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Low frequency, high impact storm events can have large impacts on sandy coasts. The physical processes
governing these impacts are complex because of the feedback between the hydrodynamics of surges and
waves, sediment transport and morphological change. Predicting these coastal changes using a numerical
model requires a large amount of computational time, which in the case of an operational prediction for the pur-
pose of EarlyWarning is not available. For this reasonmorphodynamic predictions are not commonly included in
Early Warning Systems (EWSs). However, omitting these physical processes in an EWS may lead to potential
under or over estimation of the impact of a storm event.
To solve this problem, a method has been developed to construct a probabilistic Bayesian Network (BN). This BN
connects three elements: offshore hydraulic boundary conditions, characteristics of the coastal zone, and onshore
hazards, such as erosion and overwash depths and velocities. The hydraulic boundary conditions are derived at a
water depth of approximately 20 m from a statistical analysis of observed data using copulas, and site character-
istics are obtained from measurements. This BN is trained using output data from many pre-computed process-
based model simulations, which connect the three elements. Once trained, the response of the BN is instanta-
neous and can be used as a surrogate for a process-based model in an EWS in which the BN can be updated
with an observation of the hydraulic boundary conditions to give a prediction for onshore hazards.
The method was applied to Praia de Faro, Portugal, a low-lying urbanised barrier island, which is subject to fre-
quent flooding. Using a copula-based statistical analysis, which preserves the natural variability of the observa-
tions, a synthetic dataset containing 100 events was created, based on 20 years of observations, but extended
to return periods of significant wave height of up to 50 years. These events were transformed from offshore to
onshore using a 2D XBeach (Roelvink et al., 2009) model. Three BN configurations were constructed, of which
the best performing onewas able to predict onshore hazards as computed by themodelwith an accuracy ranging
from 81% to 88% and predict events with no significant onshore hazards with an accuracy ranging from 90% to
95%. Two examples are presented on the use of a BN in operational predictions or as an analysis tool.
The added value of thismethod is that it can be applied tomany coastal sites: (1) limited observations of offshore
hydrodynamic parameters can be extended using the copula method which retains the original observations'
natural variability, (2) the transformation from offshore observations to onshore hazards can be computed
with any preferred coastal model and (3) a BN can be adjusted to fit any relevant connections between offshore
hydraulic boundary conditions and onshore hazards. Furthermore, a BN can be continuously updated with new
information and expanded to include differentmorphological conditions or risk reductionmeasures. As such, it is
a promising extension of existing EWSs and as a planning tool for coastal managers.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past decades a number of large storm events have demon-
strated the vulnerability of the coastal zone in Europe, such as to the
North Sea Flood of 1953 in the Netherlands, Belgium and the United
ort, The Netherlands.
oelhekke).
Kingdom (Gerritsen, 2005), Xynthia (2010) affecting the entire coast
of south-western Europe (Bertin et al., 2012) and Hercules (2014) caus-
ing severe coastal erosion and flooding in parts of France and the United
Kingdom (Masselink et al., 2015a) amongmanyothers. Larger andmore
extreme events such as the hurricanes in the USA, e.g. Katrina in 2005
(Knabb et al., 2006) and Sandy in 2012 (Blake et al., 2013), and
Typhoons in Asia, e.g. Haiyan in 2013 and Nargis in 2008, have also
shown the devastating effects of these low-frequency, high impact
flood events.
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Sandy coasts are especially vulnerable as they exhibit large re-
sponses to these low-frequency high impact events, such as extensive
beach and dune erosion (Castelle et al., 2015; Masselink et al., 2015b),
and even breaching (Roelvink et al., 2009;McCall et al., 2010). Buildings
and infrastructure built on these sandy coasts are not only vulnerable to
flooding but also to damage caused by overwash and coastal erosion
(Smallegan et al., 2015). Furthermore, extremeoverwash andbreaching
can alter the barrier and lagoon morphology and possibly affect the
water level inside the lagoon, changing the back barrier flooding hazard.

Coastal hazard prediction has long been the focus of the scientific
and coastalmanagement community. Early approachesweremainly fo-
cused on the classification of offshore hazard based on wave power
(Dolan and Davis, 1992) or associated coastal response (like erosion)
to offshore forcing (Miller and Livermont, 2008; Mungar and Kraus,
2010). The most commonly-used approaches to derive coastal hazards
use simple relations (Kriebel and Dean, 1993; Larson et al., 2004;
Mendoza and Jiménez, 2006; Stockdon et al., 2007). Using hindcasted
or operational predictions of wave and surge levels with or without
flood propagation, coastal impacts such as flooding over an invariant to-
pography are computed using the “bathtub” or flooded valley approach
(Leatherman, 1990; Carrasco et al., 2012). Overwash is routinely com-
puted using empirical equations (e.g. (Rodrigues et al., 2012)), and
beach erosion using static models (e.g. (Ferreira et al., 2006)). Due to
the complexity of the storm processes Stockton et al. (2007) classified
storm impact based for the different regimes proposed by (Sallenger,
2000). The above consider each hazard separately and do not include
themorphodynamic response of a coast to high impact events and usu-
ally do not include feedbackmechanisms betweenwaves, currents, sed-
iment transport and morphological change. For sandy shores with
beaches and dunes the coastal morphological response is non-
negligible and influences the pathway of a coastal hazard to the hinter-
land, changing for instance the flood duration, the extent and the depth
fields (McCall et al., 2010; Cañizares and Irish, 2008). Current models
can therefore under or over predict the hazard intensities and impact
of coastal hazards on sandy coasts, both of which are detrimental for
planning or evacuation purposes.

Morphodynamic process-based models such as XBeach (Roelvink
et al., 2009) are capable of simultaneously computing wind- and
wave-inducedwater levels and velocities as well as the associatedmor-
phological response. However, thesemodels are complex, which comes
at the expense of increased computational cost. This poses a problem for
the use of such models in an Early Warning System (EWS), where the
computational window is limited to the short period between succes-
sive, updated meteorological forecasts. Early attempts to incorporate
morphodynamic models in EWS (Plomaritis et al., 2012; Vousdoukas
et al., 2012a) resulted in simplification of the morphology to several
1D profiles in order to increase the models operability.

