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1. Introduction
1.1. Background and motivation

Demand forecasting is an essential component of revenue management (RM) model systems; it also plays a relevant role
in seat allocation and optimization problems. With respect to pricing, the operators in charge of the reservation system need
to know the distribution of the expected late-booking-high-fare demand in order to protect the right number of seats. For
capacity allocation, it is necessary to predict the expected market size for each trip in order to provide efficient seat alloca-
tion strategies. Discrete choice analysis (DCA) is a standard approach for determining factors influencing decision making
process. Recently, researchers in RM have argued that DCA enables for realistic representation of passenger response to
RM policy. Moreover, passengers are usually characterized by a high level of taste heterogeneity (Hetrakul and Cirillo,
2013), that depends both on socio-demographic characteristics and different preferences over scheduling and pricing. Over
the past decades considerable progress has been made in the characterization of unobserved taste heterogeneity for travel
choice behavior (Wen and Lai, 2010). Latent class (LC) model is considered a valid approach to account for taste heteroge-
neity (Walker, 2001); LC model is a special case of mixture logit models (Train, 2003) in which the mixing distribution is
discrete. This approach segments passengers with similar characteristics into classes of unknown size using a function of
observable variables. Accounting for differences on individual taste offers a more realistic representation of passenger choice
behavior and might lead to significant revenue improvement. To date a very limited number of studies applies this technique
to RM and in particular to the pricing and seat allocation optimization problem for railway systems.
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This paper aims at filling this gap by demonstrating that LC choice models can be effectively used to model railway pas-
senger booking behavior and to represent the underlying taste heterogeneity. The case study based on intercity passenger
railway internet booking data demonstrates that gain in revenues can be achieved when those techniques are made oper-
ational. The remaining of this paper is organized as follows. Previous studies on the use of demand modeling for revenue
management are presented in Section 2. Section 3 describes the conceptual framework which incorporates passenger choice
models and demand functions in RM revenue optimization. Section 4 presents a passenger choice model for ticket purchase
timing decision. In Section 5, the passenger demand function used to estimate demand volume for each market is estimated.
Section 6 describes the mathematical formulation and the optimization procedure adopted to incorporate both multinomial
logit and latent class models into RM systems. Section 7 presents numerical results in term of seat allocation and fare strat-
egy, revenue improvement, and capacity redistribution. Finally conclusions and future research directions are given in
Section 8.

2. Literature review
2.1. Incorporating heterogeneous choice models in RM problem

Accounting for taste heterogeneity is essential for demand forecasting especially for railway RM because passenger pref-
erences generally vary by departure time of day, day of week, and trip distance. A number of papers have investigated special
classes of discrete choice model that accommodates taste heterogeneity. Bhat (1998) estimated an intercity travel mode
choice model which accommodates variations in response to level of service measures due to observed and unobserved indi-
vidual characteristics. The study emphasized the necessity to incorporate systematic and random variation in response to
level-of-service variables. Greene and Hensher (2003) compared latent class (LC) with mixed logit (ML) model using stated
preference data on long distance travel survey in 2000. Shen (2009) compared the difference between latent class and mixed
logit models using two stated choice datasets on mode choice from Osaka, Japan using non-nested test to compare the model
fits.

In the RM context, Carrier (2008) analyzed the choice of airline itinerary and fare product based on latent class (LC) model
framework. In this model, passenger choice set was constituted from booking data, fare rules, and seat availability data. In-
stead of segmenting passenger by trip purpose, which is not available in booking data, the author utilizes variables such as
frequent flyer membership, ticket distribution channel, and travel day of week for the class membership model. The ap-
proach is shown to provide a more distinct and intuitive segmentation across passengers. Teichert et al. (2008) applied
the latent class model to explore preferences within airlines segments and analyzed respondents’ profiles in terms of indi-
vidual socioeconomic and trip characteristics. They concluded that the segmentation criterion currently applied by airlines
does not adequately mirror the heterogeneity in customer’s preference patterns. They suggested product marketing be
aligned to passenger attitudes and socio-demographic profiles which are different across passenger segments. Wen and
Lai (2010) used latent class model to identify airline passengers’ potential segments and preferences for international air car-
riers using individual socioeconomic and trip characteristics as class membership variables. The latent class model is capable
of representing heterogeneity across passenger segments which results in improved prediction accuracy over the multino-
mial logit model. Specifically, the willingness to pay for service attribute improvements is found to be substantially different
across air routes and to vary by traveler segments.

