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A B S T R A C T

The viscoelastic Poisson’s ratio of concrete is an essential parameter to study creep and loss of prestress
in biaxially prestressed structures. Here we first aim to scrutinize the various existing definitions of this
ratio. We then analyze all creep data of concrete available in literature that make it possible to compute
the evolutions of this viscoelastic Poisson’s ratio, which, for mature concrete, is found to remain roughly
constant or slightly decrease over time, such as to reach a long-term value always comprised between 0.15
and 0.2. Then, the long-term viscoelastic Poisson’s ratio of concrete is downscaled to the level of calcium
silicate hydrates (noted C-S-H) with micromechanics. The long-term viscoelastic Poisson’s ratio of the C-S-
H gel is found to range between 0 and 0.2. Finally, the identification of this range is used to discuss various
potential creep mechanisms at the level of the C-S-H particles.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The containment of the typical French nuclear power vessel is
a massive concrete structure which is biaxially prestressed and is
designed to withstand an internal overpressure of 0.5 MPa in case of
accident [1]. To extend the service life of the containment, we need
to ensure that the prestress remains sufficient in order to avoid ten-
sile stress and thus limit cracks in the event of such an accident.
However, the prestress decreases over time, because of a combina-
tion of relaxation of steel and delayed strain of concrete (i.e., creep
and shrinkage). Here biaxial creep is considered. In this case, in order
to predict the creep of concrete and the resulting loss of prestress,
we need to know more than only the 1-dimensional creep behav-
ior of the concrete: we need to know its full 3-dimensional creep
behavior. Within the framework of isotropic linear viscoelasticity,
this 3-dimensional creep behavior is fully characterized by two creep
compliances or relaxation moduli: for instance, on top of the uni-
axial creep compliance considered in most models, one can use a
viscoelastic (i.e., time-dependent) Poisson’s ratio. However, although
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numerous studies (e.g., [2,3]) and models (e.g., MC10 [4], Eurocode
2 [5], ACI [6]) are devoted to the uniaxial creep compliance, the evo-
lution of the viscoelastic Poisson’s ratio of concrete with time has
been much less scrutinized.

A first issue when considering a viscoelastic Poisson’s ratio is that
its definition is not unique [7], even when considering simple uni-
axial compression, and in spite of the fact that all authors define it
through a ratio of axial strain to lateral strain. For instance, some
authors like Neville [8] define it through a ratio of the creep strains
only, while others (e.g., [9]) define it through a ratio of the total
mechanical strains (which are equal to the sum of the elastic strains
and of the creep strains). For what concerns the value of this ratio or
its evolution over time, a very large scatter is observed. For instance,
with the definition he chose, Neville [8] gathered the following val-
ues for the viscoelastic Poisson’s ratio: close to 0 [10,11], equal to
0.05 [12,13], equal to the elastic Poisson’s ratio [14,15], increasing
with time [16], or decreasing with time [17] . A possible reason that
could partly explain this large scatter is that the various experiments
gathered by Neville were performed under various —and sometimes
uncontrolled— hydric conditions. In our present work, we will focus
on the evolutions of a viscoelastic Poisson’s ratio during basic creep
experiments, during which no water is exchanged between sample
and environment. Such condition is achieved either by sealing the
sample [9,18-21], or by controlling the relative humidity of the envi-
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ronment to the same relative humidity as that of the sample [22].
As a prerequisite, we will need to clearly define the viscoelastic
Poisson’s ratio we will consider, and determine how our definition
compares with definitions used elsewhere.

For concretes made with ordinary Portland cement paste, there is
a consensus that the main phase responsible for the creep of concrete
is the calcium silicate hydrates (noted C-S-H) [23]. C-S-H is layered at
the nanometric scale —we will refer to stacks of C-S-H layers as to C-
S-H ‘particles’— and forms a gel at a larger scale. One can reasonably
wonder how the viscoelastic Poisson’s ratio of concrete is related
to the viscoelastic Poisson’s ratio of the C-S-H gel and to the creep
mechanism of the C-S-H particles. By performing some downscaling,
we aim at shedding some light on these relations.

First, we define the viscoelastic Poisson’s ratio we will consider
in this study and compare it with alternative definitions found in
the literature. Secondly, we perform an analysis of basic creep data
on concrete from the literature, to determine how this viscoelastic
Poisson’s ratio evolves with time. Then, by downscaling, we infer the
long-term viscoelastic Poisson’s ratio of the C-S-H gel. Finally, we
consider various creep mechanisms at the scale of the C-S-H parti-
cles and assess, by downscaling again, whether those mechanisms
are possible or not.

2. Viscoelastic Poisson’s ratio for creep studies

This section is devoted to introduce a viscoelastic Poisson’s ratio
for creep studies. To define it, in Section 2.1 we consider ideal relax-
ation/creep experiments, i.e., experiments with an instantaneous
loading. During an ideal creep experiment, the measured strains
(referred to as the ‘total’ strains) can be separated into an elastic con-
tribution (termed ‘elastic’ strains) and a delayed one (termed ‘creep’
strains). Next, we introduce a definition of viscoelastic Poisson’s ratio
based on total strains: we will use this definition throughout the
paper. A detailed introduction of other possible definitions and of
their interest can be found in [7]. In Section 2.2, the introduced
viscoelastic Poisson’s ratio is compared to an alternative definition
based on creep strains only. In Section 2.3, we discuss the potential
anisotropy of the time-dependent behavior of cementitious materi-
als mentioned by some, and show that the viscoelastic Poisson’s ratio
we introduced can be considered isotropic.

Concrete is an aging material, i.e., its mechanical properties
depend on its age [24,25]. However, mature concrete can reasonably
be considered non-aging. Also, up to about at least 40% of its strength,
concrete can reasonably be assumed to be linear viscoelastic [8]. In
this article, we restrict ourselves to a material that is isotropic linear
non-aging viscoelastic. For such a material submitted to infinitesimal
strains in isothermal conditions, the time-dependent state equations
that link the stress tensor s (decomposed into the volumetric stress
sv = tr(s)/3 and the deviatoric stress tensor s such that s = sv1+s,
where tr is the trace operator and 1 is the unit tensor) to the strain
tensor e (decomposed into the volumetric strain ev = tr(e) and the
deviatoric strain tensor e such that e = (ev/3)1 + e) are [26]:

sv(t) = K(t) ⊗ ėv(t) (1a)

sij(t) = 2G(t) ⊗ ėij(t) (1b)

where K(t) and G(t) are called the bulk relaxation modulus and the
shear relaxation modulus, respectively, ⊗ holds for the convolution
product defined as f ⊗ g =

∫ t
−∞ f (t − t)g(t)dt and ḟ holds for the

derivative with respect to time such as ḟ = df (t)/dt. Note that
the definition of the convolution product ⊗ does not involve any
differentiation with respect to time: differentiation with respect to

time is indicated explicitly in the right-hand term of the state Eqs.
(1a) and (1b), which can equivalently be written [26]:

ev(t) = JK (t) ⊗ ṡv(t) (2a)

eij(t) =
1
2

JG(t) ⊗ ṡij(t) (2b)

where JK(t) and JG(t) are called the bulk creep compliance and the
shear creep compliance, respectively. Following the denomination of
Bažant et al. [27], we name JK(t)−JK(0) and JG(t)−JG(0) bulk and shear
creep functions, respectively.

Starting from the state Eqs. (1a), (1b), (2a) and (2b), in uniaxial
testing, we can show that the axial stress history sa(t) and the axial
strain history ea(t) are related by [26]:

sa(t) = E(t) ⊗ ėa(t) (3a)

ea(t) = JE(t) ⊗ ṡa(t) (3b)

where E(t) and JE(t) are called the uniaxial relaxation modulus and
the uniaxial creep compliance, respectively.

2.1. Definition of viscoelastic Poisson’s ratio for isotropic linear
non-aging viscoelastic solids

Now, we consider an ideal uniaxial relaxation or an ideal creep
experiment, i.e., an experiment in which the displacement or the
load, respectively, is applied instantaneously and kept constant over
time. Based on those two thought experiments, from the ratio of the
radial dilation to the axial contraction, we can define two Poisson’s
ratios:

mr(t) = − el(t)

e0
a

during a uniaxial relaxation experiment for which ea(t) = e0
a

(4a)

mc(t) = − el(t)
ea(t)

during a uniaxial creep experiment for which sa(t) = s0
a

(4b)

which we termed relaxation Poisson’s ratio mr and creep Poisson’s
ratio mc. They can be expressed as functions of the bulk and shear
time-dependent properties:

m̂r(s) =
3K̂(s) − 2Ĝ(s)

2s(3K̂(s) + Ĝ(s))
(5a)

mc(t) =
3JG(t) − 2JK (t)

2 (3JG(t) + JK (t))
(5b)

where s is the Laplace variable and where f̂ (s) represents the Laplace
transform of the function f(t). Those two Poisson’s ratios are related
through the uniaxial creep compliance JE(t) by:

mc(t) =
(
mr(t) ⊗ J̇E(t)

)
/JE(t) (6)

Various studies [7,28-31] already discussed the difference
between various definitions of Poisson’s ratios, including the relax-
ation Poisson’s ratio mr and creep Poisson’s ratio mc. The principle
of correspondence [26], which is of great use for solving linear vis-
coelastic problems analytically, is only applicable to the relaxation
Poisson’s ratio mr, not to the creep Poisson’s ratio mc [7,28-31]. Said
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otherwise, if we want to infer the solution to a linear viscoelas-
tic problem from the solution to the corresponding elastic one,
we need to replace the elastic Poisson’s ratio by the s-multiplied
Laplace transform of the relaxation Poisson’s ratio sm̂r , not of the
creep Poisson’s ratio sm̂c. Therefore, the relaxation Poisson’s ratio mr

is a material property, which can be used to predict the response
of the material under a generic load history. In contrast, the corre-
spondence principle cannot be applied to the creep Poisson’s ratio
mc.

