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a b s t r a c t

This paper presents a design framework for automatic webpage coloring regarding several fundamental
design objectives: proper visual contrasts, multi-color compatibility and semantic associations. The
objective functions are formulated with data-driven probabilistic models: the Color Contrast model
concerning visual saliencies is trained on 52,000 basic components parsed from 500 popular webpages.
Color Compatibility and Semantics are modeled from a dataset of manually tagged and rated color
schemes from Adobe Kuler. To incorporate the multi-objectives in optimization, the framework adopts
a lexicographic strategy, which determines the best choices by optimizing the objectives one by one
in a user specified sequence. We demonstrate the effectiveness of the models and the flexibility of the
framework in two typical web color design scenarios: fine tuning a colored page and recoloring a page
with a specified palette. Independent perception experiments verify that the system-generated designs
are preferable to those generated by nonprofessionals.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Color is a primitive modularity of a vision system, triggering
instant aesthetic sensation [1]. The first impression of a webpage
on an audience only requires an initial 50 ms of glimpse [2].
While many people can easily distinguish good and bad color
designs, creating a pleasing color design requires much more
time and effort [3]. Webpage color design usually requires
considerable experimentation and guesswork. It is highly difficult
to systematically investigate the world of all color constellations.
Even permutations of several colors on a webpage are usually
astronomical. (Human beings can distinguish approximately 128
different hues, 130 different tints, and 23 shades, reaching a total
of approximately 82,720 different colors [4].)

Is it possible that computers complete the coloring process by
automatically evaluating and screening this huge amount of design
alternatives? The main challenges in automatic color design are:
how to determine a coloring that is aesthetically pleasing yet also
contributes to the functionality of the design, and how to use color
to convey specific moods to the audience.

In this paper, we begin with computational encoding of the
properties that make a webpage coloring agreeable. A data driven
framework can determine an optimum coloring effect for the
webpage with minimal user interactions and specifications.
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A webpage coloring must consider at least three fundamental
design objectives [5]: functionality (usability) for visual communi-
cation, i.e., legibility and proper visual saliency allocation; multi-
color compatibility, i.e., harmony; and sematic associations with
the specific moods.

Three objective functions are subsequently formulated with
probabilistic models on datasets of design examples:

Color contrast. Color contrast not onlymakes a formdistinguish-
able, but research suggests that proper distribution of color con-
trasts yields a hierarchy of visual saliencies [6], allocating our re-
sources of attention and reducing our cognitive loads. Color con-
trast is also regarded as a foundation of harmony [7]. To determine
proper edge contrasts of color patches on a webpage, a probabilis-
tic model is trained on 52,000 visual components parsed from 500
webpages with their edge contrast properties and selected predic-
tive features.

Color harmony. Harmony is the most addressed objective of
color design. The framework employs a Color Compatibilitymodel,
developed by O’Donovan et al. [8]. Themodel is a regression of user
preferences on a large dataset of color schemes from Adobe Kuler
and Amazon Mturk samples. A color scheme is an ordered row of
five colors.

Color semantics. Note that contrast and harmony are general
qualities that cannot capture the specific color themes. To express
specific colormoods, we introduce a probabilistic model, driven by
the dataset of tagged color schemes from Adobe Kuler, to fine-tune
a webpage according to specified keywords.

http://dx.doi.org/10.1016/j.cad.2016.03.001
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Finally, to incorporate the multi-objective functions in the col-
oring process, the framework adopts a lexicographic strategy [9],
which applies the objective functions sequentially, not simultane-
ously.

The main contribution of this paper is an attempt to automate
webpage coloring through a data driven optimization. Fundamen-
tal objectives of webpage color design are addressed and formu-
lated with probabilistic models, to capture desirable properties of
webpage coloring underlying collected design data. We demon-
strate that cooperation of the objectives could lead to acceptable
converged states of results. Independent perception experiments
verify that the system-generated designs are preferable to designs
generated by nonprofessionals.

2. Background

Color design supporting tools are closely related to studies of
color perception and aesthetic computing.

2.1. Color design supporting tools and automatic coloring

There are generally two approaches to color design automation:
rule-based and data-driven. A number of quantitative models in
color harmony theory have been put forward in the past two
centuries to help designers create pleasant color combinations [7,
10–12].

Itten’s color contrasts [7] and Matsuda’s harmonious tem-
plates [13] are the most widely cited models. Color harmony is
quantified by certain geometric structures in the color space. The
models have beenwidely applied to graphic design and image pro-
cessing systems [14–19]. The rule-based models, however, seem
rigorous but oversimplified. Ou et al. studied people’s preferences
formonochrome and color pairs, indicating that colors selected ac-
cording to these rules do not necessarily lead to harmony [20].

