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This study demonstrates that 3D printing technology offers a simple, easy, and cost-
effective method to fabricate artificial flaws simulating real cracks from the viewpoint of
eddy current testing. The method does not attempt to produce a flaw whose morphology
mirrors that of a real crack but instead produces a relatively simple artificial flaw. The
parameters of this flaw that have dominant effects on eddy current signals can be
quantitatively controlled. Three artificial flaws in type 316L austenitic stainless steel plates
were fabricated using a powderbed-based laser metal additive manufacturing machine.
The three artificial flaws were designed to have the same length, depth, and opening but
different branching and electrical contacts between flaw surfaces. The flaws were measured
by eddy current testing using an absolute type pancake probe. The signals due to the three
flaws clearly differed from each other although the flaws had the same length and depth.
These results were supported by subsequent destructive tests and finite element analyses.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Surface breaking cracks are among the most harmful degradations of structures. In general in-service inspections, visual, 
penetrant, or magnetic particle tests are conducted to detect surface breaking cracks, and if a crack is detected subsequent 
ultrasonic tests are performed to size the crack to determine suitable action. Eddy current testing (ECT) has drawn attention 
because recent studies have demonstrated that ECT can both detect and quantitatively evaluate cracks [1,2]. However, most 
studies to date have used artificial slits to simulate cracks even though the signals caused by an artificial slit can sometimes 
differ significantly from those caused by a real crack. Because the availability of real cracks is quite limited, techniques to 
produce artificial flaws that simulate real cracks are indispensable for further studies regarding the application of ECT to 
enhance structure maintenance.

Techniques to efficiently create thermal fatigue cracks [3] and stress corrosion cracks [4,5] for nondestructive tests have 
been proposed, and these methods produce cracks with very similar morphology to actual cracks. However, qualitative 
discussion of morphology is not always sufficient from the viewpoint of non-destructive signals. It is more reasonable to 
focus on specific factors that have dominant effects on nondestructive signals. In addition, because the length and depth of 
a flaw must be known to evaluate its effect on structural integrity, both of these factors should be accurately controlled so 
the sample need not be destroyed to confirm them. Fine processing technology including focused ion beam and sputtering 
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Fig. 1. Profile of Flaw B.

Fig. 2. Profile of Flaw C.

could enable to reproduce three-dimensional structure of actual cracks; however it is not realistic to fabricate samples and 
flaws sufficiently large for the purpose of general nondestructive testing.

To address this issue, earlier studies have proposed embedding an artificial discontinuity inside a material using diffusion 
bonding to simulate a real crack from the viewpoint of ECT [6,7]. Because ECT is relatively insensitive to flaw microstructure, 
a crack can be regarded as a region with a simple geometry and nearly uniform electromagnetic characteristics different 
from those of the base metal. Therefore embedding an artificial discontinuity with a structure finer than the spatial reso-
lution of ECT could simulate a real crack. Although this method would be simple and cost-effective, significant preliminary 
testing is required to find suitable bonding conditions which depend on the strength of the material. Additionally, the 
unidirectional stress necessary for bonding restricts the sample shape and the three-dimensional flaw structure.

Based on the above background, this study proposes another approach, the application of 3D printing technology, to 
easily prepare artificial flaws simulating real cracks. Several artificial flaws embedded in type 316L austenitic stainless steel 
plates were fabricated. Eddy current and subsequent destructive tests were conducted. The results of the tests were analyzed 
using three-dimensional finite element simulations, demonstrating the validity of the approach.

2. Materials and methods

2.1. Fabricating artificial flaws using 3D printing technology

Whereas the length and depth of a crack have dominant effects on non-destructive signals, other factors affecting the 
signals strongly depend on the non-destructive testing method applied [8]. For example, crack closure, which significantly 
affects the signals of ultrasonic tests [9], has little effect on eddy current signals [10–12]. A recent study has evaluated the 
effect of the oxide layer on ECT signals [13], whose results point out the difficult of quantitatively controlling the degree 
of eddy currents across a flaw by artificially introducing the oxide layer. More macroscopic characteristics, such as crack 
branching [14] and the degree of eddy currents across a flaw [15–18], affect eddy current signals and their analysis for flaw 
evaluation.