In spite of the theoretical differences that exist between the two
Poisson’s ratios mr and mc, their initial and asymptotic values are
equal, and so are their initial and asymptotic time-derivatives [7].
Moreover, in practice, for all cementitious materials (i.e., cement
paste, mortar, or concrete) on which we could analyze biaxial creep
data, the difference between those two Poisson’s ratios was negligi-
ble at all times. Therefore, in the following, we will not distinguish
the two Poisson’s ratios and will only refer to it as to the viscoelas-
tic Poisson’s ratio of the material: we will note it m(t). Note however
that, for innovative concretes or for immature ones, the fact that the
creep and relaxation Poisson’s ratios almost coincide is not guaran-
teed: consequently, even if the creep Poisson’s ratio mc can easily
be obtained with Eq. (7) from creep data, experimentalists should
always calculate the relaxation Poisson’s ratio mr as well (with the
above relation via transforms or via a numerical fitting routine), to
check if the difference between the two Poisson’s ratios is indeed
always negligible.

In the rest of the manuscript, the viscoelastic Poisson’s ratio of the
material will be back-calculated from creep experiments by using Eq.
(7) that was derived for the creep Poisson’s ratio: we thus retrieve the
definition of Eq. (7) that we introduced. When needed, we will also
consider that this viscoelastic Poisson’s ratio m(t) satisfies the elastic-
viscoelastic correspondence principle, which can theoretically only
be applied to the relaxation Poisson’s ratio.

The viscoelastic Poisson’s ratio m(t) that we will use throughout
this work relates strains and stresses for a triaxial creep experiment
through:

ei(t) = JE(t)s0
i −

(
s0

j + s0
k

)
m(t)JE(t), where i �= j �= k ∈ {1, 2, 3},

(7)

where s0
i , s0

j , and s0
k are the constant loads instantaneously applied

in the principal directions, and ei(t), ej(t), and ek(t) are the strains
in those same principal directions. This definition makes it pos-
sible to retrieve a definition found elsewhere for uniaxial creep
tests [9,18,21]:

m(t) = − e2(t)
e1(t)

= − e3(t)
e1(t)

with a load applied in direction 1 only, (8)

and another definition found elsewhere for biaxial creep
tests [9,18,21]:

m(t) = − e3(t)
e1(t) + e2(t) − e3(t)

with a load applied in directions 1 and 2.

(9)

The viscoelastic Poisson’s ratio here introduced is defined based
on total strains: one cannot calculate it when only the creep strains
are reported (as is the case, e.g., in [32,33]), unless the elastic strains
can be estimated.

2.2. Definition based on creep strains

One of the most reported Poisson’s ratios in the literature is
defined based on creep strains [8,13,32,34-39]. For instance, for uni-
axial creep tests, Neville [8] defined a uniaxial creep-based Poisson’s
ratio as:

m̃(t) = − el(t) − e0
l

ea(t) − e0
a

(10)

where el(t), ea(t) are the total lateral and axial strain, respectively,
and where e0

l = el(0) and e0
a = ea(0) are the lateral and axial elastic

strains, respectively. Thus, el(t) − e0
l and ea(t) − e0

a are the lateral and
axial creep strains, respectively. In comparison with the viscoelastic
Poisson’s ratio m(t) that we introduced in Eq. (7), one could draw the
following analogy: the creep-based Poisson’s ratio corresponds to a
creep function, while the viscoelastic Poisson’s ratio corresponds to
a creep compliance.

The main interest of the creep-based Poisson’s ratio m̃(t) is that
only creep strains are needed to compute it. Thus, it can be reported
for any creep experiment, even in absence of any information on
the elastic properties of the material. But this interest is in fact a
drawback, which is the same drawback as for any creep function
compared with its corresponding creep compliance.

The first drawback is that, if one reports only the creep-based
Poisson’s ratio, he/she may omit to report the elastic Poisson’s ratio.
In such case, the creep-based Poisson’s ratio becomes quite useless:
if one does not keep the load constant after the initial loading, one
would be unable to calculate how the ratio between lateral and axial
strain would evolve over time. In contrast, such omission is not pos-
sible if the viscoelastic Poisson’s ratio is reported, since this ratio
includes the elastic data: indeed, m(0) is the elastic Poisson’s ratio.

Creep functions (and hence the creep-based Poisson’s ratio) are
sensitive to the duration of the loading, which, for any creep test, is
never instantaneous. As a consequence, any creep function is associ-
ated to an apparent elastic modulus, which must be measured from
the strain at the end of the loading phase. Yet, when creep functions
are reported in the literature, the associated apparent elastic modu-
lus is not always reported or measured, and, when it is measured, it
is sometimes measured from a different test [27]. The error that may
arise from such a wrong combination could be nonnegligible.

In conclusions, in the spirit of Bažant et al. [27], who recom-
mended to report creep compliances rather than creep functions, we
recommend the use of the viscoelastic Poisson’s ratio rather than the
creep-based Poisson’s ratio. In any case, if one chooses to report the
creep-based Poisson’s ratio, he/she should report meaningful elastic
properties as well.

2.3. Potential anisotropy of time-dependent behavior

A few works [8,22,32] wondered whether the creep-based Pois-
son’s ratio of concrete is anisotropic during a multiaxial creep test.
They reached the conclusion that it can be. Here, we discuss their
results.

To reach their conclusions, the authors proposed, for triaxial
loading, the following definition for a direction-specific creep-based
Poisson’s ratio m̃i:

ei(t) − ei(0) = Jcu
E

(
s0

i − m̃i

(
s0

j + s0
k

))
where i �= j �= k ∈ {1, 2, 3}.

(11)

which is a definition based on creep strains. Note that in this
definition intervenes the uniaxial creep compliance Jcu

E , which is
measured from an independent uniaxial creep test in which the
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axial load s0
a is equal to the maximum load of the triaxial test (i.e.,

s0
a = max

i∈{1,2,3}
{si}).

For instance, Gopalakrishnan [22] performed 13 different triaxial
tests on a cubic concrete sample. Among these 13 tests, we consider
the 11 tests that yielded an elastic Poisson’s ratio between 0 and 0.3.
His results showed that the direction-specific creep-based Poisson’s
ratios m̃i obtained in the three directions i ∈ {1, 2, 3} differ from each
other. However, we believe that this anisotropy is mostly due to the
fact that he only took into account creep strains, i.e., that he used
uniaxial creep functions instead of uniaxial creep compliances.

Here, we propose an alternative way to analyze their data. This
alternative relies on the data from the triaxial experiments only.
First, we compute the volumetric strain ev(t) and applied volumet-
ric stress s0

v , from which we obtain the volumetric creep compliance
JK (t) = ev(t)/s0

v . Second, we compute the von Mises strain ed(t) =√
3Je2(t) (where Je2(t) is the second invariant of the deviatoric strain

tensor eij) and von Mises stress s0
d =

√
3Js0

2 (where Js
0

2 is the sec-
ond invariant of deviatoric stress tensor sij), from which we obtain
the shear creep compliance JG(t) = 2ed(t)/s0

d . Then, from the knowl-
edge of the creep compliances JK(t) and JG(t), we obtain the uniaxial
creep compliance JE(t) = JK(t)/9+ JG(t)/3. Finally, by applying Eq. (7)
while rotating the indices i �= j �= k ∈ {1, 2, 3}, we can obtain, from
the triaxial data, 3 directional viscoelastic Poisson’s ratios, which we
note m1, m2, and m3.

For instance, we consider the test TC10 in [22], in which the
specimen is subjected to a triaxial compression: the 3 principal
compression stresses are 13.24 MPa, 1.78 MPa and 1.83 MPa. We
computed the 3 directional viscoelastic Poisson’s ratios as explained
above. Our results are displayed in Fig. 1, together with the 3 direc-
tional creep-based Poisson’s ratio reported by the author of [22]. The
maximum difference between the 3 creep-based Poisson’s ratios (i.e.,

max
i�=j∈{1,2,3}

{m̃i(t) − m̃j(t)}) displayed in Fig. 1a is 0.14. In contrast, the

maximum difference between the 3 directional viscoelastic Poisson’s
ratios that we introduced (i.e., max

i�=j∈{1,2,3}
{mi(t) − mj(t)}) and that are

displayed in Fig. 1b is reduced to 0.019.
In fact, for the 11 tests considered from [22], we computed the

3 directional creep-based Poisson’s ratios with Eq. (11) (as did the
authors) and the 3 directional creep-based Poisson’s ratios with Eq.
(7) (see Appendix A). For all 11 tests, the mean value of the max-
imum difference max

i�=j∈{1,2,3}
{m̃i(t) − m̃j(t)} between the 3 directional

creep-based Poisson’s ratio was 0.1182 and its standard deviation
was 0.1245. In contrast, for the same 11 tests, the mean value of the
maximum difference max

i�=j∈{1,2,3}
{mi(t) −mj(t)} between the 3 directional

viscoelastic Poisson’s ratios was 0.0367 and its standard deviation
was 0.0441.