To complete webpage coloring, this paper uses data-driven ap-
proaches, which predict the performances of new color designs in
real contexts of layouts based on existing sample data. O’Donovan
et al. [8] used a regression model to predict the compatibility of a
color schemebasedononline color schemedatasets. Themodel has
been integrated into a clothing optimization system [21] and a gen-
erative pattern coloring system [3]. The data-driven approaches
are expected to be more robust to predict colorings in real con-
texts of uses than the classical deterministic rules. Moreover, early
rule-based systems focus on color harmonization, which is just
one of the aspects of color design. It is suggested that having only
color compatibility cannot ensure a successful coloring result in
design [3]. We believe that the data-driven approach is not only
suitable for color compatibility but also useful for optimizing color
contrasts and semantics. It is expected that with well defined ob-
jectives and proper constraints, the optimizationmay lead to a sta-
bly converged coloring result.

2.2. Coloring in a context of usage

Some studies focus more on evaluating colors within their
contexts of use. Zhang et al. developed a color harmony measure
model with shape information [22]. Wang et al. applied color
scheme to enhance images while complying with common sense
of the natural world colors by taking color-texture joint probability
as a constraint [23]. Lin implemented a generative auto-coloring
system for 2D patterns [3]. They collected learning cases of 8000
designs of color patterns to establish a mapping between the color
properties and spatial features of shapes.

Webpage coloring has functionality for visual communication,
which is slightly different from decorative patterns. Coloring
a webpage must ensure accessibility. W3C’s WCAG2.0 gives
Fig. 1. Due to the improper contrast of the wireframe, the top table seems
incongruous as opposed to the bottom. This example was created by designer
Tyler Tate (www.smashingmagazine.com/2009/10/07/minimizing-complexity-in-
user-interfaces/).

some recommended Legibility standards of minimum luminance
contrast ratios against backgrounds for both small and large fonts,
regarding peoples with low vision or color vision deficiency [24].
Our system uses those guidelines as the hard constraints in
coloring processes.

Poor color contrast choices can induce eyestrains andheadaches
(see Fig. 1). Saliencies typically arise from contrasts between com-
ponents and their surroundings [25]. The proper distribution of
saliencies allocates viewer limited resources of attention, which is
an essential measure of the quality of the visualization [26]. Color
blocks on the webpage with different usages often need different
visual saliencies. A vivid color patch (high saturation against the
background, sometimes called the accent color) produces a pop-
out effect, enabling humans to detect targets such as navigation
bars or link buttons very rapidly, even without any consciousness.
A psychological phenomenon of simultaneous contrast demon-
strates that color contrast may bias our perceptions of color [27].

To predict web components’ edge contrasts, our data-driven
model captures the joint probabilities between the web compo-
nents’ edge contrasts and other traits embodying their functionali-
ties. Kumar’s study in building a webpage design repository shows
that webpage modules and elements have obvious categories of
forms and functions [28].

2.3. The meaning of colors

Color semantics, sometimes known as themeaning of colors [5],
attract interest from researchers acrossmanydisciplines, including
psychology, design and computing. The variations of color, as an
emotion messenger, can be associated with different moods, such
as cheerful or quiet, hard or soft, warm or cool, bitter or delicious.
Lin et al. used the term semantically resonant to refer to color
choices that are evocative of a given concept [29].

SemanticDifferential of Kansei Engineering is awell-established
method for designers to capture semantic feelings of visual
forms [30]. Through a user perception study, thenmultivariate fac-
tor analysis, Ou et al. suggested three semantic dimensions: ac-
tivity, weight and heat, with corresponding empirical functions to
evaluate any input unary and dual colors in a CIElab space [31,32].

Color constellations can evoke more rich and complex imagery.
Semantics for multi-color combinations (color schemes) are
generally category based. Kobayashi’s Color Image Scale [33]
provides 1170 three-color combinations grouped into 15 subsets
and labeled with 180 adjectives on two semantic scales. Pantone
Color Scheme [34] defined 27 adjective clusters. Each cluster

http://www.smashingmagazine.com/2009/10/07/minimizing-complexity-in-user-interfaces/
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contains 24 three-color combinations. Moreover, Adobe Kuler and
Colourlover communities have accumulated a large number of
color schemes with semantic tags for retrieval. Compared with the
Kansei method, the category-based method is more simple to use
in design practices.

Category-based tools so far only support keyword-based color
scheme retrieval. It is possible and more useful to generalize
and predict beyond the example data. Our data driven approach
provides a probabilistic regression model to interpolate the subtle
mood changes in color schemes based on some discriminative
features of semantic categories.

3. Data-driven approach and system framework

The framework is illustrated in Fig. 2. The framework mainly
consists of a color block/text parser, a generative design engine,
three objective models, and two datasets. The three data driven
objective models are prepared offline, to statistically capture the
properties of desired colorings with the collected datasets. Details
of the two datasets are given in Section 4.

In runtime, the pipeline takes a webpage’s fixed layout and
a few keywords describing certain moods as inputs, and outputs
sorted optimum colorings of the webpage.

An input page layout specifies which segments on the page can
be colored in and which segments are assigned with the same
color. For instance, the background of the sidebars may have the
same color as the body texts, and all hyperlink texts must be the
same color.

The color block/text parser processes the input webpage into
a set of elementary color patches and text boxes, which is then
encoded in the generative design engine for generating alternative
page colorings. Moreover, it extracts all the components’ spatial
features and properties of the Document Object Model (DOM),
which are necessary predictive information for some context
relevant evaluations later on. Details of the Parser are given
in Section 4.1. The procedure of the page parsing and feature
extraction must keep same as in preparing the edge contrast
training set for the contrast model.

