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In this paper we address the problem of fast inclusion tests and distance calculation in very large mod-
els, an important issue in the context of environments involving haptic interaction or collision detection.
Unfortunately, existing haptic rendering or collision detection toolkits cannot handle polygonal models
obtained from 3D digitized point clouds unless the models are simplified up to a few thousand polygons,
which leads to an important lack of detail for the scanned pieces. We propose a data structure that is able to
manage very large polygonal models (over 25M polygons), and we explain how this can be used in order to
compute the inclusion of a point into the solid surface very efficiently, performing several thousand point-
in-solid tests per second. Our method uses a data structure called EBP-Octree (Extended Bounding-Planes
Octree), which is a very tight hierarchy of convex bounding volumes. Based on a spatial decomposition of
the model using an octree, at each node it defines a bounding volume using a subset of the planes of the
portion of the polygonal model contained at that node. We use the EBP-Octree in a haptic interaction envi-
ronment, where distance tests and the orientation of collided triangles must be accurate and fast. We also
demonstrate that the proposed algorithm largely meets the interactive query rate demanded by a haptic
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interaction (1 kHz), despite being executed in a single CPU thread on a commonly available computer.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Haptic interaction in virtual environments has certain time
restrictions that require much more efficient data structures and
algorithms than other collision detection techniques. When a user
handles a 6 degrees-of-freedom (DOF) haptic device, he expects
to perceive the real contact with the surface, and not just an
approximation of it. It is generally accepted that a minimum
update rate of 1 kHz is required for the collision detection thread
to provide continuous (i.e. realistic) feedback [1]. Hence, the
algorithm must be able to dispatch every collision or distance
query in less than a millisecond. It is not straightforward to achieve
this for very large polygonal models obtained from 3D scanners. In
the context of art curators, for example, it is not conceivable to use
simplified models of a few thousand polygons (like those usually
used in traditional haptic applications) to virtually plan or test the
restoration process of a sculpture.

We address the problem of fast inclusion tests and distance
calculation in very large models by developing a system that
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performs several thousand point-in-solid and distance tests per
second on models over 25M polygons. Our method uses a data
structure termed EBP-Octree (Extended Bounding-Planes Octree).
This is a very tight hierarchy of convex bounding volumes that,
supported by a spatial decomposition of the model using an octree,
defines a bounding volume at each node using a subset of the
planes of the portion of the polygonal model contained at that
node. To summarise, our main contributions are:

e A data structure, the EPB-Octree, which can virtually host
models of unlimited-size. Our tests only used level 11 of 20
using models of 30 million polygons.

e A point-in-solid test that runs comfortably at a haptic rendering
frame rate when applied to very large polygonal models,
achieving from 2.5 kHz (purely random point test) to 32 kHz
(haptic-like paths).

e A distance and contact normal function that allows us to use
the EBP-Octree in haptic applications designed for training or
planning for virtual curators that runs at around 1 MHz in
classic haptic interaction over the surface of models over 25M
polygons.

We tested the EBP-Octree in a simulated haptic interaction
environment, where distance tests and the orientation of collided
triangles must be accurate and fast. In addition, we demonstrate
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that the proposed algorithm largely meets the interactive query
rate demanded by a haptic interaction (1 kHz), despite being
executed in a single CPU thread on a home-featured computer. We
tried to test our models using other state-of-the-art approaches,
but none of the packages and libraries we know were able to handle
such large models.

Section 2 reviews the most relevant prior work, whereas
Section 3 presents the data structure and its related construction
algorithms. Section 4 specifies the out-of-core caching mechanism
that allows us to perform point-in-solid and distance tests, the
description and experimental results of which are presented in
Sections 5.1 and 5.2 respectively.

