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a b s t r a c t

The formation of crystals from solutions plays a key role in various industrial applications.
In this study, a new approach is presented into the optimal control of batch cooling
crystallizers through a genetic algorithm. The Population balance is formularized for a
typical batch crystallizer. The objective functions considered here are related to quality of
products at the end of the batch. These functions are objective function of maximum
mean weight size, closeness to the specified value and minimum coefficient of variation.
By using an optimization algorithm (genetic algorithm), the minimum and maximum
values of the objective function the input temperature parameter are obtained. The ob-
tained results show that various trajectories can be used for cooling batch crystallizer
based on objective functions. This method is applied for the potassium-nitrate system.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Crystallization of organic and inorganic substances in solutions is one of the essential processes in different industrial
applications including chemical, electronics and pharmaceutical industries [1–3]. This process provides highly purified
products that are highly demanded by a noticeable fraction of industrial markets. In addition, crystallization presents a
practical method for obtaining pure chemical substances in a satisfactory condition for packing and storing [4,5]. In the
chemical engineering process, this method gains great advances except in some aspects such as the overall control on the
temperature of crystallites to obtain the appropriate shape and size of particles [6,7]. Although high purity of products
seems an important objective in the crystallization, the appearance and size of a crystalline product is also significant
parameters. The reasonable size and size uniformity are desirable for filtering, washing, reacting, transporting and storing of
the crystals [8]. As the crystals are processed further in optimized temperature, the size of the particles becomes uniform in
the whole solution [9]. If the crystals are a final product of marketing, crystals with strong, non-aggregated, uniform in size,
and non-caking is highly important in the packing. For these reasons, crystal size distribution (CSD) must form under a
precise temperature control. In fact, the appropriate temperature control plays a significant role in the design and operation
of crystallizers [10].
er Ltd. This is an open access article under the CC BY-NC-ND license
.
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Nomenclature

A hear transfer surface
B nucleation rate, number/g-solvent min
b nucleation power
C concentration of solute, g/g-solution
C0i nitial concentration
Csat saturated solution, g/g-solution
Cp heat capacity of solution J/(kg. K)
f population density function
G growth rate, m/min
g growth power
Ĥ partial molar enthalpy
^*
H specific enthalpy
Hext exited heat flux
KE kinetic energy
kb nucleation coefficient
kg growth coefficient
kv volumetric shape factor
L crystal size (m)
Lwm mean weight size
m crystal mass
n number of moles

P pressure
PE potential energy, J
Q volume floe rate
S super saturation
t time
T temperature
U heat transfer coefficient
V volume of crystallizer, m3

w Gaussian function weight

Greek symbols

ρ density (g/ cm3)
δ Dirac function
μj j-th moment of the CSD
σ standard deviation
σ2 variance

Subscripts

k index of flow
c crystal
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To obtain these goals, the batch reactors (crystallizers) have to be operated optimally in a precise condition. Hence, the
main problem on the control of batch crystallizer is the optimization strategies. To overcome in this problem, some re-
searchers have expressed the procedures to find a temperature that optimizes the final distribution of particle sizes [11–15].
In fact, due to the experimental limitations, simulation and theoretical optimization possess the greatest value to achieve
the optimal control of the batch reactor. Simulation and theoretical optimization, as a research tool, can complete the results
of experimental studies by calculating the desired parameters at regions or situations in which experimental work is ex-
pensive or impossible [16–27]. In the past few decades, iterative model development, and experimental designs have been
employed in some crystallization processes. Gunawan et al. [28] have reported a model for different growth rates of
crystallites in the batch reactor. In the other investigations, Ma and Braatz [29,30] have used the overall closed loop crystal
product as the objective of the experimental design. Furthermore, various efforts have been performed on the optimal
control of the batch cooling crystallizers that are reported in various literatures [31–33]. The influence of the crystal size
distribution and degree of freedom on the performance of crystallization was studied by Chang and Brate [34]. Since the
main goal is achieved large crystals, the optimization should avoid seeding in order to get a crystal with large size. Therefore,
Moulin [35] provided a temperature control route to fix the seeding in a low level. Because of the non-linear dependency of
seeding and the growth rate of super-saturation, it is essential to continue the growth and seeding by keeping the super-
saturation in a low level. This is a suitable and desired trend which is followed by Jones and Moulin [36]. Ray and Ajinkya
[37] used the functional optimization of the sulfate ammonium model to maximize the mean crystal size and obtain the
optimal temperature profile. Moreover, Moulin [36] investigated the role of temperature control on the liquid solution of
potassium and sulfate ammonium to maximize the final size of the crystals. In addition, the researchers found that the
speed of the primary cooling is too slow in this curve while the cooling rate is much greater at the end of the cooling [38].

