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Understanding defects and influence of dislocations on dicalcium silicates (Ca2SiO4) is a challenge in cement sci-
ence. We report a high-resolution transmission electron microscopy image of edge dislocations in Ca2SiO4,
followed by developing a deep atomic understanding of the edge dislocation-mediated properties of five
Ca2SiO4 polymorphs. By decoding the interplay between core dislocation energies, core structures, and nucle-
ation rate of reactivity, we find that γ-C2S and α-C2S polymorphs are the most favorable polymorphs for dislo-
cations in Ca2SiO4, mainly due to their large pore channels which take awaymajority of the distortions imposed
by edge dislocations. Furthermore, in the context of edge dislocation, while α-C2S represents the most active
polymorph for reactivity and crystal growth, β-C2S represents the most brittle polymorph suitable for grinding.
This work is the first report on the atomistic-scale analysis of edge dislocation-mediated properties of Ca2SiO4

and may open up new opportunities for tuning fracture and reactivity processes of Ca2SiO4 and other cement
components.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Defects such as stacking faults and dislocations, which form and
propagate in crystals, significantly impact many chemical and physical
properties of materials. For example, material plasticity and crack prop-
agation are markedly influenced by dislocation core structure, disloca-
tion-dislocation interactions, and dislocation mobilities [1]. Similarly,
crystal growth can be affected by both screw [2] and edge screw dislo-
cations [3–4]. Although dislocations have been extensively studied
in metals [5–8] semiconductors [9–13] and some simple ceramics,
[14–21] there have been few attempts in characterizing such defects
in more complex compounds such as zeolites, forsterite (Mg2SiO4)
and dicalcium silicates (Ca2SiO4) [22]. The difficulty arises due to the
complicated formatting components, heterogeneous nature, and the
packing arrangements of several atomic species, which often lead to
low symmetry crystals.

Several experimental techniques are used to study dislocations in-
cluding surface and decorationmethods,field ionmicroscopy, X-ray dif-
fraction, high resolution transmission electron microscopy (HRTEM)
and Z-contrast imaging techniques [1,23–25]. While these experiments
provide means to observe and infer information about the dislocation
structure, distribution and arrangement, they cannot provide precise
vironmental Engineering, Rice
information on dislocation energetics and mobilities, which often con-
trol the dislocations slip, slip-planes and other dislocation-mediated
phenomena such as macro scale ductility and crystal growth. From a
modeling standpoint, although semi-continuum Peierls-Nabarro
models [26–27] are widely used to study dislocations by introducing
the energies of generalized stacking faults from density functional theo-
ry to continuummodel of the dislocations, the significant constraint of
planar dislocations limits their applicability [28]. Alternative approaches
use atomic scale simulations to calculate explicitly the dislocation core
structure. In this group, fully periodic dipole approaches can simulate
an infinite array of dislocations (e.g. line defects in silicon [10–11], ex-
tended defects in diamond cubic crystals [29], and impurities at edge
dislocations [9]). However, this method is less straightforward for com-
plex crystals, due to the correction for interactions between dislocation
core fields [30–31], and contributions from core traction in the disloca-
tion formation energy [32]. Recently developed cluster embedded
models [33–34], based on one-dimensional periodic boundary condi-
tions, allow to investigate systematically an isolated dislocation with
atomic-scale fidelity. The cluster model, employed in this work, has
been already highly successful in predicting the core energy and struc-
ture of dislocations in differentmaterial classes including ionicmaterials
(MgO) [34], zeolites [35], wadsleyite minerals (β-Mg2SiO4) [36] and
paracetamol (OH-C6H4NHCOCH3), a widely used drug known as
acetaminophuse [34].

The objective of the present work is to study edge dislocations in
structurally complex and low symmetry oxides, which are of both
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scientific and technological importance. As amodel system,we focus on
five reversible polymorphs of dicalcium silicates (Ca2SiO4), key ingredi-
ents of industrial cement clinkers where the defect characteristics and
integrity of Ca2SiO4 crystals' structures play a key role in clinker grind-
ing processes as well as crystal growth mechanisms [37]. The latter is
of particular significance in hydration of Ca2SiO4 to precipitate semi-
crystalline, non-stoichiometric calcium-silicate-hydrate (C-S-H) phase,
which is the chief source of strength and durability in cementitiousma-
terials [37–38]. Compared to tricalcium silicate (Ca3SiO5), the more en-
ergy-intensive and dominant ingredient of the cement clinker, Ca2SiO4