2. Related work

Haptic Rendering is a term used to describe the process of calcu-
lating a reaction force for a given position of the haptic feedback de-
vice. It is closely related to collision detection algorithms, and this
area of research has been extensively investigated by the graphics
community. Lin et al. [2] introduce collision detection concepts and
offer an overview of existing algorithms and data structures. How-
ever, collision detection algorithms are not directly applicable to
haptic rendering, since it is not only necessary to detect collisions,
but also to compute distances and normals at a high frequency rate
(around 1 kHz). The simplest way of approaching haptic render-
ing is to consider a point-based device, as described in [3] when
explaining the contact levels of detail (CLODs) model. With this ap-
proach, the main task is to compute distances from the haptic 3D
cursor to the model’s surface. When the distance is below a pre-
set threshold, the haptic rendering thread presents a given force,
calculated to avoid penetrating into the model.

The well known PQP package developed by Larsen et al. [4]
uses swept sphere volumes as a bounding hierarchy for triangle
clouds to detect collision between models. However, there is no
possibility of testing its performance on very dense meshes. In [5],
Gregory et al. present the basis for the HCollide method, using quite
small models. A solution proposed by Otaduy in [6] handles models
below 50k polygons.

Distance fields have been used extensively for collision detec-
tion and rapid distance computation. There are three main ap-
proaches to build distance fields: those based on Voronoi diagrams
[7,8], on distance propagation methods [9] or techniques that use
trees and grids as supporting data structures. Among the latter, a
three-dimensional grid is used to store the distance field in [10],
while an Adaptive Distance Field using an octree was developed
in [11]. A quite original approach is provided by the haptic tex-
tures of Theoktisto et al. [ 12]. This proposes a texture-based normal
mapping of the surface in a similar manner as bump mapping does
for rendering in order to obtain a fast distance query rate.

McNeely [13] implements a voxelized model of the surface,
the Voxmap, to give approximate distance values in a 6-DOF hap-
tic environment, testing it in a 3-DOF haptic environment with a
model of 593k polygons. In [14], Barbic et al. presented a CPU-
based method that uses the Voxmap point shell to create distance
maps for deformable models. In this work, the authors state that
“only small point shells fit into the computational budget of one
haptic cycle”. They then propose using a hierarchy that handles
models of up to 256k points. The work by Gueziec [ 15] generates a
multiresolution hierarchy of bounding volumes via geometric sim-
plification of the polygonal model in order to dynamically compute
the distance from a point to an arbitrary polygonal mesh. However,
the largest model tested is composed of 60k polygons. Similarly
sized models can be found in recent papers based on GPU and par-
allel programming, as in the case of Lauterbach’s work [ 16] where a
parallel implementation of OBB (Object Oriented Bounding Box) and
rectangular swept spheres runs over models of up to 75k triangles,

and the CPU/GPU-based approach of Pabst et al. [17], where the
largest model contains 146k polygons and the continuous collision
detection computation time is 184 ms for this model in a single
thread. Morvan et al. [ 18], also using a GPU approach, handle mod-
els of up to 1.7M polygons, offering proximity query rates of around
5 ms.

In [19], Walker et al. describe how to perform haptic interaction
on huge terrain models (100M triangles, 2.5D), but their technique
is not usable on 3D models, as they use parallel computer vision
algorithms to detect collision by projecting the proxy onto the
terrain image. The proposal by Yoon [20] runs on models similar
to those presented in our paper, but their goal was to achieve
interactive rendering frame rates (12-30 frames per second, 18 ms
per collision query), not haptic rendering frame rates.

3. EBP-Octree data structure

Our proposal was inspired by the BP-Octree data structure [21],
originally conceived for progressive visualization, which guided
our work to create a data structure suitable for collision detection.
The most characteristic feature of this data structure is that each
node stores a set of planes that define a convex bounding volume
of the part of the model contained in that node. These planes are
restricted to be either face planes or planes parallel to faces, so it
is possible to maintain as much of the original surface orientation
as possible. This data structure leads to a tighter bounding volume
than other BVHs, e.g. KDOPs or AABBs, as the plane’s orientation is
unrestricted and the number of planes at each node is not prede-
fined.

