vertical wave energy flux at any given level z is expressed as

Ef ,w = Re[p]Re[w] =
1
4

(PW∗ + P∗W) (55)

This quantity is plotted in nondimensional form in Fig. 8, where Ef,w
is made nondimensional with the total energy dissipation 2n fxEk,u−.
Fig. 8 shows that the energy is extracted from the entire water
column and dissipated inside the canopy (the kinks in Ef,w indicates
the top of the canopy). The larger the value of a, the larger the
ratio of the dissipated energy that originates from above the canopy,
while the remaining dissipated wave energy originates from inside
the canopy itself. It is also worthwhile to notice that while the values
of −Ef,w/(2n fxEk,u−) are almost constant for 300 to 1500 stems/m2,
the values of Ef,w varies by a factor of 2.5–4.0 between N = 300 and
N = 1500.

The results concerning the vertical wave energy flux are simi-
lar to the results by Deigaard and Fredsøe (1989), who found that
the wave energy extracted in wave boundary layers originate from
the entire water column. They found a triangular distribution of Ef,w
that vanished at the still water level; this shape was found, because
Deigaard and Fredsøe (1989) limited the analysis to shallow water
wave theory.

The present results describing an extraction of wave energy from
all over the water column are similar to the those of Deigaard and
Fredsøe (1989). Here, it was shown that the wave energy dissipated
in a wave boundary layer originated from the whole of the water
column.

The vertical energy flux is finite because p and w are not out of
phase in dissipative waves. In the case of no vegetation (and omis-
sion of dissipation in the wave boundary layer, Deigaard and Fredsøe,
1989), Ef,w = 0 is retrieved.

6. Radiation stress tensor

The radiation stress tensor in the presence of vegetation was
already derived in Mendez et al. (1998), but it is included in this work
for consistency. No results will be presented.

Following Longuet-Higgins and Stewart (1964), the mean pres-
sure below the trough level deviates from the hydrostatic pressure,
because of the organised vertical transport of vertical momentum.
Modifying the approach by Longuet-Higgins and Stewart (1964) to
account for the effect of porosity, the radiation stress component in
the direction of propagation, Sxx, is given as:

Sxx = Ep + 2 [Ek,u− + Ek,u+ − Ek,w− − Ek,w+] (56)

The transverse component does not include the effect of the horizon-
tal velocity component, so it reads:

Syy = Ep − 2 [Ek,w− + Ek,w+] (57)

where y is the horizontal coordinate perpendicular to the direction
of wave propagation. In the present case, where the orbital veloc-
ity along y is 0, the cross component of the radiation stress tensor
vanishes.

The gradients in the radiation stress tensor along the direction of
wave propagation are:

∂Sxx

∂x
= 2kiSxx and

∂Syy

∂x
= 2kiSyy (58)

Since ∂Sxx/∂x does not vanish, when ki < 0, there will be a mean
setup of the water surface to balance this force. This was already
studied in Mendez et al. (1998) and Dean and Bender (2006), though
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only Dean and Bender (2006) included the important term of the
mean force from the vegetation acting on the water column. This
contribution results in a reduction in the wave induced setup, which
has been studied both experimentally (Wu et al., 2011) and numeri-
cally (Van Rooijen et al., 2016).

7. Stokes drift

The Stokes drift is the additional mass flux due to the presence
of waves. The open orbital motion of the water particles is a conse-
quence of the Stokes drift, see e.g. Van Dyke (2005) for a visualisation.
In the following, both the vertical distribution of the drift velocity
and the resulting volume flux will be derived.

There are two classical approaches to obtain the magnitude of the
mass flux: the Eulerian and the Lagrangian approaches. While the
vertical distributions of the drift velocities differ between the two
approaches, the vertically integrated volume flux is identical in the
case of no vegetation (a = 1), see e.g. Fredsøe and Deigaard (1992).

The effect of submerged vegetation on the Stokes drift velocity
and volume flux will be analysed in this section. Both the Eule-
rian and Lagrangian approaches will be described. It will also be
addressed, whether the resulting expressions for the volume flux are
identical through two approaches to evaluate the vertical, Lagrangian
Stokes velocity at z = 0.