(also known as belite with shortened notation of C2S in cement chem-
istry) needs at least ~100 °C lower temperature to produce. However, it
requires more energy for grinding it and reacts slower with water,
thereby leading to delayed strength development in cement paste
[39]. But given the overall economical gain due to lower manufacturing
temperature of Ca2SiO4 and the augmented need to reduce greenhouse
gas emissions from cement plants (currently cement manufacturing is
responsible for 5–10% of the worldwide anthropogenic CO2 emissions),
there is an urgent necessity to tune grinding properties and reactivity of
Ca2SiO4 to make it a more sustainable cement clinker. In this perspec-
tive, understanding the defects and edge dislocations in Ca2SiO4 can
provide important information on how to modulate and promote the
salient properties of Ca2SiO4.

Ca2SiO4 has a crystalline structure that is composed of SiO4
4− tetrahe-

dra and Ca2+ ions with a sequence of five reversible polymorphs, namely
α, αH, αL, β and γ, from high to low temperatures (Fig. 1). X-ray analysis
[40] have provided the exact crystal and atomic structure of these poly-
morphs, which can be transformed from one to another via changing
the crystal symmetry, disorder of SiO4

4− groups and slight changes in
the position of the Ca2+ atoms [41–44]. The α and β polymorphs have
monoclinic crystals while αH, αLand γ polymorphs have orthorhombic
crystals [37] (Fig. 2).

Dislocations in Ca2SiO4 arise from the growth and cooling processes
during cement manufacturing, and presence of impurities [45–47]. Dif-
ferent crystal faces will behave differently during dissolution, etch pit
formation, and hydration, depending on the size of the Burgers vector
b aswell as type anddensity of dislocations [45]. In viewof the complex-
ity of low-symmetry cement crystals, very limited experiments are re-
ported so far on the observation of dislocations [47–51], and initiation
of etch-pit formation from dislocations [37,52]. In this report, we focus
on filling this knowledge gap by providing a clear HRTEM image of for-
mation of edge dislocations in belite, followed by developing a deep
atomic-based understanding of the dislocation-mediated properties of
Ca2SiO4 polymorphs, thus providing de novo insights and strategies
for bottom-up engineering of cement clinkers.

2. Methods

2.1. Materials and characterization

Pristine dicalcium silicate (99% purity) was purchased from Sarl
Mineral Research Processing Company in France and used as is for char-
acterization. Transmission electron microscopy (TEM) and HRTEM ex-
periments were performed by depositing a small belite sample onto a
carbon-coated copper grid. Since the dicalcium silicate was in the pow-
der form, not focused ion beam (FIB) milling was required. The sample
was analyzed using a JEOL 2100 Field Emission Gun Transmission
Fig. 1. Five thermodynamically reversible Ca2SiO4 polymorphs. The Greek L a
Electron Microscope at several different locations until a clear edge dis-
location was observed.

2.2. Cluster embedded atom model

For our computational study, we adopted a simulation strategy, so-
called cluster embedded atommodel, to combine an atomic scale disloca-
tion core with a description of the extended crystal based on continuum
linear elasticity [33]. This method takes advantage of the symmetry of
Volterra dislocation to create amodel using periodic boundary conditions
along the dislocation line while only involving a finite cluster of atoms
perpendicular to the dislocation line. A convention in this paper is to lay
the edge dislocation line along the z axis and its Burgers vector along
the x direction. The magnitude of the dislocation is equal to one lattice
distance.

We used a three stage approach to create themodels of the edge dis-
location. The first stage is constructing a charge neutral disk-shape
supercell containing the defect–free crystal structure in which the
one-dimensional periodicity passes through the central axis of the
disk (z axis). The radius of the simulation cell is 90 Å to accommodate
relaxation around the core. Typical number of atoms in each simulation
cell of the dicalcium silicate is ~15,000–17,000. Charge neutrality of the
simulation cells is satisfied by breaking the small extra charge (as the re-
sult of cutting a cylinder from the supercell) to all the ~15,000 atoms,
hence leading to less than 1% change in the partial charge of each indi-
vidual atom. We assume this minimal change in partial charges would
not affect the accuracy of the force field predictions.