Regardless of the number of research efforts on heterogeneity in choice behavior, the application of latent class choice
model in RM problem is still relatively limited. Most of the studies which incorporated choice models in RM problem have
assumed that customers are homogeneous in taste preferences. Studies which rely on this assumption include the work of
Zhang and Adelman (2009), Topaloglu (2009); and Erdelyi and Topaloglu (2010) who incorporated customer choice models
in the network RM pricing. In their setting, the price for each product is chosen from a discrete set, and the demand for each
product depends on the price of the product only. However, given that RM relies on the premise that different customers are
willing to pay different amounts for a product, accounting for passenger heterogeneity is expected to provide high yield to-
ward RM strategy. More specifically, Garrow (2010) suggested that calibrating models by segments to distinguish between
time-sensitive and price-sensitive customers can highly impact demand prediction accuracy and contribute to significant
RM system performance when being incorporated in RM optimization problem.

Recently, a limited number of studies which incorporate heterogeneous passenger choice model in RM problem have
primarily focused on choice-based deterministic linear programming (CDLP) problem. CDLP is a class of revenue
optimization which solves for sets of product to be made available to the customers at different points in time during
the sales horizon. In this context, Rusmevichientong et al. (2012) analyzed a model that captures the substitution between
the products and preference heterogeneity. Each customer is assumed to belong to a particular class and the demand from
each customer class is governed by a multinomial logit choice model with class-dependent parameters. This problem
considers a set of different products and maximizes the expected profit across all customer classes. Méndez-Diaz et al.
(2012) specified LC model which divides customers into segments based on choice of product alternatives considered
by each customer. Their demand model allows product to overlap across segments and the preference parameters for each
product alternative in the logit model are assumed to be known in advance. The authors prove that the latent class
logit assortment problem is NP-Hard, and solve the choice-based deterministic linear program (CDLP) using branch and
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cut approximation method. The procedure is tested in the context of both capacitated and un-capacitated retail assort-
ment problems.

2.2. Joint pricing and seat allocation problem

In the past few decades, the pricing and seat allocation problem has generated a number of studies, although often the
two aspects have been treated separately. Traditional approaches have assumed that prices are fixed and only the optimal
allocation of resources is computed. On the other hand pricing is usually determined on demand segmentation and optimal
fare is calculated regardless capacity constraints. Nevertheless, the two problems are interrelated and complimentary to one
another. As noted by McGill and van Ryzin (1999), the integration of pricing and inventory allocation decisions should re-
ceive more attention by analysts in RM. In this context, Weatherford (1997) emphasized the importance of considering
prices as part of the optimization problem and suggested including them as decision variables in the seat allocation problem.
The author considered a single flight leg with at least two fare products. The demand for each fare product was assumed to
be normally distributed and represented by a linear demand function of the competing products’ fare.

Kuyumcu and Garcia-Diaz (2000) studied pricing and seat allocation problems jointly for an airline network using histor-
ical data. The optimization problem aimed at maximizing the total revenues within the network. The study assumed that
demand is normally distributed and that there is no interaction of demand across fare classes, and markets (origin destina-
tion). Fare was assumed to be an exogenous variable for the passenger decision process, as no explicit hypothesis regarding
the relationship between demand and fare or any other product characteristics was made.

Bertsimas and de Boer (2002) analyzed the joint problem of pricing and seat allocation in a network setting. The authors
assumed that demand for each fare product was uncertain and that expectation of the product demand only depends on the
product’s price. The numerical experiment suggested that coordination of pricing and seat allocation policies in the network
and accounting for demand uncertainty can lead to significant revenue gains. It was also demonstrated that the underlying
optimization problem is convex for certain types of demand distributions, thus tractable for large instances.

Cote et al. (2003) proposed a model with the capability of jointly solving the pricing and seat allocation problem in a net-
work with competitor. The approach was based on a bi-level programming framework: the airline was assumed to know
how its competitor would react and this behavior was explicitly integrated in the decision process. The decision variables
include fares, but not seat allocation. The main assumption was that the demand for each fare product and itinerary com-
bination was assumed to be fully known.

