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a b s t r a c t

To assess the impact of interventions designed to reduce residential space heating demand, investigators
must be armed with field-trial applicable techniques that accurately measure space heating energy use.
This study assesses the feasibility of using a passive acoustic sensor to detect gas consumption events in
domestic combination gas-fired boilers (C-GFBs). The investigation has shown, for the C-GFB investi-
gated, the following events are discernible using a passive acoustic sensor: demand type (hot water or
central heating); boiler ignition time; and pre-mix fan motor speed. A detection algorithm was devel-
oped to automatically identify demand type and burner ignition time with accuracies of 100% and 97%
respectfully. Demand type was determined by training a naive Bayes classifier on 20 features of the
acoustic profile at the start of a demand event. Burner ignition was determined by detecting low fre-
quency (5e10 Hz) pressure pulsations produced during ignition. The acoustic signatures of the pre-mix
fan and circulation-pump were identified manually. Additional work is required to detect burner
duration, deal with detection in the presence of increased noise and expand the range of boilers
investigated. There are considerable implications resulting from the widespread use of such techniques
on improving understanding of space heating demand.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

Approximately 72% of energy consumption in the domestic
environment is done so in gas-boilers for the purposes of domestic
central heating (DCH) and domestic hot water (DHW) production
[4]. Being such a large contributor to domestic energy consump-
tion, gas-boilers have received significant attention from policy
makers and researchers alike. In accordance to the UK Govern-
ment's CO2 target of an 80% reduction in emissions by 2050 [28],
amongst other actions, policy makers have modified building reg-
ulations [11] so that boilers installed after 2006 are required to have
a SEDBUK [2] efficiency of 88% or above. In addition to policy
changes, many researchers look to evaluate environmental or
behavioural interventions designed to reduce DCH and/or DHW
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consumption. To evaluate such interventions it is necessary to
accurately monitor changes in disaggregated operational energy
consumption, often in field trials.

Measuring energy consumed for DCH in field trials has however
proven a challenge, as Hong et al. [12] note: due to the “… high cost
associated with sophisticated fuel-use monitoring equipment
required for different types of heating system and the complexity of
its installation”. Estimates of DCH energy use have been made in a
number of studies by subtracting the summer fuel load from the
winter fuel load [12,36]. Thesemethods however requiremore than
one years' worth of data and assume no variation occurs for non-
space heating energy use between seasons. Other studies, such as
Martin and Watson [22] and Love [23], used temperature sensors
on flow pipes or radiators and relate temperature increases to
boiler firing. These methods however miss short burner cycles and
burner modulation. If methods were available that could accurately
detect burner duration and modulation, space heating energy
consumption estimates would be more accurate.

In addition to the above, it is well established that unnecessary
cycling of boilers is undesirable [24]. Frequent on/off cycles, for
example, cause boilers to operate at efficiencies “well below (their)
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full-load bench value” [38]. This issue has been observed in prac-
tice, for example Ren et al. [32] note “Space heating systems cycled
more frequently than anticipated due to a tight range of room
thermostat settings and potentially oversized heating capacities.”
Likewise a survey of 35 non-residential buildings revealed that “all
of the installed heating capacity was oversized by a minimum of
30% …” [21]. Furthermore unnecessary cycling causes additional
wear and tear on components. These problems can be due to
oversizing [10], incorrect return flow temperature sensor settings,
inadequate boiler modulation ranges etc. Data on cycling rates and
boiler modulation could thus help identify potential issues causing
efficiency losses.

Thus to accurately evaluate interventions designed to reduce
demand, new field-trial applicable methods are required that can
accurately measure operational burner duration for space heating
purposes. Additionally such methods could be used to provide data
on operational boiler cycling behaviour and help identify potential
efficiency losses due to setup, design and/or sizing issues.