The second stage involves introducing the edge dislocation based on
anisotropic linear elasticity [53]. Fig. 3a shows the conceptual model of
introducing an edge dislocation in a homogenous linear elastic body,
which involved three basic steps: i) identification of the origin of the
dislocation, which is a vacant point between the atoms. Note that in
continuum (not atomistic) systems, a small part in the center is re-
moved to eliminate the singularity of the original point based on elastic
theory. However, this issue is not a concern in our atomic simulation
cells since a vacant point between the atoms serves as the origin, ii) a
solid line from the perimeter to the center of the cylinder is drawn to
represent the “cut”. The direction of this “cut”, which is along the
shortest lattice dimension determines the x axis used in themathemat-
ical formula of anisotropic elasticity, and iii) atoms at opposite sides of
the “cut” are displaced horizontally by a Burgers vector to form an
edge dislocation.

The dislocated structure of the simulation cell in Fig. 3a is construct-
ed in practice by the elastic displacement field, mapping the location of
atoms in the bulk cell to the equivalent point in the dislocated cell. The
elastic displacementfield is only a function of Burgers vector, atomic po-
sitions and elastic properties of the crystals. For the orthorhombic crys-
tals considered in this work, the displacement field is entirely in the
plane of Burgers vector (uz=0) and is given by following equations
[53]. If λ4bΛ2, the displacement field corresponding to the x component
of the Burgers vector reads

ux ¼ bx
4π

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 λ2−Λ
� �r

tanθ

1−λ2tan2θ

8>><
>>:

9>>=
>>;−

Λ þ S12=S11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2−λ4

p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 −λ2 þ Λ

� �r
tanθ

1þ λ2tan2θ

8>><
>>:

9>>=
>>;

2
664

3
775

ð1Þ
nd H subscripts denote high temperature and low temperature variants.



Fig. 2. Atomic snapshots of dicalcium silicate polymorphs: (a) α-C2S (b) αH-C2S (c) αL-C2S (d) β-C2S (e) γ-C2S.
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while that of the y component of the Burgers vector reads
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Fig. 3. (a) A conceptualmodel of introducing edgedislocation based on linear elasticity. (b) A typ
2 are fixed during the energy minimization.
uy ¼ by
4π

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 λ2−Λ
� �r

tanθ

1−λ2tan2θ

8>><
>>:

9>>=
>>;þ Λ þ S12=S11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2−λ4
p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 λ2 þ Λ

� �r
tanθ

1þ λ2tan2θ

8>><
>>:

9>>=
>>;

2
664

3
775

ð4Þ

In above, λ4 ¼ S22
S11
; Λ ¼ − 2S12þS66

2S11
; ux, uy, and uz are atomic displace-

ments due to the elastic theory; x, y, and z are the Cartesian atomic po-
sitions in the bulk cell, Sij are the components of the elastic compliance
tensor, and θ ¼ tan−1ðxyÞ. Similarly, if λ4NΛ2 for the x component of the

Burgers vector we have
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ical atomic illustration of the edge dislocation in dicalcium silicate. The atoms in the region



Table 1
Calculated average elastic properties of C2S polymorphs.

α-C2S αH-C2S αL-C2S β-C2S γ-C2S

KV (GPa) 60.32 70.94 70.99 49.83 57.80
KR (GPa) 59.00 62.39 67.37 43.96 56.13
KVRH (GPa) 59.66 66.67 69.18 46.89 56.97
GV (GPa) 32.20 34.75 34.26 23.99 30.14
GR (GPa) 30.14 23.83 30.55 18.46 28.39
G (GPa) 31.17 29.29 32.41 21.22 29.27
Ex (GPa) 75.19 140.94 153.22 68.55 70.97
Ey (GPa) 67.61 93.88 97.41 36.30 50.68
Ez (GPa) 76.28 101.19 88.74 31.25 73.76
E (GPa) 73.02 112.00 113.12 45.37 65.14
E⁎ (GPa) 130 ± 20