The generative design engine provides the infrastructure for
regenerating and screening new designs by calling the three
objective models.

3.1. Two phase design generation: palette preparation and page
coloring

Coloring a webpage can be modeled as a spatial permutation
problem. Design solutions are encoded as a string of RGB values.
Changing the sequence and values generates a new alternative
coloring of the webpage. A webpage may have hundreds of blocks
and text boxes. Most segments are colored in groups. We refer to
a set of segments that map to the same color as a color group, and
a webpage normally uses less than ten colors. Suppose a webpage
has k segments assigned with n (n ≤ k) colors picked from a set of
m colors (m ∈ [n . . . 256ˆ3]). There are a total of Cn

mP
k
n solutions (C

means combination and P means permutation). If we pick colors
from the full color set of RGB, even if the page has only a few color
groups and the regions of color groups are fixed, the solution set is
still enormous.

To reduce the complexity, the coloring process in the generative
design engine has two phases: palette (theme) generation and
page coloring. The framework supports automatic color palette
(theme) retrieval or selection from the Kular dataset in terms of
user input keywords. A palette is a considerably smaller color set
generated in advance to page coloring. It is an intermediate form
that enables pre-evaluation of color harmony and color semantics
without taking into account the spatial context of the page. This
is a common practice in real color design. The palette can also
be generated by color quantization of a mood board [35,36] or
inquiring online databases, such as Adobe Kuler. A number of
tools have been developed to manually or automatically generate
harmonious color themes [10–13]. Since the palette generation
is a well addressed topic, we focus our later discussion and
demonstrations more on how the system evaluates and optimizes
the coloring effects in the spatial contexts of webpages, which is
believed the bottleneck of the pipeline.

3.2. Data-driven design evaluation

To evaluate the new designs, the framework uses three data
driven models: the contrast, harmony and semantic models.

3.2.1. Color contrast
The edge contrasts of the components parsed from the input

webpage must be evaluated in their spatial contexts. The contrast
model predicts each components edge contrast with its spatial
features and DOM properties. The details of the model are given
in Section 5.1. The model is trained offline on the contrast training
set, which has 52000 elementary color patches (visible DOM
nodes and their render-time color properties) parsed from the 500
positive webpage examples in the web design repository collected
with a design crawler.

3.2.2. Color harmony
Color harmony is evaluated using the data-driven model

introduced by O’Donovan et al. [8]. To evaluate a palettemore than
five colors, we extract representative five colors from the palette
using k-means (k = 5) in CIElab space. The colors selected are
the closest ones to the cluster centers. Their spatial arrangement
retains their original sequential order on the palette. In general,
low-scoring schemes are rated lower than high-scoring schemes
regardless of ordering [3].

To evaluate a colored page, the five largest color groups on the
page are reordered linearly. The five color groups can be modeled
as a node graph with connections that represent their spatial
closeness. Next, we transform the graph into a line by solving a
traveling salesman problem (TSP) to find the shortest path passing
all five nodes. If a coloring solution contains fewer than five colors,
we repeat colors in order of size to fill the remaining swatches.

3.2.3. Color semantics
The semantic model needs a few user specified keywords

as an extra input to complete its setup. Users can specify
an expected mood with one or multiple keywords, for in-
stance:‘‘Business’’,‘‘Clean’’, ‘‘Playful’’ and so on. Each keyword re-
trieves a set of color schemes from Adobe color theme database.
With identified discriminative features to semantic categories of
color schemes, which were firstly introduced by Csurka et al. [37],
our approach is to use Probability Density Functions to infer the
high probability areas in the feature space based on the collected
samples. The method is detailed in Section 5.2. The approach pro-
vides a regression to capture the subtle mood changes in between
the color scheme samples.

It is necessary to evaluate color semantics once again after
assigning colors from the palette to the page context, because the
member colors and their areas might have changed in the spatial
permutation.
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Web Coloring System Framework

Fig. 2. The framework mainly consists of a color block/text parser (A), a generative design engine (B), two databases (C, D), and three predictive models (F1 ∼ F3). The
pipeline takes a few keywords (1) describing certain mood and a webpage’s fixed layout (2) as inputs, and outputs sorted optimum colorings (3) of the webpage. The dashed
connections represent the offline processes for the objective model trainings.
3.3. Multi-objective optimization utilizing user interaction

Color design can be modeled as a multi-objective optimization
problem. The optimization usually requires integrating all of the
objective functions as a weighted sum or product. The weight
setting of multi-objective optimization is still a challenge [38].
Towards different design specifications, the adaptive weight
learning is computationally intensive. In this paper, we adopt a
lexicographic strategy, a more flexible approach to coordinating
the multi-objectives utilizing user interaction, which determines
the best choices by optimizing the objectives one by one in a user
specified sequence. The strategy will be detailed in Section 6 and
demonstrated in Section 7.

4. Data preparation

Two datasets are prepared offline. Data acquisition, especially
the web design repository, needs some page segmentation and
vision processing techniques.

