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A B S T R A C T

Recent studies suggest that the tsunami speed can be slowed down by around 1% due to Earth elastic-
ity, water compressibility and density stratification. Analytical solutions of wave dispersion relationship,
accounting for such effects, were found in previous studies. In this paper, we investigate the additional
effects of water viscosity, ocean stratification due to temperature/salinity and numerical dispersion. Theo-
retical solutions are derived and checked with known solutions. All the formulas are then simplified for long
tsunamis waves so that the propagation speed can be calculated explicitly. The simplified solutions are eval-
uated using realistic geophysical parameters. For a typical tsunami wavelength of ∼200km, the viscous effect
is found to be negligible; ocean stratification due to temperature/salinity causes significant speed reduction
because of the high density change rate, which has been ignored before. We also evaluate the numerical
dispersion of tsunami simulations, which is shown to be potentially comparable to physical dispersion.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

From recent large tsunami events it has been observed that
there exists a systematic delay of arrival time compared to the pre-
diction of shallow water wave equations (e.g., Rabinovich et al.,
2011; Wei et al., 2008; Hébert et al., 2009; Saito et al., 2010; Kato
et al., 2011; Fujii and Satake, 2013; Kimura et al., 2013; Watada
et al., 2014). Watada et al. (2014) summarized the observations and
showed that the discrepancy between observation and prediction,
which has the order of around 1%, can be explained by the effects
of Earth elasticity, water compressibility and geopotential variations.
Previous studies have led to the theoretical solutions accounting
for one or more of those effects. Mallard et al. (1977) studied the
problem of water waves propagating over an elastic bed, using a
model that consists of a single layer of incompressible potential fluid
over half-space homogeneous elastic earth. The dispersion relation
of the small amplitude water waves in such a model was given.
Dawson (1978) reviewed the problem but took into account the
solid inertia and suggested its importance for cases that include
thick soft sediment. Dalrymple and Liu (1978) studied the problem
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of viscous water waves propagating over a mud bottom using a
perturbation method, and derived the dispersion relation and the
decay rate of wave amplitude. Ward (1980) presented the theory
of tsunami generation and propagation on a spherically symmetric,
self-gravitating, elastic Earth in terms of normal modes. Okal (1982)
studied the asymptotic behavior of the gravity modes of an incom-
pressible spherical oceanic layer surrounding a rigid Earth, as its
radius goes to infinity. Okal showed that the flat-layered ocean
tsunami solution and its dispersion is an asymptotic limit of the nor-
mal modes of a spherical oceanic shell and that only one branch of
tsunami modes exists. Comer (1984) considered water waves in an
incompressible fluid within a uniform gravitational field overlying
an elastic earth in which the gravitational forces are ignored. Comer
concluded that elastic forces are far more important than inertia and
they also derived the dispersion relation for the water waves when
the Poisson’s ration of the Earth is 0.25. Panza et al. (2000) derived
solutions for a model with multi-layered compressible inviscid fluid
on top of a multi-layered solid half-space Earth, with the compress-
ibility of the fluid treated as elastic solid. Tsai et al. (2013) derived
theoretical tsunami propagation speeds accounting for Earth elastic-
ity and water compressibility and stratification based on a method of
conservation of potential and kinetic energy. Watada (2013) derived
the theoretical dispersion relationship accounting for water com-
pressibility and ocean stratification due to compression of gravity.
Allgeyer and Cummins (2014) conducted numerical simulations to
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investigate the effects of elastic Earth. Watada et al. (2014) investi-
gated the data from the 2010 Chilean and 2011 Tohoku tsunamis and
showed that the systematic arrival time delay could be explained by
the effects of Earth elasticity, water compressibility and geopotential
variations.

In this study, we use a method which is slightly different
from Watada (2013) to investigate additional secondary effects on
tsunami propagation speeds, i.e., the water viscosity and ocean strat-
ification due to temperature/salinity. For completeness the known
second order effects, such as the Earth elasticity and water com-
pressibility will be included in the solutions. In addition, we simplify
all the theoretical dispersion relationships under the assumption of
long waves so that the tsunami propagation speeds can be calcu-
lated explicitly. The simplifications are verified for typical tsunami
wavelength of 50–1000 km (or wave period 260–5000 s) using
realistic geophysical parameters. The relative importance of the sec-
ond order processes in affecting the tsunami propagation speeds
are assessed. Finally, the numerical dispersions of typical tsunami
simulating algorithms are evaluated and compared with the above
physical effects.

2. Governing equations and boundary conditions

We consider 2D problems in x and z, with x in the horizontal
direction to the right and z pointing upwards (Fig. 1).

2.1. Fluid

The linearized governing equations for compressible fluids are
derived from the complete Navier-Stokes equations by assuming
slight compressibility. They are written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Fig. 1. The 2D model: a tsunami wave g(x, t) is propagating over an elastic bed.
The z axis origins at the seabed and points upwards; the x axis is in the horizontal
direction. The ocean is assumed to be stratified with two layers, with the background
density and water depth denoted as (q01 , h1) and (q02 , h2), respectively. The total water
depth h = h1 + h2. The fluid is assumed to be viscous and slightly compressible, with
constant bulk modulus B and viscosity l f; Earth is elastic with Lamè constants ks and
ls . The constant gravitational acceleration is g.

where u(x, z, t) and w(x, z, t) are horizontal and vertical velocities,
sxz and szz are components of the stress tensor, l f is the fluid
viscosity and B is the bulk modulus of the fluid. The subscript f
of lf is omitted for simplicity. The subscript is used to distinguish
between the viscosity in the fluid l f and the shear modulus in the
solid ls only when necessary. The total pressure p is defined as
the sum of static pressure p0 and dynamic pressure p1 : p(x, z, t) =
p0 (z) + p1 (x, z, t); and the total density q is defined as the sum of the
background density q0 and density perturbation q1 due to pressure
change: q(x, z, t) = q0 (z) + q1 (x, z, t). It is required that dp0 (z)/dz =
−q0 (z)g.