Jones and Moulin [36] used the optimal control theory to find an optimized cooling profile by using the momentumway
for independent population balance. This research confirmed that the optimized cooling profile is achieved when the mean
crystal size increases in contrast to cooling linear strategies. Hu et al. [39] worked to find a temperature profile in order to
obtain the objective functions of the product in the final time. By using population balance idea, a new method is presented
to solve the population balance in the crystallization process. Moreover, optimized algorithm finds the quantified value of
the objective function for an input temperature parameter. Finally, they presented the results for the natural cooling, linear
cooling and optimal cooling.

In this work, the batch cooling crystallization procedure is investigated to develop an appropriate optimization strategy.
The influence of solubility is studied to characterize the temperature of batch cooling crystallization. In order to produce a
product with high purity, parameter size distribution and suitable shape crystal, the temperature profile should be opti-
mized for the crystallization process. Temperature control policy is necessary in the batch cooling crystallization to provide a
suitable crystal size distribution for the product through the optimization. Hence, batch cooling crystallization is initially
modeled. Then, objective functions are used to optimize the temperature of crystallization by the genetic algorithm.
Maximum mean size, closeness to the desired value (desired mean weight size) and the minimum coefficient of variation



Fig. 1. Schematic Batch cooling crystallizer.
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are used to optimize the temperature profile by this method. In fact, a genetic algorithm with new objective functions is
employed to obtain optimum trends of the temperature variation in the batch crystallizer.
2. Population balance for batch crystallizer

As the crystallization process is a particulate one, various researchers [40,41] proposed the population balance theory as
an approach for modeling of the crystallization process. This theory proposes the use of a balance to account for the number
of crystals in the crystallizer. The output of such a balance is a distribution of the number of crystals across both time and
size domains.

The scheme of batch cooling crystallizer is shown in Fig. 1. Initially, the vessel is filled with hot under-saturated solution.
Next, the crystallizer is cooled when the liquid becomes supersaturated. At this point, small seed crystals are added. Due to
the super - saturation condition, new crystals are formed and existing crystals simultaneously grow. The nucleation and
growth consume solute from the solution. Hence, the concentration of the solution decreases. Therefore, further cooling is
necessary to keep the liquid supersaturated. To prevent the settling of crystals, the slurry is mixed by an impeller. Finally, the
vessel is discharged and the crystalline product undergoes further processing steps such as filtering and drying. The quality
of the product as well as the efficiency of downstream processing is highly influenced by the CSD.

It is assumed that the rate of growth (G) is not related to the size of the crystal. The attrition, breakage and the ag-
glomeration of crystal are negligible in this model. The equation of the population balance with boundary and initial
conditions for the batch crystallization is presented as the follows [17]:

( )( ) ( ) ( )∂
∂

=−
∂

∂ ( )
f L t

t

G t f L t

L

, ,
1-a

( ) ( )
( )=

( )
f t

B t

G t
0,

1-b

( ) = ( ) ( )f L f L,0 1-cseed

The rate of nucleation is denoted by B(t), and fseed (l) is the crystal size distribution of seed crystals.
By defining a mole equation of the liquid phase, an integro-differential equation will be obtained for the solute con-

centration:

∫( ) ( ) ( )ρ= − ( )
∞dc t

dt
k L G t f L t dL3 , 2c v

0

2

This equation(Eq. (2)) is solved with the initial condition C(0)¼C0. In equation, ρc is the crystal density, kv is the bulk
density coefficient. A volume of crystal is defined as follows:

= ( )V kvL 3crystal
3

Wherein, L is the size of the crystals.
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Furthermore, the energy balance of the crystallizer determines an ODE of temperature T(t) as follows:

( )∫( ) ( ) ( ) ( ) ( ) ( ) ( )ρ ρ= − ∆ − − ( )
∞

VC t
dT t

dt
H t k L G t f L t dL UA T t T t3 , 4p c c v c c

0

2

With T(0)¼ T0. Tc(t) is the temperature of the cooling jacket, U represents the heat-transfer coefficient, Ac is heat transfer
area, and ρ is the density of the slurry. The heat of crystallization, ∆Hc, depends on solution concentration c(t). This relation
can be adequately represented by a quadratic term,