1.2. Aim

The aim of this study is to assess the feasibility of a single-point
acoustic sensor and associated detection device that can be retro-
fitted to Combination Gas Fired Boilers (C-GFB) to provide data on
energy consumption, demand type, boiler operation and boiler
failure modes. Primary events for detection include demand type
and the burner duration. Secondary events include the activity of
the pre-mix fan and circulation-pump. Note, the circulation-pump
circulates heating water around the closed heating system circuit
(boiler, radiators etc.) and the pre-mix fan draws both natural gas
and air into the burner chamber and helps to expel the exhaust
gases. C-GFBs were selected for this study because, as of 2011, 60%
of DCH and DHW systems in the UK were of this type. Additionally
the number of C-GFBs has risen steadily since 1990, with no indi-
cation of it decreasing in popularity [4].

For this investigation, event detection will use the acoustic
signal produced by the physical process of the event itself. This is to
avoid making the assumption that the expected process flow of the
system is being followed. For example, changes in the pre-mix fan
motor speed are directly related to the period of firing, however
using the pre-mix fan motor speed as a basis for detecting firing
would assume the boiler is behaving as expected. Thus, the inves-
tigation bases burner identification on the acoustic signal produced
by the burner and not the acoustic signal produced by any other
component of the system. By doing so, events occurring outside of
the expected process flow of the boiler can potentially be detected.

Alternative methods of event detection exist. One method is to
monitor the boiler's Central Processing Unit (CPU). Junkers (the
German brand of Bosch), for example, have developed a smart-
phone application which is linked via a wireless network with the
CPU of some Junkers boilers [18]; however the application doesn't
give detailed information on boiler events such as ignition time
(only failure codes are reported back to the user). In general,
accessing a boiler's CPU requires manufacturers' consent and sub-
stantial proprietary software, and if performed by research field-
work teams, could invalidate boiler warranties. The advantage of
using a non-invasive retrofittedmethod, such as an acoustic sensor,
is that warranties are not invalidated and theoretically all boilers
are accessible irrespective of age, software or hardware. Another
option would be to use multiple sensors: The sensors however
would need to be situated in various locations depending on the
boiler. This increases both cost, complexity and the probability of
sensor failure. The advantage of a single acoustic sensor is that most
events of interest could, in principle, still be detected, and that the
exact positioning of such an acoustic sensor would be of less
importance and could sit externally to the boiler.

2. Related work

This study is focused on identifying techniques to determine
events of interest from the acoustic signals produced by domestic
C-GFBs. No studies can be found in the literature of this nature,
however related studies exist that apply signal analysis techniques
to determine resource usage in the domestic environment and they
include: the determination of electrical component usage from the
electrical mains signals [9,29]; the localisation of water valve usage
from water pipe pressure fluctuations [7]; and derivation of gas
component usage from the acoustics of gas relief valves [3]. The
general technique applied in all these studies involved the use of
supervised-machine-learning (SML) algorithms. SML algorithms
comprise of a set of procedures which automatically create models
to determine the events of interest when the events are unknown,
from a set of training datawhen the events are known; Refs. [20,41]
provide overviews. The training data used in these studies
comprise of a specifically selected set of features within the signal
called feature vectors.

In the determination of electrical devices (switched-mode po-
wer supply only) used in the home, Gupta et al. [9] analysed the
electromagnetic interference signal created in the domestic mains
voltage supply during device operation. They selected the ampli-
tude, mean and standard deviation of any voltage peak in the fre-
quency domain as feature vectors. As the number of dimensions
were low the k-Nearest Neighbour (kNN) classification algorithm
was applied. The cross validation accuracy (Refer to Ref. [19];
p.2e3) of the classifier was 94%. After calibration this detection
method was then tested across seven individual homes and found
to work with accuracy greater than 90%. Patel et al. [29] develop a
similar classification algorithm for detection of resistive and
inductive electrical devices. The research of Patel et al. [29] and
Gupta et al. [9] is complimentary; together they cover the detection
of all electrical component types.