Note that it has been assumed that the bulk modulus is constant
and that the fluid is only slightly compressible, i.e., q1 (x, z, t) � q0 (z)
and B = qdp/dq, so we have dq/dt = (q/B)dp/dt, which leads to, by
keeping only the leading order terms,

∂q1

∂t
=
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B
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B
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dz
w. (2)

The total stress tensor is expressed as
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(3)

where I is the identity tensor. The equations are similar to those
proposed by Watada (2009), but the shear stress components are
included in order to evaluate the viscous effects.

Adopting a plane wave solution in x direction, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(x, t) = A ei(kx−yt)
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szz(x, z, t) = ŝzz(z) ei(kx−yt),

(4)

where A, k and y are the constant wave amplitude, wave number and
angular frequency respectively. Substituting the assumed solution
(4) into the governing Eq. (1), we obtain a set of first order differential
equations:
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⎢⎢⎢⎢⎣
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ŵ(z) + i

4ly
3B

p̂1 (z),



46 C. An and P-F. Liu / Coastal Engineering 117 (2016) 44–56

where the third row of the coefficient matrix is
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The analytical solutions of Eq. (5) can be found generally by solv-
ing the eigen-system of the coefficient matrix. However, a full 4 × 4
matrix does not have an explicit solution of the eigen-system, so
in later sections we decouple the effects of viscosity, compressibil-
ity and background density change and obtain analytical solutions
accounting for those effects separately.

2.2. Solid

In the solid, the governing equations are

qÜ = ∇ • s, (7)

where q is the solid density, U(x, z, t) is the displacement vector
and s(x, z, t) is the stress tensor. The gravitational field is ignored.
Note that the density will be denoted as qf and qs for fluid and
solid density, respectively, when necessary. Assuming homogeneous
elastic properties in the solid region and adopting plane wave solu-
tions similar to Eq. (4), the governing equations in the solid can be
converted to a set of ODEs, which are then solved by solving the
eigen-system of coefficient matrix. The solutions in the solid are
found to be

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U(x, z, t) =
(
Ca v11 ek1z + Cc v31 ek3z

)
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)
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sxz(x, z, t) =
(
Ca v13 ek1z + Cc v33 ek3z

)
ei(kx−yt)

szz(x, z, t) =
(
Ca v14 ek1z + Cc v34 ek3z

)
ei(kx−yt),

(8)

where U(x, z, t) and W(x, z, t) are displacements in x and z direction,
Ca and Cc are constants to be determined from boundary conditions,
and k1,2,3,4 and v1,2,3,4 are the eigen solution of the coefficient matrix,
given by

k1,2 = ±k
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(10)

Here c is the tsunami wave phase speed defined as c = y/k, and a

and b are P and S wave speeds in the solid:

c =
y

k
, a =

√
k + 2l

q
, b =

√
l

q
. (11)

ks and ls, with the subscripts omitted for simplicity, are the Lamè
constants. Note that here we have applied the boundary condition
at z = −∞, which states U → 0 and W → 0, and therefore the
terms associated with the negative eigenvalues k2 and k4 vanish in
the solutions (8).

2.3. Boundary conditions

The boundary conditions on the free surface are:

z = h + g, fluid 1 :
∂g

∂t
+ u

∂g

∂x
= w, n • s = 0, (12)

where n is the normal direction of the free surface: n = (∂g/∂x, −1).
They are linearized to be (e.g., Mei, 1989, p. 10)

z = h, fluid 1 :

⎧⎪⎪⎨
⎪⎪⎩

∂g
∂t = w

sxz = 0

q0 gg − p1 + szz = 0.

(13)

Similarly, the linearized boundary conditions at the fluid-fluid inter-
face are

z = h2 :

⎧⎪⎪⎨
⎪⎪⎩

u|fluid 1 = u|fluid 2, w|fluid 1 = w|fluid 2

sxz|fluid 1 = sxz|fluid 2

−p1 + szz|fluid 1 = −p1 + szz|fluid 2.

(14)

The linearized boundary conditions at the fluid-solid interface are

z = 0 :

⎧⎪⎪⎨
⎪⎪⎩

u|fluid 2 = ∂U
∂t |solid , w|fluid 2 = ∂W

∂t |solid

sxz|fluid 2 = sxz|solid

−p1 + szz|fluid 2 = szz|solid .

(15)

Note that the static pressure p0 in the fluid is ignored in the balance of
stress due to the cancellation of the equivalent pressure in the solid.
The boundary conditions at z = −∞ are

z = −∞, solid: U = 0, W = 0, (16)

which have already been applied to obtain the solution (8) in the
solid.

3. Dispersion relationships

In this section, we first derive the analytical solutions in the fluid that separately account for the effects of Earth elasticity, water viscosity,
compressibility and ocean stratification due to compression and temperature/salinity. The solutions are generally found by solving the eigen-
system of coefficient matrix of Eq. (5) in the fluid. They are then applied to the boundary conditions along with the analytical solutions in the
solid. For each case, the number of boundary conditions is one more than the number of constants in the solutions, and the extra boundary con-
dition leads to the dispersion relationship. Thereafter, the theoretical dispersion relationships are approximated to be an explicit form under
the assumption of long waves. Note that the solutions for Earth elasticity, water compressibility and ocean stratification due to compression
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have been given by previous studies (Comer, 1984; Tsai et al., 2013; Watada, 2013). Here we re-derive them for completeness and show the
simplifications of the full dispersion relationships and associated assumptions.