Therefore, by working with viscoelastic Poisson’s ratios rather
than creep-based ones, and by consistently analyzing data from a
unique test rather than from 2 independent ones, any potential
anisotropy of a time-dependent Poisson’s ratio vanished. In short:
the viscoelastic Poisson’s ratio of concrete can be considered as
isotropic. Note that this conclusion is fully consistent with the the-
ory of linear viscoelasticity, according to which, for an isotropic solid,
the viscoelastic Poisson’s ratio should have no reason to exhibit any
anisotropy. Such conclusion is only valid for cases for which the load
is lower than 30% of the strength, for which neither cracking nor
damage is involved.

3. Evolution of viscoelastic Poisson’s ratio of concrete

In this section, based on experimental results of basic creep of
concrete available in the literature and for which the strains were
measured in more than one direction, we analyze how the viscoelas-
tic Poisson’s ratio of concrete evolves over time. Here, following the

reasoning explained in Section 2.3, we consider only experiments for
which both the creep strains and the elastic strains were measured.
In these tests, the samples are either sealed [9,18-21] or stored in an
environment whose relative humidity is close to the relative humid-
ity inside the sample [22]. For each creep test, a reference specimen
is used to measure autogenous shrinkage. This autogenous shrinkage
is subtracted from the strain of the loaded specimen to obtain the
strain only due to stress, i.e., the basic creep strain. Then, injecting
the values of applied stress and stress-induced strains into Eq. (7), the
evolution of the viscoelastic Poisson’s ratio of the concrete samples
with time is back-calculated. The data considered are the following:

• Gopalakrishnan [22] performed triaxial creep tests on a cubic
sample made of concrete with one mix design. The samples
were always kept in a relative humidity of about 98%. The strain
was measured by strain gauges of resolution 10 lm/m, with
four strain gauges per surface. The load was applied by four
high tensile steel rods whose relaxation was less than 0.2%. The
load was provided by a 100-ton hydraulic jack and the load in
the jack was indicated by a pressure gauge during the test. The
loading age was 8 days.

• Jordaan and Illston [9,18] measured the creep of a cubic sam-
ple of concrete with one mix design, under uniaxial and biaxial
loads. The samples were coated with one layer of liquid plas-
tic weatherproofing and several coats of resin. The strain was

(a)

(b)

Fig. 1. Dependency of Poisson’s ratio on the direction in experiment TC10 in [22]:
(a) Creep-based Poisson’s ratio reported in [22], calculated from Eq. (11) for three
directions; (b) viscoelastic Poisson’s ratio calculated from Eq. (7) for three directions.
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measured with strain gauges of sensitivity within 1 lm/m.
The nominal stress was measured during the test in all three
directions. The loading age was 16 days [9] or 7 days [18].

• Kennedy [19] performed uniaxial and triaxial creep tests on
cylindrical specimens of concrete with one mix design, but pre-
pared with two types of curing conditions: “AsCast” denotes
specimens cured under sealed conditions, while “AirDried”
denotes specimens cured at a relative humidity of 50%. Before
testing, all samples were coated with two layers of epoxy, then
sealed in a copper jacket, placed in a neoprene sleeve and
sealed at both ends with neoprene. At the end of each test,
the author checked the mass loss of the specimens. The largest
mass loss was 0.97% for the sample loaded at the age of 365
days and loaded during 1700 days. The strain was measured
with vibrating wire strain gauges embedded in the sample,
whose accuracy was 1 lm/m. The load was supplied by a
hydraulic pressure which was regulated with a stability of ±5%.
A warning system was set to trigger an alarm if a 10% drop in
pressure occurred, but the alarm was never triggered during
the test.

• Kim et al. [21] prepared cubic samples of concrete with three
mix designs (noted C1, C2 and C3) and tested them under
uniaxial, biaxial and triaxial loads. The samples were cured
under water. Before the test, all exposed faces of the speci-
mens were sealed with a base coat of bituminous sealant and
wrapped again in several layers of waterproof plastic film.
They stated that they verified the reliability of the sealing
method. The strain was measured with embedded gauges of
sensitivity 1 lm/m. The load was applied with a spring-loaded
creep frame and hydraulic cylinders with loading plates. The
hydraulic cylinders were connected to accumulators that auto-
matically compensated for the oil leakage of the cylinders. The
authors also stated that they confirmed the effectiveness of
their spring-loaded creep frame in providing reliable loads.

All cements that are used for the concretes above are equiva-
lent of cement CEM I clinker in Eurocode. All experimental data are
provided in Appendix B.

The results are summarized in Fig. 2a, in which, for each experi-
ment, the evolutions of the viscoelastic Poisson’s ratio m(t) with time
are lumped into: elastic Poisson’s ratio m0 (i.e., value at loading, dis-
played on the x-axis), long-term asymptotic viscoelastic Poisson’s
ratio m∞ (which is approximated by the value at the end of the test,
displayed on the y-axis), and maximum and minimum viscoelastic
Poisson’s ratios over time (indicated with the error bars). For almost
all experiments, the viscoelastic Poisson’s ratio either remained quite
constant and equal to its elastic value m0 at loading, or decreased
continuously toward its long-term value m∞.

For each mix design tested, a significant scatter was observed
from experiment to experiment. In Fig. 2b, we display, averaged over
experiments performed with each mix design, the long-term vis-
coelastic Poisson’s ratio m∞ versus the elastic Poisson’s ratio m0. One
can observe that the scatter from test to test was on the order of
0.05, for both the elastic Poisson’s ratio and the long-term viscoelas-
tic one. For all concretes tested by Gopalakrishnan [22], Jordaan
et al. [9,18], and Kim et al. [21], the elastic m0 and long-term vis-
coelastic m∞ Poisson’s ratios were almost identical, as a consequence
of the fact that, for those concretes, the viscoelastic Poisson’s ratio
remained almost constant over time. In contrast, for the two con-
cretes tested by Kennedy [19], the final viscoelastic Poisson’s ratio
m∞ was significantly lower than its elastic value m0.

From Fig. 2, we observe that, in all cases, the long-term value m∞
of the viscoelastic Poisson’s ratio was always equal to or smaller than
the elastic value m0. The variation of viscoelastic Poisson’s ratio over
time was nonnegligible for certain types of concrete. For all concretes
studied here, the long-term value m∞ of the viscoelastic Poisson’s

Maximum
value

Long-term
value

Minimum
value

Elastic value

(a)

(b)

Fig. 2. Creep experiments on concrete [9,19,21,22]: Long-term asymptotic value of
the viscoelastic Poisson’s ratio versus elastic Poisson’s ratio (a) for each individual
experiment, and (b) averaged over all experiments performed with one mix design.
In subfigure (a), y-axis error bars indicate the maximum and minimum values of the
viscoelastic Poisson’s ratio during the experiment.

ratio was comprised between 0.15 and 0.20. So, if the elastic Pois-
son’s ratio of a concrete is in-between 0.15 and 0.20, considering that
its viscoelastic Poisson’s ratio is constant with time, as proposed by
Bažant [2,40], is a very reasonable assumption. We remind the reader
that these conclusions are drawn by neglecting aging: they are there-
fore valid for a mature concrete (for which aging is negligible), but
do not hold necessarily for early-age concrete (for which aging is
significant).

These values of long-term viscoelastic Poisson’s ratio m∞ of con-
crete show that the long-term creep of concrete is both deviatoric
and volumetric. Indeed, if concrete were to creep only in a deviatoric
manner with no asymptote, the long-term viscoelastic Poisson’s ratio
should theoretically converge toward m∞ = 0.5 for infinite times
(see Section 4), and hence should at least, in practice, increase with
time. However, the experiments here analyzed show that the vis-
coelastic Poisson’s ratio remained constant or decreased slightly with
time. Moreover, Fig. 3 highlights the fact that the long-term creep is
not only deviatoric but also volumetric: out of the five tests plotted
in Fig. 3, four showed an increasing volumetric strain, three of which
evolved logarithmically with time during the creep experiment.

4. Downscaling the long-term viscoelastic Poisson’s ratio

Knowing the long-term value of the viscoelastic Poisson’s ratio of
concrete, a back-calculation of the long-term value of the viscoelastic
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Fig. 3. Evolution of volumetric strain during creep experiment on concrete. Original
data are from [9,19-22].

Poisson’s ratio of the C-S-H gel is possible. As we shall see, from the
knowledge of this long-term viscoelastic Poisson’s ratio, some phys-
ical conclusions can be inferred. Working with data on cement paste
may have been more relevant, but we are aware of only one exper-
imental data on cement paste that we could use [41]. Therefore, in
this section, an analysis of data on concrete is presented.