Ongprasert (2006) studied the seat allocation problem for intercity high speed rail services in Japan. The analysis in-
cludes: revenue maximization, average passenger load factor (APLF), and the number of passenger rejection. The choice
model was estimated using nested logit model where the upper level consists of two transportation alternatives: high speed
rail, and airlines and the lower level consists of fare product alternatives. The passenger choice model is incorporated in the
seat allocation optimization problem which accounts for shared capacity of the railway network. Results show that seat allo-
cation accounting for passenger choice behavior contributes to revenue improvement by offering discounted fare in the off
peak trip.

Chew et al. (2008) developed a joint optimization model of pricing and seat allocation for a single product with a two
period lifetime. Product price was assumed to increase as the time it perishes approaches, while demand is expressed as
a linear function of price. To maximize the expected revenue, a discrete time dynamic programming model was developed
to obtain the optimal prices and the optimal inventory allocations. Based on the concave property of the objective function,
the authors used an iterative procedure to find the optimal solution. The problem was also extended to multiple time peri-
ods, where the concavity property no longer holds; for this case, several heuristics were suggested to solve the problem.

Cizaire (2011) developed several approaches to solve the joint problems of airline optimal fare and seat allocation. The
underlying demand volume is modeled as a function of fares. The analysis proposes both deterministic and stochastic

Table 1
Review summary.
Authors No. of Demand model No. of time Multiple  Competitor Joint pricing/ Simultaneous
product > 1 period > 1 legs seat allocation optimization
Weatherford v Linear function of price with X X X Vv Vv
(1997) cross elasticities
Kuyumcu and Vv Normally distributed demand x V4 x Vv x
Garcia-Diaz
(2000)
Bertsimas and de V4 Function of price V4 v X Vv x
Boer (2002)
Cote et al. (2003) v Constant x Vv v Vv X
Ongprasert (2006)  / Nested logit V4 v Vv Vv x
Chew et al. (2008) X Linear function of price Vv x X Vv x
Cizaire (2011) v Function of price Vv x x Vv V4
This research X MNL and LC choice models, log- / Vv X v Vv

linear demand functions
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approaches to model demand; in particular, heuristics were developed to solve the stochastic problem. The problem consid-
ers a multiple products, multiple time periods without network considerations.

In Table 1, we present a summary of the studies reviewed in this Section and we compare them to the study we propose.
Comparisons is based on the number of products and time periods accounted, the presence of a competitor, the number of
legs in the network, the approaches used to model demand and to optimize the problem of pricing and seat allocation.

3. Research framework

The proposed optimization framework solves a joint pricing and seat allocation problem for revenue management. The
model system accounts for both passengers’ response to RM policy and for demand volumes. The passenger choice models,
estimated with discrete choice methods, predict the timing in which passengers purchase the ticket as a function of fare and
other trip attributes (Section 4). The demand functions account for passengers deciding not to travel with this service or for
induced demand due to advantageous fare policy. Passenger volumes are estimated using log-linear regression, where inde-
pendent attributes are fare and trip attributes (Section 5). The passenger choice models and the demand functions are incor-
porated into a RM revenue optimization system that maximizes expected ticket revenue per each train trip in a network
setting (Section 6).

4. Passenger choice model

In this section, we propose a disaggregate choice model for ticket purchase timing decision, based on the assumption that
each individual purchases the ticket at the time that maximizes his/her utility. Given that this study is based on confirmed
booking data, we assume that the mode choice decision has already been made by the passengers. Thus, the proposed model
aims to capture the passengers’ purchase timing decisions as a function of booking time and trip specific attributes.

4.1. Sample selection

The analysis is based on ticket reservation data for intercity passenger trips registered by a railway operator in March
2009. To reduce the complexity of the problem we consider here just northbound trips and coach class passengers which
constitute the predominant part of the market (92%). Only confirmed reservations which contribute to the actual revenue
are retained for the modeling exercise; the final dataset is constituted by 110,828 records.

Fig. 1 represents the number of reservations by number of days before departure. Data indicate that about 98 percent of
the passengers make the reservation no earlier than 30 days before the departure date. The majority of the passengers book
the ticket about one week before departure and a very high portion of passengers book the ticket within 2 days before
departure.

Fig. 2 represents fare distribution by number of day before departure in major markets (Station 16 to Station 8, and Sta-
tion 8 to Station 1). These two markets account for more than one third of the passenger demand in the northbound direc-
tion. It shows that fares primarily increase as time approaches departure. The same fare pattern is also observed in other
markets.