( ) ( )∆ = + ( )+ ( )H t B Bc t B c t 5c 0 2
2

Where the coefficients Bi, i¼0, …, 2, are fitted to empirical data. Similarly, the heat capacity of the solution as a function of
solution concentration can be expressed as:
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The rate of growth and nucleation with super-saturation S(t), and f(L,t) are as follows:
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Where:
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sat

The relation of the saturation density Csat (t) and temperature is estimated with a second order equation as follow:

( ) ( ) ( )= + + ( )C t A A T t A T t 10sat 0 1 2
2

The growth and nucleation laws (Eqs. 7 and 8) are empirical relations, and they are not derived directly from first
principles. The value of b, g, kb and kg parameters are obtained through an identified system. The Eqs. (1-a) to (4) present a
model with limited dimensions to analyze the batch crystallizer that mainly consists of a first order partial differential
equation. Randolph and Larson [17] presented a new method for reducing the population balance equation to a set of
ordinary differential equations. This method changes the partial differential equation to some ordinary ones as follow:

∫( ) ( )μ = = … ( )
∞

t L f L t dLi, 0, 1, 2, 11i
i

0

Eq. (7) is known as a momentum derived through physical interpretations. In fact, the zeroth order of the moment
m0(t) defines the overall number of the crystals. In addition, the 1st (m1(t)), 2nd (m2(t)) and 3rth (m3(t)) order of the moment
present the length of the crystal, the overall crystal surface and the volume of the crystalline inside the crystallizer, re-
spectively. Since the final time of batch and the rate of growth are so limited, f(L,t) is zero for a high length. Therefore,
following equations are obtained through an integration of the Eqs. (1-a) and (1-b):
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= ( ) ( )

d t

dt
B t 12-a

0

( )( ) ( ) ( )μ
μ μ
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Since the overall mass of solute (dissolved and crystalline) is constant in the crystallizer, an additional algebraic relation
between the third moment μ3(t) and the solute concentration c(t) is presented as follows [4,7]:

( ) ( )ρ μ μ= + ( − ) ( )c t c k h t 13c v seed0 3, 3

Where ( )∫μ =
∞

L f L dLseed
i

seed3, 0
is the third moment of the seed crystal size distribution. The nucleation law (Eq. (7)) is ob-

tained as follow:

( ) ( ) μ= ( ) ( )B t k k S t t 14b v
b

3

Eq. (10) shows that B(t) and G(t) are related to m3(t) and T(t). Then, the differential equations for the first six moments are
as follow:



Fig. 2. Flowchart of Genetic Algorithm.
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With the initial conditions:
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i

seed, 0

These equations are a simple model for the batch crystallizer, and it is clear that they are non-linear equations. The m0(t),
…, m5(t) moments are the simplified model of our problem.

The number of density function was defined by f(L) and, mean weight size Lwm expressed as the following:
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In discrete condition, Eq. (12) transform to following equation.
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where wi is crystal weight on ith mesh and Li is the mean size of that mesh. The coefficient of variation (C.V) is expressed as
the follow:
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where s (standard deviation) or s2 (variance) are obtained based on the moments model as the following:
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The coefficient of variation is expressed as the following dimensionless number.
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3. Optimization by using genetic algorithm

Genetic algorithms present the compatible framework to deal with the wide range of optimization problems [42–44].
Inspired from the evolutionary theory of Darwin, the algorithm introduces a population of possible solutions like the natural
evolution of generations. Wherein, problem variables are represented as real strings, and the solution is coded as a col-
lection (similar to chromosome) of these binary strings. The evolution is obtained by some genetic operators as a re-
production, crossover and mutation.

Recently, genetic algorithm is highly considered as the main method for optimization based on the mathematical
modeling of the development theory. A genetic algorithm is applied to determine the optimal operating conditions for the
crystallization process. Genetic algorithms are mathematical optimization methods that simulate a natural evolution pro-
cess. The goal of this work is to optimize the temperature of crystallization process. The temperature is an important
parameter and changes during the time for the process, an optimized temperature exists for further production. It has a
direct effect on concentration.