KV: bulk modulus Voigt average (upper bound on K).
KR: bulk modulus Reuss average (lower bound on K).
KVRH: bulk modulus VRH average, 2KVRH = KV + KR.
GV: bulk modulus Voigt average (upper bound on G).
GR: bulk modulus Reuss average (lower bound on G).
GVRH: shear modulus VRH average, 2GVRH = GV + GR.
Ex: Young modulus along X directions.
Ey: Young modulus along Y directions.
Ez: Young modulus along Z directions.
E: average Young's modulus, i.e. arithmetic average of Young modulus along X, Y and Z
directions.
E⁎: experimental reported Young's modulus of C2S.
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while the y component of the Burgers vector gives:
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For the monoclinic crystals, i.e. β-C2S and α-C2S, we still apply the
above solution. The underlying assumption is that the energy relaxation
carried out during atomistic simulations (to be discussed shortly) can
compensate the insufficient accuracy of the orthotropic solution for
monoclinic crystals. Indeed, the extra elastic constants of monoclinic
versus orthotropic crystals influence mainly the angle between the ac-
tual slip plane and the Burgers vector. However, in view of the fact
that the slip plane in edge dislocation is along the most close-packed
plane [1], the slip plane could be determined beforehand (step ii in
above), and the Burgers vector can be set as the lattice distance along
that direction. Therefore, although the above elastic formula are obtain-
ed for orthorhombic crystals, with reasonable orientation of the slip
plane, the atomic structure far away from the dislocation core should
be accurate even in monoclinic structures deformed by a perfect edge
dislocation.

The final step needed to generate amodel of the dislocation core is to
let the atomsmove to find a low energy configuration. While the linear
elastic displacement field is accurate for the atoms far away from the
core, the energy minimization corrects for the non-linear elasticity
close to the core. This combination allows the possibility of inhomoge-
neous strains, accounts for the atomic scale structure of the core and al-
lows the reconstruction if the core causes deformation of the
surrounding crystal [33]. All energy minimizations in this work were
performed using conjugate gradient algorithm as implemented in the
GULP code [54]. To simulate the existence of the extended crystal, a
40Å outer rimof the atomswere heldfixed in the configuration predict-
ed by the linear elasticity (region 2 in Fig. 3b). Atomswithin the 50 Å of
the center of the cell were allowed to relax (region 1). The choice of the
thickness of the region 2 (40 Å tim), which is larger than the real space
of theCoulomb cutoff radius ensures that themobile atomsdo not inter-
act with the edge of the atomistic model.

To describe the interatomic interactions of Ca2SiO4 crystals, we
employed ClayFF potential [55]. This force field is based on an ionic–co-
valent description of metal–oxygen interactions and has been highly
successful in predicting several structural and mechanical properties
of crystalline minerals [56–57]. In ClayFF, metal–oxygen interactions
are based on a 12–6 Lennard-Jones potential combined with Coulombic
interactions. The empirical parameters and partial atomic charges are
obtained from cluster and periodic density functional theory, quantum
chemical calculations of simple oxide, hydroxide, and oxyhydroxide
model compounds with well-defined structures. To our knowledge,
ClayFF potential is currently the best potential to describe the structural
and elastic properties of cement clinkers (see supporting information).
Using this force field, the extraction of the elastic constants and Young
moduli from atomistic simulations is straightforward by calling the
property calculation option in GULP. For instance, elastic constants are
obtained by taking the second derivative of energy density with respect
to strains. The detailed parameters of ClayFF potential is given in Tables
S1–2, and the comparison of its predictions with experiments for lattice
parameters and elastic constants of C2S polymorphs are given in Tables
S3–S4. The elastic properties of C2S are shown in Table 1.

Reuss-Voigt-Hill method is used in Table 1 to obtain the average
shear and bulk moduli. The average Young modulus is the arithmetic
average of theYoungmoduli along theX, Y and Z direction for each crys-
tal. Regarding the comparison of the mechanical properties of ClayFF
prediction with experiments, we could not find specific data for elastic
constants or average mechanical properties of the C2S polymorphs in
the literature. However, there is a reported Young modulus of 130 GPa
for C2S with ±20 standard deviation. This value matches well with
our predicted elastic moduli (~112–113 GPa). However, we stress that
in the aforementioned experimental study, their C2S is a mixture of all
polymorphs (they could not isolate a specific polymorph) with un-
known percentages of the constituents. Furthermore, this experimental
C2S has stabilizing elements and impurities that are common in indus-
trial C2S samples. Thus, more accurate comparison can be done in the
future when more specific data become available experimentally.