3.1. Earth elasticity

By neglecting all other effects except for Earth elasticity, the fluid is inviscous (l = 0), incompressible (B = ∞) and the density is constant
over the entire region (q10 = q20 = q0 = const). The ODEs in the fluid (5) are simplified to

d
dz

[
ŵ(z)

p̂1 (z)

]
=

[
0 −i k2

q0y

iq0y 0

][
ŵ

p̂1

]
, (17)

and

⎧⎪⎪⎨
⎪⎪⎩

û(z) = k
q0y

p̂1 (z)

ŝxz = 0

ŝzz = 0.

(18)

By solving the eigen-system of the coefficient matrix, the solutions can be readily obtained. They are written in hyperbolic functions as
conventionally used in hydrodynamics:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u(x, z, t) = i (C1 cosh kz + C2 sinh kz) ei(kx−yt)

w(x, z, t) = (C1 sinh kz + C2 cosh kz) ei(kx−yt)

p1 (x, z, t) = i
q0y

k (C1 cosh kz + C2 sinh kz) ei(kx−yt)

sxz(x, z, t) = 0

szz(x, z, t) = 0,

(19)

where C1 and C2 are constants to be determined from boundary conditions. The static pressure in the fluid is simply p0 (z) = −q0 g(z − h),
derived from dp0/dz = −q0 g.

By neglecting water stratification, the boundary conditions at the fluid-fluid interface (14) are ignored; by neglecting water viscosity, the
horizontal velocity at the fluid-solid interface is not necessarily continuous. Substituting the solution in the fluid (19) and the solution in the
solid (8) into the boundary conditions at the free surface (13) and fluid-solid interface (15), given that g(x, t) = Aei(kx−yt), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sinh(kh) C1 + cosh(kh) C2 = −iyA

y cosh(kh) C1 + y sinh(kh) C2 = −i kg A

C2 + iyv12Ca + iyv32Cc = 0

v13Ca + v33Cc = 0

i q0yC1 + kv14Ca + kv34Cc = 0.

(20)

The first two equations are inhomogeneous and can be converted into a homogeneous one, resulting in a set of homogeneous equations for C1,
C2, Ca and Cb. Thereafter, to have non-trivial solutions, the determinant of the coefficient matrix has to be zero, which leads to the dispersion
relationship. After some manipulation, we obtain

c2 = c2
0 − F

(
c2

0 coth(kh) − c2 tanh(kh)
)

, (21)

where c0 is the standard dispersive wave speed and

c2
0 =

g
k

tanh(kh), F =
qf

qs

√
1 − na n2

b

4
√

1 − na

√
1 − nb − (2 − nb)2

,

na = c2/a2, nb = c2/b2. (22)

Again, a and b are the P and S wave speeds in the solid respectively, given by Eq. (11).
Eq. (21) can be solved numerically. Alternatively, it can be simplified under the assumption that the tsunami wave speed c is much smaller

than the seismic wave speeds in the solid, i.e., c2 � a2 and c2 � b2, or, na � 1 and nb � 1. Expanding F near na = 0 and nb = 0 and only
keeping the leading order terms, we find

F ≈ qf

2qs

(
1 − b2

a2

) c2

b2
, (23)
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where 0 ≤ na/nb ≤ 0.5. Thus, F is a small variable with order of the squared ratio of tsunami wave speed and P or S wave speed, and
the correction of the tsunami wave speed due to Earth elasticity has the same order. Substituting the simplified F into the full dispersion
relationship (21), we obtain a quadratic equation for c2. It is then solved analytically and simplified given that c2

0 � b2, leading to

c2 ≈
[

1
1 + ne coth(kh)

+
ne tanh(kh)

(1 + ne coth(kh))3

]
c2

0, (24)

where

ne =
qf

2qs

(
1 − b2

a2

) c2
0

b2
� 1. (25)

If we further assume that ne coth(kh) � 1, i.e.,

ne =
qf

2qs

(
1 − b2

a2

) c2
0

b2
� tanh(kh), (26)

the dispersion relationship can be simplified to

c ≈
⎡
⎣1 − coth(kh) − tanh(kh)

4
(

1 − b2

a2

) qf

qs

c2
0

b2

⎤
⎦ c0. (27)

Again, a and b are the P and S wave speeds in the solid, given by Eq. (11). The solution is the same as Comer’s (1984) analytical result obtained
by assuming k = l. Note that solution (27) requires that the squared ratio of tsunami and seismic speeds c2

0/b
2 should be much smaller than

the ratio of water depth and wavelength (kh) (26), which is stronger than the assumption (25) required by solution (24). Later we will verify
that, for typical tsunami wavelength around 50–1000 km (or wave period around 260–5000 s), solution (27) is a good approximation of the
full solution (21).

By taking the assumption of long waves, i.e., kh � 1, tanh(kh) ≈ kh and coth(kh) ≈ 1/kh, we can separate the effects of Earth elasticity and
wave dispersion, and solution (27) is revised to

c ≈
⎡
⎣1 − 1

4
(

1 − b2

a2

)
kh

qf

qs

gh
b2

⎤
⎦√

gh. (28)

This result shows that the reduction of tsunami propagation speeds increases approximately linearly with the wavelength, and the order of

the correction is around
c2

0
b2

1
kh .