Sensing and classification algorithms have also been applied to
the analysis of domestic water consumption. Froehlich et al. [7]
built on the work done by Fogarty et al. [6] in the development of
a sensor to detect faucet flow-rate and location. Froehlich et al. [7]
used a customized pressure sensor attached to a fixture within the
household to detect shockwaves created when faucets open or
close. The signature of the shockwaves were found to be unique
depending on the valve type and location. Thus Froehlich et al. [7]
were able to create classification algorithms to determine the
fixture, its location and estimate the flow-rate. Two layers of hier-
archical classifier were applied to determine if the valve had been
opened or closed and its location. Once a valve event was deter-
mined features were extracted to identify the fixture location, these
were: (1) thematched filter; (2) thematched derivative; (3) the real
part of theMel Frequency Cepstral Coefficients (MFCCs); and (4) the
mean squared error: mathematical definitions of which can be
found in Ref. [37]. This method resulted in an average cross-
validation accuracy of 98% when identifying fixtures across multi-
ple homes (10 homes were tested). Estimates of the flow rates on
three houses showed average errors below 8% (comparable to
utility supplied water meters). Note that MFCCs are widely used as
features for speech recognition technologies [25] as they corre-
spond more closely with the human auditory perception [14].

In the application to gas usage, Cohn et al. [3] present a method
for single-point acoustic sensing of individual domestic gas appli-
ance usage. They analysed acoustic signals emanating from a
Government regulated gas relief valve; a valve that is installed in
most US homes. Signals from the gas relief valve were isolated from
unwanted background noise using a high-pass filter. A linear
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relationship was observed between the gas flow rates and the
acoustic intensity of the gas relief valve. Thus the flow rate was
estimated via linear regression analysis. Additionally they found
the appliance type could be accurately estimated using a kNN
classifier, with a feature vector consisting of three dimensions at
the time of a gas usage event: (1) the relative magnitude of signal
changes, (2) the rate of change in signal and (3) the period of the
signal increase due to the unknown event. The classifier developed
was, on average, 95% successful in determining the correct appli-
ance across the nine homes investigated. These techniques may not
be applicable outside of the US as they rely heavily on the gas valve
type. Additionally, it should be noted that in the context of this
report, the study did not attempt to distinguish between different
boiler demand types.

In summary, in order to determine events within complex sig-
nals, a process of signal analysis in combination with the applica-
tion of SML algorithms is generally required. Signal analysis is
performed to extract feature vectors: The features selected can
range from one dimension [7] to 2048 dimensions [29]. Feature
vectors are selected using a process of logical deduction; the fea-
tures should provide sufficient information to make the events of
interest discernible without including unnecessary data. Selecting
the appropriate SML algorithm depends on the application.
Refs. [20,41] amongst others provide general guidance.

In addition to the above, SML algorithms have recently been
applied extensively in the area of occupant thermal comfort.
Refs. [13,15] applied SML algorithms to predict occupant thermal
comfort, in HVAC controlled environments, using very similar data
sets: Both studies used four environmental (temperature, humidity
etc.) and two occupant factors (metabolic rate and clothing) as
feature inputs; and thermal-sensation-index questionnaire re-
sponses as classification inputs. Jiang and Yao [15] found Support
Vector Machines (SVMs) to be applicable in accurately predicting
(over 89%) the correct thermal-sensation-index of the occupant. Hu
and Li [13] restricted their investigation to SML algorithms based on
logic statements; they did this to limit computational cost and
because logic statements can be interpreted easily for use in HVAC
control systems.

3. Methods

Analysis was made of the acoustic signals emanating from C-
GFBs. Relevant techniques were applied to attempt to automatically
detect demand and ignition events. The acoustic signatures corre-
sponding to the operation of the pre-mix fan and circulation-pump
were investigated.