Our EBP-Octree building process, described in the following
subsections, is based on the steps described by Melero et al.
in [21]. In addition, several new features and algorithms have been
developed in order to achieve our goal of handling huge polygonal
models at interactive haptic query rates. Noteworthy among these
improvements are: the extension to a 64-bit octcode, the detection
of special configurations and white/black nodes, the management
of the temporary file system that handles the huge amount of
geometric data computed during the EBP-Octree construction, and
the cache-like out-of-core management of the tree. This means it
can be used in haptic interaction environments, computing not
only point-in-solid tests but also the distance and orientation of
collisions.

3.1. Computing bounding volumes at leaves

Following the BP-Octree bottom-up construction algorithm,
we define the deepest level of the tree as the level whose cell
size is at least five times the average triangle edge length. Then,
using that three dimensional grid, we apply an exhaustive 3DDDA
(3-Dimensional Digital Differential Analyzer) algorithm to each
polygon to detect any traversed cell, using Morton codes [22] to
locate every cell (i.e. leaf node) in the octree space. In our new
proposal, the octcode is 64 bits long, which allows us to handle
octrees of up to 19 levels: 57 bits for the code itself and 5 bits for the
level that the code belongs to. This makes the EBP-Octree capable
of holding polygonal models of almost any size, limited only by
the computer’s available disk space, while the BP-Octrees 32 bit
octcode limits the size of the input models to about 10M polygons
(9 levels).

Once the polygons are distributed among the leaf nodes, we
compute the bounding volume (illustrated in two dimensions in
Fig. 2) in the same manner as in [21]. In order to recall briefly how
this works, we describe the process visually in Fig. 2:

e At each leaf node n; we define a set of candidate planes. These
candidate planes are the set of supporting planes of each polygon
of the node n;.
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Fig. 1. First five levels of the Stanford Lucy model (28M Polygons) EBP-Octree. The complete EBP-Octree for this model has 11 levels.

Fig. 2. (a) The Boundary vertices set is composed of vertices inside the node (V5, V3, and V,) and the intersecting points at node edges (IP; and IP;). (b) Plane A is selected as
candidate plane because it encloses all of the boundary vertices. (c) Plane B must be displaced to B’ in order to enclose all the points. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
Source: Adapted from [21].

e The position of every candidate Plane CP; is evaluated against
the named boundary vertices of the node n;. This set of boundary
vertices is composed of the points inside the node (V>, V3, and
V4 in the case of Fig. 2) and the intersecting points (IP) that are
generated between the edges of the node and the triangles, and
between the edges of the triangles and the node faces (IP; and
IP, in Fig. 2).

- If all the boundary vertices lie inside or on the Plane CP;,
i.e., the signed distance is less than or equal to zero, the Plane
CP; is inserted into the enclosing planes set (EPS). In Fig. 2(b),
Plane A is the only plane that encloses all of the boundary
vertices. The resulting bounding volume is depicted in blue.

- If the plane leaves any boundary vertex in the outside half-
space, we also insert a displaced plane into the EPS. An
example of such a displaced plane is Plane B’ in Fig. 2(c).
Note that vertex IP; initially lies outside B (2(b)), but when
the plane is displaced to position B’ (by applying an offset
d along its normal), IP; is then in the inner halfspace of B'.
Displacement d is exactly the distance from IP; to B.

3.1.1. Selecting the best bounding planes’ configuration

As in the BP-Octree, not all planes in the EPS are finally included
in the Bounding Planes set. Some of them move completely outside
the node n when attempting to satisfy the requirement of enclos-
ing all points. Others, although initially included in the EPS, are dis-
carded due to their similarity or poor contribution to the bounding
volume.

Using the previously described algorithm, most or even all
of the candidate planes might become part of the EPS, so we
would have no simplification in convex areas of the surface. In
order to reduce the number of planes of the EPS, we apply a
k-medoids algorithm [23] to determine which planes best enclose
the original surface, avoiding as many redundancies as possible by
grouping the planes by their plane normals so that we can discard
planes with similar orientations and select only the most relevant
k planes. In Fig. 3, we illustrate the behaviour of this classification
scheme with a sphere, where all planes are initially included in the
EPS. When only a small portion of them are selected, the bounding
volume built by the intersection of all inner half-spaces of the
bounding planes set still looks like a sphere. This algorithm is
quite slow, but after having tried other approaches such as random
selection or filtering by the displacement distance, we concluded
that the benefits in terms of volume are much greater than the
cost of a single building execution process. In Table 1 we show the
total volume of the EBP-Octree at each level with different k values.