To solve this problem, a solution is proposed in which a probabilistic
model based on a Bayesian Network (BN) is utilized as a surrogate for a
process-basedmodel. A BN is in essence a probabilistic graphical model,
which consists of random variables and conditional dependencies be-
tween said variables. The random variables are the hydraulic boundary
conditions (defined at the 20 m depth contour), such as the surge and
wave parameters, and the onshore hazard intensities, such as erosion,
overwash depths and flow velocities. The conditional dependencies be-
tween the random variables can be determined by training the BNusing
output data from many pre-computed process-based model simula-
tions, as well as from observations. Once trained, the response of the
BN is instantaneous. It can be included in an operational EWS in
which the BN can be conditionedwith predictedwaves andwater levels
from offshore hydrodynamic models to produce a prediction for on-
shore coastal impacts.

BNs have been proven useful in a number of coastal applications.
Hapke & Plant (2010) applied them to predict cliff erosion by
connecting the forcing variables (e.g. wave conditions) and initial con-
ditions (e.g. cliff geometry). Dune erosion volumes due to storm impact,
as predicted by an empirical model, have also been reproduced by a BN
(Den Heijer et al., 2012). A BN has been used to predict coastal vulnera-
bility to sea level rise (Gutierrez et al., 2011), and to assess the interac-
tions between barrier island geomorphic variables (Gutierrez et al.,
2015). Van Verseveld et al. (2015) applied it to relate the onshore haz-
ard intensities to observed building damage for the case of the impact of
hurricane Sandy on a part of New York. In this paper, we will build on
this previous work and apply the BN to relate offshore hydraulic bound-
ary conditions to onshore hazards through a transformation using
process-based model simulations.

The key point of this paper is the development of a method in which
a BN is a surrogate for a process-based model within an EWS. The main
focus of the paper is on the development of a generic method with an
application on a low-lying barrier coast which serves as an example.
In this paper, we will focus on the method and application, and provide
references to background literature on the individual elements.

In Section 2, amethod is developed to construct a BN, which is a sur-
rogate for a complex process-based model and can be implemented in
an EWS for urbanised sandy coasts. The method is applied in the case
study site of Praia de Faro (Algarve, Portugal) in Section 3. The discus-
sion is in Section 4 and a summary and conclusions are presented in
Section 5.

2. Methods

A probabilisticmodel, a BN, will be constructedwhich can be used as
a surrogate for a process-based coastal morphodynamic model in an
EWS. A BN consists of nodes and arcs, in which the nodes represent
the variables of interest and the arcs indicate the conditional dependen-
cies between them (Pearl and Russel, 1988). When the nodes and arcs
are set up the network can be trained with a dataset, whichmay consist
of observations or of synthetic numerical model results. In the present
application the BN will be trained with the results of a process-based
numerical model which is able to transform a range of offshore hydrau-
lic boundary conditions (water levels, wave heights, wave periods, etc.)
in deeper water, typically at 20 m depth, to onshore hydrodynamic
(water depths and currents) and morphological (erosion) hazards on
the coast. Hydraulic boundary conditionswill be derived from a statisti-
cal analysis of observational data. The combination of the hydraulic
boundary conditions and onshore hazards simulated in the process-
basedmodel forms the dataset that trains the BN. Once the BN is trained
it can be conditionedwith an observation, or prediction, of the hydraulic
boundary conditions to give a prediction of onshore hazards.

Themethod involves five steps: (1) a dataset fromwhich conditions
with large return periods can be derived is synthesised if long-term ob-
servations are not available (which is usually the case), (2) the time var-
iation of the offshore hydrodynamic parameters during an event is
schematised, (3) a process-based model is constructed to transform
the offshore hydraulic boundary conditions to onshore hazards (4) a
BN is set up that is sufficiently complex (in terms of nodes and arcs)
to represent the relations between variables, yet as simple as possible
to minimise the required amount of training data and (5) metrics are
determined to assess the predictive value of the BN.

2.1. Synthesis of extreme events

Thefirst step is to obtain a large enough dataset fromwhich extreme
conditions can be derived to train the BN. If long-term observations are
not available, this dataset needs to be synthesised, for which a method
using copulas (Sklar, 1959) is applied. Copulas are mathematical tools
that can be used to construct multivariate distributions. An example
are storm events which can be characterised by a set of random vari-
ables such as the significant wave height, surge level, storm duration
and peak wave period. The interrelations between these variables may
be characterised by a multivariate probability distribution. Classical
parametric families of multivariate distributions, e.g. Gaussian,
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student-t or extremevalue distributions force themarginal behaviour of
the random variables to belong to the same family, which is not the case
for the hydrodynamic variables under consideration. Copulas, however,
are able to describe the interrelation between several random variables
without this restriction (Genest and Favre, 2007; Schmidt, 2007). Just
like marginal distributions can be fit to a random variable, a copula
can be ‘fit’ to describe the dependence between two or more random
variables. Several copula types exist which can be used to emulate a
dataset and be tested on their goodness of fit. Once an appropriate cop-
ula model is found it can be used to create a synthetic dataset that
mimics the characteristics of the original data.

Themethod followed in this research is a combination of thework of
Wahl et al. (2012), Corbella and Stretch (2013) and Jäger and Morales
Nápoles (2014). Observed events in the area of interest are used to cre-
ate bivariate distributions between pairs of variables. These bivariate
distributions resemble the pattern of the observed data and can be
used to sample new data points that form the set of synthetic events
that will be used to train the BN.

There are four steps that have to be taken to produce the synthetic
dataset and are elaborated in the application Section 3.2: (1) obtain
and constrain a dataset of observations; (2) fit marginal distributions
to themeasured data points; (3) fit different copulas to each pair of var-
iables and (4) use the copulas in combination with the marginal distri-
butions to sample from the bivariate distributions to obtain the
synthetic data.
2.2. Storm event schematisation

Significant wave heights, periods and water levels show a time var-
iation over the course of a storm event. This variation is unknown a
priori and therefore need to be schematised. To mimic the typical be-
haviour of a storm increasing and then decreasing in strength, its time
evolution is schematised by a symmetric linear increase, until the
peak of the storm is reached, and subsequent decrease of the wave
height and surge level (Fig. 1a). Assuming constant wave steepness,
the peak period is related directly to the wave height.

To drive the process-based model that transforms the hydraulic
boundary conditions to onshore hazards, time series of sea states of
waves and total water levels are imposed at the seaward boundary of
the coastal process-basedmodel. The total water levels consist of surges
and tides. Since tidal amplitudes vary over a spring-neap cycle, and are
statically uncorrelated to the storm surge, several tidal signals need to
be considered for each modelled event. To this end, several representa-
tive tidal amplitudes are extracted from observations. The tide is then
imposed on the model starting in a random phase (schematized in
Fig. 1b). Because the total water level is the sum of the surge and the
Fig. 1. Modelling of an event. a) The wave height is linearly increased to its maximum
value after which it linearly decreases. The surge level follows the same pattern. b) The
tidal signal is independent of the wave height and surge levels; therefore, several signals
are modelled for each storm.
tidal elevation, the maximum does not necessarily occur at the surge
peak of the event.