The railway service includes 16 stations; which have been aggregated into 4 groups based on their geographical location
as shown in Fig. 3. Stations in each group belong to the same metropolitan region and it is reasonable to assume that pas-
sengers’ behavior is similar within these areas. Ten models are estimated for trips between and within the station groups;
markets are segmented based on trip distances: long, medium, and short. According to a number of studies in travel demand
modeling, travelers’ behavior in long-distance journeys differs substantially from routine journey patterns or short trips
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(Rohr et al., 2009). Due to space limitation, we only show estimation results for a long distance market from station group 4
to station group 2; more details on market segmentation and choice model estimation can be found in Hetrakul and Cirillo
(2013).
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4.2. Choice set generation

The fare of the railway service considered varies depending on departure time of day, day of week, how early the reser-
vation is made in advance, and customer demand for each departure. Passengers decide when to purchase the ticket based
on fare variation over the sale horizon and personal consideration about their trip. Since the data indicate that 98 percent of
the tickets were purchased within 30 days before departure (Fig. 1), we assume that the choice set is constituted of 31 days,
from 30 days before departure (booking day 1) until departure date (booking day 31). Based on the data set, for each reser-
vation, we can only observe fare on the day ticket is purchased but not on other days in the sale horizon. To accommodate
choice modeling, fares on other days in the sale horizon are approximated from the actual data by using averaged fare for
each booking day in the sale horizon from the monthly data. The choice model is estimated using multinomial logit (MNL)
and latent class (LC) formulations.

4.3. Multinomial logit (MNL) model specification

The independent variables that enter the final models are fare ($) and advance booking. Fare and advance booking vari-
ables are aimed to capture passenger tradeoff behavior between early booking with cheaper fare and late booking with high-
er fare. The model specification includes different price coefficients across booking periods in order to accommodate the
assumption that passengers have different price sensitivities over the sale horizon. The 31 booking days are grouped into
six booking periods such that booking days within the same booking period have approximately the same number of reser-
vations. These six booking periods (k) are: (1) Booking day 1 to booking day 11, (2) Booking day 12 to booking day 20, (3)
Booking day 21 to booking day 25, (4) Booking day 26 to booking day 29, (5) Booking day 30, and (6) Booking day 31. The
resulting utility of passenger i booking the ticket on day j can be expressed as:

Ul(]) = (ﬁadvbk X advbkj) + (ﬂ}care ><farej) + &jj (1)

where the independent variables and their associated index are: j=Booking day, je€{1,...,31}; k = Booking period,
ke{1,... 6}; advbk; = number of day from booking day j to departure; fare; = fare of booking day j ($); ¢; = a mutually inde-
pendent noise term of individual i on choice j following a Gumbel distribution.
The probability of passenger i booking on day j can be calculated by using the logit probability formulation as:
Pr(bkday;) = —XPLVi0) 2)
> exp[Vi(l)]

where Vj(j) and V{(I) are deterministic utility (without the term ¢;) of alternative j and I respectively.
4.4. Latent class (LC) model specification and estimation

In latent class model specification, we aim at overcoming the lack of individual specific variables by segmenting passen-
ger behavior by trip characteristics. Passengers traveling at particular periods (i.e. time of day or day of week) are believed to
be relatively homogeneous in their characteristics. In latent class model, let i represents individual and j represents alterna-
tive from 1, ...,J in the choice set C. The model form can be written as:

S
Pi(jlXm, Xc) = > P(SIXm)P(jXc,S) VjeC 3)
s=1
where s is class index; {1, ..., S}; Xy is class membership explanatory variable; Xc is class specific choice model explanatory
variable.
The utility function of alternative j given the customer i is in the class s can be written as:

Uj = XgiBc + & (4)
The class specific choice probability of alternative j can be expressed as:
. eXasbes .
P(j|Xg,S) = W VseSVjeC (5)

where B¢ are the unknown parameters of the class-specific choice model. The utility function of customer i belonging to
class s can be written as:

Uis = XM,sﬁM + &is (6)
The probability of belonging to the latent class s can be written as:

eXmsbu

Zi] eXmsbu

P(s|Xmp) =
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where g, are the unknown parameters for class membership model. Class specific choice model specification of LC includes
fare ($) and advance booking. The utility of choice j can be written as:

Ui(j7 k) = (ﬁadubk X advbkj) + (ﬁ}fare ><farej) + Si] (8)

For the class membership model, other elements of the booking data are extracted to segment demand and capture het-
erogeneity of behavior across passenger in the class membership model which are:

Departure time of day: Dummy variables are used to indicate whether the trip is taken on a particular time of day. We use
six departure times (Jin, 2007) for the intercity trip which are (1) early morning (0:00 am-6:29 am), (2) a.m. peak (6:30 am-
8:59am), (3) a.m. off-peak (9:00am-11:59 am), (4) p.m. off-peak (12:00 pm-15:59 pm), (5) p.m. peak (16:00 pm-
18:29 pm), and (6) evening (18:30 pm-23:59 am). Five departure times of day (except evening) are used for the class mem-
bership model.

