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a b s t r a c t

This paper presents a methodology for probabilistic assessment of masonry vaults bear-
ing capacity with the consideration of existing defects. A comprehensive methodology
and software package have been developed and adapted to inspection requirements. First,
the mechanical analysis model is explained and validated by showing a good compromise
between computation time and accuracy. This compromise is required when probabilistic
approach is considered, as it requires a large number of mechanical analysis runs. To model
the defect, an inspection case is simulated by considering a segmental vault. As the inspec-
tion data is often insufficient, the defect position and size are considered to be unknown. As
the NDT results could not provide useful and reliable information, it is therefore decided to
take samples with the obligation to minimize as much as possible their number. In this case
the main difficulty is to know on which segment the coring would be mostly efficient. To
find out, all possible positions are studied with the consideration of one single core. Using
probabilistic approaches, the distribution function of the critical load has been determined
for each segment. The results allow to identify the best segment for vault inspection.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

. Introduction

Masonry arch bridges, still in service, represent more than 40% of bridges in Europe [1]. Most of them are century
ld and the degradation process is already running since several decades. Actually, the maintenance and repair continue
o represent serious issues for their managers. Indeed, many repairs have been undertaken without ensuring the aimed
urability. The question is: how to repair old masonry vaults while ensuring relevant actions that extend their service

ife? In fact, repair work is directly related to diagnosis. The more accurate the diagnosis is, the more durable and less
xpensive repairs are. Although several defects can be detected using non destructive tests (NDT), some defect are difficult,

nd sometimes impossible, to detect without coring [2]. The main difficulty is therefore to know where coring could be most
fficient, in terms of information about the vault defects and the ultimate load capacity.

Several methods were developed since the fifteenth century to calculate masonry vaults, starting from the well-known
mpirical rules (see Table 1 in Ref. [3]). These rules allow to determine the main arch dimensions by mean of simple
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relationships developed by introducing experimentally obtained coefficients, sometimes depending on the used materials
which have survived very long time in the absence of proper modeling theory. Several methods have been developed for the
assessment of load-carrying capacity, such as Military Engineering experimental Establishment (MEXE) [4,5] and Railway
Empirical Assessment Method (REAM) [6,7]. The first method allows the calculation of the allowable axle load on a bridge
based on a so-called idealized axle load calculated with reference to an “ideal” bridge. The arch is assumed to be parabolic in
shape with span/rise ratio of 4, compressive stress limit of 1400 kN/m2, and tensile stress limit of 700 kN/m2. This idealized
axle load is then modified by factors allowing to consider the difference between the actual arch and the ideal one [8] such as
the span/rise factor, the profile factor which takes into account the difference between the realistic arch line and a parabolic
arch, depending on the arch rise at the haunches and the rise at the crown, the material factor depending on the material
strength of the vault and filling material, the joint factor which takes into account the condition of the joint material and
its thickness, and finally the condition factor which depends on the general arch condition in order to take into account the
possible presence of cracks and/or deformations. The REAM method allows to obtain a preliminary arch assessment without
calculations, by means of graphs for the determination of the required vault thickness based on a study conducted on different
bridges with span ranging between 2 m and 25 m span/rise ratio lower than 8, filling depth above the crown between 25 cm
and 150 cm and axle load is between 10 tons and 25 tons. The limit analysis method was adopted by Kooharian in 1953 for the
study of arcs formed of segments [9]. The principle of this method is to determine the allowable loads under which the vault
does not collapse. It is shown that if the thrust line is within the arc thickness, then the stability of the structure is guaranteed.
The yield design methods [10,11] are derived from Heyman’s studies on the yield design of masonry arches [12,13]. In 1976,
Salenç on provided the basis for this method and generalizes the limit analysis methods by replacing the perfect plasticity
condition by a material strength criterion. Finally, the finite element method [14,15] and distinct element method [16] are
currently considered as the main numerical methods for solving partial differential equations, through the development of
computer technology. These methods are characterized by their high level of accuracy, but only when detailed input data
are provided. Indeed, various software using 1D, 2D or 3D models have been developed, but most of them allow the analysis
of structures without defect. In parallel, some authors have proposed methods for detecting defects [17–20]. Some others
have proposed methods allowing to assess the load bearing capacity of damaged arches [1,21]. Generally, these methods
provide the mechanical response assuming defect characteristics as known (position, depth, extent . . .etc.) after carrying
out some ND tests, which is not always the case, and consequently destructive tests become necessary. In this framework,
the present aims, in addition to assess the load bearing capacity of the vault, to identify on which segment the destructive
test will be the most efficient, and presents a methodology for probabilistic assessment of the effect of defects, caused by
water infiltration, on the vault bearing capacity.