7.1. Eulerian Stokes drift

The Eulerian Stokes drift is derived based on the integral of the
horizontal velocities between the trough level and the instanta-
neous surface elevation, g (see e.g. Fredsøe and Deigaard, 1992). The
vertical distribution of the Eulerian drift velocity is given as

ūE =
1
T

∫ +k

−k
Re[U+|x=0, z=0] cos(st − krx)ekixdt

=
Re[U+|x=0, z=0]ekix

p

√
1 −

(
2z

Hekix

)2

(59)

Here, k = s−1 arccos(2z/(H exp kix)). Only the real part of U+

contributes to ūE, because the imaginary part is multiplied by
sin(st − krx), which is out of phase with g. The expression in Eq. (59)
is valid in the interval −H/2 exp kix ≤ z ≤ H/2 exp kix.

The vertical integration of ūE yields the Eulerian volume flux:

qE =
∫ H/2 exp kix

−H/2 exp kix
ūEdz =

H
4

Re[U+|x=0, z=0]e2kix (60)

The expressions in Eqs. (59) and (60) are practically identical with
those for waves propagating over a non-vegetated water column.
The Eulerian Stokes drift was already formulated by Mendez et al.
(1998) for a vegetated water column, though they did not discuss the
magnitude as a function of e.g. properties of the canopy.

7.2. Lagrangian Stokes drift

The Lagrangian Stokes drift is obtained by following the water
particles along their trajectories. A Taylor expansion of the trajec-
tory around a mid-point yields the following approximation of the
Lagrangian motion given in terms of Eulerian quantities (Philips,
1980):

ūL =
∂

∂x
Re[Ueih]

∫̄
Re[Ueih]dt

+
∂

∂z
Re[Ueih]

∫̄
Re[Weih]dt (61)

Philips (1980) furthermore notes that w̄L = 0 over the entire water
column for linear (non-dissipative) wave theory in an arbitrary water
depth. This property will be evaluated for the vegetated case in
Section 7.3.

The evaluation of Eq. (61) is trivial, but tedious, to derive, so the
expressions are merely stated here:

ūL,+ =
1
2c

[
U+U∗

+ + W+W∗
+

]
e2kix for − ah < z ≤ 0 (62)

above the canopy. c = s/kr. Inside the canopy the Stokes drift
velocity is given as:

ūL,− =
1
n

[
1
2c

U−U∗
− +

1
2s

Re
[

krz

rx

]
W−W∗

−
]

e2kix (63)

This holds for h ≤ z < −ah. The expressions are conceptually iden-
tical with the expressions for the non-vegetated case (see e.g. Mei,
1999).

Integration over the vertical yields the volume flux contributions.
Above the canopy this reads

qL,+ =
∫ 0

−ah
ūL,+dz =

1
q

2
c

(Ek,u+ + Ek,w+) (64)

Inside the canopy the volume flux is given as:

qL,− =
∫ −ah

−h
ūL,−dz =

1
q

(
2
c

Ek,u− +
2
s

Re
[

krz

rx

]
Ek,w−

)
(65)

The drift velocity at the interface, ūL,a , is undefined, because of
the discontinuity in the horizontal velocity at the top of the canopy,
see Fig. 3. The volume flux, however, can still be derived. First, the
horizontal pore velocities adjacent to the top of the canopy are
approximated by a step function:

ua = Uaeih

= eih ×
{

k/s cosh jh(1 − a)D , z = −ah − 4

ik/(nrx) cosh jh(1 − a)D , z = −ah + 4
(66)

where 4 is an infinitesimal, positive value. Consequently, the vertical
gradient of ua in terms of pore velocities can be defined as:

∂

∂z
Uae−ih = k

(
1
s

− i
nrx

)
cosh jh(1 − a)Deihd(z + ah) (67)

= DUaeihd(z + ah) (68)

Here, d(z + ah) is the Dirac delta function, i.e. the gradient is
essentially unknown, but the flux can still be defined as:

qL,a =
∫ −ah+4

−ah−4

∂

∂z
Re

[
Uaeih

] ∫
Re

[
Waeih

]
dtdz

=
i

4s
(DUaW∗

a − DU∗
aWa) (69)

where Wa = −j/rz sinh jh (1 − a)D is the vertical filter velocity
at z = −ah. It is not necessary to distinguish between filter and
pore velocities for the vertical velocity, because the correction with
porosity drops out during the integration over the vertical. If the cor-
rection for porosity was included, the integral in Eq. (69) should have
been divided into two parts: above and below the interface z = −ah.

Finally, the total Lagrangian mass flux is given as follows:

qL = qL,− + qL,a + qL,+ (70)
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At this point, it is difficult to judge, whether qE and qL are identical,
due to the complexity of qL. This equality will be analysed in the
following section.