On the basis of this, this study fabricated three flaws, which are hereafter denoted as Flaws A, B and C. Flaw A is a 
simple rectangular slit with a surface length of 20 mm, depth of 5 mm, and opening of 0.4 mm, which was fabricated as 
a reference. Flaw B illustrated in Fig. 1 simulates a flaw branched inside a material, which is difficult to fabricate using 
conventional machining. Flaw C illustrated in Fig. 2 consists of 16 equally spaced columns, which simulates a flaw across 
which part of the induced eddy currents flows. All of the flaws were designed to have the same surface length, maximum 
depth, and crack opening. The flaws were introduced into a type 316L austenitic stainless steel plate with a thickness of 
7 mm and dimensions of approximately 70 mm × 45 mm.
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Fig. 3. Cross-sectional profiles of the flaws. The three flaws had a depth of 4.9 mm.

The samples containing the flaws were fabricated using a powderbed-based laser metal additive manufacturing machine, 
M2 cusing (Concept Laser GMBH, Lichtenfels, Germany). Type 316L austenitic stainless steel powder particles with a diam-
eter of 25–30 μm were paved on a powder bed and melted using a laser with an intensity of 200 W to form a thin cross 
section of the sample. The thickness of the layer was 30 μm, which was sufficiently below the spatial resolution of typical 
ECT. The surfaces of the samples were polished using a waterproof abrasive paper after this additive manufacturing process 
to a roughness of approximately Ra = 0.04 μm (JIS2001), which reasonably simulated the surface of a general structure 
made of type 316L austenitic stainless steel.

2.2. Evaluation of the fabricated artificial flaws

2.2.1. Eddy current examination
Eddy current examinations were conducted using a commercial eddy current instrument, aect2000N (Aswan ECT Co., 

Ltd., Osaka, Japan), and an absolute type pancake probe with a height, inner diameter, and outer diameter of 0.8, 1.2, and 
3.2 mm, respectively. An exciting frequency of 25 kHz was adopted; the probe scanned across the flaw to gather eddy 
current signals. A thick plastic plate was attached at the surface of the sample, and the scanning was conducted manually 
while pressing the probe against the board to realize a constant lift-off of 0.2 mm.

2.2.2. Visual examination
After the eddy current examination, the samples were destroyed to confirm the cross-sectional profiles of the flaws. 

Based on the flaw profiles, Flaws A and B were observed on a plane perpendicular to the flaw, and Flaw C was observed on 
a plane parallel to the flaw.

2.2.3. Finite element analysis
Finite element simulations using the commercial software, Comsol Multiphysics version 5.1 and its AC/DC module, were 

conducted to validate the measured eddy current signals. The simulations were performed in the frequency domain with the 
magnetic vector potential formulation. Flaws A and B were precisely modeled in the simulations. In contrast, two models 
were used to simulate the signals due to Flaw C. The first, Model 1, modeled Flaw C as illustrated in Fig. 2; the other, 
Model 2, modeled Flaw C as a rectangular region with a length of 20 mm, depth of 5 mm, constant width of 0.4 mm, 
and uniform conductivity inside. The conductivity and relative permeability of the base metal were set to 1.35 MS/m and 1, 
respectively.
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Fig. 4. Eddy current signals due to the artificial flaws.

Fig. 5. Comparison between measured (lines) and simulated (marks) signals of Flaw B.