One of the major reasons for building abandonment is the excessive cost of inspections and repairs, in addition to technical
feasibility and reliability. Indeed, when an inspection is carried out, the observations and the assessment of the vault state
are subject to large uncertainties. The vault thickness for example is an input data which is known with large uncertainties.
The formulae given by Oliveira et al. [3] (in Table 1) has been used to determine this parameter and provide upper and lower
bounds between which there is much disparity [24]. In addition, many of the existing bridges that were originally built for
car traffic are currently being used for heavy traffic and even for trucks in some cases. From another point of view, the study of
stone alterations revealed several material loss patterns and therefore changes in geometry of segments which are not visible,
in most of the cases. This kind of situation requires a rigorous inspection program and associated predictive models. The first
problem of the bridge owner is to know how much money he/she can spend for inspections. Depending on his/her budget
allocation, the scope and extent of inspection can be defined, and consequently the uncertainties on inspection results will
be high or not. The number of tests on materials, of in-situ measurements, and the NDT methods to be applied will depend on

this choice. The majority of available methods for assessing the masonry vault behavior are deterministic. They can predict
the load bearing capacity of the vault provided that all the variables involved in the mechanical response are assumed to
be deterministic (i.e., perfectly known), which is not true because of the uncertainties involved in the geometry, materials,

Table 1
Geometrical, physical and mechanical characteristics of the studied vault.

Designation Unit Value

Span (s) m 6.18
Rise  (r) m 2.50
Vault  thickness (t) m 0.58
Backfill depth above the crown (f) m 0.85
Pavement thickness (e) m 0.28
Segments unit weight kN/m3 24
Pavement unit weight kN/m3 21
Backfill unit weight kN/m3 18
Segments Young’s modulus GPa 48
Tensile resistance of segments kN/m2 0
Pavement Young’s modulus MPa  20
Backfill cohesion kN/m2 0
Backfill angle of shearing resistance rad �/6
Pavement angle of shearing resistance rad �/6
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Fig. 1. Arch under consideration.

oads . . . etc. In recent years, the reliability-based assessment methods of structures have been developed. These methods
ake into account the uncertainties of the involved variables, by applying structural reliability methods, among them Monte
arlo simulations [22] are commonly applied in various engineering fields. Most of the applications have shown that large
mount of money that can be saved by accurate and efficient assessment based on probabilistic approaches [23]. In this
aper, Monte Carlo simulations are coupled with the finite element method and implemented in a software package (named
rcProg Z), in order to propose a consistent methodology for probabilistic assessment of the load bearing capacity of the
ault. This methodology aims at minimizing the number of measurements and consequently the diagnosis cost. The first
art of this paper presents the model assumptions (loads, materials, etc) and the second part is devoted to the study of
asonry vault inspection of localized defect. Finally, the probabilistic modeling of inspection is carried out and the results

re discussed with respect to the vault assessment.