3.2. Water viscosity

To evaluate the effect of water viscosity, we neglect water compressibility and density stratification. By taking B = ∞ and q0 = const ,
the ODEs in the water (5) are simplified to

d
dz

⎡
⎢⎢⎢⎢⎣

û(z)

ŵ(z)

p̂1 (z)

ŝxz(z)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 −ik 0 1
l

−ik 0 0 0
0 −(2k2l − iq0y) 0 −ik

2k2l − iq0y 0 ik 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

û

ŵ

p̂1

ŝxz

⎤
⎥⎥⎥⎥⎦ ,

and

ŝzz(z) = −i 2kl û(z).

Again, the solutions can be obtained by solving the eigen-system of the coefficient matrix, and they are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, z, t) = i
(

C1 cosh(kz) + C2 sinh(kz) + C3
k
k ek(z−h) − C4

k
k e−kz

)
ei(kx−yt)

w(x, z, t) =
(

C1 sinh(kz) + C2 cosh(kz) + C3 ek(z−h) + C4 e−kz
)
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p1 (x, z, t) = i q y
k (C1 cosh(kz) + C2 sinh(kz)) ei(kx−yt)

sxz(x, z, t) = i 2kl
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2k2 ek(z−h) + C4
k2+k2

2k2 e−kz
)

szz(x, z, t) = 2kl
(

C1 cosh(kz) + C2 sinh(kz) + C3
k
k ek(z−h) − C4

k
k e−kz

)
ei(kx−yt),

(29)
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where

k2 = k2 − i
q0y

l
, (30)

and C1, C2, C3 and C4 are constants to be determined from boundary conditions. The static pressure is simply p0 (z) = −q0 g(z − h). Note that
k here is a complex wavenumber. The solution is essentially the same as that obtained by Dalrymple and Liu (1978), who used a perturbation
method to investigate a two-layer model of viscous fluids.

By neglecting Earth elasticity, water compressibility and stratification, the boundary conditions at the fluid-fluid interface (14) are ignored;
the boundary conditions at the fluid-solid interface (15) are simplified to that the horizontal and vertical fluid velocities vanish. Substituting
the solution (29) into the boundary conditions at the free surface (13) and fluid-solid interface (15), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sinh(kh)C1 + cosh(kh)C2 + C3 + e−khC4 = −iyA

2k2 sinh(kh)C1 + 2k2 cosh(kh)C2 + (k2 + k2)C3 + (k2 + k2)e−khC4 = 0(
2k2l − i q0y

)
cosh(kh)C1 +

(
2k2l − i q0y

)
sinh(kh)C2 + 2kklC3 − 2kkle−khC4 = −kq0 gA

kC1 + ke−khC3 − kC4 = 0

C2 + e−khC3 + C4 = 0.

Eliminating the constants on the R.H.S., the equations can be converted into homogeneous ones. Seeking non-trivial solutions, the determinant
of the coefficient matrix has to be zero, which leads to

[
q0 gk2(k2 − k2)

] (
1 − e−2kh

)
cosh(kh) −

[
q0ky

2(k2 + k2) + 2ik2kly(3k2 + k2)
] (

1 + e−2kh
)

cosh(kh)

+
[
q0 ky2(k2 + k2) + 2ik3ly(k2 + 3k2)

] (
1 − e−2kh

)
sinh(kh) −

[
q0 gkk(k2 − k2)

] (
1 + e−2kh

)
sinh(kh)

+4k2ky
(

3ik2l + ik2l + q0y
)

e−kh = 0. (31)

We define

nv = k

√
l

q0

(gk)− 1
4 � 1, (32)

and further simplify the results by expanding the dispersion relationship near nv = 0. First,

k2 = k2 − i
q0y

l
= k2 − i

y√
gk n2

v

k2,

k =

√
k2 − i

q0y

l
= (1 − i)

k
√
y

√
2(gk)

1
4

1
nv

+ (1 + i)
k(gk)

1
4√

8y
nv + O

(
n3

v

)
.

(33)

So we have e−kh = 0 and e−2kh = 0 if keeping only the leading order small terms. Substituting k into the dispersion relationship and only
keeping the leading order terms, we obtain

y2 = gk tanh(kh) − (1 + i)

√
2

sinh(2kh) 4
√

tanh(kh)
gk tanh(kh) nv + O(n2

v), (34)

or written in phase speed:

c2 ≈
[

1 − (1 + i)

√
2

sinh(2kh) 4
√

tanh(kh)
k

√
l

q0

(gk)− 1
4

]
c2

0. (35)

The dispersion relationship (35) is complex, i.e., the imaginary part is not trivial compared to the real part, indicating that water viscosity not
only affects the wave speed but also damps the wave amplitude. The result is consistent with the simplified result obtained by Mei and Liu
(1973) who used a perturbation method to investigate the damping of waves in a channel. Under the assumption of long waves, i.e., kh � 1,
tanh(kh) ≈ kh and coth(kh) ≈ 1/kh, the effects of viscosity are separated from wave dispersion and solution (35) is revised to

c2 ≈
[

1 − (1 + i)
1√

2(kh)
5
4

k

√
l

q0

(gk)− 1
4

]
gh. (36)
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3.3. Water compressibility

If we only consider the effects of water compressibility, by taking l = 0 and q0 = const , the ODEs in the water (5) are simplified to

d
dz

[
ŵ(z)

p̂1 (z)

]
=

⎡
⎣ q0 g

B −i k2

q0y
+ iyB

iq0y + i
q2

0
g2

yB − q0 g
B

⎤
⎦[

ŵ

p̂1

]
, (37)

and

⎧⎪⎪⎨
⎪⎪⎩

û(z) = k
q0y

p̂1 (z)

ŝxz(z) = 0

ŝzz(z) = 0.