The elastic-viscoelastic correspondence principle [26] is a tool
that can transform a linear non-aging viscoelastic problem into a
corresponding linear elastic problem. This principle consists in elim-
inating the explicit time-dependence of the viscoelastic problem
by replacing all time-dependent moduli by the s-multiplied Laplace
transform (also called Carson transform) of their viscoelastic opera-
tor, thus yielding a corresponding elasticity problem in the Laplace
domain. Using this principle makes it possible to tackle upscaling
of viscoelastic creep compliances, by using corresponding elastic
homogenization schemes in the Laplace domain.

Resulting relations in the Laplace domain need to be transformed
back into the real time domain, which always remains hard to do
analytically, because only a few types of functions can be trans-
formed analytically from the Laplace domain back into the time
domain. Nevertheless, one can use the final value theorem [42] to
find a relation between the long-term asymptotic values K∞ and
G∞ of the relaxation moduli, J∞K and J∞G of the creep compliances,
and m∞ of the viscoelastic Poisson’s ratio. For instance, applying the
final value theorem [42] to Eq. (5a), we find the following relation
between the long-term value m∞ of the viscoelastic Poisson’s ratio
and the long-term bulk K∞ and shear G∞ moduli:

lim
s→0

(
sm̂(s)

)
= lim

s→0

(
3K̂ − 2Ĝ

6K̂ + 2Ĝ

s
s

)
=

3K∞ − 2G∞

6K∞ + 2G∞ = m∞ (12)

From this relation, we infer that, if the material creeps with no
asymptote in time (which seems to be the case for most cementi-
tious materials [3,43-45], see also Fig. 3), but in a deviatoric manner
only (in which case K∞ � G∞), the viscoelastic Poisson’s ratio must
converge toward m∞ = 0.5. In contrast, if the material creeps with
no asymptote in time but in a volumetric manner only (in which case
K∞ � G∞), the viscoelastic Poisson’s ratio must converge toward
m∞ = −1.

In the experiments discussed in Section 3, the duration of the
experiments is finite and the viscoelastic Poisson’s ratio may not
have reached its asymptotic value fully. However, as the viscoelas-
tic Poisson’s ratio m(t) does not vary much with time, we will
consider its value at the end of the experiment as its asymptotic
value m∞. Based on this approach, we will perform downscaling

of the long-term asymptotic viscoelastic Poisson’s ratio by using
the elastic-viscoelastic correspondence principle and the final value
theorem. Note that, although aging is neglected in the downscaling
here performed, a micromechanical analysis of the Poisson’s ratio
that explicitly takes into account aging (which would be needed for
early-age materials) is possible [46].

To infer the long-term asymptotic value of the viscoelastic Pois-
son’s ratio of the C-S-H gel from that of the concrete, the concrete is
regarded as a multiscale composite material at four different scales,
which are displayed in Fig. 4:

• At the largest scale of concrete (see Fig. 4a), the aggregates are
considered as spherical inclusions that do not creep and are
embedded into a matrix made of cement paste, which creeps.

• At a scale below, i.e., at the scale of the cement paste (see
Fig. 4b), portlandite, calcium sulfoaluminates hydrates and the
unhydrated clinker are considered as spherical inclusions that
do not creep and are embedded into a matrix made of a mix-
ture of C-S-H with capillary pores. This mixture is considered
to creep.

• At another scale below (see Fig. 4c), the mixture of C-S-H with
capillary pores is considered to be a matrix of C-S-H gel (that
contains the gel porosity) that surrounds spherical capillary
pores.

We downscaled then the Poisson’s ratio from the scale of concrete
(Fig. 4a) to the scale of C-S-H gel (Fig. 4c). As a prerequisite to the
downscaling, we derive some theoretical results. It should be noted
that we do not take into account any interfacial transition zone (ITZ)
in this stage of downscaling but the effect of ITZ will be discussed in
Section 5.1. In Section 4.1, we derive what the long-term viscoelas-
tic Poisson’s ratio is for a composite material made of a matrix that

Portlandite
Calcium sulfoaluminates
Clinker

d) C-S-H gel

a) Concrete

c)

b) Cement paste

Aggregates

Capillary pores

Gel pores

Mixture of
C-S-H with
capillary
pores

Section
4

Section
5.2

Fig. 4. Multiscale structure of concrete: (a) Concrete as a matrix of cement paste
embedding aggregates, (b) cement paste as portlandite, calcium sulfoaluminates
hydrates and unhydrated clinker embedded into a matrix made of a mixture of C-S-H
with capillary pores, (c) mixture of C-S-H with capillary pores as a matrix of C-S-H gel
surrounding capillary porosity, and (d) C-S-H gel as a mixture of C-S-H particles and
gel pores. The scales (a), (b) and (c) are considered in Section 4 for the downscaling of
the long-term Poisson’s ratio, while the scale (d) is considered in Section 5.2 for the
analysis of the long-term creep mechanism of C-S-H gel.
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creeps and that embeds spherical inclusions that do not creep. In
Section 4.2, we derive what the long-term viscoelastic Poisson’s ratio
is for a composite material made of a matrix that creeps and that
surrounds spherical pores.

4.1. Viscoelastic Poisson’s ratio of composite made of matrix
embedding non-creeping inclusions

Here we consider a composite made of a matrix that embeds
spherical inclusions. The matrix is considered to creep, and the inclu-
sions are considered not to creep. The aim is to derive the relation
between the long-term value m∞

com of the viscoelastic Poisson’s ratio
of the composite, the long-term value m∞

m of the viscoelastic Poisson’s
ratio of the matrix, and the volume fraction fi of the inclusions.

For such a microstructure, the Mori-Tanaka scheme has been
argued to be applicable, for any volume fraction of inclusions [47–49].
So, we apply this scheme to calculate the properties of the com-
posite as a function of the properties of its individual phases . The
interface between inclusion and matrix is considered to be perfectly
adhesive. Applying the correspondence principle to the elastic Mori-
Tanaka homogenization scheme, one finds, in the Laplace domain,
the solution to the viscoelastic homogenization problem of interest.
Applying the final value theorem [42] to this relation, we obtain a
relation between the long-term values K∞

com and G∞
com of the relaxation

moduli of the composite, K∞
m and G∞

m of the relaxation moduli of the
matrix, and K∞

i and G∞
i of the relaxation moduli of the inclusions:

K∞
com = K∞

m
(1 − f )

(
K∞

m + a
(
K∞

i − K∞
m

))
+ fK∞

i

(1 − f )
(
K∞

m + a
(
K∞

i − K∞
m

))
+ fK∞

m
(13a)

G∞
com = G∞

m
(1 − f )

(
G∞

m + b
(
G∞

i − G∞
m

))
+ fG∞

i

(1 − f )
(
G∞

m + b
(
G∞

i − G∞
m

))
+ fG∞

m
(13b)

where a = (3K∞
m )/(3K∞

m + 4G∞
m ) and b = (6K∞

m + 12G∞
m )/(15K∞

m +
20G∞

m ). Then, injecting the relaxation moduli K∞
com and G∞

com into
Eq. (12), we get the expression of the long-term value m∞

com of the
viscoelastic Poisson’s ratio of the composite. Supposing that the
long-term volumetric and deviatoric creep functions of the matrix
are non-asymptotic, we let K∞

m /K∞
i → 0 and G∞

m /G∞
i → 0 in the

expression of m∞
com and obtain:

m∞
com =

(10(m∞
m )2 − 11(m∞

m ) + 3)f + (8(m∞
m ) − 10(m∞

m )2)
(30(m∞

m )2 − 41m∞
m + 13)f + (8 − 10m∞

m )
(14)

This equation indicates that the long-term viscoelastic Poisson’s
ratio of such a composite depends only on the long-term viscoelastic
Poisson’s ratio of the matrix and on the volume fraction of the inclu-
sions. The relation between the long-term viscoelastic Poisson’s ratio
m∞

com of the composite and m∞
m of the matrix is displayed in Fig. 5a for

various volume fractions f of inclusion.
Fig. 5a shows that if the matrix creeps only deviatorically

(i.e., m∞
m = 0.5) at large times, then the composite must also

creep deviatorically only. As the basic creep of concrete is non-
asymptotic [50,51] and its long-term viscoelastic Poisson’s ratio is
strictly lower than 0.5 (see Fig. 2), we can consider that the cement
paste creeps not only deviatorically but also volumetrically with
no asymptote. Thus, the homogenization scheme developed in this
section can be applied to downscale results from the scale of con-
crete to the scale of the cement paste and to the scale of the mixture
of C-S-H with capillary porosity (see Fig. 4).

