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A B S T R A C T

After the Fukushima Daiichi nuclear power plant [NPP] accident, there has been an

increased concern with the safety of NPPs in terms of external hazards, one of which is a

forest fire which can create potential challenges to safety functions and the structural

integrity of an NPP. As a part of the development of a risk assessment methodology for

forest fires as an external hazard, forest fire propagation simulations have been performed

by using the FARSITE simulator. These simulations have been used to evaluate two

intensity parameters (i.e. fireline intensity and reaction intensity) and three other key

parameters (i.e. flame length, rate-of-spread, and forest fire arrival time) which are related

to ‘‘heat’’ and ‘‘flame’’ effects on an NPP. Sensitivity analyses for a wide range of weather

conditions were performed in order to identify the variable ranges of the intensity and

other key parameters. The location studied was selected from among areas with typical

topographical and vegetation surrounding NPPs in Japan. The NPP is facing the sea and

surrounded by hills, distanced from an urban area, with mostly broad leaf forests, several

paddy fields and a few pasture areas.

Low-to-high frequency weather conditions have been utilized in this analysis; forest

fire propagation simulations were performed ‘‘with/without prevailing wind’’ (i.e. 0–24 m/

s wind speed) and ‘‘high/low values for ambient temperature and relative humidity’’ (�4.3

to 37 8C and 5–99%, respectively) according to the recorded data ranges for the typical NPP

site. The maximum values of fireline intensity and rate-of-spread are 4.7� 102 kW/m and

2.4 m/min and they depend very much on prevailing wind speed and relative humidity

(around 2.3 and 1.8 times respectively) but less on ambient temperature (around

1.1 times). Reaction intensity and flame length change within relatively narrow ranges

(around 1.7 and 1.5 times respectively) even for all the variation in weather parameters.

The forest fire arrival time at the site is reduced by a factor of 5 with changing prevailing

wind speed from the recorded-highest to zero. The arrival time increases some 3.4 times

with the highest humidity compared to the recorded-lowest conditions, although it is

changed little even by varying ambient temperature.

Given that this study shows that the maximum height of a flame on a canopy top is

close to the range of power line height, a loss of offsite power is recognized as a possible

subsequent event during a forest fire.
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1. Introduction

The safety of a nuclear power plant [NPP] is ensured by continuous improvement in the safety approach through
obtaining up-to-date operational experience and technical knowledge. After the Fukushima Daiichi NPP accident [1], there
has been an increased concern with the safety and exposure of NPPs to external hazards [2], one of which is a forest fire.
Conventional safety assessments of a forest fire have been performed in a conservative manner through application of typical
deterministic envelope methods and boundary conditions. A new methodology for a risk assessment of a forest fire on an
NPP is being developed [3] based on a probabilistic risk assessment methodology as an effective technique for qualitative
evaluation of occurrence frequency and corresponding consequence analysis as a result of exposures of NPPs to various
hazards.

The new methodology consists of two parts; the first one is a hazard assessment to obtain a ‘‘hazard curve’’ of fireline
intensity and reaction intensity due a forest fire [4], and the second one is an event sequence analysis to obtain plant damage
frequency due to the challenges by such a forest fire. For these assessments, it is necessary to clarify what phenomena of a
forest fire might become challenges to an NPP and what intensities and parameters correspond to the challenges, which is
the purpose of this paper. According to the existing deterministic assessments of effects on an NPP by an external fire [5] and
by a wild fire [6], ‘‘fireline intensity’’ and ‘‘reaction intensity’’ are mainly considered as the important quantitative indexes.

In this study, physical phenomena related to a forest fire were analyzed in relation to the potential impacts on an NPP in
order to identify ‘‘intensity’’ and key parameters especially related to ‘‘heat’’ and ‘‘flame’’ which may potentially have an
effect on the NPP and to the external electrical power supply of the NPP. Forest fire simulations were performed for a range of
typical NPP site conditions, and the strength values of the intensity and other key parameters were evaluated.

The FARSITE (Fire Area Simulator) software [7] was utilized for the forest fire propagation simulations in this study
because of its wide applicability in relation to forest fire management and firefighting actions. However, the most
applications of FARSITE have been related to vegetation, topographical and weather conditions of North America [8] and
Europe [9,10]. These conditions are different to those in Japan (e.g. humid subtropical climate with rainy and typhoon
seasons, wide areas of deciduous tree forest and paddy fields, and mountains/hills near to the seashore). As a result the
database needed for FARSITE simulations was consolidated as part of this study.