4.1. Web design repository and contrast model training set

To establish the web design repository, we use a style
crawler [28] to collect the top 300 designs on Alexa in 2013 and
200 popular designs from design communities. The crawler uses a
layout engine, Webkit, to process retrieved HTML CSS into a DOM
tree and render visual appearances. The Text/Block parser module
traverses the DOM tree to extract their computed styles and
node properties. Assistedwith visual segmentation techniques, the
nodes’ edge contrast and spatial shape features are extracted. The
invisible nodes are discarded.

The DOM nodes with visible color properties are categorized
as: text nodes (nodes that have ‘‘InnerText’’ properties) and non-
textual nodes of color blocks. The edge contrasts of the texts
(WCAG 2.0 legibility) are estimated first. Meanwhile, the text
node’s other DOM properties, i.e., fontSize, fontWeight, numLinks,
numChildren, numImages, numSiblings, siblingOrder, textArea,
wordCount, treeLevel, verticalSidedness, are saved together. Next,
the remaining color blocks on the pages are segmented (see
Fig. 3). The colors and edge contrasts of those blocks are
therefore estimated statistically. Their extensive geometrical and
spatial features are measured, including: each color block’s
contour length, relative area, the depth of nesting, bounding box,
elongation, invariant moments, Normalized Discrete Compactness
(a relationship between the color patch’s boundary edges and its
area [39]), the area of its background, and their semantic tags of
DOM, such as: search, footer, header, image, logo, navigation, and
so on.

The boxes/blocks (basic components) are saved in the dataset
as elementary entries. Because there are usually many repetitive
blocks on a single page, blocks with the same color and shape
features are clustered (grouped) into one component. Each basic
component therefore has its group properties, such as: the number
of siblings, xy frequency, xy interval, group moment and centroid,
density. Each basic component has 46 features.

After parsing the 500 webpages, we obtain a sample of
approximately 52000 components, including 45300 text nodes
and 6800 nodes of color blocks. The parsing process coalesces
each component’s visual, semantic, and render-time features into
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Fig. 3. Color segmentation of webpage. The left is the original webpage. The right is segmented, and grouped blocks are marked with color silhouettes. The text and images
have been filtered out in advance.
a normalized vector descriptor consisting of 6 color contrast
properties, 27 predictive DOM features of texts, and 46 spatial
and shape properties of color blocks, exposing the properties in a
convenient form for future model training and feature selection.

The original color properties of RGB are also transformed into
the HSV and CIElab space, which are closer to the nature of human
perception. Fig. 4 visualizes the distribution of samples of texts and
blocks on the plane of edge contrasts (on saturation and value).

4.2. Color scheme database

The Kuler dataset comprises more than 100,000 color schemes
created by visitors to the kuler.adobe.com. Most of the color
schemes from Kuler consist of RGB raw data and have been tagged
with several keywords. This approach allows users to retrieve
the wanted color schemes quickly. Color schemes with different
semantic tags proved to be distributed in different areas and
clusters [37]. Fig. 5 illustrates the distributions of the color schemes
with the semantic tags of ‘‘business’’ and ‘‘fresh’’ separately.

5. Objective models

We now describe the methods for formulating the objectives.
The models of edge contrasts and color semantics are generally
based on the idea of probability density estimation. To evaluate the
color harmony, we use the MATLAB implementation provided by
ODonovan et al. [8].

5.1. Probability estimation of color contrasts

The Contrast Model is expected to evaluate the edge contrasts
of basic components parsed from an input layout. With the
training set introduced in Section 4.1, our method is to estimate
the probability distribution on the edge contrast of each basic
component when given its known features:

P(Ccp|Fcp). (1)

For a component cp, C is its edge contrast and F is its known spatial
and morphological features. To obtain the distribution, we first
discretize the space of color contrast by clustering (k-means) the
training sample into a number of groups in terms of their edge
contrast values (here, we use the differences on the 3 dimensions
of the HSV space with 6 kernels found in the clustering).
Next, we use the clustered sample to train a classifier. The
classifier is multinomial logistic regression (MNR). The classifier
can predict, when given a Feature vector Fcp, the probabilities
of it falling into each cluster. Then, we place a Gaussian Kernel
at each cluster’s center Cj with the corresponding probability as
its density and set the widths in terms of the cluster’s standard
deviations σ . Through the construction of the Gaussian Mixture
Model (GMM), we obtain an estimation of P(Ccp|Fcp), which is a
continuous probability distribution of variable Ccp depending on
the feature vector Fcp.

P(Ccp|Fcp) =


j=6

exp


−∥Ccp − Cj∥
2

2σ 2


· P(Cj|Fcp). (2)

Fig. 6 visualizes the estimated probability distributions of bright-
ness and saturation contrasts for different components on a page
layout.

The method was firstly introduced by Charpiat et al. [40], who
builtmultimodal distributions of colors given local texture features
for gray scale image colorization. Later, Wang referred to this
method in image color theme enhancement [23] and Lin in her
generative coloring of patterns [3].