Original model

Bounding Planes Volume
Fig. 3. Effects of applying a k-medoids algorithm over convex surfaces.

Table 1
Volume of the EBP-Octree of Wounded Amazon at each level depending on the value
of the parameter k of the k-medoids algorithm.

Level k= 10% k =20% k =30% k = 40%
1 650.80% 653.46% 522.65% 325.78%
2 548.53% 624.12% 383.83% 261.15%
3 338.96% 335.47% 216.91% 160.11%
4 201.96% 199.57% 143.06% 124.92%
5 137.07% 135.68% 116.33% 109.93%
6 113.74% 112.85% 106.35% 104.37%
7 105.05% 104.45% 102.31% 101.70%
8 101.65% 101.36% 100.76% 100.58%
9 100.49% 100.37% 100.23% 100.18%

10 100.12% 100.09% 100.06% 100.05%

11 100.02% 100.02% 100.02% 100.01%

The concrete k value is different at each node, as we are defining
it as a percentage of the size of each node’s EPS. As expected, a
higher value of k gives a tighter volume, but also a larger size of
the complete structure.

3.1.2. Adding in/out information to the EBP-Octree nodes

A crucial new feature of the EBP-Octree with respect to its
predecessor is that in order to perform point-in-solid and distance
tests, there must be white and black nodes, i.e. nodes whose volume
is completely outside (white) or inside (black) the polygonal
model. Moreover, the EBP-Octree allows one point to be classified
with respect to the original surface at leaves, not only with respect
to the bounding volume. As the tree is built up with a bottom-up
approach and the starting leaf nodes set is composed only of nodes
traversed by the polygonal surface, we must first add some extra
information to the leaves so we can classify any point inside the leaf
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(a) Real surface.

(b) Bounding volume.

Fig. 4. (a)Polygonal surface of the model. The intersecting points created by the intersection of the triangles’ edges with the node’s faces are displayed in yellow, and the IPs
generated by the node’s edges with the surface are rendered in purple. (b) Resulting bounding volume geometry. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Fig. 5. Special case when a concavity does not intersect with node edges. The
computed bounding volume is wrong if it does not take into account the fact that
eight node corners are inside the polygonal model.

node with respect to the polygonal surface, without considering
the rest of the polygonal model. We achieve this goal by labelling
each node corner as inside or outside, depending on the orientation
of the high resolution polygons that intersect with the node edges.
As not every node edge is usually traversed by a triangle, some of
the corners may remain unlabelled. Consequently, a propagation
of the existing values is carried out until the eight corners are
properly labelled.

Sometimes none of the 12 node edges are intersected by the
polygonal model surface, as shown in Fig. 5. In this case, the sur-
face of the model penetrates into the node without intersecting
any node edge. Therefore, there is a set of vertices inside the node
in a concavity and a few triangle-edge/node-face intersecting seg-
ments and points. With this configuration it is not possible to label
the corners as explained above, and hence an alternative algorithm
must be used.

The algorithm used to label corners in these special cases (sim-
ilar to the vertex nodes in [24]) is based on analysing the configu-
ration of the triangles that intersect the node face with respect to
any of the four corners of that face, as depicted in Fig. 6. If the clos-
est point of the intersecting polyline to Corner C is in a segment, as
is the case for Sy in Fig. 6(a), Corner C is classified with respect to
the supporting plane of the triangle that creates intersecting seg-
ment S;. If the closest point to Corner C is one of the vertices of the
polyline (V in Fig. 6(b)), then vertex V is classified with respect to
the supporting plane that generates Segment S,, and Corner C is
labelled with the opposite value of the test.