2.3. Construction of a process-based model

Aprocess-basedmodel is used to transformhydraulic boundary con-
ditions to onshore hazards such as erosion, flooding and overwash ve-
locities. In the current method, XBeach is selected for this purpose.
“XBeach solves the 2D horizontal nonlinear shallow water equations
with time-varying forcing obtained from wave action equations. It
thus resolves motions at the time scale of wave groups (infragravity
waves), which have been shown to be of importance in the dune ero-
sion process (Van Thiel de Vries, 2009). It is capable of seamlessly
modelling all four dune impact regimes as defined by (Sallenger,
2000), and model skill has been demonstrated on barrier islands
(McCall et al., 2010; Lindemer et al., 2010) and urbanised coasts (van
Verseveld et al., 2015; Nederhoff et al., 2014) among others. XBeach is
chosen as the most appropriate numerical model to use, because it has
been extensively validated for simulating morphological change over
complex 2D bathymetry. Also, coastal structures can be represented as
hard, non-erodible layers” (paragraph adopted from Smallegan et al.
(2015)).

A complex model such as XBeach 2D has a large computational de-
mand. Thus, an evaluation of the required accuracy versus computation-
al time must be performed in order to achieve an optimum. In our
application, we achieved a reduction in computation time by using the
morphological acceleration (“morfac”) factor (Ranasinghe et al., 2011)
and by reducing the alongshore grid resolution as the coast in our exam-
ple is relatively long, straight and regular.

The model performance is assessed using the Brier Skill Score (BSS)
on observed and computed morphological change in the active coastal
zone (van Rijn et al., 2003; Sutherland et al., 2004). A BSS score of 1 in-
dicates a perfect model prediction, and a value of 0 means that the
model's bed level prediction is no better than the assumption of a static
bed.

2.4. Development of a Bayesian Network

In the present case a BN is used to describe hazards in the coastal
zone, which are determined by the hydraulic boundary conditions and
the local characteristics of a section of the coast, as shown in Fig. 2. A
BN is a computational tool to describe a system in a probabilistic way
using conditional probability tables (CPTs). The relation between the
variables in a system comes from prior knowledge about the system.
A prediction is made by updating the BN with an observation, such as
the significant wave height associated with an event. The BN then
uses Bayes' rule to update the likeliness of the other variables in the net-
work that the observation is linked to, according to:

p FijOj
� � ¼ p OjjFi

� �
p Fið Þ

p Oj
� � ð1Þ

In which, Oj is a subset of observations and Fi is a forecast variable.
p(Fi |Oj) is the conditional probability of the forecast Fi, given Oj. In
other words, p(Fi |Oj) is the probability that Fi is true given Oj. p(Fi)
and p(Oj) represents the priormarginal probabilities of the forecast var-
iable and the observation.

Setting up a BN consists of three steps: (1) setting up the structure
by identifying the variables that need to be included in the network
and the dependencies between the variables, (2) discretising each
node into bins, and (3) training the network with a dataset. In this
paper, three different configurations are explored by varying the
discretisation and the number of variables. The software used to create



Fig. 2. Relationship between the hydraulic boundary conditions, local hazard intensities and the case study site characteristics. From left to right: The nodes that make up the hydraulic
boundary conditions, local hazard intensities and the case study site characteristics.
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the BN is Netica version 5.12, obtained from Norsys (http://www.
norsys.com).

The dataset consists of a number of cases, in which one case is a sin-
gle data entry into the BN and consists of one value at each individual
node. In this application one case consists of a data entry of the bound-
ary conditions of a single event and the local hazard intensities associat-
ed with that event for a specific area, and represents the result of one
simulation with the coastal process-based model.

The nodes of the BN are discretised into bins that cover the full range
of the input data. The discretisation is important because it influences
the predictive capabilities of the BN. This is best illustrated by the num-
ber of entries in a CPT and theway a BN learns fromdata. The number of
entries in a CPT is defined by:

CPTEntries ¼ #BinsChild � ∏
N¼1

#BinsParent;N ð2Þ

In this case a child node is a hazard and a parent node is a hydraulic
boundary condition or a location at a given study area. This means that
more bins andmore parents create larger CPTs. In Netica the learning of
the BN is based on a simple counting-learning algorithm (Norsys, 2016).
Initially assuming uniform distributions within the CPT, this algorithm
requires each of its entries to be satisfied by multiple cases such that it
can gain “experience”. If the CPT is too large for the dataset the experi-
ence values will be low and the probabilities close to uniform and
hence uninformative. A well-trained BN has high experience values
and will provide predictions with small standard deviations and large
occurrence probabilities.

2.5. Assessment of the predictive value

The predictive value of the BN is assessed by comparing its predic-
tive skill to one of a competing model. As a competing model the prior
probabilities of the BN may be considered. These are the probabilities
of the hazard nodes in the BN after it has been trained with a dataset,
but before the BN is conditioned with an observation of the boundary
conditions. The comparison is made using the log likelihood ratio
(LLR) as has been done in Plant & Holland (2011). This ratio is positive
if the likelihood of a prediction increases as compared to the prior prob-
ability, likewise the ratio is negative if the predictions likelihood de-
creases as result of the updated prediction:

LLR ¼
Xn
j¼1

log p FijOj
� �

Fi¼O;

j

� �
− log p Fið ÞFi¼O;

j

n o
ð3Þ

In which, Fi is the forecast variable, Oj is a subset of observations that
are inserted into the BN to make a prediction and O′j is the observation
that is withheld from the prediction. A positive result indicates that the
BN has predictive skill since the updated prediction is then better than
the outcome based on the prior distributions of the network. The BN is
trained with 90% of the available dataset and the remaining 10% of the
data is used to test its predictive skill, following van Verseveld et al.
(2015)). This is done for ten randomly chosen subsets of the dataset
such that all data are used in the testing. The LLR of the BN is then ob-
tained by averaging over the LLRs of the BNs createdwith the 10 subsets
of the data.