3.1. Equipment

Two C-GFBs were selected from which to collect acoustic data:
‘C-GFB A’ was a Worcester Greenstar 28i Junior [42] and was
investigated for the majority of this study. ‘C-GFB B’ was a Vaillant
ecoTEC pro 28 [39] and was used as a reference C-GFB to confirm
ignition event signals (section 4.2). These C-GFBs were selected
because: a. ‘C-GFB A’ is quite representative of C-GFBs as it is the
most common boiler sold by Worcester and b. these boilers were
readily available to the research team. To capture acoustic signals, a
Samson Go Mic [35] portable USB microphone, labelled ‘Micro-
phone A’ was selected since it could be easily positioned in various
positions on or within the boiler. Recordings were made using
Audacity [1] at a sampling frequency of 16 kHz.

In order to provide the ground truth time at which the burner
fired, t1, a separate event detector was used. It consisted of a pho-
toresistor positioned to face the ignition indicator on the C-GFB
front panel, combined with a Raspberry Pi data logger (courtesy of
Stephen Hailes - see Acknowledgements).
The instant at which an initial noise was produced by the boiler,

in response to demand, was labelled t0. This instant was deter-
mined manually by listening to audio recordings. The event de-
tector recorded the instant when the burner turned on and turned
off, t1 and t2 respectively. Note, for t1 and t2 an estimated error of
±1 s was induced due to the process of manually synchronising the
clock on the event detector to the clock of the recording device.

3.2. Procedure

To facilitate time alignment of the recorded acoustic signal and
the event detector, the real time clock on the Raspberry Pi data
logger was manually synchronized with the clock on the laptop
used to make audio recordings. Microphone A was then placed on
the outer casing of the C-GFB under investigation: The base of the
microphone was in contact with the outer casing of the C-GFB but
the microphone head was not. The position of the microphone was
approximate but always on the lower right side of the C-GFB under
investigation (as shown in Fig. 1). The event detector was posi-
tioned to detect the green light indicator (light indicating firing) for
C-GFB A (as shown in Fig. 2), or the flame, via the flame viewing
hole, for C-GFB B. Note, the event detector was purely used as an
independent validation of the firing event for classifier training.
Both the event detector and Microphone A were set to record.
Single, continuous, demand events were created by either opening
a hot water tap valve or initiating DCH. The demand events
occurred between 30 and 120 s to ensure some irregularity in the
data gathered. Noise in the vicinity of the boiler was kept to a
minimum during recordings. The recording was stopped after the
acoustic signal emanating from the boiler ceased.

4. Results and discussion

4.1. Demand type

The C-GFB under investigation (C-GFB A) meets the household
demands for DHW and DCH. In response to a particular demand
type, the initial acoustic signal (first 5 s) produced by the C-GFB
consistently followed a repeatable pattern. From the data collected
(40 instances in total) DHW demand produced a single acoustic
configuration whereas DCH demand produced two acoustic con-
figurations. DCH demand was thus split into two classes; DCH1 and
DCH2. Fig. 3 shows the acoustic patterns for the three demand
classes identified during the first 5 s of C-GFB activity. By comparing
this signal with the expected process flow of C-GFB A [42], the
expected components operating during this period were deduced
as indicated on Fig. 3a, b, and c.

Each demand class had a different component operating before
the pre-mix fan initiated i.e. before the relay switch operated: For
DCH2 there was no initial component whereas for DCH1, the
diverter valve activated before the electronic relay and pre-mix fan.
It is likely the case that for DCH2 the diverter valve was already in
the correct position to meet DCH demand. However, unlike DCH1,
in about half of the DCH2 instances recorded there existed an un-
expected process. The unexpected process was the activation of the
burner and a complete demand process flow cycle after the initial
demand period had finished, i.e. the C-GFB was responding to a
demand which was not present. The C-GFB specifications [42]
indicate that this behaviour must be that of the ‘Preheat Demand’
function: A demand cycle designed to ensure the temperature of
water sitting in the DHW heat exchanger does not drop below a
certain point (10 K below the DHW set point). Why the Preheat
Demand function seemed to operate after DCH2 demand cycles
instead of DCH1 is unknown. Additionally why this occurred



Fig. 1. (a) Picture showing the position of Microphone A on the side of C-GFB A. (b) Picture of C-GFB Awith the outer casing removed showing the internal components. Highlighted
in (b) are the Pre-mix fan; heat exchanger (housing the burner assembly); diverter valve and circulation-pump.