In the genetic algorithm, the chromosome includes a set of data for the parameters and optimization variables, which is
used to optimize the mathematical equations (quantitative equations). If the problem has Npar parameters and P is the
parameter, the chromos used in the algorithm is as the following:

=[ … ] ( )chromosome P P P, , , 22N1 2 par

where Pi and Npar include the genes related to the chromosomes and the dimensions of the problem, respectively. In this
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Fig. 4. Validation of time evolution of the solute concentration and the first four moments of the crystal size distribution function for early-growth
operating policies as calculated by using the method of moments and Ward and Yu [28].
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Fig. 6. Optimal temperature versus time for closeness to the specified value.
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Fig. 7. Optimal temperature versus time for minimum coefficient of variation.

Table 1
Relative error between optimal temperature with feedforward control and optimal temperature with genetic algorithm data.

Objective function
MARE (%)¼ ∑ −100 1

N
YOPT

YV

1

maximum mean weight size 2.46
closeness to the specified value 2.37
minimum coefficient of
variation

4.85
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optimization method, a lot of chromosomes are produced and, the optimum chromosomes will be attained by a re-
population and mutation.
4. Objective functions

There is a great deal of subtlety associated with selecting an objective function for seeded batch crystallizers. Part of the
problem, as several researchers have noted, is that it may be difficult to correlate the cost of downstream processing to the
crystal-size distribution. As a result, it has not generally been practical to use process economics to formulate an objective.
Consequently, researchers have been forced to identify a surrogate objective function based on some property of the crystal-
size distribution.

Researchers [19,24–28] have presented many different objective functions for the cooling crystallization. In this study,
three objective functions are used for the optimization of the batch cooling crystallization. These functions (objective
function of maximum mean weight size, closeness to the specified value and minimum coefficient of variation) are dis-
cussed as follow:
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4.1. Objective function of maximum mean weight size

This function is based on the mean size of the crystals and at the end of the batch the largest crystals make the largest
mean size that is:

( ) ∫ μ μ

μ
= = −

( )

⎛
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4.2. Objective function of closeness to the specified value (desired mean weight size)

This function is based on the amount of closeness to the predetermined mean length such that at the end of the batch,
the mean weight size is closer to the specified value that is:
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4.3. Objective function of minimum coefficient of variation

This objective function is based on the minimum coefficient of variation such that the lowest coefficient of variation is
seen at the end of the batch. In other words, we want to have a very sharp and narrow curve of the crystals sizes distribution
that is:
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5. Applying genetic algorithm to obtain the optimal temperature

As the genetic algorithm applied in the robust objective function subjected to operating constraints for the full range of
uncertain parameters, the optimal temperature trajectory is determined. In the present problem of optimization, the re-
levant chromosome is initially determined. Since the genetic algorithm is a time consuming process, the end of the batch is
classified into eight time periods of five-minute sets. The chromosome is identified as the combination of eight continuous
genes (Di) which are randomly assessed by discrete value between zero to one as the followings:

=[ ] ( )chromosome D D D D D D D D, , , , , , , 261 2 3 4 5 6 7 8

Since the obtained genes are normalized, the measurement of the objective function is performed by using the max-
imum and minimum values of the calculated parameters. To select appropriate pairs, the random weighted selection
method is applied. This method is based on the cost function of the chromosomes. Next, the extrapolation method with two
cutting points is used for the recombination of the chromosomes. In this methodology, two random chromosomes are
selected from the parents and then combined together with a randomweight. The typical flowchart of the employed genetic
algorithm in the solution of the models is given in the Fig. 2.

Initial temperature and concentration parameters are considered as 32 °C and 0. 5733 gKNO
gH O

3

2
, respectively. Ode23s tool in

the MATLAB computation software is used to solve the equations. For this purpose, the initial population and mutation
coefficient are adjusted between 40–1000, and 0.02–20, respectively. Finally, the optimal temperature profile is calculated
for each objective function by using the identified algorithm.
6. Results and discussion

Ward et al. [28] introduce the concepts of “early growth” and “late growth” for the selection of operating policies for
seeded batch crystallization where secondary nucleation is important (Eq. (14)). In an early-growth operating policy, the
growth rate (supersaturation) is the greatest at the beginning of the batch. However, it is greatest at the end of the batch
when a late growth operating policy is done [28,29]. For cooling crystallization, the rate of change of temperature is the
greatest in an absolute sense at the beginning of a batch for early growth and at the end of the batch for late growth. Ward
et al. predicted that early-growth operating policies should produce a smaller number of the nucleus grown crystals, but a
greater mass of the nucleus-grown crystals. A late-growth operating policy should produce a greater number but a smaller
mass of the nucleus-grown crystals and at the same time grow the seed crystals to a larger size. The reader is referred to
Ward et al. [28] for a detailed explanation of why this should be the case. This paper will develop further insight into this
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result by providing the complete population density function at the end of a batch for a seeded batch crystallizer subjected
to early-growth and late-growth operating policies.