Departure day of week: Dummy variables are used to indicate whether the trip is taken on a particular day of week; this
results into six dummy variables for the class membership model, one for each day of the week (except Sunday).

Thus, the utility function of customer i belonging to class s has the form:

5 6
Ui(s) = Cs+ ) (Brop x TOD:) + ) _(Bhow x DOW)) + & (9)
t=1 d=1

For the choice model estimation, the MNL model is estimated with AMLET (Another Mixed Logit Estimation Tool) (Bastin,
2011). The LC model is estimated with Latent Gold Choice 4.5, a software package by Statistical Innovations specifically de-
signed for latent class choice modeling (Vermunt and Magdison, 2005).

Estimation results relative to MNL and LC models for the long distance market are shown in Table 2. Fare coefficients are
all negative (as expected) for the MNL model and for almost all the time periods considered in the LC specifications; positive
values for the fare are not particularly significant and are left in our final specification for consistency. Regarding class char-
acteristics, we found higher WTP for purchase delay in class 1 (average $46.17 per day) than class 2 (average $13.86 per day)
for the majority of the booking periods, indicating that passengers from class 1 are willing to pay more for the possibility to

Table 2
Choice model estimation of selected market (long distance market).
MNL LC

Choice Model Class1 Class2

Variable Est T-Stat Variable Est T-Stat Est T-Stat

advbk -0.181 —52.400 Advbk -0.139 -21.091 —-0.899 —18.162

fare.period1 —0.004 -5.100 fare.period1 0.000 0.111 0.014 1.560

fare.period2 —-0.010 —18.600 fare.period2 —0.003 -1.684 —0.082 —2.069

fare.period3 -0.011 —24.200 fare.period3 —0.005 -2.778 —0.049 -5.557

fare.period4 —0.009 —22.400 fare.period4 —0.001 -0.737 —0.069 -7.931

fare.period5 —0.005 -11.700 fare.period5 0.003 1.789 -0.077 —8.052

fare.period6 —0.002 —6.200 fare.period6 —-0.010 —4.348 —-0.059 —6.941
Class Model Class1 Class2
Class Size 0.619 0.381
Variable Est T-Stat Est T-Stat
Intercept 0.181 4.845 -0.181 —4.845
Monday —0.402 —14.288 0.402 14.288
Tuesday -0.338 -11.586 0.338 11.586
Wednesday -0.375 -11.908" 0375 11.908
Thursday —0.286 -9.502 0.286 9.502
Friday -0.213 —7.690 0.213 7.690
Saturday -0.019 -0.433 0.019 0.433
Early morning 1.085 19.204 —-1.085 —19.204
AM peak 0.985 22.737 —-0.985 -22.737
AM off peak 0.474 15.353 -0.474 —15.353
PM off peak 0.096 3.491 —0.096 —3.491
PM peak 0.113 4.036 -0.113 -4.036

No. of observation 37,373 No. of observation 37,373

Rho-squared: 0.2932 Rho-squared: 0.3034

Adjusted rho-squared: 0.2931 Adjusted rho-squared: 0.3032

Log-likelihood at optimal -90,711 Log-likelihood at optimal —89,402

Log-likelihood at zero —128,338

Log-likelihood at constant -90,487

" Statistically significant at 5% significance level.
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change their travel plans. Based on this assumption, passengers in class 1 are believed to be business oriented travelers
which account for 61.9% of this market; while the remaining passengers are mostly travelling for leisure. More specifically,
the class membership model indicates that passengers departing from early morning to AM peak are predominantly class 1.

In this study we present results for a two class membership model only; models with up to six classes have been esti-
mated and their goodness of fit compared. The model with five classes was found to be superior to the others; however, gi-
ven the difficulty of applying the optimization framework proposed to five classes we decided to continue our analysis with
two latent classes.