7.3. Vertical Lagrangian Stokes velocity

The vertical component of the Stokes drift at the free surface
(z = 0) will be analysed in this section. Following Philips (1980), this
reads:

w̄L|z=0 =
∂

∂x
Re[W+eih]

∫̄
Re[U+eih]dt |z=0

+
∂

∂z
Re[W+eih]

∫̄
Re[W+eih]dt |z=0 (71)

Philips (1980) furthermore states that w̄L|z=0 = 0 for non-dissipative
waves propagating over a horizontal bed.

Utilising that the vertical velocity at the free surface is identical
to ∂g/∂t, it is straightforward to evaluate Eq. (71). The result reads:

w̄L|z=0 = −2ki
H
4

Re [U+|x=0,z=0] e2kix = −2kiqE (72)

Since the Eulerian velocity field fulfills the continuity equation,
the Lagrangian velocity field has to fulfill the continuity equation
on its own. The continuity equation for the Lagrangian velocity field
reads:

∂ ūL

∂x
+

∂w̄L

∂z
= 0 (73)

Solving for w̄L|z=0 leads to the following expression:

w̄L|z=0 = −
∫ g

−h

∂ ūL

∂x
dz � −2ki

∫ 0

−h
ūLdz = −2kiqL (74)

Both Eqs. (71) and (73) are based on a Lagrangian framework, so the
two expressions for w̄L|z=0 must necessarily be identical. As a con-
sequence hereof, the above analysis has shown that qE ≡ qL, even
though it is hard to discern from the mathematical expression of qL
and qE.

The vertical distribution of w̄L can be deduced from Eq. (74). w̄L

will be 0 at the bottom and increase in a monotone fashion to z =
−ah, where a discontinuity is present due to qL,a . Hereafter, w̄L will
again increase in a continuous and monotone fashion up to z = 0.

The fact that the drift velocity is finite at the surface suggests
that the volume of water needed for the initial build-up of the
wave-induced setup is (at least partly) obtained from the horizontal
gradient in the Stokes drift. This also means that the present work
only represents the initial stage of the interaction between waves
and vegetation, since additional processes are required to prevent
the water level from rising indefinitely. This will be discussed further
below.

7.4. Results

The vertical distribution of the horizontal Lagrangian Stokes
velocity, ūL, is depicted in Fig. 9 for various values of the vegetation
density and the wave period. The normalisation used in Fig. 9 is the
same as utilised in Fredsøe and Deigaard (1992). It is observed that
the discontinuity between the upper and lower part of the water col-
umn increases with the period. This is caused by the increase in the
orbital velocities at z = −ah for an increasing wave period (going
from deep to shallow water conditions with an increase in the wave
period). The magnitude of the Stokes drift (qE or qL) and the volume
flux qL,a are tabulated in Table 1 for the conditions in Fig. 9.
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The total Stokes drift (Lagrangian and Eulerian) is affected by
the vegetation in such a way that the Stokes drift increases with
increasing vegetation height (decreasing a) and decreasing ka=1h
(increasing wave period), see Fig. 10. This effect is more pronounced
in shallow waters. It is seen that qE becomes almost 15% larger for
given wave parameters (shallow water), when the non-vegetated
and the vegetated results were compared.

The resulting distribution of the Lagrangian drift velocities is
also depicted in Fig. 10. The ratios qL,+/qE, qL,−/qE and qL,a/qE are
depicted. The most remarkable observation is that the Stokes drift at
the interface can become as large as 10–20% of the total Stokes drift
in the shallow water limit. Again, this is most pronounced in shallow
waters. Nonetheless, this additional advection mechanism can have
an effect on the advection of both sediment and biological matter;
e.g. spores from the vegetation itself.

The value of w̄L|z=0 attained was as large as 3.5 mm/s for the
cases depicted in Fig. 10. A simple test with a wave height of H =
0.20 m gave a maximum value of 13.0 mm/s, which indicates that
w̄L|z=0 scales approximately with H2. The remaining contributions:
qE, qL,+, qL,a and qL,− also scale with H2.

Table 1
The total volume flux due to the Stokes drift (qE or qL) and the Lagrangian volume flux
at the interface (qL,a). The values corresponds to the conditions depicted in Fig. 9.