We encode color solution X = (x1, x2, . . . , xk), X ∈ S. xk
represents the alterable color attribute of the kth color group
on a page, and S is the set of all solutions. Suppose there are
N basic components parsed from the page, then, its overall
contrast settings are then evaluated with a weighted sum of local
probabilities:

fc(X) =

N
i=1

P(Ci(xfg , xbg |Fi))Ai,

xfg , xbg ∈ (x1, x2, . . . , xk) (3)

where Ci(xfg , xbg) is the edge contrast of the ith component with
corresponding foreground color group xfg and background color
group xbg . Fi is the predictive feature vector of the component’s
edge. Ai is the area proportion of the ith component. It roughly
represents the contribution of visual impact of the component.
This equation approximately represents the contribution of visual
impact of the component.

The vector Fi has been described in the last section. In the
training, it is reduced to 32 dimensions with feature selection
techniques from 46 initial dimensions. The Sequential Feature
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Fig. 4. The left image is the distribution of text nodes on the dimensions of saturation contrast and volume contrast. The right is of color blocks. The images indicate that
the samples belong to manifolds or clusters in the feature space rather than random distributions.
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Selection technique (SFS) [41] adds features one by one to a sub-
feature set while cross-validating and evaluating misclassification
rates of the MNR classifier. The decreases of misclassification rates
are actually the indexes of information gains of the added features.
Those features that have very low contribution to the classification
rate (<0.001) are discarded.

5.2. Regression models for color semantics

It is supposed that audiences’ subjective evaluations of a design
X regarding a specific mood being aroused is a normal distribution
and could be estimated by

fs(X) = E(y|X) =


yP(y|X)dy (4)

where y is the rating of the mood strength. According to Bayes’
theorem

fs(X) =


y
P(X, y)
P(X)

dy =


yP(X, y)dy
P(X, y)dy

. (5)

With a set of sample (yi, Xi), i ∈ {1, 2 . . . , n}, collected for a
specified mood, the P(X, y) and P(X) can be approximated using
GMMwith n kernels.

P(X, y) =
1

(2π)(k+1)/2σ (k+1) ·
1
n

×

n
i=1

exp


−∥X − Xi∥
2

2σ 2


· exp


−∥y − yi∥2

2σ 2


(6)
where Xi is the ith design (or ith cluster mean) in the sample set. yi
is the rating of the mood given by people. k is the dimension of X .
σ is the diameter of the Gaussian kernels. After combining (5) and
(6), then performing integrations we get:

fs(X) =

n
i=1

yi exp(−∥X − Xi∥
2/2σ 2)

n
i=1

exp(−∥X − Xi∥
2/2σ 2)

. (7)

It reveals that for any new design X input, fs(X) can be visualized
as a weightedmean of yi. The weights are the exponential function
of the L2 distance between X and Xi.

It is impractical to manually rate each Xi with a scale value yi in
terms of the specified mood. The training data available is a large
set of color schemes taggedwith all kinds of keywords in the Adobe
Kuler database. Users can specify an expected colormoodwith one
or several weighted keywords, for instance, ‘‘energetic and young
but not so hot’’. Then, as an approximation, the color schemes
retrieved with keywords ‘‘energetic’’ and ‘‘young’’ are rated +1.
And the ‘‘hot’’ schemes are rated 0. Some randomly sampled color
schemes from the rest are rated 0.5. Usually there are thousands
and hundreds color schemes for each keyword in Adobe dataset.
The reason to use this probability density model is that its non-
parametric nature allows users to avoid re-training for any new
combination/weighting of mood keywords.

Any solution X needs to be transformed into a k-dimension
semantic feature vector before evaluation. We initially selected
total 82 high-level features: in addition to raw features of five
member colors’ RGB and HSV values, many statistical global
features are calculated, including mean, standard deviation, max
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Fig. 6. The model estimates the probability distributions of edge contrasts (here, only value and saturation differences are visualized) of different color regions (connected
with redlines) on the webpage. The top left is the distribution of the contrast of the body text. The top right is the link. The bottom left is the sidebar. The bottom right is the
background. We can see that it is highly possible for the body text on the page to use high value difference and low saturation contrast, while the background prefers both
low value and saturation contrasts in this context.
andmin of each channel of HSV, RGB, Lab, and edge contrasts of the
channels; dominant color (the member color closest to the mean);
accent color (themember color that has the largest difference from
the dominant color); bag of visual word (BOV) and Fisher vectors
based on the Kuler dataset, and hue entropy [8]. O’Donovan has
investigated most of these features in his research of color scheme
compatibility with weight learning. We expect them to also be
effective for color semantics. Csurka et al., through the error rates
of cross validations of classifications, proved that the BOV and
Fisher Vector are more discriminative than the raw RGB feature in
semantic categories [37].