. Arch model

It is well approved that water presence is critical for most of masonry alterations [26–28]. It is therefore mandatory to
onsider this effect for the load bearing capacity of masonry. The model proposed herein deals with the most encountered
ituation during inspections of old masonry structures, which is related to material losses mainly affecting limestone. Fig. 1
hows the analyzed arch configuration, including loading and defect. For simplicity, the study is limited to one localized
efect (thickness loss of a number of segments); the extension to more defects is straight forward without difficulties. The
ault is subjected to vertical loads due to its own  weight, the filling material, and the axle load, as well as the associated
orizontal pressure.

.1. Model assumptions

The vault is modeled using beam finite elements representing the loaded arch, in order to analyze its instability. The load
akes into account the axle load, permanent filler weight and soil action (Fig. 2). The latter is modeled by horizontal and
ertical springs acting at each node and affected by stiffness coefficients (kh and kv) taking into account the backfill modulus
nd the contact surface related to each node. The spring stiffness is nil when the deformations have the effect to keep the

tructure away from the backfill.

The failure is characterized by the appearance of four successive hinges (three hinges when the system is symmetrical
nd loaded on the arch key). A hinge occurs when the application point of the stress resultant is outside the central third

Fig. 2. Modeling of backfill reaction (ArcProg Z).
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Fig. 3. Thrust line and failure mechanism (ArcProg Z).

of the arch thickness i.e., no tensile stress can take place at the interface between segments, due to cracking (Fig. 3). This
method gives a lower bound of the arch capacity, as it can sustain loads even beyond the first cracking.

The arch capacity computation procedure is illustrated in Fig. 4. In this procedure, the position of the load point is moved
along the half-vault, with a constant steps �x.

For each loading position, the incremental finite element analysis is performed. The applied load is increased by a steps
�p until the formation of four hinges corresponding to arch instability. The critical load is thus computed for the specified
axle position. The procedure can thus be continued for other loading positions, in order to model the traffic over the bridge.
The minimum value of the calculated critical load corresponding to the vault bearing capacity Pcr is then deduced, as well
as the corresponding critical position Xcr .

2.2. Comparison with previous studies

In order to validate the numerical model, the comparison is carried out with published theoretical and experimental
results. Schwarzwasserbrücke bridge (Switzerland) has been modeled with RING2 software [25]. With a span of 16.75 m
and a rise of 2.84 m,  this bridge is composed of 40 segments. The finite element analysis is performed by the program
ArcProg Z using bridge input data and the comparison is considered regarding the two main results: hinge locations and
critical load. As a results, the four hinges were found to be exactly at the same positions and the critical load given by RING2.0
was 678.4 kN, which is very close to the one given by ArcProg Z equal to 679.3 kN (i.e., the difference is around 0.1%).

The experimental results provide an interesting case-study for comparison. Shinafoot Bridge (UK) has been tested until
failure [25]. It was composed of 11 segments with a span of 6.16 m and a rise of 0.83 m.  Both critical load and hinge locations
have been recorded. ArcProg Z critical load differs by only 3.6% from the experimental result and the four hinges were also
located at the same positions.

From these comparisons, the accuracy of the developed numerical model has been shown, allowing its validation to
predict the arch bearing capacity. An interesting compromise is found between computation time and accuracy, which
allowed using a probabilistic approach, to perform a large number of analyzes in a reasonable time span.

2.3. Defect modeling

For modeling purpose, it is assumed that the defect extent is a function of its maximum depth. For simplification reasons,
all segments are assumed to have the same Young’s modulus. The defect is characterized in the following way: the position
of the maximum depth of the defect is defined by the distance from the left end of the vault, noted Xd as indicated in Fig. 5.
To study the effect of the defect position on the arch bearing capacity, the defect width is projected on the horizontal axis
(l = ll + lr) and located with respect to Xd such that 1⁄3  of this length noted lr is located at the right of Xd and the remaining
length ll at the left side. The horizontal shift of this interval along the half-span allows to have more segments affected by the
defect when approaching the support and fewer segments when approaching the arch key, as shown in Fig. 6. This allows
characterizing the unsymmetrical material losses caused by water infiltrations taking into account the effect of gravity, which
leads to greater flow on the left part of the defect than on the right of the position Xd. It is to note that this configuration
is given for a defect at the left of the arch key. When the defect is located at the right of the arch key, its geometry can be
symmetrically generated with respect to the mid-span vertical axis, as water flows to the right. The particular case where
the defect is located at the arch key imposes similar flows in both sides of the key (ll = lr), and in this case the defect becomes
itself symmetrical. The defect length (ll + lr) is linked to the capacity of the liquid to flow along the arch surface. Therefore,
it depends on the porosity and the stratification of the stones.