(38)

Similarly, we solve the eigen-system of the coefficient matrix and derive the solutions. They are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, z, t) = kd1
(
C1ekz + C2e−kz

)
ei(kx−yt)

w(x, z, t) = −i
[
C1

(
k +

q0 g
B

)
ekz + C2

(
−k +

q0 g
B

)
e−kz

]
ei(kx−yt)

p1 (x, z, t) = q0yd1
(
C1ekz + C2e−kz

)
ei(kx−yt)

sxz(x, z, t) = 0

szz(x, z, t) = 0,

(39)

where

k = k

√
d1 − q0

B
y2

k2
, d1 = 1 +

q0 g2

By2
, (40)

and C1 and C2 are constants to be determined from boundary conditions.
By neglecting Earth elasticity and water stratification, the boundary conditions at the fluid-fluid interface (14) are ignored; the boundary

conditions at the fluid-solid interface (15) are simplified to that the vertical fluid velocity vanishes. Substituting the solution (39) into the
boundary conditions at the free surface (13) and fluid-solid interface (15), we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1

(
k +

q0 g
B

)
ekh + C2

(
−k +

q0 g
B

)
e−kh = yA

C1ekh + C2e−kh = gA
yd1

C1

(
k +

q0 g
B

)
+ C2

(
−k +

q0 g
B

)
= 0.

(41)

Again, by eliminating the constants on the R.H.S. and converting the equations into homogeneous ones, the determinant of the coefficient
matrix must be zero, which leads to

c2 =
y2

k2
= g

tanh(kh)
k

, (42)

where k is given by Eq. (40). The result (42) is the same as Eqs. (26) and (10) derived from a propagator matrix method in Watada (2013).
The formula (42) is implicit in terms of phase speed, so the solution is only available from numerical approaches. Here we simplify it under

specific assumptions. First, we define

nc =
y2q0

k2B
=

c2

c2
s

� 1, (43)

and expand k near nc = 0:

k = k
√

d1 − nc = k
√

d1

(
1 − nc

2d1

)
+ O(n2

c ), (44)

where cs is the sound speed and c2
s = B/q0 . Substituting the expanded k into the full dispersion relationship (42) and keeping only the leading

order terms, we obtain

c2 ≈ g
k

tanh
(√

d1kh
)

√
d1

+
g

k 2d1

⎡
⎣ tanh

(√
d1kh

)
√

d1
− kh + kh

(
tanh(

√
d1kh)

)2

⎤
⎦ nc. (45)
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For long waves, if we further assume that

nd =
√

d1kh =

√
1 +

q0 g2

By2
kh � 1, (46)

by expanding Eq. (45) near nd = 0 and kh = 0 and keeping only the leading order terms, the dispersion relationship (45) is simplified to

c ≈
[

1 − q0 gh
6B

]
c0, (47)

where c2
0 = g/k tanh(kh). The simplification requires the condition of Eq. (46), which is essentially equivalent to Eq. (43) for long waves. It is

shown as follows:

nd =

√
(kh)2 +

(gh)2

c2
s c2

≈
√

(kh)2 +
c2

c2
s

, (48)

where we have used c2 ≈ gh for long waves. Later we will verify that the simplified solution (47) agrees well with the full solution (42) for
typical tsunami wavelength of 50–1000 km (or wave period 260–5000 s).

By taking c0 =
√

gh we can separate the effects of compressibility and wave dispersion, leading to the dispersion relationship accounting
for water compressibility only:

c ≈
[

1 − q0 gh
6B

] √
gh. (49)

3.4. Water stratification

In this section two kinds of ocean density stratification are evaluated: the increase of density due to compression of gravity and the ocean
stratification due to temperature/salinity. With water being compressible, the ocean density increases slightly and gradually with depth under
gravitational compression, and it is larger at the seabed than surface. In addition, the vertical ocean column is formed to two layers due to
temperature/salinity, with the less dense layer on top. The first kind has a larger absolute variation of density, while the second has a smaller
density change but a larger changing rate over a small depth. Previous studies have ignored the second kind. We will show that the effects of
the second kind on tsunami propagation speeds can be the same order as the first kind.

3.4.1. Density stratification due to compression of gravity
Considering a background water density q0 (z) but neglecting water viscosity (l = 0) and compressibility (B = ∞), the equations in the

water (5) are simplified to

d
dz

[
ŵ(z)

p̂1 (z)

]
=

⎡
⎣ 0 −i k2

q0y

iq0y + i g
y

dq0
dz 0

⎤
⎦ [

ŵ

p̂1

]
, (50)

and

⎧⎪⎪⎨
⎪⎪⎩

û(z) = k
q0y

p̂1 (z)

ŝxz(z) = 0

ŝzz(z) = 0.