3. Results and discussion

Fig. 3 shows the results of the visual examinations. The figure confirms that on the whole the actual profiles of the 
flaws agree with the designed ones. Closer observation reveals that Flaw A had an opening of 0.48–0.53 mm, which is 
approximately 0.1 mm wider than the design, and a depth of 4.9 mm, which is 0.1 mm shallower than the design. The 
bottom of the flaw is not flat but somewhat curved. These imply that the accuracy of fabricating flaws is limited to a 
few hundred micro millimeters, which can be regarded as sufficiently fine comparing with the spatial resolution of typical 
ECT. In addition, small voids observed on the right–bottom of the picture reveals that the powders were not completely 
melted. These characteristics are more conspicuous on the actual profile of Flaws B and C; the presence of voids on the 
cross-sectional profile of Flaw C implies that the electrical resistance of the flaw was larger than the designed one.

The measured eddy current signals are shown in Fig. 4. The signals are calibrated so that the maximum signal caused by 
Flaw A has an amplitude of 1 V and a phase of 45 degree. Although the three flaws had the same length and depth, clear 
differences existed between their signals. Branching increased eddy current signals, while the presence of eddy currents 
flowing across a crack decreased eddy current signals; these results are consistent to those of earlier numerical simulation 
studies [14,17].

The results of the finite element simulations are summarized in Figs. 5 and 6. The simulated signals are also calibrated 
so that the maximum signal due to Flaw A has an amplitude of 1 V and a phase of 45 degree, which enables to compare 
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Fig. 6. Comparison between measured (lines) and simulated (marks) signals of Flaw C. Digits shown after ‘Model 2’ indicate the electrical conductivity of a 
flaw in a percentage of base material’s conductivity.

them directly with the measured signals. The good agreement in the signals shown in Fig. 5 confirms little effects of the 
presence of the voids and the slight difference between the designed and actual profiles of the flaw. This supports the 
effectiveness of 3D printing technology to fabricate a flaw with branching. Fig. 6 shows that the signal obtained by the 
numerical simulation using Model 1, which modeled Flaw C accurately, is almost 10% smaller than measured ones. Whereas 
the presence of the voids would support this, the complexity of the profile of Flaw C implies that this difference would be 
acceptable because simulated and precisely measured eddy current signals have a difference of several percent even when 
they are due to a simple rectangular slit [19,20]. Numerical simulations using Model 2 revealed that assuming a uniform 
conductivity of approximately 25% of base material’s one provides good agreement between the simulated and measured 
signals. Recent studies have revealed that in most cases modeling a flaw as a simple rectangular or semielliptic region with 
uniform internal conductivity reasonably simulates eddy current signals due to the flaw, even when part of the induced 
eddy currents flows across the flaw [17,18]. These results support the validity of Flaw C as a simulation of real cracks that 
do not behave as insulating walls.

4. Conclusion

This study has proposed the fabrication of artificial flaws simulating that simulate real cracks from the viewpoint of 
ECT using 3D printing technology. Three artificial flaws in type 316L austenitic stainless steel plates were fabricated to 
demonstrate that it is possible to quantitatively control not only the length and depth of a flaw, but also its branching 
and electrical resistance, all which significantly affect its eddy current signals. The validity of the proposed approach was 
confirmed by eddy current examination, visual examination, and finite element analysis. The densities of the samples fab-
ricated in this study were 7.7 g/cm3, which is approximately 96% of the density of general 316L austenitic stainless steel. 
No obvious attractive force was confirmed between the samples and permanent magnets, which supports to regard the 
samples as nonmagnetic. These, as well as the good agreement between the experiment and the simulations, indicate that 
it is reasonable to regard the samples are basically identical to general type 316L austenitic steel.

It should be noted that all information concerning flaw fabrication is recorded in an STL file that can be prepared using 
CAD software, and no special techniques are necessary. This enables very accurately controllable cracks to be fabricated with 
high reproductivity. It should be also noted that the machine and raw materials used in this study were generic; no special 
fabrication instruments were necessary. Although sample fabrication for the present study required over 10 hours, recent 
developments in 3D printing technology suggest that, in the future, it will be possible to fabricate artificial flaws simulating 
real cracks with greatly reduced time and cost. It will also be possible to fabricate artificial flaws for other nondestructive 
testing methods, such as ultrasonic tests, that are more sensitive to microscopic flaw structure.
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