2.3. Calculation of dislocation formation energy and dislocation core radius

Once an energy minimum has been achieved, various techniques as
described below are used to probe the structural and energetic charac-
teristics of the dislocation core. An important information is a measure
of the thermodynamic stability of the dislocation - the dislocation for-
mation energy - which is defined as the work per unit length required
to introduce a dislocation to a bulk material. The distortion induced by
dislocation makes the total dislocation formation energy a combination
of two parts: the energy of the dislocation core and the elastic energy of
the extended crystal system as a result of the dislocation core. In
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contrast to thepoint or planar defects, there is nouniquedislocation for-
mation energy per unit length of dislocation. The formation energy in-
cludes an elastic part arising from elastic strain distributed across the
extended crystal and thus is a function of the size of the crystal from
the dislocation line. The total formation energy, E, storedwithin a cylin-
drical crystal of radius r is given by [53]

E rð Þ ¼ Ecore þ Xb2

4π 1−νð Þ Ln
r
r0

� �
ð9Þ

where r0 is the size of the dislocation core with energy Ecore, b is the
length of the Burgers vector as before, and X is an energy factor depend-
ing on the symmetry of the elastic constant tensor, and equal to shear
modulus in isotropic materials.

There are two unknowns in Eq. (9), i.e. Ecore and r0, which can be de-
termined by calculating E(r) for various radii. To do so, the cell derived
from the energyminimization is divided into two regions. Region 1 con-
tains the atoms found inside a certain radius, r, and region 2 is the rest of
atoms outside of the region 1 (conceptually similar to regions shown in
Fig. 3b). Then, the energy of the simulation cell containing the disloca-
tion is partitioned into three parts: i) interactions between atomswithin
region 1, Ed11, ii) interactions between atoms in region 2, Ed22, and iii) in-
teractions between the two regions, Ed12 or Ed21. Equivalently, the ener-
gies in the perfect crystal can be partitioned in the same way as Ep11,
Ep
12 (or Ep21) and Ep

22. Then, the dislocation formation energy storedwith-
in region 1 is given by [22]

E rð Þ ¼ E11d þ E12d
h i

− E11p þ E12p
h i

ð10Þ

where E(r) is calculated for various radii and the resulting data is fitted
to Eq. (9) to obtain Ecore and r0. Note that due to geometry optimisation,
which may lead to radial displacements, the atoms in region 1 in bulk
cell may not bewithin the same cutoff radius in the dislocated structure.
Tracking atomic movement is critical to ensure Ed

11 contains identical
number of atoms in both the bulk and dislocated cells.

3. Results and discussion

3.1. Experimental observation of edge dislocation via TEM

Fig. 4 shows anTEM image of a C2S samplewhere the crystalline fea-
tures are clearly visible via the parallel layers and the selected area elec-
tron diffraction (SAED) patterns. Moreover, there exists several defects
such as edge dislocations in this image. As an example, the inset with
the magnified resolution clearly demonstrates an existence of an edge
dislocation in C2S. The central area encapsulatedwith the circle denotes
the core structure of the edge dislocation. The feasibility of such a high
5 nm 2 n

Fig. 4. A TEM image of C2S where the crystalline features are clearly visible via the parallel lay
example of an edge dislocation in C2S. The central area encapsulated with the circle denotes th
resolution TEM imaging in cement crystals is quite exciting and can
stimulate further studies such as realtime in-situ TEM imaging of edge
dislocation movement and onset of plasticity under nanoindentation
[58]. Note that this experimental C2S (with ~99% purity) is somewhat
a mixture of all polymorphs because of the difficulty in making pure
polymorphs and presence of small percentages of impurities (stabi-
lizers) that are common additives in making different belite poly-
morphs stable at room temperature [60]. To understand the
characteristics of the core structures in each polymorph and provide de-
tailed information beyond the experimental observation, in what fol-
lows we focus on computational predictions and results that provide
an “atomistic lens” for each polymorph.

3.2. Core structures and core displacement fields

Once the dislocated structure has been computationally introduced
in the atomistic structures and minimum energy configuration is
achieved, it is possible to describe the dislocation core characteristics
in several ways. On the shortest scale, the bonding and atomic structure
close to the core are explored. An efficient way of examining the struc-
ture of the dislocation core is plotting the displacement field of adjacent
atoms along the in-plane direction. We draw arrows between the
neighboring atoms before and after energy minimization with length
proportional to their in-plane displacements. These movements arise
from the fact that the linear elasticity is not sufficient to describe the dis-
location core structure. Interestingly, some crystals undergo a dramatic
rearrangement around the core while some diffuse the core distortion
smoothly. Fig. 5 shows the relaxed core structures of five belite poly-
morphs. The atomic arrangements in Fig. 5 reveal that αH-C2S has the
most closely packed systemwhile γ-C2S has themost space among tet-
rahedra. The interactions among atoms should restrict the formation of
edge dislocations in αH-C2S.