4.5. Model validation

To compare the prediction capabilities of the models, we perform the out of sample validation for the long distance mar-
ket. The dataset (37,373 observations) is divided into two groups. The first group consists of approximately 80 percents of the
data (30,125 observations) containing passengers traveling from the 1st day to 25th day of the month. Departure day was
chosen as a cut point because we assumed that data from the first group is obtained prior to the second group. The model is
re-estimated using data of the first group and the results are applied to predict the decision of the second group which con-
tains passengers who traveled on day 26th to 31st of the month (7248 observations). The prediction capabilities of the four
models are compared in Table 3. The root mean square error (RMSE) is used as the measure of error.

Based on Table 3, LC model results in the least error with the root mean square error (RMSE) of 54 compared to RMSE of
MNL which is 65.

5. Demand function

In this section, the demand function to predict the passenger volume for each origin destination pair is estimated. The
dataset for aggregate demand estimation is the same used for the disaggregate choice model of ticket purchase timing

Table 3
Out of sample validation for long distance market.

Choice Actual MNL LC

Day1 42 8 11
Day2 21 10 13
Day3 25 12 15
Day4 23 15 18
Day5 32 18 20
Day6 42 22 24
Day7 45 26 28
Day8 41 32 32
Day9 60 39 38
Day10 50 48 45
Day11 50 59 57
Day12 58 29 37
Day13 66 35 43
Day14 95 43 50
Day15 61 52 58
Day16 86 62 67
Day17 103 73 77
Day18 86 86 89
Day19 73 102 102
Day20 88 120 118
Day21 133 119 103
Day22 143 139 123
Day23 148 166 154
Day24 254 198 204
Day25 257 237 298
Day26 261 329 337
Day27 459 394 402
Day28 608 471 490
Day29 503 557 617
Day30 1196 1373 1390
Day31 2139 2374 2188
Total 7248 7248 7248

RMSE 65 54
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decisions. We adopt a log-linear regression type for its desirable theoretical and practical properties; log-linear form restricts
the estimated passenger demand (dependent variable) to be strictly positive and bounded at zero.

5.1. Specification

The independent variables which enter the final model include the intercept, the square of the advance booking (advbk?),
fare (fare), weekend dummy (wknd) indicating whether the departure day is on weekend, and booking period specific inter-
cepts (denoted in Section 2.3) indicating whether the departure day is in a particular booking period. The square of the ad-
vance booking is motivated from the non-linear relationship between advance booking and number of passenger booking
observed in the data. The weekend dummy accounts demand variation by departure day of week. The specification of the
log-linear demand function can be expressed as follows:

6
log[Doa(j)] = cto + (Otadubisq X advbka) + (Glare x fare;) + (Gtwina x Wknd) + Z(ak x bkperiod;) + ¢ (10)
k=1

6
Doa(j) = exp {oco + (Cladubisq X advbka) + (Glare x fare;) 4 (Gtwina x Wknd) + Z(ack x bkperiod;) + 8} (11)

k=1

where D,4(j) is the number of reservation on booking day j for origin o destination d; ad Ubka the square of the advance book-
ing for booking day j; fare; the average fare ($) of booking day j for the observed departure day; wknd the weekend dummy (1
if departure day is weekend, O otherwise); bkperiod; the booking period dummy (1 if booking day j is in period k, O other-
wise); oo the intercept; ¢ is the error term.

The daily passenger demand for each origin destination pair is the summation of passenger reservation on each booking
day j over the sale horizon:

31
Doa =Y Doalj) (12)
=
Example of the demand function estimation is shown in Table 4.

6. Optimization procedure

Our optimization procedure incorporates both the passenger choice model in Section 4 and the demand function pre-
sented in Section 5. The framework assumes that the railway operator maximizes the expected revenue for each train trip
and proposes fare strategy which varies on a daily basis. The formulation also allows for pricing and seat allocation to be
solved simultaneously. The railway service in consideration departs hourly from 5:00AM to 7:00PM. In this analysis, we fo-
cus on trains that depart from the south end station at four different departure times which are: 5:00AM., 9:00AM., 1:00PM.,
and 4:00PM. on Friday, March13, 2009. These four departure times (named Train#1 to Train#4) are selected to represent
railway traffic at different time periods across the day.