The FARSITE simulations were performed on a reference condition of high ambient temperature [AT] and low relative
humidity [RH] without a prevailing wind. A possible subsequent event important to NPP safety in relation to power line
exposure was investigated as well. The sensitivity analysis was performed with changing weather parameters and forest fire
breakout points in order to evaluate the range in variation of the forest fire intensity and the other key parameters of flame
length, rate-of-fire spread [ROS] and forest fire arrival time.

2. General analysis of forest fire challenges to a power plant

2.1. Forest fire physical phenomena and potential challenges to a power plant

Physical phenomena during a forest fire spread [11] are raised by heat, flame, smoke and flying sparks (otherwise called
embers or fire brands). The relation between the physical phenomena, forest fire intensity and these key parameters,
resulting in possible consequential effects and potential challenges to an NPP are summarized in Fig. 1. This paper

[(Fig._1)TD$FIG]

Fig. 1. Forest fire related physical phenomena, intensity and key parameters, possible consequences and potential challenges to a power plant.
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specifically deals with the ‘‘adjacent’’ impacts of ‘‘heat’’ and ‘‘flame’’ and not the ‘‘distant’’ impacts of ‘‘smoke’’ and ‘‘flying
sparks’’ which are less important for an NPP with essentially non-combustible construction. The parameters of ‘‘heat’’ and
‘‘flame’’ are quantitatively evaluated in this paper by the FARSITE simulator.

The index of ‘‘heat’’ is obtained from the heading ‘‘fireline intensity’’ and the ‘‘reaction intensity’’. A firebreak width is
determined from a predicted fireline intensity, and a breaching probability of the firebreak increases with the fireline
intensity [12,13]. The width of a firebreak for an NPP in Japan, if a firebreak is provided, corresponds to the breaching
possibility below 1% [6]. Once after a breach has occurred, a grace period until the forest fire arrival at an NPP site is an
important issue.

The ‘‘reaction intensity’’ is utilized to evaluate temperature rises of external wall surfaces of NPP facilities. There is
generally a wide space consisting of a road pavement or concrete on the ground around a typical building and external fuel
tanks of an NPP. As a result, a possible consequential impact will be created as a result of radiation and not by convection.
Radiation heat flux is calculated from the reaction intensity [5] through multiplying the yield of radiative heat as a fraction of
the total heat of combustion.

The index of ‘‘flame’’ is characterized by ‘‘flame length’’. An NPP has many connection lines of cables for external electric
power and telecommunication. In a case where a forest fire flame height reaches up to these lines, the lines may be destroyed
and disconnected. Normally these lines have redundancy (e.g. multiple lines along separated paths) and an NPP has
alternative diesel power generators and emergency batteries just in case of these situations. Nevertheless, these potential
consequences during a forest fire spread need to be assessed. ‘‘ROS’’ is an important index to determine a grace period for
preparative actions prior to the arrival of the forest fire front at the NPP after the breakout. For the distant effects of ‘‘smoke’’
and ‘‘flying sparks’’, quantitative evaluations have been performed in other studies [14].

2.2. Location and database for forest fire propagation simulations

The location studied is depicted in a topographical map in Fig. 2. The location was selected to represent typical
topographical and vegetation conditions near NPPs in Japan. The NPP site faces the sea and is surrounded by hills and ridge
lines, and distant from an urban area. The topographical and vegetation maps were prepared for a 20 km� 20 km area,
although the maps in Fig. 2 are magnified to around 7 km� 6 km. The ridge lines are around 200–400 m in height, and the
peak of the mountain line across from south-to-north is above 700 m in height. There are several villages, small forest roads
and beaches as shown in the map. There is a high-voltage electrical power line from south-to-north which cuts across the
middle of the ridge lines.

Publicly available databases were proactively used for objectivity and generality in this analysis. For the parameters that
do not change through the duration of a forest fire (e.g. over days or a week), stable values were selected from the databases
or previous studies, where they existed. In case of absence of data, conservative values were set to produce an overestimated
or conservative intensity.

For the topography, elevation data was obtained from the Fundamental Geospatial Data of Japan [15] and the data has a
10 m� 10 m mesh structures. ArcGIS10 software [16] was applied to calculate the slope angles and the directions from the
elevation data. High-resolution data was necessary to evaluate local terrain features (e.g. hills and valleys), and the
10 m� 10 m mesh structure used results in a higher resolution than the other FARSITE case studies [8,9]. Non-vegetation
areas less than the mesh size, such as narrow roads, and all the firebreaks, have been removed from the simulation for
conservative evaluations on forest fire arrival times.