With the semantic features, the model could capture a
subtle mixed mood expressed with any combination of multiple
keywords, which may not be available by direct keyword
searching in the dataset. For instance, the dataset has 156
‘‘soft + fresh’’ and 1582 ‘‘Business’’ but returned nothing for
‘‘business + soft + fresh’’. Utilizing the model, users could
infer a mood specified with multi-words and induce the most
representative sample in a set. An experiment on the Kuler set
illustrates this point (Fig. 7). The model may also allow the users
to filter out an original, vast color palette into a smaller amount of
colors.
6. Lexicographic strategy of optimization

Color design is used to find the optimum permutation X by
maximizing the contrast, semantic and harmony objectives:

max (fc(X), fs(X), fh(X)), s.t. g(X) ≤ 0, X ∈ S (8)

g(X) is the constraint, such as the W3C web standard of legibility.
The lexicographic strategy progressively reduces the number of

candidate solutions by applying selection criteria in sequence. The
optimization starts from seeking one of the objectives:

max f1st(X), X ∈ S.

We next obtain the optimum f ∗

1st and a reduced solution set S1st

S1st =


X | f1st(X) ≥


1 −

δ1st

100


f ∗

1st


∩ S, δ ∈ [0, 100]. (9)

Next, we continue to reduce the set S by conducting such an
operation using other objective functions until the final optimal
solution set in a lexicographic sense. δ represents the relaxation
factor, adjusting the proportion of surviving solutions in each stage.
The method takes effect on the condition that the reduced S must
have more than one element every time. Color design usually has
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Fig. 7. The semantic model can capture subtle changes of color tones. The left
3 columns are color themes tagged with ‘‘Business’’ in the dataset. The right 3
are tagged with ‘‘Fresh + Soft’’. The first column from the left is the sorted top
30 ‘‘Business’’ out from the second column, which is unsorted 1582 themes of
‘‘Business’’. The third column is the ‘‘Business’’ sorted by ‘‘Fresh + Soft’’. The right
3 columns are treated the same as the left symmetrically. In this experiment, we
use 46 semantic features and 50 Gaussian kernels with = 0.2, and the MSE of the
approximation is less than 0.09.

Fig. 8. A palette with 11 colors.

quite a number of optimum solutions rather than an absolutely
unique one. It need not be the strict optimal before starting the
next stage of operation.

7. Applications

We now demonstrate how the models and strategy may be
useful when applied to two typical web-coloring scenarios. One is
coloring a webpage with a prepared color palette. Another is fine-
tuning a colored webpage within specified ranges of changes. Both
the situations take the webpages’ layouts as inputs.

Because the areas of the components and color groups are fixed
during the optimization, the spatial and morphological features
of the components and color groups can be pre-calculated in a
single run offline. Therefore, the objective functions only need
small fractions of recalculation for every update of the coloring on
the page.

7.1. Coloring a page with a prepared palette

From color design communities, such as Adobe Kuler, Col-
orlover, Aviary Toucan and Daily Color Scheme, designers can
search for wanted color schemes (color palette). Color schemes
can be pre-evaluated by using the harmony model and seman-
tic model. We have demonstrated the semantic fine-tuning in
Fig. 7. Well-selected color schemes, however, do not assure an ex-
pected final coloring effect onpage. Transferring colors froma color
scheme to different regions of a webpage usually produces signif-
icantly different visual effects.

In this demonstration, we selected a blog page as the target
layout (http://purecss.io/layouts/blog/). The webpage has seven
fixed regions of color groups. Thus, we retrieved two color schemes
from Kuler, plus an extra neutral gray. An 11-color palette is
created (see Fig. 8)

There is a total of 11!/4! = 1,663,200 possible alternatives.
We use a brute force search to evaluate all 1,663,200 alternatives.
A depth first searching tree in terms of the states of the seven
color groups is constructed. The color groups containing texts are
placed closer to the root node so that we can efficiently prune the
branches of illegible solutions (violating the WCAG 2.0 luminance
standard) at the very beginning. Those that have a text luminance
below 2.2 are killed without further evaluations. Approximately
200,000 solutions remained after the pruning. The solutions are
then further evaluated and sorted with a sequence of objective
models.

To evaluate the solutions with the contrast model introduced
in Section 5.1, basic components of the page must be parsed at
the beginning. There is a total of 15 text/block components on the
page, with their weights and predictive features being measured.
The overall score is the weighted sum of the evaluations on the
components (see Eq. (3)). Fig. 9 shows results with the first and
third scores of the overall contrast evaluations.

The top 10 results have apparent diversity (see Fig. 10). This
verifies that the contrast qualities alone may be too general to
converge the results, even with a small palette. More objectives,
such as semantic preferences, may be necessary.

If we apply the semantic models at first and sort out a portion
of the total 200,000 for further contrast evaluation (or vice versa),
the final results can be significantly different. Fig. 11 shows the
best contrast results with two different prerequisites of keywords.
Fig. 12 shows that with the prerequisites, the top contrast results
converge much more than those in Fig. 10.

In every lexicographic stage, a sample of sorted high scored
results must be saved. The users can browse through it to obtain
the sense of how diverse the results are so far and then decide on
the portion reserved for the next stage of screening.

In another case, the layout is designed with a template
(http://demo.mekshq.com/?theme=seashell). It has 7 color groups.
We create a palette by acquiring colors from the theme image on
the target page. This is a popular practice for designers to achieve
harmony and semantic consistency on webpages [36]. Fig. 13
shows a palette that has 10 colors fromvanGogh’sWheatfieldwith
Crows.