Fig. 2. Picture of the control panel on C-GFB A. Attached to the control panel is the event detector setup consisting of a photoresistor, Orisen Prime data logger and power supply. As
observed in the figure the photoresistor is placed directly over the burner light indicator.
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Fig. 3. Plots of the initial acoustic signal emanating from C-GFB A for the three demand
classes (a) DHW, (b) DCH1 and (c) DCH2. Amplitude was normalised for each
recording. For each demand class the likely C-GFB components causing the acoustic
signal is noted above the signal.
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directly following a DCH2 demand cycle is also unknown. However
with respect to this study, such analysis highlights how a detection
device could be used to assist in determining if the C-GFB is
following the designed process flow.

To automatically determine the demand response instant, t0, the
detection algorithm was designed to trace through the acoustic
signal until an extended period of increased acoustic signal energy
was observed. The demand response instant was then identified by
working backwards along the period of increased signal energy
until it dropped below a trained threshold. This method for
detecting t0 was found to be sufficient for the data recorded (40
instances), however introducing additional background noise into
the recording may cause inconsistency in accurately identifying t0,
in which case other techniques may be required. Once t0 was
determined, efforts were made to identify the demand class.

Fig. 3 shows that each demand class had a visually distinct initial
signal profile. Accordingly the initial acoustic signal from the C-GFB
was used to automatically determine the demand class. To do this
SML techniques were tested because no exact rule differentiating
the demand classes could be manually derived. For SML algorithm
analysis the following feature vectors were used: the normalised
energy profile of the signal divided into 200 ms frames for the first
4 s of boiler activity (20 dimensions in total). These feature vectors
were selected because they were found to provide all the infor-
mation required to accurately determine the demand class while
minimising the total number of features required. A total of 40
instances were used for classification training and testing. After
testing numerous classifiers using Weka [40] the naive Bayes (nB)
classifier [33], with the assumption of a kernel density distribution
(refer to Appendix A. for a description), was found to be the most
accurate - giving an average 10-fold cross-validation accuracy of
100%. An overview of themain classes of SML algorithms tested and
their performance has been provided in Table 1. The kernel nB
classifier was incorporated into the overall detection algorithm
coded in Matlab. Note, Weka [40], is a purpose built open source
program containing most machine learning algorithms for appli-
cation in data mining.

Analysing the feature data, it was found that the assumption of
normality (comparing each feature across all instances) was
generally a poor one - indicating in most cases a distribution with
high kurtosis. Therefore, as suggested by John and Langley [16], it is
expected that a kernel density estimation would be better suited.
This can be seen in Table 1 by comparing the performance of the nB
classifier using a kernel compared with a Gaussian density esti-
mate; the nB classifier performs 1.5% more accurately with a kernel
density estimate.

The application of the nB classifier assumes conditional inde-
pendence between the features. Conditional independence re-
quires that, for a given class C, the probability of obtaining a
particular signal energy for the 1st feature, F1, is independent the
signal energy of the 2nd feature, F2 (this applies across all n
features):

PðF1jC; F2Þ ¼ PðF1jCÞ:
The conditional independence equation above infers, in this

instance, that knowledge of the signal energy for one 200 ms in-
terval tells us nothing of the signal energy for the next, or any other
200 ms interval. However the signal energy is dictated by the
operational mechanics of the system and the pre-programmed
process flow. Thus the variation of the signal energy from one
time to the next is inextricably linked. The strength of the link is
dependent on the time between signal energy data points; the
longer the time the less likely a prediction can be made. Never-
theless for the case of 200 ms variations the assumption of condi-
tional independence appears to be a poor one. Refs. [5,34] however
find nB performs unexpectedly well for some cases of functionally
dependent features, as observed in this instance.
4.2. Burner firing

Once the demand type and t0 are known, the instant at which
the burner fires, t1, can be estimated by assuming that the C-GFB
behaves as expected and the demand event is continuous. With
these assumptions it was found that t1 could be estimated to an
accuracy of ±2 s. However, if the assumptions are invalid, a method
to detect the acoustic signal of the ignition event itself needs to be
derived as described below.