[(Fig._2)TD$FIG]

Fig. 2. Topographical (left) and vegetation (right) maps of the studied location for the forest fire propagation simulations. [The map images are made from

the original elevation data [15] and modified to include point-of-interests and fuel models.]



[(Fig._3)TD$FIG]

Fig. 3. Image of structure of overlapped topographical and vegetation data for forest fire propagation simulations.
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For the vegetation, a database from Digital National Land Information [17] and provincial forest registry [18] were
utilized. The digital national land information provides general land use data (e.g. forest, paddy field, town, river, etc.) with a
relatively coarse 100 m� 100 m mesh structure. The provincial forest registry data provides specific maps of forest tree
species (e.g. Japanese cedar with a category of age of stand) for each compartment of land. The vegetation map is shown in
Fig. 2, and there are large deciduous broad leaf forests in most areas of the location studied, as shown on the map.

These topographical and vegetation data were overlapped for the analysis. Fig. 3 shows the image of use of the data,
overlapping the resolutions and mesh structures. These data are static and do not change during the forest fire duration.

Fuel models were prepared for this custom utilization. The fuel model parameters of ‘‘deciduous broad leaf tree’’,
‘‘Japanese cedar’’ and ‘‘Japanese pine tree’’ and related input parameters are summarized in Table 1. The fuel model
parameters of dead/live heat contents, moisture of extinction, and surface-area-to-volume [SAV] are based on reference data
[19] where experimentally measured fuel data had been characterized for Rothermel’s model. The fuel model parameters of
dead fuel loads for 1-/10-/100-h are referenced from the NFEL fuel models of FM2: Timber (grass and understory) and FM10:
Timber (litter and understory). Woody live fuel load was calculated for each species in the category of the forest registry by
the product of a specific gravity of a categorized tree species [20] and a total timber volume per area [18], assuming there is
no deadwood in the area. Live herbaceous and woody SAVs and live fuel load of herbaceous material are from the data of
FM10. Fuel bed depth was set 182.9 cm (6 ft) by referring to FM4: Chaparral which is in the same range of grassland of around
60–180 cm [19] but was overestimated for the deciduous broad leaf forest of around 2–20 cm [19]. The canopy cover
Table 1

Input variables and parameters of custom fuel models applied to forest fire propagation simulations by FARSITE.

Fuel mode code CM24 CM14 CM15 CM16 CM19 CM20 CM21

Vegetation DB JC JC JC JP JP JP

Species type Average of

28 species

Below

10 years

10 years 20 years Below 10 years 10 years 20 years

Dead fuel load

1-/10-/100-h (ton/ha)b

6.75/4.48/11.23 6.75/4.48/11.23 4.48/2.24/1.12 4.48/2.24/1.12 6.75/4.48/11.23 6.75/4.48/11.23 4.48/2.24/1.12

Live fuel load

herbaceousb/woody (ton/ha)

0/62.66 0/15.71 0/41.71 0/108.2 0/15.71 0/44.24 0/75.03

Fuel model type Static Static Static Static Static Static Static

Dead 1-h SAV (1/cm)a 149.5 60.51 60.51 60.51 70.44 70.44 70.44

SAV live herbaceous/woody

(1/cm)b

59/48 59/48 59/48 59/48 59/48 59/48 59/48

Fuel bed depth (cm)c 182.9 182.9 182.9 182.9 182.9 182.9 182.9

Moisture of extinction (%)a 25 32 32 32 31 31 31

Dead/live heat content (J/kg)a 18,524/18,524 20,963/20,963 20,963/20,963 20,963/20,963 19,958/19,958 19,958/19,958 19,958/19,958

Fuel moisture

Dead fuel 1-/10-/100-h (%) 5/8/12 5/8/12 5/8/12 5/8/12 5/8/12 5/8/12 5/8/12

Live fuel herbaceous/woody

(%)

100/100 100/100 100/100 100/100 100/100 100/100 100/100

Canopy cover category 3 3 3 3 3 3 3

Adjustment 1 1 1 1 1 1 1

DB, deciduous broad leaf tree; JC, Japanese cedar; JP, Japanese pine tree.
a Goto et al. [19].
b NFEL FM2: Timber (grass and understory) and FM10: Timber (litter and understory).
c NFEL FM4: Chaparral.