(51)

In this situation, the coefficient matrix depends on z because q0 is a function of z. Hence we are not able to find the solution by simply solving
the eigen-system of the matrix as in the previous sections. By eliminating p̂1 , we obtain

d2ŵ
dz2

+
1
q0

dq0

dz
dŵ
dz

− k2
(

1 +
g
y2

1
q0

dq0

dz

)
ŵ = 0. (52)

This equation has simple analytical solutions when 1/q0 dq0/dz = const . Since the density variation in the ocean is very small in depth, the
following three density profiles are similar: (1) 1/q0 dq0/dz = −1/H = const ; (2) density profile under compression of gravity; (3) density
profile that increases linearly in depth. For those three profiles, q0 (z) is respectively expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q0 (z) = qb

(
qt
qb

) z
h = q̄

[
1 +

(
1
2 − z

h

)
Dq
q̄

+ O
(
Dq
q̄

)2
]

q0 (z) =
qb(

qb
qt

−1
)

z
h +1

= q̄

[
1 +

(
1
2 − z

h

)
Dq
q̄

+ O
(
Dq
q̄

)2
]

q0 (z) = − qb −qt
h z + qb = q̄

[
1 +

(
1
2 − z

h

)
Dq
q̄

+ O
(
Dq
q̄

)2
]

,

(53)
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where qb and qt are the fluid density at the bottom and top of the ocean, and

H =
h

log(qb/qt )
= h

q̄

Dq

[
1 + O

(
Dq

q

)2
]

,

B = gh
qbqt

qb − qt

= q̄gh
q̄

Dq

[
1 + O

(
Dq

q

)2
]

,

q̄ =
qb + qt

2
, Dq = qb − qt � q̄. (54)

Eq. (53) suggests that the three profiles are the same to the order of Dq/q̄, and the solutions for these three profiles are therefore expected to
be the same to the order of Dq/q̄. Taking the first density profile, i.e., 1/q0 dq0/dz = −1/H, the solutions in the fluid are found to be

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u(x, z, t) = i 1
k

(
C1k1ek1z + C2k2ek2z

)
ei(kx−yt)

w(x, z, t) =
(
C1ek1z + C2ek2z

)
ei(kx−yt)

p1 (x, z, t) = i
q0y

k2

(
C1k1ek1z + C2k2ek2z

)
ei(kx−yt)

sxz(x, z, t) = 0

szz(x, z, t) = 0,

(55)

where

k1 =
1

2H
+

√
k2 +

1
4H2

− gk2

y2H
, k2 =

1
2H

−
√

k2 +
1

4H2
− gk2

y2H
, (56)

and C1 and C2 are constants to be determined from boundary conditions.
By neglecting Earth elasticity, water viscosity and multiple layers in the fluid, the boundary conditions at the fluid-fluid interface (14) are

ignored; the boundary conditions at the fluid-solid interface (15) are simplified to that the vertical fluid velocity vanishes. Substituting the
solution (55) into the boundary conditions at the free surface (13) and fluid-solid interface (15), we obtain

⎧⎪⎪⎨
⎪⎪⎩

C1ek1h + C2ek2h = −iyA

C1k1ek1h + C2k2ek2h = −i gAk2

y

C1 + C2 = 0,

(57)

Eliminating the constants in the first two equations and converting the system into homogeneous equations, the determinant of the coefficient
matrix has to be zero, leading to:

c2 =
y2

k2
= g

tanh(kh)

k + 1
2H tanh(kh)

, (58)

where

k =

√
k2 +

1
4H2

− gk2

y2H
. (59)

The result (58) is the same as Eqs. (25) and (10) by Watada (2013). Note that there are c2 terms on the R.H.S. of Eq. (25) of Watada (2013).
To simplify the full dispersion relationship (58), we assume

ns =
h
H

� 1, (60)

which can be justified by H ≈ B/q̄g ≈ 200 km 
 h (Eq. (54), taking B ≈ 2 × 109Pa, q̄ ≈ 1 × 103 kg/m3 and g ≈ 10 ms/2). According to Eq. (54),
ns is also determined to be the same as Dq/q̄ to the leading order. By substituting y2 ≈ ghk2 for long waves, it is found that

(kh)2 = k2h2 +
h2

4H2
− gk2h2

y2H
≈ k2h2 +

n2
s

4
− ns � 1. (61)

Therefore the full dispersion relationship (58) is expanded near kh = 0 and then near ns = 0 to have

c2 ≈
[

gh − 1
3

(gh)(kh)2
]

−
(

1
2

− ghk2

3y2

)
(gh)ns, (62)
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where the crossing terms of kh and ns are neglected. Substituting y2 = ghk2 to the right hand side by neglecting small order crossing terms,
we obtain

c ≈
[

1 − 1
12

h
H

]
c0, (63)

where c2
0 = g/k tanh(kh). Replacing H in Eq. (63) with q̄ and Dq from Eq. (54), Eq. (63) can be written in terms of bulk modulus or fluid density

as follows:

c ≈
[

1 − 1
12

h
H

]
c0 ≈

[
1 − 1

12
q̄gh

B

]
c0 ≈

[
1 − 1

12
Dq

q̄

]
c0. (64)

By taking c0 =
√

gh we can separate the effects of stratification and wave dispersion, leading to the dispersion relationship accounting for
water stratification only:

c ≈
[

1 − 1
12

h
H

] √
gh ≈

[
1 − 1

12
q̄gh

B

] √
gh ≈

[
1 − 1

12
Dq

q̄

] √
gh. (65)

3.4.2. Density stratification due to temperature/salinity
For this kind of density stratification, the model consists of two layers of fluid, but water viscosity, compressibility and density stratification

are ignored in each layer. The solutions (19) are applied to the boundary conditions (13–15)to derive the dispersion relationship. By neglecting
Earth elasticity, water viscosity, compressibility and background density change, the boundary conditions at the fluid-fluid interface (14) do
not include the continuity of horizontal velocity; the boundary conditions at the fluid-solid interface (15) are simplified to that the vertical
fluid velocity vanishes. Substituting the solution (19) into the boundary conditions (13–15), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sinh(kh)C1 + cosh(kh)C2 = −iyA

y cosh(kh)C1 + y sinh(kh)C2 = −ikgA

q1 cosh(kh2)C1 + q1 sinh(kh2)C2 − q2 cosh(kh2)C′
1 − q2 sinh(kh2)C′

2 = 0

sinh(kh2)C1 + cosh(kh2)C2 − sinh(kh2)C′
1 − cosh(kh2)C′

2 = 0

C′
2 = 0,

(66)