N = 0 N = 300 N = 900 N = 1500

T qE qL,a qE qL,a qE qL,a qE qL,a

s 103 • m3/m/s 103 • m3/m/s 103 • m3/m/s 103 • m3/m/s

2.0 18.8 0.00 19.0 0.03 19.4 0.18 19.9 0.38
3.0 16.9 0.00 17.1 0.09 17.8 0.55 18.6 0.99
5.0 16.1 0.00 16.4 0.28 17.7 1.32 18.9 1.94
7.0 15.9 0.00 16.4 0.53 18.2 1.92 19.7 2.48
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In the case of a closed flume, the return flow must balance the
Stokes drift in the steady-state situation, i.e. the gradient in the
volume flux due to the return flow must equal w̄L|z=0. The same must
hold for the steady-state solution for any wave–current interaction
over a canopy.

8. Discussion

8.1. Re-visiting the assumptions

A few of the assumptions will be further discussed in this section:
no wave breaking, no reflection from the shoreward end of the
canopy and rigid stems. The omission of wave breaking is not
considered to be a major problem, since the experimental data from
Wu et al. (2011) clearly showed that the dissipation due to vegeta-
tion is more prominent than wave breaking (the waves never became
steep enough inside the canopies). Wave breaking, however, can still
offer a considerable mechanical wear at the edge of the canopy.

The presence of reflection from the shoreward end of the canopy
was treated by Méndez et al. (1999), who considered the effect on
the surface elevation inside of the canopy. The forward propagat-
ing wave has a wave height of H as x = 0, which is a distance of k
from the shoreward end of the canopy. Assume that the reflection
coefficient R = O(0.1). The reflected wave height at x = 0 is then

HR = RHe2kik (75)

The influence of a reflected wave field on the radiation stress tensor
was previously derived in Jacobsen et al. (2015) in the context of
internal setup inside of a permeable revetment. They found that
the radiation stress tensor has an additional contribution from the
reflected wave (R2e4kikH2), but also a cross-term from the combined
forward propagating and reflected waves (Re2kikH2). This cross-term
does not vanish, because u2 is without directionality. This means

that a reflected wave will introduce a correction to the second-order
terms (energy density and radiation stress tensor). The magnitude of
this correction will depend on k and the resistance properties of the
canopy. The closer to the shoreward end, the larger the effect. The
resistance properties (N, d and a), on the other hand, will give rise
to a larger reflection for more dense canopies, but denser canopies
suggests an increase in |ki|, thus effectively reducing the effect of
reflected waves well inside the canopy with respect to the second
order terms. Consequently, assuming that R = O(0.1), the correction
factor will be even smaller.

Because of the directionality of the Stokes drift, it is easy to show
that the cross-term disappears, thus the Stokes drift will be corrected
by a factor (1 − R2e4kik), i.e. merely a few percentages.

Submerged, rigid vegetation is not often encountered in nature
(mangroves are typically emerged), however, the present theory can
also be used for submerged reefs or breakwaters. When it comes to
vegetation, then some laboratory data suggests the rigidity cannot
be defined in an absolute sense. The derivation of the concept of
effective length in Luhar and Nepf (2016) showed that even (weakly)
flexible stems were subject to identical forces and thus likely dissi-
pated an equal amount of wave energy. Consequently, rigidity could
be relaxed to a definition, where the vegetation is rigid enough
to dissipate an comparable amount of wave energy as fully rigid
stems. Due to the complexity and nonlinearity of motion of vegeta-
tion (Dijkstra and Uittenbogaard, 2010), an analytical model capable
of for instance addressing the energy flux inside of a canopy with
nonlinear deformation seems out of reach.

8.2. Shoaling and refraction

The results in relation to the vegetated group velocity (see Fig. 5)
and the non-equal splitting between Ek and Ep (see Fig. 4) lead
to some qualitative observations on the behaviour of a wave as it
propagates through a canopy.

First of all, the dominating feature in the canopy is the dissipation
of the wave energy. This means that for given canopy properties, the
vegetated group velocity will increase as H decreases; see Fig. 5. This
change in vegetated group velocity is similar to shoaling to a larger
water depth, i.e. the wave height decreases not only due to the dis-
sipation but also due to shoaling effects. This additional decay in the
wave height is further enhanced through the increase in Ek/Ep as H
decreases; see Fig. 4. Consequently, the smaller the wave height the
closer Ek/Ep is to 1, so energy must be transferred from Ep to Ek as
the dissipation takes place; this is an apparent dissipation of wave
energy. This shows that a part of the decay in the wave height is con-
servative: the decay in the wave height is not uniquely attributed
to dissipation. The transfer mechanism of the energy density from
potential to kinetic has not been identified.