4.2. Viscoelastic Poisson’s ratio of porous medium

Here we consider a composite made of a homogeneous matrix
that embeds spherical pores. The aim is to relate the long-term
viscoelastic Poisson’s ratio m∞

com of the composite to the long-term

(a)

(b)

Fig. 5. (a) Long-term viscoelastic Poisson’s ratio of a composite made of a creeping
matrix that surrounds non-creeping spherical inclusions. f is the volume fraction of
inclusions. (b) Long-term viscoelastic Poisson’s ratio of a composite made of a creeping
matrix that surrounds spherical pores. 0 is the volume fraction of pores.

viscoelastic Poisson’s ratio m∞
m of the matrix and the volume fraction

0 of pores (i.e. porosity).
Given the microstructure, we apply the Mori-Tanaka scheme to

compute the properties of the composite as a function of the prop-
erties of its individual phases. Since the homogenization scheme is
the same as that used in Section 4.1, the long-term relaxation mod-
uli K∞

com and G∞
com of the composite read as in Eqs. (13a) and (13b). In

this equation, taking into account the fact that K∞
i = 0 and G∞

i = 0
and injecting them into Eq. (12) yields:

m∞
com =

(5(m∞
m )2 + 2m∞

m − 3)0 + m∞
m (10m∞

m − 14)
(15(m∞

m )2 + 2m∞
m − 13)0 + (10mm − 14)

(15)

This equation indicates that the long-term viscoelastic Poisson’s
ratio of such a composite depends only on the long-term viscoelastic
Poisson’s ratio of the matrix and on the volume fraction of the pores.
The relation between the long-term viscoelastic Poisson’s ratios m∞

com
of the composite and m∞

m of the matrix is displayed in Fig. 5b for var-
ious values of volume fraction of pores. This figure shows that if the
matrix creeps only deviatorically (i.e., m∞

m = 0.5) at large times, the
porous medium may creep not only deviatorically, but also volumet-
rically. It is worth to keep in mind that a pure deviatoric creep at
microscopic level does not imply always a pure deviatoric creep at
macroscopic level.



A. Aili et al. / Cement and Concrete Research 90 (2016) 144–161 151

4.3. Long-term viscoelastic Poisson’s ratio: from concrete down to
C-S-H gel

The long-term viscoelastic Poisson’s ratio m∞
gel of the C-S-H gel is

computed from the results obtained at the scale of concrete by down-
scaling in three steps, by using the intermediate scales of the cement
paste and of the mixture of C-S-H with the capillary porosity (see
Fig. 4).

To downscale results from the scale of concrete to the scale of
cement paste, we apply the viscoelastic homogenization scheme
introduced in Section 4.1. We use Eq. (14), in which the long-term
viscoelastic Poisson’s ratio used is that of concrete, which is dis-
played in Fig. 2a, and in which the volume fraction of aggregates is
computed from the mix design (see Table 1). Thus, we back-calculate
the long-term viscoelastic Poisson’s ratio of the cement paste, which
plays the role of the matrix in this step of downscaling (see Fig. 4a).

To downscale results from the scale of cement paste to the scale
of the mixture of C-S-H with capillary porosity, we apply the vis-
coelastic homogenization scheme introduced in Section 4.1 again.
The volume fraction of each phase is computed by using Powers’
model [52], which considers that the volume of cement paste is
composed of bulk hydrates (i.e., solid hydrates plus gel pores), unhy-
drated clinker, and capillary pores. The sample is considered to be
fully hydrated if the water-to-cement mass ratio w/c is superior to
0.38 for samples cured under water, and superior to 0.44 for samples
cured under sealed conditions [52]. Otherwise, the long-term hydra-
tion degree a∞ is taken to be equal to (w/c)/0.38 for samples cured
under water, and to (w/c)/0.44 for samples cured under sealed con-
ditions [52]. The volume fraction of bulk hydrates per unit volume
of cement paste is 2.12(1 − p)a∞, where p = (w/c)/(w/c + qw/qc)
and where qw and qc are the densities of water and of the clinker
grains, respectively. The volume fraction of portlandite per unit vol-
ume of bulk hydrates is estimated to be equal to 25%, which is a
typical value for CEM I cement pastes [23], from which the vol-
ume fraction fCH of portlandite per unit volume of cement paste is
fCH = 0.53(1−p)a∞. The volume fraction of calcium sulfoaluminates
hydrates per unit volume of bulk hydrates is estimated to be equal
to 15% [23], from which the volume fraction falu of sulfoaluminates
hydrates per unit volume of cement paste is falu = 0.32(1 − p)a∞.
The volume fraction fcl of unhydrated clinker per unit volume of
cement paste is estimated also with Powers’ model [52] to be equal
to fcl = (1 − p)(1 − a∞). Therefore, to downscale results from the
scale of cement paste to the scale of the mixture of C-S-H with capil-
lary porosity, we use Eq. (14) by considering that the volume fraction
of inclusions is fCH + falu + fcl. Thus, we back-calculate the long-
term viscoelastic Poisson’s ratio of the mixture of C-S-H with the
capillary porosity, which plays the role of the matrix in this step of
downscaling (see Fig. 4b).

To downscale results from the scale of the mixture of C-S-H with
the capillary porosity to the scale of the C-S-H gel, we apply the
viscoelastic homogenization scheme introduced in Section 4.2. The

volume fraction Vcp of capillary pores per unit volume of cement
paste is estimated with Powers’ law [52] as Vcp = p − 1.12(1 − p)a∞.
We use Eq. (15) by considering that the porosity 0 = Vcp/(1 − VCH −
Valu − Vcl) is the volume fraction of capillary pores in the mixture.
Thus, we back-calculate the long-term viscoelastic Poisson’s ratio
of the C-S-H gel, which plays the role of the matrix in this step of
downscaling (see Fig. 4c).

Fig. 6 displays the results of this downscaling. The long-term vis-
coelastic Poisson’s ratio m∞

gel of the C-S-H gel is comprised between
−0.07 and 0.16, while the long-term viscoelastic Poisson’s ratio m∞

c
of concrete is comprised between 0.16 and 0.19. As a result of the
fact that the slope of the curves displayed in Fig. 5a and b is lower
than 1 for Poisson’s ratios around 0.2, the long-term viscoelastic Pois-
son’s ratio of C-S-H is more scattered than that of concrete, which
indicates that the long-term viscoelastic Poisson’s ratio of concrete
is rather independent of that of C-S-H gel: the long-term viscoelastic
Poisson’s ratio of C-S-H has little influence on the long-term vis-
coelastic Poisson’s ratio of concrete. The fact that the estimation of
the Poisson’s ratio of C-S-H gel is scattered is due to the scatter of the
measurement at the level of the concrete.

Even when taking into account the scatter, for all materials con-
sidered, the sum of the long-term viscoelastic Poisson’s ratio m∞

gel of
the C-S-H gel and of its standard deviation is found to be between
−0.38 and 0.24, which is significantly smaller than 0.5 and signif-
icantly greater than −1. Therefore, given the fact that the creep of
cementitious materials is known to exhibit no asymptote [50,51], we
infer that the long-term creep of the C-S-H gel is neither deviatoric
only (in which case we would observe m∞

gel = 0.5), nor volumetric
only (in which case we would observe m∞

gel = −1): in the long term,
the C-S-H gel creeps both volumetrically and deviatorically.

5. Discussion

5.1. Influence of the interface

The homogenization scheme introduced in Section 4.1 was
derived by considering that the interface between inclusion and
matrix is perfectly adhesive. Said otherwise, by using this scheme,
we considered that there is no discontinuity of displacement, nei-
ther at the interface between aggregates and cement paste (see
Fig. 4a), nor at the interface between portlandite, calcium sulfoalu-
minates hydrates, clinker and the mixture of C-S-H with capillary
porosity (see Fig. 4b). In practice, adhesion at those two interfaces
may not be perfect. The objective of this section is to quantify how
this imperfection could alter the findings obtained in Section 4.3.

As was done in Section 4.3, we consider a composite made of a
matrix that creeps and surrounds spherical inclusions that do not
creep, but we now consider that the interface between matrix and
inclusion can be imperfect: a tangential stiffness Kt(t) of the interface
is introduced, with a long-term asymptotic value limt→+∞Kt(t) =
K∞

t . The normal displacement at the interface is considered to be

Table 1
Concrete formulation data used for the downscaling of viscoelastic Poisson’s ratio. The volume fraction of aggregates is expressed per unit volume of concrete. The volume fraction
of portlandite, calcium sulfoaluminates hydrates and unhydrated clinker is expressed per unit volume of cement paste. The volume fraction of capillary pores is expressed per
unit volume of mixture of C-S-H with capillary pores.