3.2. Creating black and white nodes

The classification of the leaves corners is a key point added to
the data structure with respect to the BP-Octree. It allows not only

Table 2
Volume enclosed by the EBP-Octree at each level (B-rep volume = 100%).
Level Moulding Wounded Amazon Lucy
1 209.38% 325.78% 471.56%
2 161.50% 261.15% 261.35%
3 137.32% 160.11% 165.71%
4 118.06% 124.92% 128.80%
5 110.33% 109.93% 115.18%
6 106.89% 104.37% 107.67%
7 103.37% 101.70% 102.67%
8 101.26% 100.58% 100.84%
9 100.36% 100.18% 100.28%
10 100.09% 100.05% 100.10%
11 100.03% 100.01% 100.04%

special cases such as tunnels, peak convexities and concavities to
be resolved, as shown in Fig. 5, but the feature also provides us
with sufficient information to create black and white nodes. We
realized that when dealing only with leaf nodes we do not have
enough information to classify every point in the space, as in the
case depicted in Fig. 7.

To avoid such classification errors, we use the information from
the leaves’ corners. We propagate such labelling upwards and cre-
ate missing nodes according to the classification of the corners of
sibling nodes. When an internal node has missing children because
no surface traverses that cell, the algorithm decides whether to cre-
ate it as a black or a white node depending on the value of the cen-
tral point of the grey node. The central point of the parent node is
the corner shared by all the siblings (Fig. 8).

3.3. Creating internal EBP-Octree nodes

Once we have selected the set of k planes whose inner half-
spaces’ intersection defines the bounding volume, we generate the
geometry of this bounding volume (rendered in Fig. 4(b)). This ge-
ometry is used as a virtual geometry to run the algorithm described
above at its parent node. We use the vertices of the virtual geome-
tries of children nodes as boundary vertices of the parent node, and
the sets of selected bounding planes as the candidate planes set. The
bounding planes keep the displacement d as they ascend through
the hierarchy, and that offset value is maintained or increased if
needed (but never decreased) when computing the bounding vol-
ume at upper level nodes.

Following the process we have described, the final result is a hi-
erarchy of bounding volumes that decreases in volume as the tree
is traversed. The visualization of these volumes for the Lucy and
Wounded Amazon models are shown in Figs. 1 and 9. To properly vi-
sualize the details at the deepest levels of the tree, we focus Fig. 10
on one branch of the tree, showing from level 6 to the deepest level.

Table 2 shows the volume enclosed by each level of the
EBP-Octree (100% is the total volume of the original polygonal
model). It can be seen that level 5 offers a volume just 15%
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(a) Closest point to corner is in S1.

(b) Closest point to corner is vertex
V1.

Fig. 6. Labelling node corners when there are no triangles intersecting node edges. In blue, the volume defined by the model. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

Table 3
Memory requirements per level of each EBP-Octree model (in MB).
Level Moulding Wounded Amazon Lucy
1 0.12 0.19 0.12
2 0.30 0.40 0.38
3 0.65 0.97 0.96
4 159 2.90 2.64
5 454 8.41 7.18
6 13.12 24.07 20.77
7 79.05 139.46 127.09
8 241.96 416.66 392.06
9 735.71 1288.23 1216.01
10 2292.11 4196.32 3877.66
11 6993.68 13292.65 11954.45
Total 10362.81 19333.60 17567.27
Nl
\/\ IN
— P
L]
S
¢ \ ouT
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Fig. 7. Point P cannot be properly classified in the absence of black or white
nodes because of the ambiguity arising due to the absence of corners labelling. Two
distinct configurations (right) lead to the same bounding volume at the upper level
(left).

higher than the high resolution polygonal model, and the visual
perception at that level also approximates the original model
very well, as shown in Fig. 9. Moreover, in Table 3 we show the
memory requirements for each level of the tree, which is rather
small for upper levels of the tree, but exponentially larger for the
bottom levels. For this reason, as we describe in Section 4.1, when
performing haptic interaction we will always keep the EBP-Octree
in the main memory up to some level between 5 and 7, and the
subtrees from that threshold are loaded depending on the haptic
interface position in a cache-like behaviour.