Fig. 3 shows the temperature trajectories used in this problem. Note that the early-growth trajectory has a high slope in
an absolute sense at the commence of the batch while the late-growth trajectory has a slope steepest in an absolute sense at
the end of the batch. Although the early-growth trajectory is nearly linear, it results in a significantly greater super sa-
turation at the beginning of the batch than at the end of the batch.

Fig. 4 clearly shows the time evolution of the first four moments of the population density function for the early-growth
operating policies as calculated and the method of moments. Moreover, in this figure time evolution of the solute con-
centration and the first four moments of the crystal size distribution function for early-growth operating have been vali-
dated with Ward and Yu [28]. The lines overlap almost exactly, suggesting that the simulation gives a very accurate de-
scription of the time evolution of the population density function. It is also noted that the moments grow rapidly at the
beginning of the batch because of used of the early-growth operating policy.

The same optimum solution as that given by Vollmer and Raisch [29] was obtained with feed forward control. In this
study, after about 200 generation the size of initial population was 1000 chromosomes and the maximum number of
generations was set to 1000.

Following constraints are given to the objective functions in the genetic algorithm:

≤ ≤ ≤ ≤T T T C C C,min max sat max

Where minimum and maximum temperatures are 27 °C and 37 °C, respectively.
The objective functions are maximum mean weight size, closeness to the specified value and minimum coefficient of

variation.
The obtained optimal temperature profile from the maximum mean weight size objective function is shown in the Fig. 5.

In this figure optimal temperature have been validated with vollmer and Risch [41]. The figure evaluates the optimal
temperature against time. It can be easily observed that both genetic algorithm and feed forward control results present
similar temperature trends when the time passed. It is notable that the temperature rises sharply and this is because of
difference between initial concentration and the supersaturated concentration. As the time passes, the difference decreases.

The obtained optimal temperature profile from the closeness to the specified value objective function and validationwith
the vollmer and Risch [41] are shown in Fig. 6. It can be easily observed that both genetic algorithm and feedforward control
results present similar temperature trends when the time passed. In the beginning of the batch process the temperatures
closes to optimal control. It is notable that the differences between temperatures at the end of the process are raised in
compare to maximum mean weight size objective function.

The obtained optimal temperature profile from the minimum coefficient of the variation objective function and vali-
dation with the vollmer and Risch [41] are shown in Fig. 7. It can be easily observed that both genetic algorithm and feed
forward control results present similar temperature trends as the time passed. In this objective function, the differences
between the temperatures are raised.

The relative error between optimal temperature with feedforward control and optimal temperature with genetic algo-
rithm data are shown in Table 1. As it can be seen, minimum error is occurred in the vicinity of the specified value objective
function. Since, this objective function presented at the first time, results of this function are close to the optimal value.

As eight parameters should be optimized in this case, the initial population is increased from 40 to 1000 to ensure the
search in all domains. The optimal number of the initial population is 200. For lower values, it does not search the entire
domain of optimization that is due to the low number of the population. As the initial population is increased, extra re-
combination in chromosomes causes an increase in the cost. In order to get the best mutation coefficient for the initial
population of 200 (best initial population), mutation is varied from 0.02 to 0.2. The optimal value for mutation coefficient in
this condition is 0.05.
7. Conclusion

In this work, the batch cooling crystallization procedure is investigated to develop an appropriate optimization strategy.
The influence of the solubility is studied to characterize the temperature of batch cooling crystallization. Temperature
control policy is necessary in the batch cooling crystallization to provide a suitable crystal size distribution for the product
through the optimization. Hence, batch cooling crystallization is initially modeled. Then, objective functions are used to
optimize the temperature of crystallization through a genetic algorithm. Maximummean size, closeness to the desired value
(desired mean weight size) and the minimum coefficient of variation are applied to optimize the temperature profile by the
genetic algorithm. Results show that the desired value objective function that is presented in the first time is the best
objective function. The mean relative error of this objective function is lower than other functions that presented in this
study.
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