Concrete Cement type Water-to-cement Volume fraction Volume fraction of portlandite, calcium Volume fraction of capillary pores
mass ratio of aggregates sulfoaluminates hydrates and clinker Volume fraction of capillary pores

Gopalakrishnan Type III 0.72 0.725 0.259 0.474
AsCast, Kennedy Type II 0.425 0.637 0.365 0.173
AirDried, Kennedy Type II 0.425 0.637 0.365 0.173
Jordaan and Illston Ordinary Portland cement 0.40 0.641 0.381 0.173
C1, Kim et al. Type I 0.58 0.715 0.300 0.357
C2, Kim et al. Type I 0.4 0.7 0.375 0.099
C3, Kim et al. Type I 0.32 0.691 0.434 0.057
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Fig. 6. Long-term viscoelastic Poisson’s ratio m∞
c of concrete versus long-term vis-

coelastic Poisson’s ratio m∞
gel of C-S-H gel.

continuous, i.e., there is no separation at the interface. The radius of
the inclusions is noted Ri. The viscoelastic homogenization scheme
is based on the equivalent inclusion method developed by Duan et
al. [53] for elastic solids. In his model, the imperfection of the inter-
face is characterized by the dimensionless parameter mh = KtRi/Gm,
where Gm is the shear modulus of the matrix. Using the corre-
spondence principle, the viscoelastic homogenization scheme with
imperfect interfaces is derived in the Laplace domain by replac-
ing all elastic parameters in Duan’s scheme by the s-multiplied
Laplace transform of their corresponding viscoelastic parameter.
Then, using again the final value theorem [42], we derive a relation
between the long-term viscoelastic Poisson’s ratio m∞

com of the com-
posite, m∞

m of the matrix, the long-term interface property m∞
h =

limt→+∞ (Kt(t)Ri/Gm(t)), and the volume fraction f of inclusions:

m∞
com =

A1(m∞
m )2 + B1m

∞
m + C1

A2(m∞
m )2 + B2m

∞
m + C2

(16)

where the coefficients are:

• A1 = 10f 2m∞
h + 20f 2 − 20fm∞

h − 76f + 10m∞
h + 38

• B1 = −11f 2m∞
h − 22f 2 + 19fm∞

h + 92f − 8m∞
h − 34

• C1 = 3f 2m∞
h + 6f 2 − 3fm∞

h − 24f
• A2 = 30f 2m∞

h + 60f 2 − 30fm∞
h − 96f

• B2 = −41f 2m∞
h − 82f 2 + 31fm∞

h + 116f + 10m∞
h + 38

• C2 = 13f 2m∞
h + 26f 2 − 5fm∞

h − 28f − 8m∞
h − 34

In the above equation, letting the interface parameter m∞
h tend

toward +∞, we retrieve Eq. (14), which is valid for perfectly adhe-
sive interfaces. In contrast, letting the interface parameter m∞

h tend
toward 0, we obtain a relation valid in the case of perfectly smooth
interfaces. We checked that the relation obtained in this latter case
is consistent with the Poisson’s ratio obtained by using the elastic
homogenization scheme for perfectly smooth interface developed
in [54]. Next, we study the influence of the interface conditions on
the results when performing a homogenization 1) from the scale of
the cement paste to that of the concrete, and 2) from the scale of the
C-S-H gel to that of the cement paste.

For what concerns homogenization from the scale of cement
paste to the scale of concrete, the interface that plays a role is that
between aggregates and cement paste (see Fig. 4a). Here, in accor-
dance with the experimental results of Parrott [41], we consider a
concrete made of aggregates at a typical volume fraction of 0.7 and
of a cement paste with a long-term viscoelastic Poisson’s ratio equal
to 0.19. Using Eq. (16), we compute the long-term viscoelastic Pois-
son’s ratio of the concrete as a function of the interface parameter

m∞
h . The results are displayed in Fig. 7a: to retrieve a long-term vis-

coelastic Poisson’s ratio between 0.15 and 0.2 for concrete (as is
observed experimentally, see Fig. 2), Fig. 7a suggests that the inter-
face between aggregates and cement paste can be considered to be
perfectly adhesive.

For what concerns homogenization from the scale of the C-S-H
gel to the scale of the cement paste, the interfaces that play a role
are those between portlandite, calcium sulfoaluminates hydrates,
clinker and the mixture of C-S-H with the capillary porosity (see
Fig. 4b). Here, in accordance again with the experimental results of
Parrott [41], we consider a cement paste with a long-term viscoelas-
tic Poisson’s ratio equal to 0.19. This long-term viscoelastic Poisson’s
ratio is downscaled down to the scale of the C-S-H gel in two steps,
to obtain the long-term viscoelastic Poisson’s ratio of the C-S-H gel
(see Fig. 4b and c). For the first step, we consider the volume fraction
of portlandite, calcium sulfoaluminates hydrates and clinker equal to
0.35 (which is the mean value of the volume fractions of portlandite,
calcium sulfoaluminates hydrates and clinker in Table 1) and use
Eq. (16) to back-calculate the long-term viscoelastic Poisson’s ratio
of the mixture of C-S-H with capillary porosity, as a function of the
parameter m∞

h of its interface with portlandite, calcium sulfoalumi-
nates hydrates and clinker. Then, considering the volume fraction of
capillary pores equal to 0.21 (which is the mean value of the vol-
ume fractions of capillary pores in Table 1) and using Eq. (15), by

(a)

(b)

Fig. 7. (a) Upscaled long-term viscoelastic Poisson’s ratio of concrete as a function of
the property of the interface between aggregates and cement paste. (b) Downscaled
long-term viscoelastic Poisson’s ratio of C-S-H gel as a function of the property of the
interface between portlandite, calcium sulfoaluminates hydrates and clinker on one
hand, and the mixture of C-S-H with capillary pores on the other hand.
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downscaling we infer the long-term viscoelastic Poisson’s ratio m∞
gel

of the C-S-H gel. The results are displayed in Fig. 7b: the range over
which the long-term viscoelastic Poisson’s ratio m∞

gel of the C-S-H gel
is almost the same as the scatter of the downscaled value, which
is visible in Fig. 6. Said otherwise: the properties of the interface
between portlandite, calcium sulfoaluminates hydrates and clinker
on one hand, and the mixture of C-S-H with capillary porosity on the
other hand, play a negligible role on the back-calculated value of the
long-term viscoelastic Poisson’s ratio of the C-S-H gel.

From the calculations performed above, we conclude that 1) the
interface between aggregates and cement paste can be considered
to be perfectly adhesive, and 2) the interface between portlandite,
calcium sulfoaluminates hydrates and clinker on one hand, and the
mixture of C-S-H with capillary porosity on the other hand, has lit-
tle influence on the back-calculated long-term viscoelastic Poisson’s
ratio of the C-S-H gel. It should be noted that such conclusion is only
valid for the long-term values of Poisson’s ratio. As to whether the
interface effect can be neglected or not for the whole time-evolution
of Poisson’s ratio, no information can be obtained from the above
study.

5.2. Implications for creep mechanism of C-S-H gel at large times

Based on the back-calculated long-term viscoelastic Poisson’s
ratio of the C-S-H gel, which is found to lie between 0 and 0.18 (see
Section 4.3), we aim at inferring some implications for the creep
mechanism of the C-S-H gel. In the spirit of the model proposed
by Jennings et al. [55,56], we consider the C-S-H gel to be made of
nanometer-sized C-S-H particles. Two potential creep mechanisms
are considered next: long-term creep of the C-S-H gel is due to 1)
creep of the C-S-H particles themselves, or 2) creep of the contact
points between neighboring C-S-H particles. Note that those con-
clusions which will be drawn only hold if we consider that the
experimental data at the concrete scale are sufficiently reliable.

5.2.1. Creep of C-S-H gel originating from creep of C-S-H particles
In this section, we consider that creep of the C-S-H gel originates

from the creep of the C-S-H particles themselves, and that those par-
ticles are perfectly bonded to each other. We adopted the model
proposed by Tennis and Jennings [55,57] for the description of the
microstructure of the C-S-H gel. The C-S-H gel is composed of indi-
vidual globules of C-S-H particles, which are stacks of C-S-H layers.
The globules form zones of Low Density (LD) C-S-H and zones of
High Density (HD) C-S-H, whose gel porosity (volume of gel pores
over the sum of the volume of solid hydrates and gel pores) is 0.37
and 0.24, respectively [57]. We consider that each globule of C-S-H
particle can creep by having its C-S-H layers sliding over each other
(see Fig. 8a): the shear relaxation modulus associated to this sliding
is noted GCSH(t). In addition, we consider that the distance between
solid C-S-H layers could vary over time: the uniaxial relaxation mod-
ulus associated to this type of deformation is noted ECSH(t). At large
times, the shear and uniaxial relaxation moduli tend toward G∞

CSH
and E∞

CSH , respectively.
Sanahuja [58] developed an elastic homogenization scheme

for a composite material made of an assembly of transverse
isotropic particles randomly oriented, intermixed with spherical
pores. He considered both spherical and aspherical particles. Here we
extend his scheme to homogenization of the long-term viscoelastic
behavior, again by using the correspondence principle and the final
value theorem [42]. Thus, we obtain a relationship between long-
term viscoelastic Poisson’s ratio m∞

gel of the C-S-H gel and long-term
shear relaxation modulus G∞

CSH and uniaxial relaxation modulus
E∞

CSH of the C-S-H particles.
For spherical C-S-H particles, we found that the long-term vis-

coelastic Poisson’s ratio m∞
gel of the C-S-H gel did not depend much

on the gel porosity, in the range of its two extreme values, i.e., 0.24

CSH

(t)CSHG t

n

(a) (b)

E (t)

K (t)

K (t)

Fig. 8. (a) Layered structure of C-S-H particles. (b) Viscoelastic contact between C-S-H
particles.

and 0.37. We display this long-term viscoelastic Poisson’s ratio m∞
gel

of the C-S-H gel in Fig. 9a, as a function of the ratio G∞
CSH /E∞

CSH ,
for a gel porosity of 0.28. If the ratio G∞

CSH /E∞
CSH is equal to 0,

i.e., if in the long term C-S-H layers can only slide over each other,
the long-term viscoelastic Poisson’s ratio of the C-S-H gel must be
equal to m∞

gel = 0.40, which is not consistent with the experimental
results obtained by downscaling and displayed in Fig. 6. In contrast,
to retrieve the long-term viscoelastic Poisson’s ratio m∞

gel of the C-S-H
gel observed experimentally, which is between −0.07 and 0.16 (see
Fig. 6), and if we still consider spherical C-S-H particles, in the long
term both sliding of its C-S-H layers over each other and variations
of the interlayer distance must occur.