(a)

(c)

(b)

(d)

Fig. 2. Verification of the simplified dispersion relationships: (a) Earth elasticity; (b) water compressibility; (c) density stratification due to compression; (d) density stratification
due to temperature/salinity. Note that all the speeds include the effects of dispersion, so the difference between the blue or red curves and the black curves is the correction
and the difference between the blue and red curves is the error caused by simplification. For instance, the black curve in (a) gives the propagation speeds of dispersive tsunami
waves, the blue curve shows the speeds of such waves under the effects of Earth elasticity, and the red curve denotes the simplified formula to calculate the blue. The error of
simplification is so small that the red curves overlap with the blue ones. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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where h = h1 + h2, C1 and C2 are coefficients for fluid 1, C′
1 and C′

2 are coefficients for fluid 2. Eliminating the constants in the first two
equations and converting the system into homogeneous equations, the determinant of the coefficient matrix has to be zero, leading to:

c2 =
y2

k2
= =

g
k

tanh(kh1) +
q1
q2

tanh(kh2)

1 +
q1
q2

tanh(kh1) tanh(kh2)
. (67)

The result can be verified by letting q1 = q2 , which leads to y2 = gktanh(k(h1 + h2)).
Assuming that the density difference is very small, i.e.,

Dq

q̄
= 2

q2 − q1

q2 + q1

� 1, (68)

by expanding the dispersion relationship near Dq/q̄ = 0 and only keeping the leading order terms, the dispersion relationship is simplified to

c ≈
[

1 − Dq

2q̄
sinh(2kh2)
sinh(2kh)

]
c0, (69)

where c2
0 = g/k tanh(k(h1 + h2)) = g/k tanh(kh).

Taking c0 =
√

gh, we obtain the dispersion relationship accounting for density stratification due to temperature/salinity:

c ≈
[

1 − Dq h2

2q̄ h

]√
gh. (70)

The density change Dq of such stratifications is normally smaller than that of stratifications due to compression of gravity, but the coefficient of
the correction term is larger (1/2 in Eq. (70) and 1/12 in Eq. (65)). Therefore it is expected that such stratifications can slow down the tsunami
waves by the same order.

4. Verification of the simplifications

In this section we verify the simplifications of the dispersion
relationships, that is, (a) the full dispersion relationship account-
ing for Earth elasticity (21) and the simplified formula (27); (b)
the full dispersion relationship accounting for water compressibility
(42) and the simplified formula (47); (c) the full dispersion relation-
ship accounting for density stratification due to compression (58)
and the simplified formula (64); (d) the full dispersion relationship
accounting for density stratification due to temperature/salinity (67)
and the simplified formula (69). The viscous effects are very small
for tsunami waves and the verification for its simplified dispersion
relationship (35) is omitted.

The geophysical parameters adopted are as follows: water depth
h = 4000 m, water density q0 = qt = 1025 kg/m3, water viscosity
lf = 1.0 × 10−3 Pa s, water bulk modulus B = 2.2 GPa, solid den-
sity qs = 3500 kg/m3, Earth Poisson’s ratio ms = 0.25, Earth shear
modulus ls = 50 GPa, water stratification h1 = 1000 m, h2 =
3000 m, Dq = 3.0 kg/m3, q1 = q0 , q2 = q2 + Dq and constant
gravity acceleration of g = 9.8 m/s2.

The full dispersion relationships are solved using the Newton’s
iteration method, and we vary the initial guess in the range of c0 ±
20 m/s to ensure that the solution is independent of the initial guess.
The results are plotted along with the simplified results in Fig. 2.
It shows that, for typical tsunami wavelength of 50–1000 km (or
wave period 260–5000 s, the error between the full and simplified
solutions is negligible compared to the correction itself. Thus, the
simplified solution is a very good approximate of the full.

5. Numerical dispersion and relative importance of secondary
effects

When simulating tsunami waves, numerical dispersion is ine-
vitably introduced. The shallow water wave equations are written as
(Cho, 1995)

⎧⎪⎪⎨
⎪⎪⎩

∂g
∂t + ∂P

∂x + ∂Q
∂y = 0

∂P
∂t + gh ∂g

∂x = 0
∂Q
∂t + gh ∂g

∂y = 0,

(71)

where g(x, y, t) is the water elevation, P(x, y, t) and Q(x, y, t) are the
horizontal fluxes. As an example, the leap-frog numerical method
can be used to solve the equations using the following scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
n+1/2
i,j −g

n−1/2
i,j

Dt +
Pn

i+1/2,j−Pn
i−1/2,j

Dx +
Qn

i,j+1/2−Qn
i,j−1/2

Dy = 0

Pn+1
i+1/2,j−Pn

i+1/2,j
Dt + gh

g
n+1/2
i+1,j −g

n+1/2
i,j

Dx + cgh
12Dx

+
[(

g
n+1/2
i+1,j+1 − 2gn+1/2

i+1,j +g
n+1/2
i+1,j−1

)
−

(
g

n+1/2
i,j+1 −2gn+1/2

i,j +g
n+1/2
i,j−1

)]
=0

Qn+1
i,j+1/2−Qn

i,j+1/2
Dt + gh

g
n+1/2
i,j+1 −g

n+1/2
i,j

Dy + cgh
12Dy

+
[(

g
n+1/2
i+1,j+1 − 2gn+1/2

i,j+1 +g
n+1/2
i−1,j+1

)
−

(
g

n+1/2
i+1,j −2gn+1/2

i,j +g
n+1/2
i−1,j

)]
=0,

(72)
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Fig. 3. Speed reduction and percentage due to secondary effects and numerical dispersion. In the top panel, the tsunami speeds in shallow water (
√

gh) and under effects of wave
dispersion (

√
g/k tanh(kh),), Earth elasticity (Eq. (28)), water viscosity (Eq. (36)), water compressibility (Eq. (49)), water density change due to gravitational compression (Eq. (65)),

ocean stratification due to temperature/salinity (Eq. (70)) and numerical dispersion (Eq. (74)) are plotted. In the bottom panel, the percentage of speed reduction under such
effects with respect to the shallow water wave speed