The core displacement field representation in Fig. 5 clearly demon-
strates when an edge dislocation spreads onto one or more planes and
allows visualization of such processes. As an example, movements
around the dislocation core ofα-C2S polymorph follow a clock-wise cir-
cular trend and expand outwards, indicating a core expansion during
energy minimization. The core displacement fields for other four belite
polymorphs are somewhat analogous. We noticed that after energy re-
laxation, the gap perpendicular to the slip plane caused by elastic esti-
mation becomes smaller. This indicates that atomic interactions
induced by energy minimization help towards retaining the original
packing arrangement, a feature that is absent classical continuum theo-
ries of dislocations. Among all belite polymorphs, we found that γ-C2S
bears the largest displacements around the core and away from the
core. This is because the loosely packed structure of γ-C2S and porosity
between silicon tetrahedra provides ample space to adjust final atomic
m

ers and the selected area electron diffraction (SAED) patterns. The inset demonstrates an
e core structure of the edge dislocation.



Fig. 5. (a–e) Differential displacements of αH-C2S, αH-C2S, αL-C2S, β-C2S, and γ-C2S under edge dislocation. For clarity, only the positions of silicon atoms are shown with circles. Black
arrows point to the movement of the silicate atoms after relaxation. For a better visualization, the length of the arrows is five times larger than the actual values. All length dimensions
shown are in the Angstrom.

85R. Shahsavari et al. / Cement and Concrete Research 90 (2016) 80–88
positions (see Fig. 2e). Simply put, the tetrahedra in γ-C2S are more in-
dependent and free to move than those of other polymorphs, which are
somewhat constrained.
Fig. 6.Dislocation formation energies as a function of radius forfive belite phases. The solid
lines are the fitted curves to Eq. (9).
3.3. Dislocation core energy

Fig. 6 demonstrates the dislocation formation energy of all five belite
polymorphs as a function of radius. This energy is, in general, a logarith-
mic function of distance (r) from the dislocation line. Clearly, αH-C2S
has the largest dislocation formation energy among all other poly-
morphs. This stems from the fact that any distortion inαH-C2S involves
breaking the strong Si\\O bonds in its highly packed atomic arrange-
ment. Fig. 6 and Table 2 shows the magnitudes of the core energies
and core radii, which are extracted by fitting Eq. (9) to the scattered
data. Strictly speaking, to compare dislocation core energies among dif-
ferent polymorphs, core energies must be evaluated to a common radi-
us (as opposed to direct extraction of core energies obtained from thefit
of Eq. (9), which correspond to different core radii) [59]. However, in
view of Table 2, all the core radii are ~14 Å except αH-C2S whose core
radios is ~2 Å shorter than all other polymorphs. Given that the core en-
ergy of αH-C2S is significantly larger than others, one can simply con-
firm via Fig. 6 that the correction of the core energy for a common
radius does not change the overall picture; that isαH-C2S still possesses
the largest core energy, ~1.9 eV/Å, and γ-C2S the lowest core energy,
~0.18 eV/Å, among all belite polymorphs. To better understand the
sources of this disparity, Fig. 6 shows the correlation of the Burgers vec-
tors, Poisson's ratios and average shear moduli of all belite polymorphs
obtained from the Reuss-Voigt-Hillmethod [60]. Considering the almost
identical values of these parameters (i.e. Burgers vectors, the Poisson ra-
tios and shear moduli) among all belite polymorphs, it seems the chief
source of disparity between the core formations energies is the differ-
ence in edge dislocation core structure, i.e., the atomic arrangements
around the core. As shown in Fig. 2, the atoms in αH-C2S are highly
close-packed andpresent a chain-like characterwhereas the large chan-
nels and pores in γ-C2S “take away” the torsion from the edge disloca-
tion and allow significant flexibility between interacting tetrahedra, as
manifest by large displacement field of γ-C2S around the core to freely
absorb the impact of dislocation disturbance (Fig. 5e). This free, rigid-
body type movement of silicon tetrahedra explains the low core forma-
tion energy in γ-C2S.