In order to predict on which segment the measurement should be performed, coring in each segment composing half of
the vault is simulated. The defect depth, noted hm, is measured. It should be emphasized that it is not possible to determine
this measurement before analyzing the sample in the laboratory and determining the healthy thickness of the measured
segments. The measurement position noted Xm is determined by assuming that coring is carried out in the middle of each

segment. The uncertainty on Xm is related to the fact that the measurement is localized and it is estimated that this loss of
thickness in a given location indicates a material loss at the measurement vicinity.

As material losses due to water actions are assumed to be smooth, the defect distribution is modeled by a four-degree
polynomials on the right and on the left side of the maximum depth location. To determine the polynomial coefficients, the
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Fig. 4. Schematic calculation procedure (ArcProg Z).
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Fig. 5. Defect modeling and parameters (step 1).

Fig. 6. Number of segments affected by the defect depending to the defect position.
Fig. 7. Defect modeling (step 2).

geometrical conditions are imposed by considering slope continuities between the two  curves, and between the defect ends
and the unaffected part of the vault, as shown in Fig. 7.

In the numerical analysis, the thickness of a segment is assumed constant and the outer surface of the segment bottom is
considered as that of the segment. From the above conditions, the polynomial functions can be described by the following
relationships, for left and right parts of the defect, respectively.{

hdl (X) = hmax(X − (Xd − ll))
2(X − (Xd + ll))

2

hdr (X) = ˛hmax(X − (Xd − lr))2(X − (Xd + lr))2
(1)

In these relationships, hdr and hdl are respectively the defect depths at the right and the left of the maximum defect depth,
noted hmax. The remaining thickness of the segment in the defect zone is then deduced by the relationships (2), indicating
the position of the defect at the right or at the left depending on the position of the measurement.{

hvl = hhv − hdl = hhv − hmax(X − (Xd − ll))
2(X − (Xd + ll))

2

hvr = hhv − hdr = hhv − ˛hmax(X − (Xd − lr))2(X − (Xd + lr))2
(2)
By removing the defect depth, which is depending on hmax and Xd, from the vault thickness, the developed program
determines the position and the number of segments that have suffered material losses. The program will then modify the
thicknesses of affected segments and computes the mechanical response (Fig. 8).
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Fig. 8. Discretization of the defect model (step 3).
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Fig. 9. Critical load depending on defect depth.

. Inspection situation

The considered inspection situation for masonry bridges corresponds to the case of water infiltrations which are assumed
o be observed on the left side of the vault intrados (the concave curve of the vault). These water infiltrations might indicate
he existence of a vault defect. The remaining thickness of the concerned segment and/or of the adjacent ones, the defect
xtent, its maximum depth and its position are uncertain parameters.

The evaluation of test methods with respect to their applicability for the assessment of masonry arch bridges was carried
ut by Oliveira et al. [2]. It shows that the only method that can provide useful and reliable information on this type of defect

s coring, and that ground penetrating radar, sonic methods and conductivity measurement cannot provide sufficiently
eliable information. However, before taking any sample, it is necessary to address two important questions: where the
oring should be carried out? And how many cores? For the majority of the cases, it is impossible to answer accurately
hese questions, which often involves to consider additional samples and consequently, additional costs. Using probabilistic
pproaches, the aim of this study is to address the first question by considering the case where one single core is carried out.