√
gh is plotted. The effect of water viscosity on speed reduction is minor and it is hardly seen from the plot. The numerical

dispersion is close to the physical dispersion when the spatial grid size is 5 arc min.

where the superscripts denote the time step, the subscripts show the
spatial grids, Dt is the time step, Dx and Dy are the spatial grid size
and c is a constant parameter. The scheme is the same as used by
Cho (1995) if c = 1 and the same as Imamura and Goto (1988) if
c = 0. Taking c = 1 and Dx = Dy, the modified equation associ-
ated with the numerical scheme can be obtained after lengthy but
straightforward algebra (Cho, 1995):

∂2g

∂t2
− gh

(
∂2g

∂x2
+

∂2g

∂y2

)
− gh

Dx2

12

(
1 − ghDt2

Dx2

)

×
(

∂4g

∂x4
+ 2

∂4g

∂x2∂y2
+

∂4g

∂y4

)
= O(Dx3 . . .). (73)

The first two terms in the equation are the exact shallow water
wave equations, and the third term is the dispersive term induced by
the numerical scheme. Adopting a plane wave solution, i.e., assum-
ing g(x, y, t) = Aei(kxx+kyy−yt), where A is constant, k =

√
k2

x + k2
y

is the wave number and y is the angular frequency, and substitut-
ing g(x, y, t) into Eq. (73), we find that the wave speed for such a
governing equation is

c ≈
[

1 − Dx2

24

(
1 − ghDt2

Dx2

)
k2

]√
gh. (74)

Thus, the wave speed is no longer
√

gh and the modification
depends the grid size and time step. Using C.F.L. number of 0.5, i.e.,
Dt

√
gh/Dx = 0.5, the numerical dispersion can be estimated purely

according to the grid size:

c ≈
[

1 − k2Dx2

32

]√
gh. (75)

In Fig. 3, we plot the speed reduction and percentage due to
physical dispersion, Earth elasticity, water viscosity, compressibility,
density stratification due to compression of gravity and tempera-
ture/salinity and numerical dispersion. The range of wavelength is
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from 50 to 1000 km, corresponding to wave period of 260–5000 s.
The dispersion relationships used are the simplified formulas exclud-
ing dispersion, i.e., Eqs. (28), (36), (49), (65), (70) and (74). Fig. 3
shows that, the correction due to Earth elasticity increases roughly
linearly with wavelength; the correction due to water viscosity is
negligible; the correction due to water compressibility and density
stratification is also constant regardless the wavelength. For a typ-
ical tsunami wavelength of ∼200 km, the correction of dispersion
for shallow water approximations is around 0.26%, the correction
of Earth elasticity is around 0.24%, the correction of water viscosity
is around 0.01%, the correction of water compressibility is around
0.30%, the correction of density stratification due to compression is
around 0.15%, and the correction of density stratification due to tem-
perature/salinity is around 0.14%. The numerical correction is 0.01%
for Dx = 1 arc min, 0.04% for Dx = 2 arc min and 0.27% for Dx =
5 arc min.

6. Conclusions

In this study we derive the theoretical solutions of dispersion
relationships accounting for the effects of water viscosity, ocean
stratification due to temperature/salinity and numerical dispersion.
We find that the water viscosity hardly affects the speed of tsunami
waves, but the density stratification due to temperature/salinity is
capable of slowing down the tsunami waves by the same order as
the stratification due to gravitational compression, because such a
stratification has a sudden change of density over a small depth. The
numerical dispersion is comparable to the physical dispersion if the
spatial grid size is around 5 arc min in the numerical simulation. It
is noted that 5 arc min has been commonly used for global tsunami
warning purposes. Therefore, we suggest that if the correction of
Earth elasticity, water compressibility and density stratification due
to compression (e.g., Allgeyer and Cummins, 2014; Watada, 2013;
Watada et al., 2014) were deemed to be significant, the effects of
stratification due to temperature/salinity and numerical dispersion
should also be taken into account. In this study we also simplify the
theoretical dispersion relationships so that the simplified formulas
are explicit and easy to adopt. They are Eqs. (28), (36), (49), (65),
(70) and (74). The simplifications are verified to be good approx-
imations of the full dispersion relationships for typical tsunami
wavelength of 50–1000 km (or wave period 260–5000 s). Since all
the effects slow down the tsunami speeds by a small order (<1%), it
is expected that the combination of them in a linear system is simply
the linear summation, and the crossing terms of the coupling effects
are one order even smaller. Using the typical physical parameters
given in Section 4, for tsunami waves with wavelength of ∼200 km,
the effects that cause significant speed reduction are wave disper-
sion (0.26%), Earth elasticity (0.24%), water compressibility (0.30%),
density stratification due to compression (0.15%) and density strat-
ification due to temperature/salinity (0.14%). The total reduction is
around 1.1%.
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