4. Out-of-core management of EBP-Octree

The whole data structure is built in a single out-of-core pre-
processing step. The EBP-Octree is then stored on disk and loaded
as many times as necessary. The construction times displayed for
models of Fig. 11 are shown in Table 4. Most of the building time is
spent on detecting which voxels are traversed by the model surface

©

Fig. 8. A node is created as white because the corner shared among its siblings
(p) was labelled as outside when computing the bounding volumes of those three
nodes.

Table 4
Preprocessing time of EBP-Octree running on a single thread. We compute the time
needed to create leaves and the rest of the tree separately.

Model Moulding  Wounded Amazon  Lucy
Millions of polygons 26.62 28.10 28.05
Leaf nodes 50:53 59:59 3:57:00
Intermediate levels 18:39 23:20 1:16:31
Total Building Time 1:09:32 1:23:19 5:13:31

(h:min:sec)

and on constructing its bounding volumes. The disparity in times
is due to the different shape of each model, with the Lucy model
being the most complex in terms of concavities and convexities.

In order to properly handle the EBP-Octree in real time interac-
tion, it is absolutely necessary to have a set of files that indexes and
organizes the information of the tree. Moreover, during the build-
ing process we use several temporary files. The EBP-Octree files set
is composed of seven files which store all of the necessary informa-
tion in a spatially and temporally coherent manner, and a variable
number of files that store the subtrees below the threshold level.
Some of the files are accessed during rendering duties, while oth-
ers exist to aid in collision detection or distance computation tests.
The files are listed briefly here:

e .vtx. The original polygonal model vertices.

e .tgl. Faces of the original polygonal model, addressing the
vertices by their offset in.vtx file.

e .fcn. Normals of the original polygonal model, which also
define normals of the planes at EBP-Octree nodes.

e .geo.Leaves’ geometries. For each leaf, it stores the index of its
triangles with respect to the . tgl file triangles list.

e .bvp. Bounding volume geometry. For each node of the tree,
we store the faces and vertices generated when creating the
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Fig. 9. Evolution of the Wounded Amazon EBP-Octree up to level 5 of 11. Deeper levels are loaded in a cache-like management system.

At level 5

At level 8

At level 9

At level 10

Fig. 10. Detail of the EBP-Octree of Wounded Amazon model during a haptic interaction. In green we display the bounding volume of nodes at level 5, which are always in
the main memory. In cyan we show the bounding volume of the nodes of the currently active subtree, which is also loaded in the main memory. In red we mark the nodes
that are pre-cached. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

bounding geometry at each node. This information is only used
when the bounding volume is rendered.

e .bpl. Bounding planes. For each node, we store the number
of planes that create its bounding volume, their references to
.fcn file and the offset d applied to that node. When visual
rendering is going to be performed, it can also store the pointer
to the .bvp file that returns the vertices of the bounding
geometry.

e .oct and several . suboct files. The octree up to the threshold
level and as many files as needed to store the sub-trees from
that level. Nodes are stored in breadth-first order. For each
node we store the information that describes it, depending on
whether it is an internal or leaf node.

An internal node is defined by:

- Two bytes describing its children’s type: if they are black,
white, grey or leaf nodes (2 bits per child).

- The offset needed to reach the first child within the file.

- The offset in the .bpl file where its bounding planes are
sequentially stored.

Leaf nodes are defined in the . oct file by:

- The offsets in the . geo file to the triangles of the model that
intersect the node.

- The offset in the .bpl file where its bounding planes are
sequentially stored.

4.1. Cache management of the EBP-Octree during haptic rendering

We implemented a cache-like system that adapts to the
features of the computer, where algorithms are running so that the
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Fig. 11. High-res models used for testing the EBP-Octree: Wounded Amazon (26.6M), Lucy (28.1M) and Moulding(28.05M).