One of the outcomes of this theory is that the wave length
becomes smaller with increasing flow resistance (see also Gu and
Wang, 1991), i.e. the propagation speed decreases with increasing
flow resistance. For a certain canopy, it also means that the waves
will propagate gradually faster, as the wave energy dissipates. Con-
sequently, spatial gradients in either the resistance of the canopy or
the wave height will lead to curving wave fronts, i.e. refraction. The
propagation speed, however, is smaller than outside of the canopy in
an equal depth, i.e. it is likely that the wave fronts will bend towards
edges of a canopy that are (initially) parallel to the direction of prop-
agation. Therefore, the refraction effect attracts the wave energy into
the canopy (see the surface elevation plot in Ma et al., 2013, their
figure 13).

On the lee side of the canopy, the wave resumes propagation
according to linear wave theory, i.e. Ek = Ep and cf = cg. This
means that a part of Ep will be transferred to Ek and this transfer
will be perceived as an additional dissipation across the lee edge of
the vegetation. In addition to this, the vegetated group velocity will
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further increase and this again causes an additional lowering of the
wave height due to a mechanism similar to shoaling into larger water
depths. The location of this conservative decrease in the wave height
is easiest to evaluate in physical model testing. It should be noted
that this effect will be hard to measure, if the reduction in wave
height over the canopy is large or there are large reflection from the
end of the laboratory flume.

Especially the inverse shoaling effects described in this section
can have an effect on the estimated resistance properties of a canopy
in laboratory and field experiments, since a decrease in wave height
is not uniquely due to dissipation of the energy.

8.3. Implication for practical engineering models

The newly derived expressions for cf and E have direct implica-
tions for practical engineering models, e.g. SWAN (Suzuki et al., 2011),
and the recent mild-slope formulation with the inclusion of dissipa-
tion due to vegetation (Cao et al., 2015).

First of all, the models rely on an assumption of an equal splitting
of the wave energy density into the kinetic and potential parts. It was
seen in Section 5 that Ek ≤ Ep, which means that

E =
1
b
qgH2 ≤ 1

8
qgH2 (76)

Here, the right hand side is the standard expression from non-
dissipative, linear wave theory. The resulting wave height is there-
fore found as

√
8E
qg

≤ H =

√
bE
qg

(77)

The consequence is that the wave height is underestimated, when
based on E. Adopting the value of Ek/Ep = 0.84 from Fig. 4, the
underestimation of H is found to be 5%.

The second consequence is that cf(h,s , E, rx(E), . . .) for a given
water depth and vegetation properties. This means that the trans-
port equation for the wave energy density with dissipation due to
vegetation should take this form:

∂cf (h,s , E, rx(E), . . .)E
∂x

= 4̄v(h,s , E, rx(E), . . .) (78)

Here, 4̄v is the dissipation due to vegetation. The right-hand side is
already treated in SWAN, because most of the source terms are non-
linear in the wave energy density (Suzuki et al., 2011). The transport
term, however, is problematic, because it requires a re-construction
of the linear sets of equations per non-linear iteration. A suggestion
to the numerical treatment of this added complexity is beyond the
scope of this work.

Many models still do a reasonable job without these effects
(e.g. Cao et al., 2015; Van Rooijen et al., 2016) and it is likely to be due
to the fact that the above mentioned processes are simply included
in the one calibration coefficient for the flow resistance (Mendez and
Losada, 2004; Sánchez-González et al., 2011). This could be defend-
able in practical engineering models, but the effect of the correction
to the transport equation (Eq. (78)) requires further investigation. In
addition to this, the magnitude of the correction term to amongst
others the vegetated group velocity and energy distribution between
Ek and Ep for irregular and directional spread waves should be inves-
tigated further. The latter since the correction terms could become
negligible for a sufficient large number of frequencies and directions
(small individual wave amplitudes).
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8.4. Reconstruction of the surface elevation

One way of obtaining the wave height is to measure the pressure
signal at a certain distance below the mean surface. The spectrum
of the measured pressure can be transferred to the spectrum of the
amplitudes based on linear wave theory (see Bishop and Donelan,
1987). While there are instrumental noise in field and laboratory
measurements, the current theory allows for a clean evaluation of
potential errors due to the presence of vegetation. The error 4H =
Hr/H − 1 is discussed in this section, where Hr is the reconstructed
wave height.