To compare the performance of two BNs trained with the same
dataset, a similar approach can be used. Instead of comparing the
prior probability of a BN with its updated probability, the updated
probabilities of two BNs can be compared:

LLR ¼
Xn
j¼1

log p FBM;ijOj
� �

FBM;i¼O;

j

� �
− log p FCM;ijOj

� �
FCM;i¼O;

j

� �
ð4Þ

In which FBM,i is the updated probability of the Base Model and FCM,i

is the updated probability of the competing model.

3. Application to Praia de Faro

3.1. Site description

Praia de Faro (Faro Beach) is the beach community of Faro, which is
the regional capital of the Algarve (Portugal; Fig. 3a). Praia de Faro is lo-
cated at the Ancão Peninsula which is part of the Ria Formosa barrier is-
land system, consisting of a lagoon sheltered from the Atlantic Ocean by
five barrier islands and two peninsulas. The coast is NW-SE oriented and
the central part of the peninsula is urbanisedwhich has changed its nat-
ural configuration, namely by dune lowering and replacement by build-
ings, a car park, roads and a camping site. An aerial view shows the
barrier (Fig. 3b). Praia de Faro has an access road connecting the barrier
to the mainland. At the end of the access road lies a parking lot that ex-
tends from the back of the barrier to the berm crest. Directly east of the
access road, buildings have been built on top of the dunes and facing the
beach berm. Immediately west of the access road, buildings are slightly
recessed from the beach and are protected by a single row of frontal
dunes. At the western end of Praia de Faro, members of the local fishing
community have dwellings directly on top of the dunes. The fishing
community also occupies the eastern end of Praia de Faro,where houses
are scattered mostly along the back barrier. For the purpose of the per-
formed analysis only the densely-occupied area near the parking lot is
considered where mostly second homes are located along with restau-
rants and bars and the access road. This area of Praia de Faro is impacted
by annually recurring overwash events (Almeida et al., 2012) and has
experienced damage to houses and infrastructure due to severe erosion
caused by storm events.

The beach face at Praia de Faro has a mean grain size about 0.5 mm
(Achab et al., 2014) is steep, typically above 10%, and ranging from 6% to
15% (Achab et al., 2014; Vousdoukas et al., 2012b), categorising the
beach as intermediate to reflective (Wright and Short, 1984). Ria For-
mosa is exposed to storms of which approximately 70% originate from

http://www.norsys.com
http://www.norsys.com


Fig. 3. a): Location of the case study site in the Algarve (red box), Portugal (adapted from Ferreira et al. (2006). b): Aerial photograph of the central part of Praia de Faro, showing the
parking lot and the access road in the middle. Source: iGEO. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the west-southwest and 30% from the east-southeast (Almeida et al.,
2011). Due to the natural triangular shape of Ria Formosa, Praia de
Faro is relatively protected from the latter direction. Moreover, due to
a narrow continental shelf the storm surge levels are relatively low
(b1 m) (Fortunato et al., 2016). The semi-diurnal tide with an average
range of 2.8 m for spring-tides (maximum 3.5 m) and 1.3 m during
neap tides is more important in determining the maximum storm
water level than surge (Fortunato et al., 2016). The return periods for
the significant wave height (from W-SW), associated peak period and
storm surge levels are summarized in Table 1.
3.2. Synthetic dataset

A synthetic dataset of hydraulic boundary conditions has been creat-
ed for the case study site following the four steps described in
Section 2.1: (1) obtain and constrain a dataset of observations; (2) fit
marginal distributions to themeasured data points; (3) fit different cop-
ulas to each pair of variables and (4) use the copulas in combination
Table 1
Return periods for the significant wave height, peak period and surge levels for Praia de
Faro, Portugal. * (Pires, 1998), ** (Rodrigues et al., 2012).

Return period (yr) Hs (m)* Tp (s)** Surge (m)**

5 5.7 11.3 0.46
10 6.4 11.9 0.54
25 7.4 12.7 0.65
50 8.1 13.3 0.72
100 8.8 13.9 0.80
with the marginal distributions to sample from the bivariate distribu-
tions to obtain the synthetic data.

This is done for a range of events with a significant wave height of at
least 3.0 m to a maximum of 8.1 m. These limits are based on Almeida
et al. (2012), who showed that storms with a significant wave height
b3.0 m do not lead to appreciable coastal impact. Storms with a signifi-
cant wave height of 8.1 m have a return period of 50 years, which is
commonly used for risk assessment in the coastal management plans
for the study area.

In the first step, wave data are obtained from a directional wave-
rider “Faro Buoy”, placed at 93 m depth near Praia de Faro (Fig. 3a),
which has 20 years of data between January 1993 and December
2013. A peak over threshold analysis with a threshold of 2.5 m was
used to identify individual events. Surge levels are available for the
period of June 1997 until June 2007, obtained from a nearby Spanish
network of tide gauges, some 80 km east of the study area (Rodrigues
et al., 2012). Surge levels are provided and are calculated by elimination
of the tidal signal using local tidal constituents derived from the total
time-series.

Only events originating from the south-western quadrant (180°–
270°) have been included in the dataset, because of the exposure of
the case study site. The observed maximum significant wave heights
versus storm duration, surge and wave peak period associated with
the significant wave height are shown in Fig. 4 (black dots). The depen-
dency between the significant wave height and the storm duration and
surge levels are significant, with r-squared values of respectively 0.54
and 0.41. The dependency between the significant wave height and
the associated peak period show a large scatter with an r-squared
value of 0.04. These characteristics are transferred to the synthetic
dataset by using copulas, as described below.



Fig. 4. Scatter plots of the significantwave height versus a) the peak period, b) surge levels
and c) storm duration. The observed data is given in black and the synthetic events
produced with the copulas are given in red dots. The synthetic events are produced
uniformly on the interval [3 m, 8.1 m] HS to be used for the creation of a BN. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Table 2
Best marginal distribution fits for the individual variables of the storm
dataset according to the Akaike information criterion.

Variable Best fit distribution

Hs Generalized Pareto
Tp Generalized extreme value
Duration Exponential
Surge Rayleigh
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In the second step, the individual variables are considered separate-
ly: the significant wave height, the peak wave period, the storm dura-
tion and the surge level. For each variable several distributions have
been fit and ranked according to the Akaike Information Criterion
(AIC), following the approach in Corbella & Stretch (2013). The top-
ranked distributions (shown in Table 2) have been used for the copula
fitting.

The third step is to fit the copulas. Similar to marginal distributions,
which can be fit to a randomvariable, a copula can be ‘fit’ to describe the
dependence between two or more random variables. A general intro-
duction to copulas can be found at Schmidt (2007), and a specific appli-
cation for hydrological phenomena at Genest & Favre (2007). The
method followed in this research is a combination of the work of
Corbella & Stretch (2013) and Jäger and Morales Nápoles (2014) who
both use copulas to describe sea conditions.