Low frequency analysis of all recorded instances (40 in total)
revealed that within 1 s of ignition, there existed a relatively small
energy spike in the frequency band 5e15 Hz. The energy of the
frequency spike was approximately between 60 and 80 dB lower
than the highest energy signal produced by the C-GFB. Fig. 4 shows
an example of this frequency spike for a DCH2 demand event. As
observed in Fig. 4, the 5e15 Hz range contains very little energy
beside for the spike produced during firing at t1± 1 s. Note, Fig. 4
has been constrained to show a maximum of �50 dB in order to
emphasise events with a relatively low level of energy.

By summing the 5e15 Hz components of the signal, the spike
seen at the point of ignition was emphasised. This summation can
be expressed by the equation:



Table 1
A range of the main classes of machine learning algorithms which were tested for their ability to estimate the correct demand type class - not all algorithms tested are shown
above. The measure of the algorithm's accuracy is given by repeating a 10-fold cross validation accuracy calculation 10 times with a different (random) data partition in each
cross validation calculation; this has been labelled the ‘Average 10-fold accuracy’. The standard deviation is calculated based on the variation of the cross validation result for
each of the 10 repetitions.

Demand type SML testing

Classification algorithm Average 10-fold accuracy Standard deviation

1R Learning Algorithm: Minimum-error attribute 94.9% 0.0
NB Algorithm with Gaussian density estimate 98.5% 1.3
NB Algorithm with kernel density estimate 100% 0.0
k-Nearest Neighbours Algorithm 95.1% 0.8
Sequential Minimal Optimization [30] 97.4% 0.0
C4.5 Decision Tree: Top-down recursive divide-and-conquer algorithm 94.6% 0.8

Fig. 4. Plot of the spectrogram produced by C-GFB A for a DCH2 demand event. Frequency is constrained to maximum of 50 Hz and Power Spectral Density (PSD) to�50 dB. The low
frequency spike produced at t1 has been highlighted by the white ellipse.
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SðtÞ ¼
X15
i¼5

PSDðfi; tÞ

Where PSD(fi,t) is the Power Spectral Density of the acoustic
signal for frequency fi and time t. The point in time when S(t)
reached a maximum was found to align with the moment of igni-
tion in 97.1% of recorded instances. There was only one instance
when the maximum of S(t) did not align with the point of ignition,
however it was found the second maximum of S(t) did align with
the point of ignition for this data point. Non-ignition spikes in S(t)
were likely caused by other noises in the system; generally they had
very different frequency distributions compared with ignition
spikes.

To test whether the signal produced during ignition was only a
feature of C-GFB A or common amongst other C-GFBs, the same
frequencies were analysed for C-GFB B. C-GFB B also showed acti-
vation of frequencies ranging from 5 to 15 Hz at the point of ignition
in all recorded instances (five in total). This indicated that the
activation of low frequency components at the point of firing is a
common feature of C-GFBs. Consequently indicating that the same
detection methods could be applied to other C-GFBs. Additionally
the literature suggests that ignition events should produce low
frequency acoustic signals indicating further that the detection al-
gorithm is detecting the acoustic signal of an ignition event:
Jones [17] notes that pressure pulsations from pulverised coal
burners occur in the range of 1e10 Hz; Ottem€oller and Evers [26]
found the most prominent acoustic wave produced by a chemical
explosion was infrasound (around 0.4 Hz).

Note, the amplitude of the sub-20 Hz signals detected were
about 20 times lower than other C-GFB signals. However the fre-
quency response of Microphone A starts to roll-off below 50 Hz and
is only quoted as low as 20 Hz [35]. It could be assumed therefore
that below 20 Hz the response of Microphone A continues to roll-
off. Thus the acoustic signals produced during ignition may
contain more relative energy than detected.