.1. Influence of defect depth variation

The analyzed vault consists of 16 limestone segments whose geometrical, physical and mechanical characteristics are
ummarized in Table 1. The applied traffic load which causes collapse is sought, as a function of defect conditions.

The measured defect depth, noted hm, taken into account in the numerical application is 0.02 m.  At first, the study is
imited to the five defect positions shown in Table 2 with a step of 0.50 m to simulate the defect position Xd along the half-
ault. For each location, various losses of thickness are considered. The steps of 0.25 m and 5 kN are fixed for respectively

he point load position Xp and the load magnitude.

For different values of defect location Xd, Fig. 9 shows the critical traffic load as a function of the defect depth. These results
how that, for the same defect location Xd, the thickness loss and the critical load are correlated and a linear relationship

able 2
efect parameters.

Designation Xd lr lf hm

Values [m] 1.0
1.5
2.0 0.5 1.0 0.02
2.5
3.0
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Table 3
Quantification of error on slopes.

Xd[m]  Slope value Error [%]

Calculation Polynomial

1.00 −45.876 −44.73 2.56
1.50  −156.1 −161.87 3.70

2.00  −217.28 −206.83 5.05
2.50  −171.47 −179.61 4.75
3.00  −82.564 −80.21 2.93

can be drawn. For nil thickness loss, all the results tend to the same point, corresponding to the critical load for arch without
defect. With the increase of thickness losses, the rate of load capacity reduction is shown to be strongly depending on the
defect location.

The general equation of the load bearing capacity in terms of defect depth can be written as:

Pcr=˛(Xd).hmax + Pcr0 (3)

where Pcr is the critical load, � is the slope (i.e., rate of capacity decrease) and Pcr0 is the critical load for vault without defect.
To express the slope  ̨ depending on the maximum defect position Xd, a polynomial of second degree is adopted and

evaluated by regression as following:

˛ (Xd) = 144.36X2
d − 595.18Xd + 406.09 (4)

The comparison of the slopes of several straight lines using Eq. (4) shows a good approximation of the reference values;
the maximum error is about 5% (Table 3).

3.2. Influence of defect position

In the course of inspection, the vault thickness measurement is carried out. In the case of a unique measurement on the
arch, the location of the maximum defect thickness is unknown; it is therefore necessary to study every possible location. For
a measurement carried out at a distance Xm from the left support, the measured thickness can be either at the left (Xm < Xd)
or at the right (Xm > Xd) of the maximum defect depth hmax; a special case can be met  when the measured thickness is located
at the maximum defect position (Xm = Xd). It is also assumed that when the thickness loss is greater than half the original
thickness of the segment, the defect location would be visible on the vault intrados. It means that, the defects that have
reached this size are directly identified during visual inspection and are out of the scope of the present study. The first step

is to determine the maximum value of defect thickness depending on its position Xd, according to the measured thickness
hm. A thickness loss hm measured on a core at the position Xm may  thus correspond to any left-side position Xml or right-side
position Xmr of the defect, as shown in Fig. 10. To find the critical load corresponding to this measurement, it is necessary to
deduct the maximum defect depth hmax, the defect location and the number of segments affected by the defect. Under these

Fig. 10. Relative position of the defect and the measurement point.
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onsiderations, a measurement point corresponds to several couples (Xd, hmax) according to the Relationship (5). It is found
hat hmax depends only on Xd and the parameters ll and lr. The associated relationship giving hmax can be obtained when the

easurement point is located at either the left or the right of the maximum defect depth. For a given measurement point Xm,
q. (1) gives a relation between hmax and Xd. hmax can be then deduced for right and left positions through the Relationship
5), as a function of the known position of the measured point Xm and the unknown position of defect Xd.⎧⎪⎪⎨

⎪⎪⎩
hmax = hdl

(Xm − (Xd − ll))
2(Xm − (Xd + ll))