Several copula types exist and can be used to emulate a dataset and
tested on their goodness of fit. Once a copula is selected it can be used,
together with the marginal distributions, to create a synthetic dataset
that mimics the characteristics of the original data. Three variable
pairs have been identified for which a copula have been fit: (1) the sig-
nificant wave height and the storm duration, Hs−D, (2) the significant
wave height and the storm surge level, Hs−S and (3) the significant
wave height and the peak period, Hs−Tp. The choice for the pairs of
bivariate copulas was driven by the availability of data; one dataset
contained wave heights, periods and storm duration and a second
contained wave height and storm surge. Even though other variable
pairs are not coupled directly they are dependent through the wave
height. For the first and second variable pair four possible copula
types have been applied: Gaussian, Clayton, Frank and Gumbel. An ad-
ditional copula has been fit for the third pair, the gamma factor copula
(Joes, 2015). This copula allows for skewness in the dataset, which is
due to the phenomena of wave breaking (not shown). For simplicity
only a general description of the fitting procedure is presented. More
elaborate explanations are provided in the above recommended
literature.

In copula modelling the dependence structure between two vari-
ables is described in isolation from their marginal behaviour. Therefore,
the marginal distributions of the variables are transformed to uniform
distributions by using the respective cumulative density functions of
their marginal parametric distributions. The copulas are then fit using
Spearmans's rank correlation coefficient ρ.

ρ ¼ 1−
6
X

d2i
n n2−1ð Þ ð5Þ
Table 3
Cramer vonMises test results for each copula and variable pair. The test scores can only be
compared within a variable pair. A lower test score indicates a better fit.

Copula Hs - Duration Hs – Surge Hs – Tp

Clayton 0.4427 1.4861 0.7977
Frank 0.4616 1.1665 0.7756
Gaussian 0.3249 1.0484 0.7764
Gumbel 0.4071 0.7737 0.8170
Gamma factor – – 0.6123



Table 4
Best fitting copulas and parameters for three variable pairs based on the CvM statistic and
a visual check.

Variable pair Copula Parameters

Hs−D Gumbel ρ=0.8814
Hs−S Gaussian α=1.4621
Hs−Tp Gamma factor θ0=0.3487, θvec=[0.1029, 1.2286]
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For which di=xi−yi and x and y are the ranked variables and n the
size of the sample.

The goodness of fit of a copula is judgedwith twomethods following
Jäger andMorales Nápoles (2014). Firstly, the test statistic of the Cramer
Fig. 5. Composite topographic and bathymetric digital terrain model and locat

Fig. 6. Locations specified for the BayesianNetwork are enclosed in the black boxes. Building foo
(For interpretation of the references to colour in this figure legend, the reader is referred to th
von Mises (CvM) test (e.g. Genest and Favre (2007)) is applied, which
uses least-squares to indicate the difference between the data and the
parametric copula model. Thus, a lower test score represents a better
fit. Note that this test is relative, meaning that the scores can only be
comparedwithin each variable pair. Secondly, empirical and parametric
conditional probabilities have been visually compared. For the visual
test, a dataset was generated from the copulas and compared to the
original dataset. The scatterplots of the ranks of the data pairs as well
as conditional probabilities in each quadrant were compared qualita-
tively. Based on the CvM test statistc (Table 3) and the visual test the
Gaussian copula was chosen for the Hs−D variable pair, the Gumbel
copula for the Hs−Svariable pair and the gamma factor copula for
ion of the research area (black rectangle). Elevations are relative to MSL.

tprints are indicated in green and infrastructure in light blue. Elevations are relative toMSL.
e web version of this article.)



Fig. 7. XBeach model results for the synthetic storm with a significant wave height of
8.1 m, peak wave period of 18.5 s, duration of 306 h and surge level of 0.80 m. a):
maximum values of the overwash water depth. b): Maximum overwash flow velocities.
c): Maximum bed erosion during the event. Sedimentation is not shown as it is not
considered a hazard.
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theHs−Tpvariable pair. The parameters of the copulas are given in
Table 4.

A large synthetic dataset of one million samples has been generated
with each copula. These points are marginally uniformly distributed on
the interval [0,1]and are transformed back by applying the inverse
CDFs. Since the BN needs to be trained evenly over the whole range of
possible events, in the final step a uniformly distributed set of one hun-
dred events has been resampled on the interval [3.0 m, 8.1 m] of signif-
icant wave height, from the one million data points. The results are
shown in Fig. 4, where the black dots are the observations and the red
dots the synthetic data set, which will be used to force the XBeach
model.

3.3. Configuration of the XBeach model

In this study, XBeach version 1.22.4867 has been used (http://www.
xbeach.org). The model inputs consist of bathymetric and topographic
information and waves and water level time series at the offshore
boundary.

Topographic and bathymetric information from the summer of 2011
is available for the Ancão Peninsula (Fig. 5). It consists of bathymetric
cross sections of the wet areas and a LIDAR of the dry area with a reso-
lution of 2 by 2 m. As a case study an area of interest with a total along-
shore length of 1.7 km was selected, indicated by the box in Fig. 6. It is
centred on the entrance road/parking lot of Praia de Faro, which is con-
sidered the most vulnerable location (Almeida et al., 2012). A 2DH
model was setup in which the grid cell sizes vary in the cross shore di-
rection from 20 m at the offshore boundary to 1.4 m at the coast and
in the alongshore direction from25m in the centre to 40mat the lateral
boundaries. The model was calibrated against measured pre- and post-
storm upper beach profiles obtained during a number of consecutive
storms from December 2009 to January 2010 (Vousdoukas et al.,
2012b), which had return periods of approximately 2 years. Although
the return periods were small, the conditions were relatively energetic
and responsible for strong morphological changes. The calibration
yielded a BSS of 0.8. The parameter values after calibration are given
in Appendix A.