For oblate C-S-H particles with still a gel porosity equal to 0.28,
Fig. 9a displays the long-term viscoelastic Poisson’s ratio of the C-S-H
gel, as a function of the ratio G∞

CSH /E∞
CSH , for two aspect ratio: rs =

0.12 [48] and rs = 0.033 [48]. We observe that, in such case, one can
retrieve the long-term creep Poisson’s ratio of the C-S-H gel observed
experimentally, if G∞

CSH /E∞
CSH = 0, i.e., if the C-S-H layers are only

allowed to slide over each other, with no variation of the interlayer
distance.

In conclusion, if creep of the C-S-H gel is due to creep of the
C-S-H particles themselves, evolutions of the viscoelastic Poisson’s
ratio observed experimentally cannot be explained if one considers
that the C-S-H particles are spherical and that they creep by slid-
ing of its C-S-H layers over each other: either the C-S-H particles
need to be considered aspherical, or the interlayer distance between
neighboring C-S-H layers must be considered to vary in the long term.

5.2.2. Creep of C-S-H gel originating from creep of contact points
between neighboring C-S-H particles

In this section, we consider that creep of the C-S-H gel originates
from creep of the contact points between C-S-H particles, and that
C-S-H particles only deform elastically.

Maalej [59] developed an elastic homogenization scheme for
a composite material made of rigid spherical particles in contact
through elastic contact points: to those contact points are associ-
ated a normal stiffness Kn and a tangential stiffness Kt (see Fig. 8b).
In order to predict the viscoelastic behavior of the C-S-H gel here
considered, in which contact points are considered viscoelastic, we
extend Maalej’s scheme to homogenization of the long-term vis-
coelastic behavior, again by using the correspondence principle and
the final value theorem [42]. Thus, we obtain a relationship between
the long-term viscoelastic Poisson’s ratio m∞

gel of the C-S-H gel, its
porosity, the long-term asymptotic values K∞

n of the normal stiffness
and K∞

t of the tangential stiffness.
For spherical C-S-H particles and a gel porosity equal to 0.28,

the long-term viscoelastic Poisson’s ratio m∞
gel of the C-S-H gel is dis-

played in Fig. 9b as a function of the ratio K∞
t /K∞

n . If C-S-H particles
can only slide over each other, i.e., if K∞

t /K∞
n = 0, the long-term
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(a)

(b)

Fig. 9. Long-term viscoelastic Poisson’s ratio m∞
gel of C-S-H gel: (a) in the case where

creep is due to creep of the C-S-H particles themselves, and (b) in the case where creep
is due to creep of contact points between neighboring C-S-H particles.

viscoelastic Poisson’s ratio of the C-S-H gel is predicted to be equal
to 0.33, which is greater than the values observed experimentally,
which lay between −0.07 and 0.16 (see Fig. 6). Therefore, if creep of
the C-S-H gel originates from the creep of the contact points between
C-S-H particles, if one considers that C-S-H particles are spherical,
he/she cannot consider that C-S-H particles can only slide over each
other: in the long term, the C-S-H particles must also be allowed to
get closer to each other, i.e., to interpenetrate each other.

We found no homogenization scheme that predicts the elastic
behavior of an assembly of rigid particles in contact through elastic
contact points, when the particles are considered aspherical. There-
fore, we do not know how the conclusions drawn in this section
would hold if the assumption of sphericity of the C-S-H particles was
relaxed. However, given the results obtained in Section 5.2.1, con-
clusions are likely to significantly differ for aspherical particles. This
elastic homogenization problem is difficult from a technical point of
view. As a starting point, Sidhom [60] proposed some bounds on the
effective moduli, using energy approaches, but these bounds may not
be tight enough to be directly applied to this study.

6. Conclusions

We analyzed the long-term viscoelastic Poisson’s ratio of con-
crete from creep experiments from the literature. The results were
used to compute the long-term viscoelastic Poisson’s ratio of C-S-H

gel by downscaling with the help of elastic homogenization schemes
extended to viscoelasticity. Several conclusions can be drawn.

For what concerns creep of concrete, the analysis of all experi-
mental results shows that:

• The time-dependent behavior of concrete is isotropic, as
expected from the theory of linear viscoelasticity.

• The long-term creep of concrete is not only deviatoric, but also
volumetric.

• The long-term viscoelastic Poisson’s ratio of concrete is equal
to or smaller than its elastic Poisson’s ratio, and comprised
between 0.15 and 0.20.

• When the elastic Poisson’s ratio of mature concrete is sig-
nificantly greater than 0.20, the variation of its viscoelastic
Poisson’s ratio over time is non-negligible.

• When the elastic Poisson’s ratio of mature concrete is com-
prised between 0.15 and 0.20, for practical applications, con-
sidering that its viscoelastic Poisson’s ratio is constant over
time, as proposed in particular by Bažant [2,40], is a very
reasonable assumption.

For what concerns downscaling of the viscoelastic Poisson’s ratio
of concrete, if the aggregates, portlandite, calcium sulfoaluminates
hydrates and clinker can be considered as spherical:

• The long-term viscoelastic Poisson’s ratio of the C-S-H gel has
little effect on the long-term viscoelastic Poisson’s ratio of
concrete.

• The interface between aggregates and cement paste can be
considered adhesive for downscaling or upscaling the long-
term viscoelastic Poisson’s ratio.

• The interface between portlandite, calcium sulfoaluminates
hydrates and clinker on one hand, and the mixture of C-S-H
with the capillary porosity on the other hand, has little effect on
the relation between the viscoelastic Poisson’s ratio of concrete
and that of the C-S-H gel.

For what concerns creep of the C-S-H gel, if we consider that
the experimental data at the concrete scale are sufficiently reli-
able, downscaling of all experimental results obtained at the scale of
concrete shows that:

• The long-term viscoelastic Poisson’s ratio of the C-S-H gel is
comprised between 0 and 0.2.

• The long-term creep of C-S-H gel in concrete is both deviatoric
and volumetric.

• If creep of the C-S-H gel is due to creep of the C-S-H particles
themselves, evolutions of the creep Poisson’s ratio observed
experimentally cannot be explained if one considers that the C-
S-H particles are spherical and that they creep by sliding of its
C-S-H layers over each other: either the C-S-H particles need
to be considered aspherical, or the interlayer distance between
neighboring C-S-H layers must be considered to vary in the
long term.

• If creep of the C-S-H gel is due to creep of the contact points
between C-S-H particles, and if one considers that C-S-H parti-
cles are spherical, he/she cannot consider that C-S-H particles
can only slide over each other: in the long term, the C-S-H par-
ticles must also be allowed to get closer to each other, i.e., to
interpenetrate each other.
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Appendix A. Comparaison of Poisson’s ratio and creep-based Poisson’s ratio in different directions

In this section, for the 11 tests in [22], we computed the 3 directional creep-based Poisson’s ratios with Eq. 11 (as did the authors) and the
3 directional creep-based Poisson’s ratios with Eqs. (5a) and (5b) . The results are plotted in Figs. A.10–A.13.

(a) (b)

(c) (d)

(e) (f)

Fig. A.10. Dependency of Poisson’s ratio on the direction: (a), (c) and (e) creep-based Poisson’s ratio reported in [22], calculated from Eq. (11) for three directions; (b), (d) and
(f) viscoelastic Poisson’s ratio calculated from Eqs. (5a) and (5b) for three directions. Data (a) and (b) from experiment TC1, (c) and (d) from experiment BC4and (e) and (f) from
experiment TC5 in [22].
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(a) (b)

(c) (d)

(e) (f)

Fig. A.11. Dependency of Poisson’s ratio on the direction: (a), (c) and (e) creep-based Poisson’s ratio reported in [22], calculated from Eq. (11) for three directions; (b), (d) and (f)
viscoelastic Poisson’s ratio calculated from Eqs. (5a) and (5b) for three directions. Data (a) and (b) from experiment TC5R, (c) and (d) from experiment TC6and (e) and (f) from
experiment TC7 in [22].
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(a) (b)

(c) (d)

(e) (f)

Fig. A.12. Dependency of Poisson’s ratio on the direction: (a), (c) and (e) creep-based Poisson’s ratio reported in [22], calculated from Eq. (11) for three directions; (b), (d) and
(f) viscoelastic Poisson’s ratio calculated from Eqs. (5a) and (5b) for three directions. Data (a) and (b) from experiment BC8, (c) and (d) from experiment BT9and (e) and (f) from
experiment TC11 in [22].
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(a) (b)

Fig. A.13. Dependency of Poisson’s ratio on the direction in experiment TC12 in [22]: (a) creep-based Poisson’s ratio reported in [22], calculated from Eq. (11) for three directions;
(b) viscoelastic Poisson’s ratio calculated from Eqs. (5a) and (5b) for three directions.