The total number of solutions is 604,800, in which only 1442
meet the WCAG legibility standard because most colors on the
palette are neutral and dim. We sort the 1442 solutions with a
semantic objective before applying the contrast models to them.
Fig. 14 shows the results of two different semantic objectives: the
left is the best contrast setting among the top 200 ‘‘warm soft’’. The
right is obtained from the top 200 ‘‘cool business’’.

An essential detail of lexicographic optimization is to set a
proper tolerance δ. This refers to how to determine the surviving
portion of the last screening to enter the next stage. There is
no mature guideline to follow to date. Generally, we must keep
sufficient variety in the retained set to leave room for the next stage
of screening. In this paper, we interactively expand the retained set
to alter the best ones until we obtain sufficient variety.

In the experiments, we found that a harmonious color scheme
generally ensures harmonious page coloring effects. However, a
larger palette may result in potential incompatible combinations.
In the next trial, we use a 20-color palette (see Fig. 15). The
target page is still the same as the last. There is a total of
390,700,800 possible candidate solutions. 706,800 remained after
legibility checking. Then, the further screenings have three layers.
Harmonization is inserted in between semantic and contrast

http://purecss.io/layouts/blog/
http://demo.mekshq.com/?theme=seashell
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Fig. 9. The 1st and 3rd score coloring effects after the contrast evaluation.
Fig. 10. The top 10 in 200,000 after the contrast evaluation. The results shown are somewhat diverse. This means that the contrast model alonemay not be able to converge
the final solutions. Other objectives, such as semantic preferences, may be necessary.
evaluations, considering contrast evaluations are computationally
heaviest among the three. Fig. 16 demonstrates the best ones at
each of the three consecutive evaluations from left to right with
notable improvements.

In the demos, the contrast model generally performs well.
However, it is not perfect, as some types of components, such
as the div of the headline, text input box and navigation bars,
seem to be mixed up in the predictions. This may be because they
share too many similar features. It would be better to add more
discriminative tags of their natures.
7.2. Fine-tuning a color design

Some webpage makers like to start from a roughly specified
color tone on the page following tiresome adjusting processes.
The data-driven models may assist them in improving their
initial colorings with slight modifications. That is, given a current
page coloring X , the system automatically finds better-looking
alternatives X nearby in the space of solutions.

Max f (X ′), s.t. ∥X ′
− X∥ ≤ D. (10)
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Fig. 11. We firstly use keywords to specify two different semantic objectives and sort out the top 500 for each. Then, within them, we search for the best contrast settings.
The left is the best contrast result among the top 500 of ‘‘fresh’’, while the right is that for ‘‘business’’.
Fig. 12. The top row shows the top 5 contrasts among the top 500 ‘‘fresh’’. The bottom row shows those for ‘‘business’’. Compared to Fig. 10, the results here are muchmore
converged.
The L2 distance D is computed in HSV space, constraining the
variations of X . D can be set individually for each color region
and each color channel. Here, we set D on the HSV dimensions
separately with Dh = 0.01, Ds and Dv = 0.1, because people are
more sensitive to the change of hue than the other two channels.

Firstly, we demonstrate ‘‘finding a better direction of the next
move’’. We enumerate all possible slight moves away from the
original. Four foreground color groups on the page are set as
Fig. 13. A color palette created by quantizing a theme image.

variables. Suppose each channel of a color has three states: move
upward, move downward and no move; then, there is a total of
3ˆ12−1 = 531,441 combinations (directions) around the original
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Fig. 14. The best contrast settings in prerequisites of two semantic objectives separately. The left is ‘‘warm soft’’ and the right is ‘‘cool business’’.
Fig. 15. Four schemes retrieved from Kuler with keywords ‘‘fresh’’, ‘‘soft’’ and ‘‘business’’.
Fig. 16. The optimizations under two semantic preferences. The top row is ‘‘fresh’’ and the bottom row is ‘‘business’’. From left to right are the stage results produced by
the three consecutive evaluations. The left column shows the best of the semantics in 706800 solutions. The middle shows the most harmonious ones in the top 18000 of
semantics. The right shows the best contrast in the top 2000 of harmony. Improvement is notable as more evaluations added.
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Fig. 17. Top left: the original colored page of http://www.wordreference.com. Topmiddle: the best contrast adaptation. There are 3042 adaptationswith contrast evaluations
better than the original. The top right is evaluated as the best harmonization in the set of 3042 with a contrast rank at 1423, while the original’s harmony in the set ranks at
1896. The color of the text boxes becomes paler due to the texts on them being a fixed gray. Bottom row: the left is the original, designed by a student. The middle is the best
contrast adaptation. There are 157045 with contrast scores better than the original. The set is further sorted with the harmony model to obtain the final result. The bottom
right is the most harmonious one in the set, with a contrast at 4537, while the harmony rank of the original in the set is 13212.
coloring state. We try to find a direction better than the original
from both contrast and harmony points of views (see Fig. 17).

Another demo uses Covariance Matrix Adaptation (CMA) [42],
an evolutionary approach, to fine tune the page, with the con-
straints being enforced by assigning large penalties to generated
alternatives that violate the constraints. CMA is run for 50 itera-
tions to converge with a sample size N = 30.