3.4. Bayesian Network

3.4.1. Structure
The structure of the BN follows Fig. 2, in which the hydraulic bound-

ary condition nodes are identified as: (1) the maxima of the offshore
wave height, (2) the peak wave period, (3) the water level that occurs
during the peak of the storm (as defined in Section 2.2) and (4) the
storm duration. The site is characterised by five distinct areas in terms
of the dune height, barrier island elevation and distance between build-
ings and infrastructure and the shoreline (Fig. 6). The hydraulic bound-
ary conditions and the case study characteristics nodes are the parent
nodes. The child nodes are the coastal hazard nodes. These are
subdivided over infrastructure and buildings and are identified as
(1) erosion depth, (2) overwash flow velocity and (3) overwash water
depth. Erosion is defined as the positive vertical distance at a grid
point between the pre storm bed level and the lowest bed level mea-
sured during an event. The overwash depth at each grid point is defined
as the water depth between the instantaneous bed elevation and water
level.

3.4.2. Training data
The training dataset for the BN comprises 2000 cases: 100 events

were selected from the synthetic dataset and run in combination
with four tidal signals with a randomphase. In each XBeach simulation
aggregated data have been extracted for the five areas discussed
above. The maximum offshore wave height, peak period and storm
duration were obtained for each case from the synthetic dataset. The
maximum water level is defined within the peak interval of the
event, defined as the 25% of the total duration in which the highest
waves occur. Model output of erosion, overwash depth and flow veloc-
ity are interpolated to the corner of each building and infrastructure
polygon (Fig. 6), and the maximum hazard values computed for each
of the five areas are subsequently stored in the BN coastal hazard
nodes. An example of XBeach model results of the overwash water
depth, overwash flow velocity and erosion for a high-energy event is
shown in Fig. 7.

http://www.xbeach.org
http://www.xbeach.org
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3.4.3. BN configurations
Since the nodal structure and discretisation of the nodes of a

BN influences its predictive skill, three BN configurations have
been set up with a varying number of nodes and bins (Figs. 8, 9
and 10) of which the predictive skills are assessed in Section 3.4.4.

All configurations show the hydraulic boundary condition nodes
(water level during peak, maximum significant wave height, peak peri-
od and storm duration) on the left. The case study site location node is
shown on the right and the local hazard intensity nodes (overwash
depth at buildings and infrastructure, overwash flow velocity at build-
ings and at infrastructure, erosion at buildings and infrastructure) are
in the middle column.

In the first BN (Fig. 8), defined as Configuration 1, each node is
discretized in four bins. The BN shows histograms of the prior probabil-
ity of occurrence of a quantity in each bin. Themean value and the stan-
dard deviation are shown at the bottom of each node. Because of the
narrow first bin for overwash depths of 0 to 0.1 m and a first bin for
erosion of 0 to 0.5 m, which effectively signify “no overwash”, and “lit-
tle erosion”, this BN configuration gives insight into whether or not
overwash or erosion will occur. When overwash or erosion does
occur, the three other bins provide a quantification of the overwash
and erosion extent. Configuration 2 is a binary or green light/red
light version in which the boundary conditions are discretised in
four bins and the hazards in two (Fig. 9). This BN gives a prediction
whether or not overwash or erosion will take place above a certain
threshold, as specified by the bin sizes. It does not however, give quan-
titative insight into the hazards as the first configuration did.
Fig. 8. Configuration 1 of the Bayesian Network (BN) with each node discretized into four bins.
storm, the maximum significant wave height, the peak period and the storm duration. As haz
buildings as well as for infrastructure. A prediction can be requested for five output locations a
Configuration 3 (Fig. 10) is similar to Configuration 2 but has fewer
boundary condition nodes.

The CPTs of the hazard nodes of the BN differ because of the different
structures (Eq. (3)). Configuration 1 will have the largest CPTs and
therefore the lowest experience values. The CPTs for Configuration 2
are smaller and will therefore have higher experience values. The cost
of these higher experience values is that the magnitude of the hazard
is not resolved. Configuration 3 has the smallest CPTs and therefore
the highest experience values. The cost for this BN is that fewer bound-
ary conditions can be considered. This increases the spread in the up-
dated probability histograms of the hazards meaning that it is not
necessarily a better performing BN (not shown).

3.4.4. Bayesian Network performance
The three BN configurations have been tested according to the vali-

dation method described in section 2.5. LLRs have been calculated for
the individual hazard nodes using Eq. (3) andby conditioning on thehy-
draulic boundary conditions and areas (Table 5). The LLR scores are pos-
itive for all three configurations, indicating predictive skill; on average
the updated probabilities for the bin in which the realisation falls for
the three BNs are larger than their prior probabilities (Eq. (3)). These
numbers can however not be used for an inter-comparison because
their prior probabilities are not the same.

Using Eq. (4), LLRs are calculated to compare the three configura-
tions (Table 6). Configurations 2 and 3 score positively against Configu-
ration 1, which means the latter one is the lowest performing
configuration. This is in line with expectations since this BN has the
Four hydraulic boundary conditions are considered: the water level during the peak of the
ard intensities the overwash depth and flow velocity and the erosion are considered for
s specified in Fig. 7. The BN shows the prior probabilities.



Fig. 9.Configuration 2 of the Bayesian Network (BN)with the boundary conditions discretized into four bins and the hazard intensities discretized into twobins. Four boundary conditions
are considered: thewater level during the peak of the storm, themaximumsignificantwave height, the peak period and the storm duration. As hazard intensities the overwash depth and
flow velocity and the erosion are considered for buildings as well as for infrastructure. A prediction can be requested for five output locations as specified in Fig. 7. The BN shows the prior
probabilities.
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largest CPTs and therefore the lowest experience values. The two sim-
pler BN have very similar performance, as indicated by the small LLR
values in their inter-comparison (Table 6, bottom row). This is expected
since the only difference is the reduced number of boundary condition
Fig. 10. Configuration 3 of the Bayesian Network (BN) with only two hydraulic boundary cond
boundary conditions are considered: the water level during the peak of the storm and the max
and the erosion are considered for buildings as well as for infrastructure. A prediction can be req
nodes. Less intuitive is that Configuration 2, while more complex,
shows better performance than Configuration 3. This can be explained
by the spread in the data; fewer boundary conditions can be selected
meaning that there is a larger spread in the data for the simpler BN.
itions, discretized into four bins, and the hazard intensities discretized into two bins. Two
imum significant wave height. As hazard intensities the overwash depth and flow velocity
uested for five output locations as specified in Fig. 7. The BN shows the prior probabilities.



Table 5
Log-likelihood ratio (LLR) test scores for three different BN setups. The LLR scores are the average of all tested datasets and given per node. A positive score means that on average the
updated probabilities of the BN were larger than its prior probabilities and thus indicates predictive skill.