Table 4

Estimated demand function of OD (9,4).%
Variable Coeff Std Err. T-Stat P>|t| [95% Confidence interval]
advbk? —-0.0018 0.0003 —6.46 <0.001 —0.0024 —0.0013
Fare —-0.005 0.0015 -3.36 0.001 —0.0079 —-0.0021
Wkndmy -0.2318 0.0664 -3.49 0.001 -0.3622 -0.1014
Period 1 —3.3826 0.2444 -13.84 <0.001 —3.8623 -2.9029
Period 2 -3.2735 0.1811 —18.08 <0.001 -3.6289 -2.9181
Period 3 —2.8051 0.1696 -16.54 <0.001 -3.138 —2.4723
Period 4 —1.8583 0.169 -10.99 <0.001 —2.1901 -1.5265
Period 5 -0.7223 0.2119 -3.41 0.001 -1.1381 —0.3065
Constant 6.4649 0.3018 21.42 <0.001 5.8726 7.0572
No. obs 886 R-squared 0.657
F(8,877) 209.65 Adj R-squared 0.654
Prob > F 0 Root MSE 0.834

@ Station number is based on station renumbering in Fig. 4.
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6.1. Problem setting

The problem is formulated to optimize ticket revenue of coach class passenger for each train trip from the south end to
the north end stations. This railway network has a total of 16 stations. However, in our optimization problem we exclude
seven stations, because passenger demand in these markets is low and insufficient for estimation. The remaining nine sta-
tions are shown in Fig. 4, and are renumbered into station 1 to station 9. The optimization focuses on these remaining sta-
tions; seats currently occupied by the excluded stations and seats currently empty (Y) are not allowed to contribute to the
revenue. These seats are extracted from the total seat capacity (Z) in the constraint. The decision variables are: fare for each
origin destination pair on each booking day over the sale horizon (fare! ;) and the fraction of demand to be accepted for each
origin destination pair (oq).

6.2. Demand conversion

The proposed demand function provides the total number of passengers that intends to travel. Given that the optimiza-
tion framework is solved independently for each train, the passenger demand estimated has to be segmented by departure
time. To this scope, conversion factors are obtained from historical data and by observing the distribution of daily passenger
demand across different departure times of the day. Our analysis focuses on the train which departs from the south end sta-
tion (station 9) at four different departure times. The corresponding departure time (t) of each intermediate station which
loads passenger into each train is shown in Table 5.

The conversion factor is denoted as f!, where t represents departure time, o represents origin station, and d represents
destination station. The passenger demand by departure time can be computed from estimated demand function as follows:

t
Doy = foa % Do (13)
where D!, is the number of passenger demand from origin o to destination d at departure time t; f!; the conversion factor

from daily demand to demand by departure time; D,q is the estimated passenger daily demand from origin o to destination d
obtained from the demand function.

—> [ stationt |
—> [ station2 |
C——> | Station3
—>
—>
—> | station6
—> [ station? |
—> [ stations |
—> [ station9 |

* Indicates excluded stations.

Fig. 4. Station renumbering.
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Table 5
Departure time for each origin.

Departure time (t)

Origin Trian#1 Trian#2 Trian#3 Trian#4
9 5:00AM 9:00AM 1:00PM 4:00PM
8 5:30AM 9:30AM 1:30PM 4:30PM
7 6:35AM 10:35AM 2:35PM 5:35PM
6 7:19AM 11:19AM 3:19PM 6:19PM
5 7:30AM 11:30AM 3:30PM 6:30PM
4 8:00AM 12:00PM 4:00PM 7:00PM
3 8:44AM 12:44PM 4:44PM 7:44PM
2 10:55AM 2:55PM 6:55PM 9:55PM

6.3. Problem formulation

6.3.1. Notation

n Number of stations (9 stations over the network)

0 Boarding station index

d Alighting station index

DYy Passenger demand from origin o to destination d at departure time t

Ood Acceptance ratio; a fraction of demand (D!,) to be accepted

faré, Fare for origin o destination d on booking day j

Z Total coach class seat capacity; equal to 260 (Railway Technology, 2011)

Y Number of seats currently occupied by the excluded stations and seats currently empty
revenue Revenue per train trip ($) from south end to north end station

Pr (jlod) Probability that passenger purchases the ticket on booking day j for origin o destination d

6.3.2. MNL fare and seat allocation optimization
The problem is formulated as follows:

n-1 n 31 .

max revenue = > |taDpy»_{Pr(jlod)fare},} (14)

fare! |24 0=1d—o0+1 =1
Subject to:
e Capacity constraint

1 n
SN oDy <Z-Y (15)
o=1d=I+1
0<op <1 foralll={1,....,n-1} (16)

e Fare policy constraint

fare,, < fare), < fare, (17)