Table 2

Forest fire simulation input parameters and outputs of intensity and key parameters at the power plant boundary.

Parameters Inputs parameters Output parameters at the power plant boundary

(Unit) BP Dis.&Dir.

(km, -)

PWS

(m/s)

AT

(8C)

RH

(%)

Reaction

intensity

(kW/m2)

Rate of

spread

(m/min)

Fireline

intensity

(kW/m)

Flame

length

(m)

Fire arrival

time (h)

Reference (no prevailing wind) 2.5, SSE 0 37 5 1.2� 103 9.9� 10�1 1.9� 102 8.6� 10�1 97

90 percentile of AT frequency 2.5, SSE 0 27 5 1.1� 103 1.3 2.3� 102 9.5� 10�1 1.0� 102

99% RH 2.5, SSE 0 37 99 6.9� 102 1.2 1.8� 102 8.4� 10�1 3.3� 102

Worst weather overlapping 2.5, SSE 24 37 5 1.0� 103 2.3 4.3� 102 1.3 19

99 percentile of PWS frequency 2.5, SSE 11.6 37 5 1.2� 103 1.4 3.1� 102 1.1 52

50 percentile of PWS frequency 2.5, SSE 4.7 37 5 1.2� 103 1.2 2.2� 102 9.2� 10�1 82

90 percentile of AT frequency 2.5, SSE 24 27 5 9.9� 102 2.2 3.9� 102 1.2 19

50 percentile of AT frequency 2.5, SSE 24 16 5 1.1� 103 2.4 4.7� 102 1.3 20

Lowest AT 2.5, SSE 24 -4.3 5 9.4� 102 2.4 4.6� 102 1.3 20

99% RH 2.5, SSE 24 37 99 7.0� 102 1.7 2.4� 102 9.6� 10�1 62

50 percentile of RH frequency 2.5, SSE 24 37 73 7.1� 102 1.9 2.7� 102 1.0 60

Fire breakout point sensitivity

East of the power plant 3.5, E 9.2 37 5 1.2� 103 1.8 4.3� 102 1.3 82

South-west of the power plant 1.0, SW 12.3 37 5 1.1� 103 1.4 3.2� 102 1.1 12

PWS, prevailing wind speed; AM, ambient temperature; RH, relative humidity; BP, breakout point; Dis., distance; Dir., direction; SSE, south–southeast; E

east; SW, south-west.

1 The maximum value within a FARSITE input parameter range was applied.
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category was selected as ‘‘3’’ according to the definition of ‘‘forest’’ in Japan (i.e. the minimum cover ratio above 0.3 [21]). Fuel
moisture of dead fuel and live fuel is 5/8/12% and 100% respectively which are from the default inputs of FARSITE. It is
reported that the herbaceous and woody live fuel moistures of deciduous broad leaf trees are around 150–250% [22] and
around or over 100% [23], respectively.

For the weather database, the Automated Meteorological Data Acquisition System [AMeDAS] [24] was utilized. Hourly
data from January 1990 to December 2012 for the studied location was utilized to prepare a weather database, including AT,
RH, prevailing wind speed [PWS] and prevailing wind direction [PWD]. For the location studied, the most frequent PWDs are
from south–southeast and north throughout the year.

The purpose of the broader risk assessment methodology is to derive a ‘‘hazard curve’’ which indicates ‘‘intensity-
frequency’’ combination. The intensity is taken from one FARSITE simulation, whereas the frequency is taken from the
‘‘appearance frequency of a set of weather condition’’ as an input to the simulation. A series of weather conditions is needed
to cover a wide range to include ‘‘low frequency–high intensity’’ conditions as well as ‘‘high frequency–low intensity’’
conditions. Sensitivity analyses were performed for recorded low-to-high values of AT, RH, and RWS.