Appendix B. Experimental data of concrete Poisson’s ratio from
literature

In this section, we present all the experimental data of the evolu-
tion of Poisson’s ratio of concrete. The evolution of the Poisson’s ratio
is computed from Eqs. (5a) and (5b). Each test is described briefly in
the following:

Gopalakrishnan’s[22] tests are on cubic sample concrete. The load
is applied at the age of 8 days in three direction consequently. The
values of load are:

• Test TC1: s1 = −5.69 MPa, s2 = −5.55 MPa, s3 = −3.59
MPa;

• Test BC4: s1 = −5.21 MPa, s2 = −3.59 MPa, s3 = −0;
• Test TC5: s1 = −10.0 MPa, s2 = −7.72 MPa, s3 = −3.14

MPa;
• Test TC5R: s1 = −9.89 MPa, s2 = −7.55 MPa, s3 = −3.03

MPa;
• Test TC6: s1 = −11.2 MPa, s2 = −9.72 MPa, s3 = −2.10

MPa;
• Test TC7: s1 = −12.55 MPa, s2 = −11.45 MPa, s3 = −2.45

MPa;
• Test BC8: s1 = −12.58 MPa, s2 = −7.24 MPa, s3 = 0;
• Test BT9: s1 = −8.41 MPa, s2 = −5.62 MPa, s3 = 0;
• Test TC10: s1 = −13.24 MPa, s2 = −1.76 MPa, s3 = −1.83

MPa;
• Test BT11: s1 = −13.38 MPa, s2 = −13.89 MPa, s3 = 0;
• Test TC12: s1 = −12.82 MPa, s2 = −13.24 MPa, s3 = −6.34

MPa;

The evolution of Poisson’s ratio in these test are displayed in
Fig. B.1.

Jordaan et Illston [9,18] tested cubic sample of concrete under
uniaxial and biaxial load. Loading age is 16 days. The load values for
the tests from [9] are:

• Serie 1, uniaxial test: s1 = −10.0 MPa, s2 = s3 = 0;
• Serie 1, biaxial test: s1 = s2 = −9.50 MPa, s3 = 0;
• Serie 2, uniaxial test: s1 = −10.6 MPa, s2 = s3 = 0;
• Serie 2, biaxial test: s1 = −10.6 MPa, s2 = −3.32 MPa,

s3 = 0;

The load values for the tests from [18] are:

• Uniaxial test: s1 = −5.2 MPa, s2 = s3 = 0;
• Biaxial test: s1 = −5.2 MPa, s2 = −6.9 MPa, s3 = 0;
• Triaxial test: s1 = −5.2 MPa, s2 = −6.9 MPa, s3 = 3.5 MPa;

The evolution of Poisson’s ratio for the test from [9] are displayed
in Fig. B.2a and those from [18] are displayed in Fig. B.2b.

Kennedy [19] performed uniaxial and triaxial creep tests on
cyclindrical specimen. The axial load sa and radial load s r are list in
the following list, as well as loading age:

• As-Cast, B7: sa = −16.55 MPa, s r = 0, loading age 90 days;
• As-Cast, C23: sa = 0, s r = −16.55 MPa, loading age 90 days;
• As-Cast, E39: sa = 4.14 MPa, s r = 0, loading age 90 days;
• As-Cast, F13: sa = 0, s r = −4.14 MPa, loading age 90 days;
• As-Cast, G35: sa = −4.14 MPa, s r = −24.82 MPa, loading age

90 days;
• As-Cast, H5: sa = −4.14 MPa, s r = 0, loading age 365 days;
• As-Cast, H22: sa = 0, s r = −24.82 MPa, loading age 90 days;
• As-Cast, H24: sa = −16.55 MPa, s r = 0, loading age 365 days;
• As-Cast, H34: sa = −16.55 MPa, s r = 0, loading age 183 days;
• As-Cast, H45: sa = −4.14 MPa, s r = 0, loading age 183 days;

Fig. B.1. Poisson’s ratio of concrete versus time. Data retrieved from [22].
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(a) (b)

Fig. B.2. (a) Poisson’s ratio versus time. Data retrieved from [9]. (b) Poisson’s ratio versus time. Data retrieved from [18].

• Air-Dried, B19: sa = −16.55 MPa, s r = 0, loading age 90
days;

• Air-Dried, E40: sa = 4.14 MPa, s r = 0, loading age 90 days;
• Air-Dried, G30: sa = −4.14 MPa, s r = −24.82 MPa, loading

age 90 days;
• Air-Dried, H17: sa = −16.55 MPa, s r = 0, loading age 365

days;
• Air-Dried, H31: sa = −4.14 MPa, s r = 0, loading age 365

days;
• Air-Dried, I20: sa = −16.55 MPa, s r = 0, loading age 183

days;
• Air-Dried, I39: sa = −4.14 MPa, s r = 0, loading age 183 days;

The evolution of the Poisson’s ratio for As-Cast samples are dis-
played in Fig. B.3a and those for Air-Dried samples are displayed in
Fig. B.3b.

Kim et al.[21] tested cubic concrete sample which are cured until
age of 28 days under water. The loading age is 28 days. The load
values for each test are:

• Concrete C1, uniaxial test 1: s1 = −4.90 MPa, s2 = s3 = 0;
• Concrete C1, uniaxial test 2: s1 = −9.80 MPa, s2 = s3 = 0;
• Concrete C1, biaxial test 1: s1 = −4.90 MPa, s2 = −0.98 MPa,

s3 = 0;
• Concrete C1, biaxial test 2: s1 = −4.90 MPa, s2 = −1.96 MPa,

s3 = 0;

• Concrete C1, biaxial test 3: s1 = −9.80 MPa, s2 = −1.96 MPa,
s3 = 0;

• Concrete C1, triaxial test 1: s1 = −4.90 MPa, s2 = s3 =
−0.49 MPa;

• Concrete C1, triaxial test 2: s1 = −4.90 MPa, s2 = s3 =
−0.98 MPa;

• Concrete C1, triaxial test 3: s1 = −4.90 MPa, s2 = s3 =
−1.96 MPa;

• Concrete C1, triaxial test 4: s1 = −4.90 MPa, s2 = −1.96
MPa, s3 = −0.98 MPa;

• Concrete C2, uniaxial test 1: s1 = −7.35 MPa, s2 = s3 = 0;
• Concrete C2, uniaxial test 2: s1 = −9.80 MPa, s2 = s3 = 0;
• Concrete C2, biaxial test 1: s1 = −7.35 MPa, s2 = −1.47 MPa,

s3 = 0;
• Concrete C2, biaxial test 2: s1 = −7.35 MPa, s2 = −2.94 MPa,

s3 = 0;
• Concrete C2, biaxial test 3: s1 = −9.80 MPa, s2 = −2.94 MPa,

s3 = 0;
• Concrete C2, triaxial test 1: s1 = −7.35 MPa, s2 = s3 =

−0.74 MPa;
• Concrete C2, triaxial test 2: s1 = −7.35 MPa, s2 = s3 =

−1.47 MPa;
• Concrete C2, triaxial test 3: s1 = −7.35 MPa, s2 = s3 =

−2.94 MPa;
• Concrete C2, triaxial test 4: s1 = −7.35 MPa, s2 = −2.94

MPa, s3 = −1.96 MPa;
• Concrete C3, uniaxial test 1: s1 = −9.80 MPa, s2 = s3 = 0;
• Concrete C3, uniaxial test 2: s1 = −12.25 MPa, s2 = s3 = 0;

(a) (b)

Fig. B.3. (a) Poisson’s ratio versus time for As-Cast concrete specimens. Data retrieved from [19]. (b) Poisson’s ratio versus time for Air-Dried specimens. Data retrieved from [19].
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(a) (b)

(c)

Fig. B.4. (a) Poisson’s ratio versus time for C1 concrete specimens. Data retrieved from [21]. (b) Poisson’s ratio versus time for C2 concrete specimens. Data retrieved from [21].
(c) Poisson’s ratio versus time for C3 concrete specimens. Data retrieved from [21].

• Concrete C3, biaxial test 1: s1 = −9.80 MPa, s2 = −1.96 MPa,
s3 = 0;

• Concrete C3, biaxial test 2: s1 = −9.80 MPa, s2 = −3.92 MPa,
s3 = 0;

• Concrete C3, biaxial test 3: s1 = −12.25 MPa, s2 = −3.92
MPa, s3 = 0;

• Concrete C3, triaxial test 1: s1 = −9.80 MPa, s2 = s3 =
−0.98 MPa;

• Concrete C3, triaxial test 2: s1 = −9.80 MPa, s2 = s3 =
−1.96 MPa;

• Concrete C3, triaxial test 3: s1 = −9.80 MPa, s2 = s3 =
−3.92 MPa;

• Concrete C3, triaxial test 4: s1 = −9.80 MPa, s2 =
−3.92 MPa, s3 = −1.96 MPa;

The evolution of Poisson’s ratio for concrete C1, C2 and C3 are
displayed in Fig. B.4a, b and c, respectively.
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