4.3. Burner ending

For C-GFB A, within the period of the burner ending instant, t2, it
was observed that a strong acoustic signal in the range of 40 Hz
seemed to consistently drop to 30e35 Hz. After testing various SML
algorithms with a range of frequency features, it was found the
algorithms heavily weighted the 30e35 Hz components of the
signal. This produced, at best, algorithms that estimated t2 towithin
4 s. As discussed in section 4.4 the 30e35 Hz signal was found to be
caused by the pre-mix fan decreasing in motor frequency. It could
be conjectured that a direct physical relationship existed between
burner ending and the pre-mix fan motor speed: A drop in pressure
in the burner chamber will occur when the burner ends, this could
have an impact on the resistance experienced by the blades on the
pre-mix fan and thus on pre-mix fan motor speed. Additionally
changes in pre-mix fanmotor speedmay be due to restriction of the
gas valve closing or change in Heat Exchanger resistance when



Fig. 5. Plot of the spectrogram of the acoustic signal for the entire period of C-GFB activity for DHW demand event. Frequency is constrained to maximum of 120 Hz. The Power
Spectral Density (PSD) is not constrained. The black arrows highlight the profile of the pre-mix fan.
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there is no flame. Furthermore such a change in pre-mix fan motor
speed may just be a consequence of the C-GFB's process flow and
not an indication of a direct physical relationship. To improve the
detection of t2 additional analysis needs to be performed to either
find the acoustic features of the burner, or determine if a direct
physical relationship exists between burner ending and the pre-
mix fan motor speed.
4.4. Pre-mix fan and circulation-pump operation

For C-GFB A, the pre-mix fan was the only component expected
to modulate during operation. Additionally the pre-mix fan motor
was expected to start at a frequency between 45 and 55 Hz and
reach maximum frequency between 90 and 100 Hz [42]. As seen in
Fig. 5, alongside the black arrows, there is a continuous signal
which changes in frequency. It starts at 45e55 Hz and reaches a
maximum of 95 Hz during demand. This signal is expected to be
due to the pre-mix fanmotor. As observed the pre-mix fan activates
Fig. 6. Plot of the spectrogram of the acoustic signal for the entire period of C-GFB activity
Spectral Density (PSD) is not constrained. The black arrow highlights the profile of the circ
30e35Hz components just after t2, accounting for the result seen in
section 4.3. All recordings of C-GFB A showed a similar pre-mix fan
modulation pattern.

Circulation-pumps typically operate at shaft speeds between 12
and 33 Hz [31]. Upon analysis of C-GFB A, frequencies were found
within this range for the period of time the pump was expected to
be in operation. Fig. 6 below highlights these frequency compo-
nents during DCH1 demand for C-GFB A. From t ¼ 150 s onwards,
according to C-GFB A's process flow [42], the only component
operating until t¼ 250 s is that of the pump. Thus it is expected that
the 21e22 Hz signal highlighted by the black arrow is caused by the
circulation-pump. For C-GFB B the same analysis was performed, in
this case the signal produced by the pump appeared to be in the
region of 35 Hz. For C-GFB B the pump was a Grundfos Super
Selectric, a pump that has three speed settings up to 50 Hz [8], thus
the 35 Hz signal identified was likely to be caused by the pump.

Figs. 3 and 4 show that the motor frequencies of the pre-mix fan
and circulation-pump may be detectible by analysing the acoustic
for a DCH1 demand event. Frequency is constrained to maximum of 35 Hz. The Power
ulation-pump.
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signal emanating from the C-GFB. This was done by manually
analysing the signals produced by the C-GFB. To automate this
detection however requires application of additional signal pro-
cessing techniques. Note, the signal produced by the pump in C-
GFB A (Fig. 6) is approaching the frequency limits of Microphone A,
thus the actual acoustic signal produced by the pump may contain
more relative energy than detected in comparisonwith the acoustic
signals produced by other C-GFB components.
5. Conclusions