3. Forest fire simulation conditions and results

3.1. Simulations input parameters

In the analysis on forest fire models using the FARSITE model, the key conditional weather parameters are AT, RH, and
PWS, and their variable ranges and appearance frequencies were taken into account in selecting a reference and sensitivity
cases for this study. The input parameters for the FARSITE simulations used in this study are summarized in Table 2. The
recorded lowest-to-highest ranges were set as �4.3 8C to 37 8C for AT, 5% to 100% for RH, and 0 m/s to 24.0 m/s for PWS.
These weather parameters were set uniquely in the spatial volume and were kept constant in each simulation case. The
other weather parameters were set conservatively: i.e. zero cloud cover ratio and zero precipitation. As a reference case,
0 m/s PWS was selected because low PWS condition (i.e. 0–5 m/s) occurs most frequently in comparison with the
other PWS conditions over 5 m/s, and AT and RH sensitivities were varied. The other sensitivity studies were performed
with changing the value of PWS and the location of the forest fire breakout point. 100/90/50 percentiles of PWS
appearance frequency (i.e. 24.0/11.6/4.7 m/s), 100/90/0 percentiles of AT (i.e. 37/27/�4.3 8C), and 100/50/0 percentiles of
RH (i.e. 991/73/5%) were utilized.

The main causes of forest fires in Japan are related to human activities such as rubbish burns, controlled burns, arson,
smoking, and playing with fire [25]. The forest fire breakout points were postulated considering these causes and the
topographical features, land use and weather conditions in the location studied. The highest recorded PWS of 24 m/s was
from the south-southeast [SSE], and a forest road ending in the SSE direction with 2.5 km distance from the NPP was
selected as a reference breakout point as shown in Fig. 2. The high-voltage power line was located between the breakout
point and the NPP site. Aside from the reference case, two beaches located in east (3.5 km distant) and south-west (1.0 km
distant) from the NPP site were also selected as breakout points. The PWD was set so that the NPP site became in the



[(Fig._4)TD$FIG]

Fig. 4. FARSITE simulation result of the reference case. [Prevailing wind speed of 0 m/s, ambient temperature of 37 8C, and relative humidity of 5%].
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leeward direction from the breakout point in each case, and the PWS was set to the recorded highest value in the
corresponding PWD.

3.2. Summary of the Simulations by FARSITE

3.2.1. Reference case

All the maximum intensity parameters at the NPP site boundary obtained through the FARSITE simulations are
summarized in Table 2. Fig. 4(a)–(e) depicts the reference case simulation results in terms of the parameters of reaction
intensity, ROS, fireline intensity, flame length, and forest fire arrival time.

The theoretical point estimation of the intensity at the site boundary is not enough alone to assess the forest fire ‘‘heat’’
and ‘‘flame’’ effects because spatial values of all the five parameters are necessary. Specifically, the ‘‘fire arrival time’’ is the
cumulative result of a distance divided by ROS, and the ROS depends on the ‘‘reaction intensity’’. The spatial values of ‘‘flame
length’’ along the length of the high-voltage power line depend on the ‘‘fireline intensity’’.

The results of the simulation have shown that the forest fire propagates while keeping almost similar shape to a
concentric circle, with deformation due to topographic effects (e.g. slope angle). The range of the reaction intensity was
found to be of the order of 8.0� 102–1.2� 103 kW/m2, and varied in accordance with the time condition (day/night) which
influences the sunlight, and hence it forms the image like tree annual growth ring patterns. In comparison with the reaction
intensity of day time only, the outer ring showed a relatively higher reaction intensity because the moisture content of the
intact trees decreased with time under very low humidity. ROS was shown to be in the range 1.0–2.0 m/min and depended
on the topographical effect, that is, it increased when spreading uphill and decreased when spreading downhill. The fireline
intensity in the daytime was approximately 5.0� 102 kW/m which is twice as large as that in the night (around
3.0� 102 kW/m). Flame length varied around 0.8–2.0 m according to the strength of the fireline intensity. The forest fire
arrival time for the propagation distance of 2.5 km was approximately 97 h. The reason for such a long arrival time is due to
low ROS resulted from the range of the fireline intensity and corresponding fire mode based on the vegetation conditions
simulated. The forest fire was evaluated as a surface fire mode in most of the simulated area because the fireline intensity
was below the threshold for transition to passive crown fire [7].