. Node of current pointer

Subtrees in disk

- EBP-Octree up to threshold level

- Current pointer subtree in memory Neighbours in memory - Pre-cached nodes

Fig. 12. Cache scheme for the EBP-Octree. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

EBP-Octree is not completely contained in the main memory when
performing inclusion or distance tests. Depending on the memory
available, the threshold level is at different points from levels 5 to 7,
and an external file system is built (or rebuilt if needed) depending
on that limit. Although we have optimized the behaviour of our
cache system to the natural movements of haptic interfaces, which
do not usually move around the model randomly but follow a
natural and continuous path, it also behaves satisfactorily in purely
random positions, as we will describe in Sections 5.1 and 5.2.
Following the scheme depicted in Fig. 12, we have the upper
levels of the tree in the main memory up to level 5, which according
to Table 2 ensures that the EBP-Octree occupies no more than 15%
more volume than the polygonal model. While moving the haptic
interface pointer (HIP), we detect the node n, where the HIP is
located. Then, we load the complete subtree under n, into the
main memory, and also the subtrees of the 26 neighbours of np.
By doing so, at any time in the interaction there are therefore only

Table 5

Some features of our cache system: number of nodes and memory occupied by
the base EBP-Octree, the number of subtree files generated and the average total
memory consumption in a distance test.

Wounded Amazon Lucy Moulding
Nodes at level 5 5208 3969 1871
MB threshold EBPO 37.8 32.8 20.8
# subtrees 21777 17398 8254
Avg. memory (MB) 4522.54 4508.98 4296.2

27 complete subtrees in main memory. Moreover, to minimize the
memory faults when a fast displacement of the HIP is detected, we
also load the nodes at level 6 of the nearest surrounding subtrees
(inred in Figs. 12 and 10). As shown in Table 5, our algorithm uses
on average 4.5 GB of memory.

5. Algorithms and experimental results

5.1. Point-in-solid test results

Using the EBP-Octree representation scheme, implementing a
point classification algorithm is straightforward. To achieve this,
we only need to traverse the tree, testing point P against the planes
at each node. Only if P lies inside all of the inner half-spaces of the
bounding planes of the current node, do we descend recursively
into the appropriate child. When the algorithm reaches a leaf node
Ln, it builds a segment between P and one of the corners of Ln
labelled as inside, as shown in Fig. 13. Then, a classic segment-
polyhedron test based on the Jordan Curve Theorem [25] is applied.
If none of the corners are inside, we take an outside corner and the
result given by the Jordan Curve Theorem is the opposite of what
it would be if it were inside.

In order to evaluate the behaviour of the EBP-Octree as a sup-
porting data structure for such large models in a point-in-solid test
environment, we prepared two different datasets of 10M points,
representing the worst and best cases. The first one is a pure ran-
dom distribution of the points within the bounding box of the high
resolution model. By doing so, we can test how the cache system
behaves when loading 27 subtrees per test, which is the worst
case. The best possible situation is to have a spatially coherent
distribution of the points, i.e. we generate the points following a
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Fig. 13. Intersection of segment - cyan - with surface — dark blue. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 6
Point in solid tests per second, and jusecs per test.
Moulding Wounded Amazon Lucy
Test/sec random 4922 2359 2524
Test/sec surface 31559 30529 43430
sec/test random 203.16 423.89 395.88
sec/test surface 31.68 42.38 39.58

pre-defined trajectory through the high resolution surface with a
minimum of random distortion. This is usually the normal be-
haviour of a haptic rendering environment, our best case, and it al-
lows the cached subtrees to be reused in several consecutive tests.

In Table 6, we show the results of the point-in-solid tests
performed on a [7 2.40 GHz 8 GB RAM computer. In the worst case,
our proposal achieves 2.3 kHz frequency. Moreover, we can reach
up to 32k tests per second on the Moulding model under normal
haptic conditions. It is also worth noting that two similar models
like Lucy and Wounded Amazon provide similar results whereas
Moulding, which is a more compact model, gives better results,
probably because most of the time not all 27 sub-trees are cached,
as the model is quite flat in most areas.