Considering other polymorphs and assuming a common radius of
~13.5 Å, whileα-C2S has almost an identical Burgers vector to those of
αL-C2S and β-C2S, its core energy is ~37% and ~28% smaller than those
ofαL-C2S andβ-C2S, respectively. Although the larger shearmodulus of
αL-C2S than α-C2S may partly justify this behavior for αL-C2S, the
smaller shear modulus of β-C2S than α-C2S cannot explain this trend.
Poisson's ratios cannot elucidate this behavior either since they are all
around 0.3–4 and their small alterations do not contribute significantly
to the core energies. Again the core structure of these low symmetry
polymorphs and their complex non-linear arrangement around the
core contribute to these trends. Therefore, in spite of the common intu-
ition based on simple crystalline materials that the larger the shear
modulus, the higher the core energies, we found that this is not neces-
sarily the case for low symmetry dicalcium silicate polymorphs due to
the complicated atomic arrangement around the dislocation



Table 2
Core energies and core radii of belite polymorphs.

α-C2S αH-C2S αL-C2S β-C2S γ-C2S

Core energy (eV) 0.33 1.99 0.53 0.46 0.18
Core radius (Å) 14.01 11.94 13.34 13.63 14.4

Fig. 7. Core energies, core radii, Burgers vectors, Poisson's ratios and shearmoduli of belite
polymorphs.

Table 3
Estimation of Peierls stresses for edge dislocation in belite
polymorphs.

Belite polymorphs Peierls stress
(MPa)

α-C2S 3.586
αH-C2S 1.313
αL-C2S 34.145
β-C2S 165.442
γ-C2S 2.308
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core. Nevertheless, the crystals with larger core energies have generally
smaller dislocation core radii (Table 2).

3.4. Impacts on crystal growth and grinding mechanisms

Here, we focus on potential influence of the core on nucleation rate
and reactivity, and how the edge dislocationmay impact crystal growth
such as the growth of calcium-silicate-hydrate (C-S-H) phase, the key
hydration product of Ca2SiO4 that is responsible for mechanical proper-
ties of cement pastes. It is widely known that the emergent ends of pure
screw dislocations form regenerative surface steps that can promote
crystal growth. Although less obvious, this effect has been observed
and validated in dislocationswithmixed character and pure edge dislo-
cations as well [3–4,61]. More precisely, not only the spiral step pattern
of screw dislocation, but also the closed-loop patterns arising from
transverse growth steps generated at edge dislocations can influence
crystal growth [4]. Such patterns in Ca2SiO4 serves as a basin for
water molecules, and the hydration process might be expedited by in-
creasing dislocation density [45].

Dislocations with smaller core energy form easier and multiply
faster upon deformation [53], thereby providingmore hot spots for dis-
sociation and crystal growth. In light of Fig. 7 and considering only edge
dislocation mediated crystal growth, our findings suggest the following
ranking (in order) for crystal growth in belite polymorphs: γ-C2S N α-
C2S N β-C2S N αL-C2S N αH-C2S. Given that the pure γ-C2S polymorph
does not exist in real clinker due to required stabilizer such as Na2O,
Al2O3, K2O, and BaSO4

3− (which consequently change the kinetics and
energetics of edge dislocation) [62], our results indicate that indeed α-
C2S has the highest reactivity among all Ca2SiO4 polymorphs. This is
in line with previous reports on the effect of dislocation on reactivity
of the belite polymorphs [63], and match extremely well with experi-
mental evidence reporting higher reactivity of α-C2S over β-C2S
when mixing with water [64]. As discussed above, the steps and topol-
ogy of the dislocation core also influence the crystal growth and ener-
getics of the major adsorbate sites, which are typically around the core
geometry in dislocations terminated at a surface [65]. Hence, when
searching for reaction accelerators (inhibitors) to control and modulate
cement hydration, it will be suitable to find those adsorbates that bind
and dissociate (block) the dislocation core sites.

Finally, we turn on attention on the knowledge of dislocationmobil-
ities, which can provide important information on the inherent mate-
rials features such as ductility and brittleness, impacting the fracture
and grindingmechanisms of cement clinkers. Since a complete dynamic
analysis of dislocations is beyond the scope of the present manuscripts,
as a rough estimate to assess themobility of the dislocation, we approx-
imate the Peierls stress, the force needed to move a dislocation, from a
formula developed by Peierls and Nabarro as [1]