2

hmax = hdr

˛(Xm − (Xd − lr))2(Xm − (Xd + ll))
2

(5)

Fig. 11 shows the various possibilities for a given measurement data (Xm, hm). It can be clearly seen that a measure-
ent output (Xm, hm) leads to different possibilities (Xdi, hmaxi), which are assumed to be identically probable (as no other

nformation is available, to induce preferential assessment). In other words, a large range of defect location and maximum
epth can be associated to each measured vault thickness hm at a given location Xm. As each defect configuration (Xd, hmax)
orresponds to different critical load, the measurement output will lead to a probability distribution function for the load
earing capacity of the vault.

For each value of the defect location Xd, a critical load is deduced by finite element analysis, as described in the above
ection. For each measurement position Xm, the curve giving the critical load as function of the defect location Xd can be
lotted. For the six segments of the left half of the vault (segments 2–7), Fig. 12 gives the obtained critical load curves when
he measured material loss is given as hm = 0.02 m.

The boundaries on the left and right of these curves are related to the imposed maximum defect size hmax. It is assumed
hat this maximum size cannot exceed half of the segment thickness when the intrados surface is intact. Furthermore, it
s worth recalling that the measurement position, noted Xm, is determined by assuming that coring is carried out in the

iddle of each segment. For each possible defect location, the maximum defect depth is determined. The results show that,
or segments 2 and 3 (Fig. 12(a) and 12(b) respectively), the lowest load bearing capacity corresponds to the case where
he maximum defect is on the left side of the measurement point Xm, i.e., on the springing zone (i.e., supports zone). For
egments 4 and 5 (Fig. 12(c) and (d)), in contrast to the two  previously mentioned segments, the lowest load bearing capacity

s obtained with maximum defect located at the right of Xm, which corresponds to the haunches of the vault (parts of the
ault where the stresses are the most significant, generally located at half vault rise). The segment number 6 (Fig. 12(e) gives
lmost the same value of the load bearing capacity, either on the left or on the right. In this case, the vault bearing capacity
s strongly related to the measurement value hm. Finally, with regard to the seventh segment (Fig. 12(f)), the lowest load
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Fig. 12. Critical load depending on defect position for the tested segments.

bearing capacity is again obtained with the maximum defect located at the left of Xm, i.e., haunches of the vault. All this
makes it possible to identify two vault zones where the presence of a defect leads to the greater losses in the vault bearing
capacity. These zones are classified according to their degree of influence, which are firstly the vault springing (i.e., supports
of the vault) then the haunches. Among the six tested segments, it is the segment number 3 which gives the lowest critical
load (190.4 kN). The same analysis could also be applied to the other figures.

Fig. 12(b) considers the case of a sampling (Xm, hm) carried out in the middle of segment 3 (Xm = 0.589 m and hm = 0.02 m).
According to the prescribed model, the defect is located in the interval I = [0.589 − 0.5; 0.589 + 1.0]. In addition, the limit on
hmax (less than half of the segment thickness) allows to tighten the generated interval to [0.16; 1.23]. In this interval of Xd,
the critical load Pcr ranges from 190 kN to 337 kN. If the defect was  located in Xm, then the critical load value will be 336 kN. In
fact, for each tested segment, the maximum value is obtained for a defect localized on the segment where the measurement

is carried out. This is because the measured material loss will directly give the maximum depth of the defect. The farther the
defect is from the measurement point, the greater is its maximum depth hmax, and the lower is the critical load. Knowing
that the greatest length ll or lr does not exceed 2 segment lengths, the lower loads bearing capacities correspond to defects
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Fig. 13. Extreme values of obtained distribution functions (hm = 0.02 m).

Table 4
Characteristic values of the obtained distributions.