5.2. Distance-to-solid computation in large polygonal models

In haptic environments it is necessary not only to define
whether a point is inside or outside the virtual model, but also
to determine the distance from the haptic devices end effector,
the HIP. For this purpose, distance fields and other techniques
have been shown to be useful in achieving good update rates. The
EBP-Octree data structure allows us to obtain the distance to the
model and the normal of the nearest triangle when the point to test
is inside the narrow band defined around the polygonal surface by
the leaf nodes.

In order to validate the EBP-Octree as an appropriate data struc-
ture to be used in haptic rendering, we prepared two datasets in
a similar manner as we did for the point-in-solid computations:
worst (random sequences within the root node) and best (natu-
ral interaction over the surface of the model) cases. To better il-
lustrate the correctness of the results, we produced two different
figures. Fig. 14 renders the distance from the point to the surface,
with black being the colour of points below a given threshold. In
Fig. 15, each collided point is coloured by using its nearest triangle
normal as the RGB value, so we can validate visually the orientation
returned by the collision test. In the figure, we show the full reso-
lution model in normal map mode, and the collided points aside.

As for the timings, Table 7 shows the results of distance calcu-
lations using the two datasets described in Section 5.1, 2M points
each. As can be seen, in the worst case we are over a haptic render-
ing query rate of 1.5 kHz, whereas in the continuous surface dataset
we reach up to 27 kHz for the Lucy model. We must note that tim-
ings in distance tests also depend on the number of polygons at leaf
nodes, and Lucy has the lowest average number of triangles per leaf
node.

Fig. 14. Closer look at distance tests for face of Wounded Amazon. Black points
are exactly on the surface. Red points are below a given threshold. Displayed points
come from the datasets used in surface testing. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 15. Closer look at orientation returned by haptic rendering tests. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 7
Haptic tests per second, and jLsecs per test.
Moulding Wounded Amazon Lucy
Test/sec random 2853 1544 1697
Test/sec surface 18020 15981 27984
lsec/test random 354.23 647.46 589.25
psec/test surface 55.5 62.5 343

On the same computer, we compiled and executed some of the
most cited libraries for collision detection, such as SWIFT++ [26],
PQP [4] and gProximity [ 16]. Unfortunately, none of them was able
to load the models that we used in our tests. SWIFT++ was only able
to handle models up to 400k polygons, while PQP and gProximity
crashed when trying to load models of 7M polygons.

6. Conclusions and future work

We have proposed a data structure capable of handling large
polygonal models in a haptic rendering system, never used before
in such environments. Point classification query rates are below
0.5 ms in the worst scenarios, and around 0.03 ms in surface paths.
Distance queries in common haptic interaction scenarios are also
below 0.07 ms, which by far exceeds the expected haptic rendering
query rate of 1 ms/test.
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In order to achieve these results, we have extended the BP-
Octree proposed by Melero et al. by including new features and
algorithms, such as:

e A 64 bit octcode that allows octrees up to 20 levels. This feature
allows us to exceed the limit imposed by the 32-bit BP-Octree,
which was only able to load models up to 2.5M polygons.

e A procedure for labelling node corners that allows us to include
new black and white nodes.

e Out of core management of the octree construction, via a set of
files that indexes the information and reuses it when possible.

e A cache-like algorithm that dynamically loads sub-trees when
the haptic interface pointer moves, so the deepest level of
the tree can be used to perform point-in-solid and distance
tests.

Our algorithms run without any multi-thread optimization, just
a single thread in the CPU. The time-consuming task of building the
EBP-Octree file system is executed just once per model, and the
first loading of the data structure takes under three seconds.

The system has been demonstrated to be numerically robust,
and data structures on disk are optimized for common haptic us-
age.
The numerical results encourage us to consider a good collision
detection algorithm among large models, not just a single point
against the model as we have presented in the paper.

We plan to test the real-time modification of a small area of the
model, as this may happen in virtual sculpting, so the EBP-Octree
could be used in dynamic models.
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