Our investigation has shown that acoustic sensing methods,
using a single-point sensor, can be used to detect specific events of
interest in domestic C-GFBs. The methods developed allow for the
accurate automatic detection of demand type (100 ± 0.0% accuracy)
and ignition time (97.1% accuracy). Algorithms to determine de-
mand type were trained on features based on the normalised signal
energy for the first 4 s of C-GFB activity. Infrasound pressure pul-
sations produced during ignitionwere analysed to identify the time
burner ignition occurred. Furthermore our investigation has shown
that it is also feasible to determine the motor frequencies of the
pre-mix fan and possibly the circulation-pump from the acoustic
data gathered.

In order for the techniques developed to be applicable in energy
demand field-trials, the methods need to be modified to deal with
noise sources external to the C-GFB (application of methods such as
spectral subtraction), to incorporate the detection of burner dura-
tion and intensity to determine gas consumption, to deal with
overlapping demands (DHW interrupting DCH), and to apply to a
wide range of C-GFB makes and models.

With respect to energy efficiency improvements, analysis of the
data from field trials could track the extent to which operational
boiler cycling occurs and help identify potential issues causing
unnecessary cycling i.e. efficiency losses. Such analysis could affect
control settings, future design and policy.

The project has therefore started a process for the development
of a widely applicable set of tools for accessing energy systems,
which, for example, might help in specific energy system chal-
lenges or to diagnose the states of future energy systems such as
heat pumps.
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Appendix

A. Kernel Naive Bayes Classifier

Naive Bayes is an algorithm based on Bayes' rule. Bayes' rule
states that the probability of class (or hypothesis) c occurring given
n feature variables (or evidence) F is given by the following equa-
tion [27]. Note, Fi is a vector containing all the instances for
feature i:
PðcjF1;…FnÞ ¼ PðcÞPðF1;…FnjcÞ
PðF1;…FnÞ A:1

Above P(c) represents the prior probability of the class independent
of the features; P(F1, … Fn|c) represents the probability of the fea-
tures given the class; and P(F1, … Fn) represents the probability of
the features independent of the class. P(F1, … Fn) is simply the
addition of the feature probabilities for all the classes and thus is a
normalising coefficient. Naive Bayes applies the “naive” assumption
that each feature of the system is independent of every other
feature. With this assumption and by applying the chain rule for
conditional probability the term P(F1, … Fn|c) can be written as the
product of the individual probabilities. Thus:

PðcjF1;…FnÞNBfPðcÞ
Yn
i¼1

PðF ijcÞ A:2

If a set of instances is available for training i.e. the possible
classes are known for a set of features F, one can calculate the in-
dividual probabilities P(Fijc) and consequently calculate the prob-
ability of a particular class given a new set of features f e the new
features are aligned with the training set and probabilities extrac-
ted. The selected class, C, is the class which results in the highest
probability for P(Cj f1 …

fn). Accordingly naive Bayes will estimate
class C using the following function. Note, the factor P(F1,… Fn) does
not depend on the class and therefore can be removed:

classifyðf1;…fnÞ) argmax
C

Pðc ¼ CÞ
Yn
i¼1

PðF i ¼ fijc ¼ CÞ A:3

In the application of naive Bayes where the features are
numeric, exactly aligning the new instances with the probabilities
of the training set instances is not possible. In order to handle
numeric features, a probability distribution can be assumed for
each feature within a known class. For example, a kernel distribu-
tion can be assumed for each feature. In this case the probability of
a new (numeric) feature value fi is given by the probability density
function [16]:

PðFi ¼ fijcÞ ¼
1
T

XT
j¼1

K
�
fi � Fij

h

�
A:4

Where T is the total number of instances for the ith feature of class
c. K is the kernel function - a non-negative function that integrates
to one and has a mean of zero. h is the smoothing parameter and is
approximated to the standard deviation of the instances for the ith
feature of class c. This particular formulation of the naive Bayes
algorithm is called kernel naive Bayes.
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