3.2.2. Worst weather overlapping case

For a strong prevailing wind (PWS of 24 m/s), the forest fire arrival time was shortened to 19 h with the 2.5 km distance.
Reaction intensity at the NPP site boundary was 1.0� 103 kW/m2 which was in the same range with the reference case
(1.2� 103 kW/m2) because static vegetation data dominated in the calculation of the reaction intensity. The maximum
ROS at the NPP site boundary was 2.3 m/min which was around 2.4 times greater than the reference case (0.99 m/min). The
fireline intensity was 4.3� 102 kW/m, which is around 2.3 times higher than the reference case (1.9� 102 kW/m).
The range of the fireline intensity was below the threshold in large parts of the simulated area, which resulted in low ROS
and relatively long arrival time even under the high PWS condition. As shown in Fig. 5(a) and (b), the forest fire arrived at
the high-voltage power line located at the midpoint around 10 h and the flame length along the high-voltage power line
reached up to around 3 m. The analysis in this study would suggest the preparatory actions for the threat of a forest
fire related to a possible offsite power loss would require action within a grace period of around 9 h for this worst weather
scenario.
[(Fig._5)TD$FIG]

Fig. 5. FARSITE simulation result of the worst weather overlapping case. [Prevailing wind speed of 24 m/s, ambient temperature of 37 8C, and relative

humidity of 5%]
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3.2.3. Sensitivity study cases

For the sensitivity cases in this study, relative changes in the peak values of reaction intensity, fireline intensity, and
the key parameters along the NPP boundary as well as the weather parameters are summarized in Fig. 6(a)–(e) where the
horizontal scale is normalized to for values of PWS from 0 to 24 m/s, AT from �5 to 40 8C, and RH from 0 to 100%. Very low[(Fig._6)TD$FIG]
Fig. 6. Intensity and key parameters changes to the weather parameters. [Horizontal scale is normalized to prevailing wind speed (0–24 m/s), ambient

temperature (�5 to 40 8C), and relative humidity (0–100%).]



Y. Okano, H. Yamano / Case Studies in Fire Safety 4 (2015) 1–10 9
sensitivity was seen to changes in AT; e.g. 19 h for 27 8C and 20 h for �4.3 8C under the same PWS condition. On the other
hand, variations in RH had a significant effect on the results, especially on the fireline intensity and the forest fire arrival time.
For example, the fireline intensity decreased almost half from 4.3� 102 to 2.4� 102 when RH was increased from 5% to 99%,
and the forest fire arrival time was prolonged from 97 h to around 330 h for the same RH change. The effect of variation in
PWS was significant as well on the ROS, fireline intensity and forest fire arrival time. For an increase in ROS from 0.99 m/min
to 2.3 m/min, the fireline intensity varied from 1.9� 102 to 4.3� 102 kW/m, and the arrival time reduced from 97 h down to
19 h. That is, the PWS had a significant influence on the forest fire arrival time. However, the time is not exactly in inverse
proportion to the PWS.

For the sensitivity to different forest fire breakout points, the forest fire arrival time varied according to the distance
between the breakout point and the NPP site, but was not in direct proportion to the distance. For the similar PWS values of
11.6/9.2/12.3 m/s for three breakout points, the reaction intensity, ROS and fireline intensity were approximately in the same
range. This is because vegetation and topological conditions near the NPP site are dominant factors for these values.

The maximum reaction intensity and fireline intensity at the NPP boundary were approximately 1.2� 103 kW/m2 and
1.0� 103 kW/m, respectively. These values included the topographical effect, where the NPP was located in a downhill
location and surrounded by deciduous broad leaf forests. These values are higher than the range of the existing studies of
around 1.5� 102–6.0� 102 kW/m for the particular PWSs [19] and due to the conservative conditions in this study, e.g. the
values selected for the PWS.

4. Conclusions

As a part of the forest fire risk assessment methodology, key parameters of a forest fire hazard as a risk for NPP safety were
identified in this study to be fireline intensity, reaction intensity, flame length, ROS, and forest fire arrival time. Fuel model
parameters of deciduous vegetation were based on deciduous broad leaf trees, Japanese cedar and Japanese pine tree, and
vegetation, topographical, and weather databases for a typical NPP sites in Japan were consolidated for the FARSITE
simulation.

This study showed that the intensity and the key parameters depend significantly on PWS and RH, but less on AT. The
reaction intensity and fireline intensity were of the order of 7.0� 102–1.2� 103 kW/m2 and 5.0� 102–1.0� 103 kW/m,
respectively.

The reaction intensity has been utilized in other research to evaluate temperature increases of NPP structures in the study
of failure modes and fragility (i.e. probability of failure due to high structural temperature) of the NPP structures [26].

The flame length was found to be in the range of 1–3 m and deciduous broad leaf trees reach typically around 20 m height
[27], so that the possible reaching height of the flame is around 25 m and a loss of offsite power is a possible subsequent event
during a forest fire, based on this study.
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