Segment number

2 3 4 5 6 7

Min  299 190 278 280 293 276
Max  337 337 337 336 334 335
1%  304 247 283 290 303 294

o
b

d
c
X
d

p
r
p
r
p

a
p
o

m
m
l
b
e
c
a
c

4

I
w
d

5%  315 297 310 310 313 320
10%  320 315 319 320 321 325

n the segments adjacent to the measurement point. So, repairs should be carried out not only on the measured segment,
ut also on the adjacent segments, because a defect on these segments leads to a lower critical load.

As all values Xd belonging to the interval I are equiprobable, the curves in Fig. 12 show the shapes of the probability
ensity function of the critical load p(Pcr) conditioned by the measurement positions Xm. It is to note that the analysis was
arried out with the measured material loss hm = 0.02 m.  The computation of the probability density on the interval I = [Xdmin;

dmax] is performed through numerical integration of Pcr(Xd) values, by using Monte Carlo simulations. The shape of the
ensity function depends strongly on the measured point, and implicitly on the possible defect location.

Fig. 13 shows the lower extreme values (i.e., less than 10% quantile) of the predicted capacity in terms of the defect
osition. For example, in the case of the segment number 3, a load less than 300 kN has 5% probability to be critical and
epresents 75% of the critical load range [190; 337 kN]. Considering that maximum defect depth is located at the measured
oint, the actual critical load is 336 kN, the critical load at 5% is 300 kN, and the error on the critical load is 11%. The greatest
ange corresponds to that of segment 3. Given the model and the shape of the vault, this corresponds to the measurement
oint that gives the largest number of segments on which the maximum defect can be located.

For all segments, the maximum value of the critical load is about 336 kN. The difference lies in the minimum values
nd the percentiles in the lower extreme values. Table 4 gives some characteristic values of these distributions. The 10%
ercentile interval is very close and ranges between 315 kN and 325 kN. It means that if we take a risk of about 10% of error
n Xd, the critical load regardless which segment is measured, will be greater than 315 kN.

As a reminder, the addressed issue in the beginning of this study was  to know on which segment coring would be the
ost efficient in order to minimize the number of measurements? The analyse of these values reveals that carrying out
easurement on the segment 3 leads to a critical load which may  be exceeded in only 1% of defect locations, and still remain

ower than the same measurement carried out on the other segments. It means that segment 3 is the best option that can
e given to address this question. In the case where the measured material loss hm is nil, there will be two possibilities:
ither the vault does not contain any defect, or there is a defect but located far from the measurement point. In the later
ase, the defect could be at more than 1 m on the right or 0.5 m on the left of the measurement point, according to the model
ssumptions. In order to confirm the most probable trend, another coring should be performed and the same methodology
ould be applied.

. Conclusions

An effective probabilistic methodology, aiming to assess the load bearing capacity of damaged masonry vault, is proposed.

n the case where the non destructive tests (NDT) cannot provide useful information about the defect, it allows knowing on

hich segment the coring will be more efficient, which minimizes considerably the number of cores and consequently the
iagnosis cost.
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The consequence of defect on the load bearing capacity of the vault is simulated. A diagnosis case-study is provided by
considering the thickness loss caused by water infiltrations. The defect is modeled through three steps: First, the defect
extent is assumed as a function of its position in order to consider the effect of gravity. Then, the shape of the defect is
approximated by two four-degree polynomials: one on the right and one on the left of the maximum defect location. They
are determined by considering slope continuities between the two  curves, and between the defect ends and the rest of the
vault. Finally, the projection of the defect curve, given by the two  polynomials, on the vault thickness is performed and the
developed program determines the position and the number of segments that have suffered losses, modifies respectively
their thicknesses and computes the mechanical response. Monte Carlo simulations allow to obtain the distribution function
of the critical load, which is determined for each segment. The analysis of the obtained distributions allowed identifying
the searched segment. It corresponds to the segment which has the largest interval of critical load variation. In fact, for
all segments, the maximum values of the critical load are very close, the minimum values and the percentiles in the low
extreme values are the varying item. Finally, knowing the critical load distributions for other thickness loss values will allow
a finer diagnosis strategy.
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