The CMA is run twice. In the first run, the original page is
adapted to an optimum contrast state. In the second run, the
optimum contrast ratios on the page are fixed as constraints. The
harmony model leads the adaptation. Fig. 18 shows two original
pages and their subsequent consecutive adaptations.

8. User perception studies

We evaluated the effectiveness of the approach through user
perception studies. Twenty undergraduates from various depart-
ments (15 males and 5 females) were recruited to participate in
the study. All participants had normal color vision.

In the first test, 30 coloring solutions of the same input layout
using the same color palette were prepared as the test material,
in which 10 weremade by nonprofessional university students, 10
generatedby the system randomly, and10generatedby the system
with optimization to two objectives (contrast and harmony).

The participants were shown each of the 30 effects for 5 s on an
Apple 27 in cinema display in randomized order with a 5 s black
screen interval and were asked to indicate their attitude to each
coloring effect: like, dislike or no opinion. 8 effects were presented
once again to check the consistency of the participants’ attitudes.

Fig. 19 shows that human design and our model received more
‘‘like’’s and less ‘‘dislike’’s than the random base-line. Pairwise T
test shows that the difference between the generated colorings
with the model and without the model is significant (like: t =

8.986, dislike: t = −15.449, with p < 0.001). The model-
generated colorings received more ‘‘like’’s than those generated
by non-professional students (t = 2.236, p < 0.05), while the
‘‘dislike’’s they received have no difference (−0.237, P = 0.815).
We also conducted an A–B test on the effectiveness of the fine-
tuning. 10 pairs of test material were prepared. 20 participants
were asked to compare each original webpage coloring with its
tuned version on a screen at the same time in a five second
interval and to select either their preferable one, both or none. The
analysis of the results shows that the tuned versions receivedmore
preferences (see Fig. 20). We also found that those that originally
had less ‘‘like’’s were improved more significantly.

To evaluate the predictability of the semantic model, a user
test presented participants with a randomized grid of 16 colorings
generated for the same webpage. Participants were asked to rate
the colorings (−1, 0, +1) in terms of given keywords. The test uses
3 unary keywords (fresh, soft, business) and 3 compound keywords
(fresh + business, soft + business, soft + fresh). We compared the
human ratings on the 16 colorings with the model evaluations.
The Pearson correlation between the human ratings and model
predictions is 0.826 for the unary and 0.653 for the compound
keywords with p < 0.05.

9. Conclusions and future research

In this paper, we present a data-driven design framework for
automatically coloring webpages. Three fundamental objectives
are addressed in the optimization. The contrast and semantic
models are newly introduced in webpage design and formulated
with probabilistic density estimations in the established feature
spaces with the design samples we prepared. The framework
supports an interactive lexicographic strategy to coordinate the
multi-objectives. Thedemonstrations of the initial implementation
of the framework in two typical design scenarios are encouraging.
The user perception experiments suggest the effectiveness of the
models. The system-generated designs are generally preferable to
those designs by nonprofessionals.

The internal mechanism of color aesthetics perception is still
not very clear. For instance, the colors on a page interact with
each other. The areas, shapes, distances and so on all mutually
affect the effects of colors in a composition. Thus, the evaluation

http://www.wordreference.com
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Fig. 18. Two-stage CMA fine-tuning. Top left is the original colored page of http://www.wordreference.com, the same as in Fig. 17. Bottom left is a randomly colored page.
In CMA, smaller color blocks are set with larger D values, and the background is also variable. Themiddle two are the optimized contrasts. The right two are results of further
harmonization, while the contrast ratios are fixed as constraints.
Fig. 19. Percentage of ‘‘like’’ and ‘‘dislike’’ on three sets of coloring effects. The
left refers to those generated and optimized with our model. The middle refers
to those generated by human design. The right refers to those generated without
optimization.

Fig. 20. The refined versions received more preferences than the originals.

of page harmony using five linearly arranged color swatchesmight
be oversimplified.

There remains considerable work to be performed to identify
which color properties matter most to the semantic expression
needs of a systematic features selection process. For a better
contrast prediction, the contrast model needs to explore more
discriminative features of the webpage components, try different
granularities in the contrast space, and enlarge the design
repository with more examples.

For the sake of the simplification of computing, presently, in
design generation, the number of color groups and their zoning
are not adjustable. If so, the total number of alternatives may
increase exponentially, making brute force searching certainly not
a reasonable option. More efficient searching, such as Stochastic,
iterative and evolutionary techniques, genetic algorithms and the
ant colony algorithm may be more suitable.

To date, the objective model has been implemented using
MATLAB and the generative engine using Python and JavaScript.
The demonstrations of color assignments in this paper normally
require 30 min ∼6 h on a 1.7 GHz Intel core i5, 8 GB DDR to
complete these optimizations (it generally depends on the sizes of
solution sets) and the color fine tunings with CMA require about
2 h to converge. The performance of the system can still be greatly
improved.

This research presents a newvision for future adaptivewebpage
coloring. A webpage may quietly harmonize itself, adjust its visual
saliencies, and change its color mood based on its contents,
different audiences or different seasons.
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