τp ¼ 2π
b2

Ep ¼ 2G
1−vð Þ exp

−2πw
b

� �
ð11Þ

wherew= a / (1− v) is the corewidth as in edge dislocationwhere a is
planar basal distance perpendicular to Burgers vector, G is the shear
modulus, b is the Burgers vector, and v is the Poisson ratio. By definition,
a larger Peierls stress reveals a more brittle material, i.e. lower mobility
[66], which is favorable for grinding of cement clinkers (brittle clinkers
break rapidly and require less energy). Table 3 presents the approxi-
mate Peierls stresses for edge dislocations in belite polymorphs. It ap-
pears that the β-C2S has the highest Peierls stress suggesting that the
edge dislocations in β-C2S rarely move and the crystal manifest brittle
characteristics. On the other hand, the high temperature belite poly-
morphs such as αH-C2S andα-C2S exhibit a relatively ductile behavior.
Note that this finding must not be confused with thermally activated
slip processes since the brittle-to-ductile transition temperature of
such rock-type materials are typically quite high (~2000 K) and even
may need high confining pressure (~3000MPa) to exhibit ductility [67].

Lastly, we remind that all above observations are solely based on
pure edge dislocations. We remind that while a C2S crystal may show
resistance (and thus brittleness) to the movement of edge dislocation,
itmay be a preferred host for themovement of screwdislocation. There-
fore, it may not be surprising to realize that while β-C2S is more brittle
from this edge dislocations study,α-C2S tends to bemore brittle from a
screwdislocation perspective [63]. Of cause, in reality a clinkermay con-
sist of various imperfections like point defects, edge and screw (mixed)
dislocations and twining deformations, etc., which must be considered
all together for a realistic assessment of the brittleness. Thus, future
studies on mixed dislocations, twining deformations and their interac-
tions with edge and screw dislocations are needed to provide more re-
fined data on grinding and crystal growth processing for C2S
polymorphs. Furthermore, all our atomistic modeling in this work are
performed at the idealized limit of behavior at T=0 K to exclude the ef-
fects of thermally activated processes [68–69]. Although C2S poly-
morphs are stable at finite temperatures, their stabilized 0 K crystals
represent metastable states whose energies might be slightly larger
than otherwise perfect stable structures at 0 K. This issue will not have
a significant impact on key dislocation-mediated properties (e.g. core
energy, structure) which are mainly based on mechanistic processes
as opposed to thermally activated processes. For instance, a recent
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work examined the effect of thermalmotion on defect nucleation, and it
was shown that the activation energy barriers are too far high for ther-
mal motions to play a significant role [70]. Thus, while we expect the
thermal motion to have a minimal effect on our afore-mentioned re-
sults, future studies are needed to analyze such effects systematically.

4. Conclusion

We studied the atomic-scale characteristics of edge dislocation in 5
polymorphs of dicalcium silicate, as a class of complex low symmetry
oxides. While our experimental TEM tests revealed a clear high-resolu-
tion image of edge dislocation in C2S, we performed extensive compu-
tations to provide an “atomistic lens” on edge dislocation
characteristics. We found that γ-C2S and α-C2S polymorphs have the
lowest core formation energies and thus themost favorable polymorphs
for dislocations in dicalcium silicates, mainly due to their large pore
channels and nearly rigid-body type movements of atoms, which take
away majority of the distortions imposed by edge dislocations. Our re-
sults suggest thatα-C2S crystal is themost reactive polymorph in dislo-
cation-mediated crystal growth, consistent with previous reports.
Furthermore, we identified β-C2S as the most brittle polymorph of
belite in the context of edge dislocation. These basic knowledge of brit-
tleness may influence micro cracking, brittleness and fracture of belite,
and combined with other strategies such as use of polymers, may help
devise strategies to reduce the energy associated with grinding
dicalcium silicate (cement) clinkers. This information, in conjunction
with the predicted nucleation rate of reactivity, core structures and dis-
placement fields, can provide new physical insights and guiding hy-
potheses for experimentalist to tune the cement reactivity processes
as well as grinding mechanisms.

To our knowledge, this work is the first report of atomistic-scale
analysis of edge dislocations in structurally complex dicalcium silicates,
and can potentially open up new opportunities for further studies, such
as mixed dislocation-mediated mechanisms, brittle-to-ductile transi-
tions, and twinning deformations and their interactions with disloca-
tions, to provide a comprehensive understanding of deformation
mechanisms in cement clinkers. Broadly, the concepts, methods and
strategies of this work can impact several other oxides and low symme-
try crystals such as jennite [38], layered and hybrid calcium-silicatema-
terials [71–75], aswell as recently developed realistic and combinatorial
models of calcium-silicate–hydrates [76–78] andmicroporousmaterials
in general [79–80].
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