BN
Configurations

Overwash depth
buildings

Overwash velocity
buildings

Erosion
buildings

Overwash depth
infrastructure

Overwash velocity
infrastructure

Erosion
Infrastructure

1 38.49 41.56 38.29 40.13 39.57 33.12
2 28.69 27.89 30.03 28.89 27.00 22.54
3 22.27 20.96 25.57 24.67 18.75 17.14

Table 6
Log-Likelihood Ratio (LLR) test scores comparing the three BN configurations against each other. The LLR scores are the average of all tested datasets and given per node. A positive score
means that the updated probabilities of the base model were larger on average than the updated probabilities of the competing model. A positive score therefore indicates that the base
model has more predictive skill than the competing model.

Base model
Configuration

Competing
model

Overwash depth
buildings

Overwash vel.
Buildings

Erosion
buildings

Overwash depth
infrastructure

Overwash vel.
Infrastructure

Erosion
infrastructure

2 1 27.8 21.4 28.9 28.3 22.5 23.8
3 1 23.4 16.2 27.8 24.1 16.6 237
2 3 4.4 5.2 1.1 4.1 5.8 0.1
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This larger spread is reflected by the BN in that it is less certain of a pre-
diction than when it can be conditioned on more boundary conditions,
as is the case in Configuration 2. In terms of physical processes this re-
sult is more intuitive, because it shows the importance of the wave pe-
riod and the storm duration on the hazards: wave period is a very
important factor in determining overwash and storm duration is an im-
portant factor for erosion.

The performance of the best scoring Configuration 2 is additionally
assessed with a confusion matrix, based on the same principle of train-
ing the network with 90% of the cases and testing it with the remaining
10% of cases, for 10 randomly chosen subsets of the data. The confusion
matrix displays the percentage of time that the state with the highest
belief of a node was also the state in which the XBeach model results
fell and the percentage of time that the state with the highest belief
was not the state in which XBeach model result fell (Table 7). Overall,
the BN predicts hazards with an accuracy ranging from 81% to 88%
and predicts cases with no significant onshore hazards with an
accuracy ranging from 90% to 95%. This indicates that the BN would
Table 7
Confusion matrices for the hazard nodes of the binary BN. The confusion matrix gives the
percentage of times that the state with the highest belief of a node was also the state in
which the actual observation fell and the percentage of times that the state with the
highest belief was not the state in which the actual observation fell.

Predicted

Actual 0 to 0.1 0.1 to 3.1

Overwash depth buildings 0 to 0.1 93% 14%
0.1 to 3.1 7% 86%

0 to 0.5 0.5 to 21
Overwash velocity buildings 0 to 0.5 92% 15%

0.5 to 21 8% 85%
0 to 0.5 0.5 to 3.6

Erosion at buildings 0 to 0.5 95% 12%
0.5 to 3.6 5% 88%

0 to 0.1 0.1 to 2.6
Overwash depth at infrastructure 0 to 0.1 90% 17%

0.1 to 2.6 10% 83%
0 to 0.5 0.5 to 15

Overwash velocity at infrastructure 0 to 0.5 93% 14%
0.5 to 15 7% 86%

0 to 0.5 0.5 to 3.1
Erosion at infrastructure 0 to 0.5 95% 19%

0.5 to 3.1 5% 81%
perform well as a surrogate for an operational process-based model
simulation.

Ideally, the BN should be validated against hazarddata obtained dur-
ing extreme events. However, at our case study site, there is insufficient
and at best only sparse and qualitative data on these rare events. A com-
plete validation dataset would need to include pre- and post-event data
(topography, bathymetry, overwash depths, velocities, damages) as
well as hydrodynamic forcing data during such extreme events.
4. Discussion

This research describes amethod to construct a BN,which is a surro-
gate for a complex process-based model and can be implemented in an
EWS for urbanised sandy coasts. Themethod involves five steps: 1) syn-
thesis of a dataset, (2) schematisation of the storm event, (3) construc-
tion of a process-based model, (4) setting up a BN and (5) determining
assessment metrics. In this discussion we address the first and third
points, and show two examples of application of the BN.

In thefirst step, the limited availability of offshore hydrodynamic ob-
servations has been addressed by creating a synthetic dataset following
a statistical approach using copulas. This approach has the advantage
over simpler linear regressionmethods of incorporating the natural var-
iability in the synthetic dataset and thus in the BN. If this natural vari-
ability is not incorporated the system may end up in operational mode
facing a storm that the BN is not trained for. A large variability in the
synthetic data, however, also leads to a larger variability in the predic-
tions of the BN, ultimately leading to a higher demand for training
data. In other words, including the natural variability by using copulas
means themodel is a better representation of reality but ensuring suffi-
cient training data is more difficult. The number of synthetic events
needed for the application of this method will therefore depend for a
large part on the scatter in the observations.

Another advantage of using copulas over classical bivariate distribu-
tions is that themarginal distributions of the variables do not have to be
of the same family, such that themarginal behaviour is better described.
This advantage was utilized in the application to Praia de Faro since the
marginal behaviour of the variables was best described by different
distributions (Table 2). In themethod presented here, bivariate copulas
are used for the creation of the synthetic storm dataset, linking the sig-
nificant wave height to the peak period, surge level and storm duration.
In principle, the approach can be extended to higher dimensional
copulas, which combine more than two variables. Whether this has



32 L. Poelhekke et al. / Coastal Engineering 118 (2016) 21–34
benefits for the application to hydrodynamic data is yet to be deter-
mined. Although more advanced than more commonly-used methods,
the use of copulas and marginal distributions in the generation of syn-
thetic datasets still has its limitations as illustrated by outliers in the sig-
nificant wave height versus peak wave period plot (Fig. 5b). Wave
heights of 7 m with a period of 8 s are very steep and would in fact
break. Furthermore, the limitation that the existence of unknown as-
ymptotes due to unknown physical limits is not addressed.

In the third step, a single measured topography was used as input,
which does not reflect the site's natural dynamics of quick recovery
and erosion periods (Vousdoukas et al., 2012b). This affects the result
of a prediction since the bermwidth used in themodel may be different
than the actual one. Furthermore, the effect of storm sequences
(Ferreira, 2005; Callaghan et al., 2008; Splinter et al., 2014;
Karunarathna et al., 2014) in between which the beach does not have
time to fully recover, is not considered in the current approach. Both as-
pects could be included by adding another node with different repre-
sentative beach types.