The error is plotted in Fig. 11 for two wave heights, four densi-
ties of the canopy and four water depths. The height of the canopy
is constant: a = 0.4. The largest discrepancies are for deep water
conditions and there is a consistent maximum in the error at the top
of the canopy. While the effect of the wave height is small in deep
water, the wave height becomes important in intermediate water
depths, because the resistance grows with the increasing wave-
induced velocities inside the canopy. The resulting errors, however,
are small for these water depths.

For short waves (i.e. deep water conditions), it is difficult to recon-
struct the wave height, because of instrumental noise (Bishop and
Donelan, 1987), consequently, a reconstruction error of some 4% is
small in comparison with the potential errors related to the large
transfer function and instrumental noise. This suggests that linear
wave theory can be applied to reconstruct the surface elevation
based on a measured pressure signal inside of a canopy.

These results also suggest that the presence of flexible vegeta-
tion will only have a limited effect on the reconstruction of the
free surface elevation. The difference between the present theory
and the one including flexible vegetation is that the vertical move-
ment of the vegetation will give rise to an additional lowering of
the dynamic, wave-induced pressure due to organised motion of the
flexible blades (similar to the second order effect on the pressure in
the derivation of the radiation stress tensor). The pressure reduction
due to organised motion of the blades is likely small in comparison
with the reduction due to the orbital motion of the water particles.
The effect is not quantified in this work.
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Note that the wave height can be estimated using orbital veloci-
ties (measured by an ADCP or other current meters). Inspecting the
velocity profiles shown in e.g. Fig. 3, it becomes clear that reconstruc-
tion of the surface elevation from a velocity profile will introduce
much larger errors than the errors originating from a reconstruction
based on a pressure signal.

8.5. Order of the solution

The behaviour of 1 − Ek/Ep and 1 − cf/cf,a=1 has been evaluated
as a function of the wave height. It was seen that these quantities
behave qualitatively as x • Hc , where c ∈ [1.5; 2.0] (for the present
parameter sets). The periods were chosen between 2.0 s and 10.0 s,
the wave heights up to 0.1 m, and the wave depth was 1.0 m. It was
found that for the short wave periods, c = 2.0, i.e. the correction
is a higher order effect, while c approached 1.5 as the wave periods
increased. It was also seen that c became smaller for an increasing
number of stems, where the range 300–1500 was tested. Surprisingly
enough, there was only a limited effect of a on c.

Consequently, the present theory offers correction terms to clas-
sical second order wave properties; the magnitude of the correct is
somewhere between first and second order in the wave height. The
correction to linear wave theory becomes more prominent for longer
waves and denser canopies.

9. Conclusion

The present work presents a description of the propagation of
waves in the interior of a submerged canopy with anisotropic flow
resistance; diffusion was neglected. The theory is based on the
assumptions that boundary layer effects on top of the canopy can
be neglected, that the waves are (almost) linear and there is no
wave breaking. Furthermore, it is assumed that the outer flow is
irrotational, while the inner flow is subject to friction.

The second order wave properties such as wave energy density,
wave energy flux, the corresponding vegetated group velocity, the
radiation stress tensor and the Eulerian and Lagrangian Stokes drifts
were derived.

It was shown that the vegetated group velocity does not equal
the classical group velocity from non-dissipative linear wave theory
and there is an non-equal splitting between the potential, Ep, and
kinetic, Ek, wave energy densities. Both of these properties have a
direct implication for the large scale modelling of waves in vegeta-
tion, since they can cause shoaling, refraction and conservative decay
in the wave height due to changes in the ratio Ek/Ep.

The derivations of the Stokes drift have shown that the Eulerian
and Lagrangian formulations are identical even in the presence of
vegetation, but it is important to include the Lagrangian flux at the
top of the canopy due to the discontinuity in the horizontal velocity.
The expressions are not easily comparable due to their complexity,
but through an evaluation of the finite Stokes velocity at the free sur-
face, it was seen that the horizontal Eulerian and Lagrangian volume
fluxes are identical. The Stokes drift increases in the presence of
vegetation.

The finite vertical Stokes drift must be balanced by a gradient in
the Eulerian, mean velocity field (return flow) in the limit of a steady
solution. It was hypothesised that the Stokes velocity is established
faster than the return flow, thus the vertical Stokes velocity is (partly)
responsible for the mass flux needed to establish the mean wave-
induced setup. This mean wave-induced setup is required to balance
the gradient in the radiation stress tensor.

Further validation of the theory is needed. The validation material
should preferably include data on (i) spatial variation in the surface
elevation and (ii) orbital velocities over the height of the canopy
for rigid stems. This will allow for a direct evaluation of the drag
coefficients in a reduced velocity field.
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