A strength of the BN is its versatility of its application. It can both be
used in a forecast mode as part of an EWS and as an analysis tool for
coastalmanagement. Two examples are shown. In Fig. 11, Configuration
2 has been conditioned on the hydraulic boundary condition nodes and
on the eastern seaside location. If the BN is used as part of an EWS, the
nodes would be conditioned with observations, which may come from
either an operational wave-surge model or from real-time buoy obser-
vations. In the case of an analysis tool, design conditions may be used
to assess the vulnerability of each area. In either way, the conditioning
constrains the probability distribution of the hydraulic boundary condi-
tion nodes, but also provides an update of the probability of the hazards.
The BN predicts overwash and erosion above the given thresholds with
a large certainty for buildings. For infrastructure it also gives a large
probability for overwash above the threshold, but indicates that erosion
will most likely stay below the threshold.
Fig. 11. Example of the application of Configuration 2 conditioned on the hydraulic boundary
updated the histograms of the hazard nodes. The BN indicates large probabilities of overwa
overwash at infrastructure (N0.1 m and 0.5 m/s). It also indicates that the probability of erosio
In the second example the BN is used in a reverse way (Fig. 12). It is
provided with a hypothetical onshore hazard scenario in which all in-
tensities are above the specified thresholds. The BN has now updated
the probability histograms for the hydraulic boundary conditions,
which gives an indicationwhat forcing conditionswould be responsible
for causing such a response. The BN has also updated the histogram for
the locations, indicating that seaside and the centre are the most likely
areas for which the hazard intensities are largest, since the bayside is
further from the sea and in the central area the dunes are lowest. Fur-
thermore, the updated histograms for the boundary conditions indicate
which states of the hydraulic boundary conditions are most likely to
cause these hazards.

Themethod is not limited to Praia de Faro but can be applied to other
coastswhich experience limited observations of offshore hydrodynamic
parameters or for which the computational time of a coastal response
model is too long for its use in an operational EWS.

The method is not specific to the process-based model that is pres-
ently used. The quality of the results of the BN is as good as the under-
lying process-based or empirical model, which needs to capture the
essential physics. Any model that has better physics or is calibrated on
better data would yield a better EWS.

Furthermore, the BN can be adjusted to fit any relevant connections
between hydraulic boundary conditions and onshore hazards. Further-
more, a BN can be continuously updated with new information and ex-
panded to include different morphological conditions or risk reduction
measures. Finally, if the computational demand of a single process-
based model simulation is not a concern, a BN still has the advantage
that it is a probabilistic approach rather than deterministic; the BN
returns a prediction in the form of a probability density function
that is based on more than one numerical simulation, and thus gives
an indication of the uncertainties. Therefore, BNs are a promising ex-
tension of existing EWSs and a valuable planning tool for coastal
managers.
conditions of an event at the location East Seaside. Based on the observations the BN has
sh (N0.1 m and 0.5 m/s) and erosion (N0.5 m) for buildings and a large probability for
n at the infrastructure is low (b0.5 m).
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Fig. 12. Example of the application of Configuration 2 conditioned with observations of the hazard nodes. Based on the observations the BN has updated the histograms of the hydraulic
boundary condition nodes and the location node. The BN indicates which areas aremost vulnerable to the hazards andwhich state of the boundary conditions aremost likely to be the cause.

33L. Poelhekke et al. / Coastal Engineering 118 (2016) 21–34
5. Summary and conclusions

A method has been developed to construct a probabilistic Bayesian
Network (BN), which acts as a surrogate for a process-based model, and
can be used as part of an Early Warning System (EWS) for sandy coasts.

TheBN connects three elements: hydraulic boundary conditions at the
20m depth contour, characteristics of the coastal zone, and onshore haz-
ards. Hydraulic boundary conditions were derived from a statistical anal-
ysis of observed data using copulas, and site characteristicswere obtained
from measurements. This BN was trained using output data from many
pre-computed process-based model simulations, which connect the
three elements. Once trained, the response of the BN is instantaneous
and can be applied in operational mode as a surrogate for the process-
basedmodel. As part of an EWS, the BN can be updated with an observa-
tion of the hydraulic boundary conditions to give a prediction for onshore
hazards such as erosion, overwash depth and velocities. As an analysis
tool, the BN can be used to assess the effect of constraining the probability
of one or more variables on the rest of the network.

The method was applied to Praia de Faro, Portugal, a low-lying
urbanised barrier island, which is subject to frequent flooding. Using a
copula-based statistical analysis, which preserves the natural variability
of the observations, a synthetic dataset containing 100 eventswas created,
basedon20years of observations, but extended to returnperiods of signif-
icantwave height of up to 50 years. These events, characterised by the sig-
nificant wave height, peak wave period, maximum water level and the
storm duration, were transformed from offshore to onshore using a 2D
XBeach (Roelvink et al., 2009) model. The onshore hazard intensities
which are predicted are erosion, overwash depth and flow velocity.

Three BNs configurations were constructed, of which the best
performing one was able to predict onshore hazards as computed by
themodel with an accuracy ranging from 81% to 88% and predict no sig-
nificant onshore hazards with an accuracy ranging from 90% to 95%.
Two examples were presented on the use of a BN in operational predic-
tions or as an analysis tool.

The added value of this method is that it generic enough to be ap-
plied to other coastal sites. Thus, BNs are a promising extension of
existing EWSs and a valuable planning tool for coastal managers.
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Appendix A

Table A. 1
XBeach calibration settings. All other parameter settings are defaults.
Parameter
 Value
 Units
 Description
50
 0.005
 m
 D50 grain size per grain type

90
 0.002
 m
 D90 grain size per grain type

edfriction
 Manning
 –
 Bed friction formulation

edfriccoef
 0.02 to

0.04

s/m1/3
 Bed friction coefficient
elta
 0.2
 –
 Fraction of wave height to add to water depth

mmax
 2.364
 –
 Maximum ratio wave height to water depth

eta
 0.138
 –
 Breaker slope coefficient in roller model

pha
 1.262
 –
 Wave dissipation coefficient in Roelvink formulation

cSK
 0.2
 –
 Calibration factor time averaged flows due to

wave skewness

cAs
 0.4
 –
 Calibration factor time averaged flows due to

wave asymmetry

mma
 0.541
 –
 Breaker parameter in Baldock or Roelvink

formulation

etslp
 0.26
 –
 Critical avalanching slope under water.

switch
 0
 m
 Water level at which is switched from wetslp to

dryslp.

amma_js
 3.3
 –
 JONSWAP (Hasselmann et al., 1980) peak

enhancement factor

20
 –
 directional spreading coefficient, characterising a

mix of sea and swell waves (Goda, 1985)
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