The purchase time probability Pr (jlod) is equivalent to the passenger share that purchases the ticket on the considered
booking day. A MNL choice model is used in this optimization framework, consequently the choice probability is
calculated as:

exp(V;)

Pr(jlod) =
iLexp(Vi)

(18)

where V; is a deterministic utility of booking day j of origin o destination d. Vi is a deterministic utility of booking day k of
origin o destination d.
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Station] o
Station2
Station3
Station4

Station5

Station6 1+

Station7 ] }
l

Station8 {
[
Z Z @oDly <Z—Y
1d=l+1

o=1d

Station9

Fig. 5. Capacity constraint.

6.3.2.1. Objective function. The first two summations accounts for the passenger demand departing from origin
o€{l,..,n— 1} todestination d € {2, ..., n} within the same train trip. Note that this index has different value from the sta-
tion number. The value o = 1 represents the south end station (station9) and increases up to o =9 for the north end station
(station1). The index t is used to represent the corresponding departure time for each station which loads passenger into this
train. The third summation computes the expected ticket revenue for each origin destination pair and is a weighted average
of fare (farel ;) and probability of being purchased (Pr (jlod)) over the entire sale horizon. The fraction of demand which can
be accepted for each origin destination pair is denoted as ¢yg.

6.3.2.2. Constraints. The capacity constraint restricts the number of accepted passenger in each segment to be within the
allowable seat capacity which is equals the total seat capacity (Z) subtracted by the seats currently occupied on the ex-
cluded stations and seats currently empty (Y). The decision variable o, is an acceptance ratio which is used to control the
number of accepted passengers to be within the allowable seat capacity. Fig. 5 represents the capacity constraint, where
the line connecting each origin destination pair represents the passenger demand. Fare policy constraint restricts the fare
to be within the bound (fare; and fare}, as lower bound and upper bound respectively). The fare bound is obtained from
the dataset based on the maximum and minimum average fare for a particular time of day, and day of week for each
departure. This fare bound is also adjusted to ensure that fare for shorter distances does not exceed the fare for longer
distances.

6.3.3. LC fare and seat allocation optimization
The application of the latent class (LC) choice model in the fare optimization allows for a discrete segmentation of pas-
senger taste heterogeneity. Given the choice probability of LC model as:

Pr(j|Xum, Xc) = zs:Pr(s\XM)Pr(ﬂXC,S); vjieC (19)

s=1

where s is class index; {1, ..., S}; Xy is class membership explanatory variable; Xc is class specific choice models explanatory
variable.
The corresponding optimization problem can be expressed as:

n-1 n 31 S i
max revenue =y {uode,dZ{ZPr(QXM)Pr(dXC,S, od)fare’odH (20)
farei)dv%d 0=1d=0+1 j=1 {s=1

The latent class optimization has the same constraints as the MNL optimization.

7. Optimization results

The optimization problem is solved as a nonlinear programming problem with LINGO 12.0, the optimization software by
Lindo System Inc. (Lingo System Inc, 2010). The nonlinearity of this problem is due to the exponential term in the logit choice
probability function (MNL and LC). Results from the optimization exercise are shown Table 6. First we compare the number
of accepted passengers (d,q x D.;) by the modeling system to the actual demand (last row of Table 6). Results show that the
proposed strategy increases the total number of passengers in all the four trains. Based on our assumption that limits the
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number of seats to those occupied in the actual situation, we can conclude that the optimal solution suggests accepting more
short-haul passengers thus allowing for the same number of seats to serve more passengers. The acceptance ratio (ogp) be-
tween the MNL and LC are also compared; the rates obtained with the two models are similar. Finally, in Table 6 we show the
revenues per each train trip across the four train departures. Results indicate that the RM strategy can improve significantly
revenues from low traffic trains (Train#1, 2, and 3 from 15.80% to 24.96%) and from high traffic markets but in a less remark-
able entity (Train#4 from 13.82% to 16.24%). When comparing LC and MNL, it was found that the optimization problem
which incorporate LC choice model generally provides less revenues. A possible explanation for this behavior can be derived
from the fact that LC models enable passenger in different class to respond to fare differently. Thus, the behavior of the price
sensitive passenger can be revealed more realistically with LC than with MNL which assumes homogeneity across popula-
tions. Based on the results obtained, two markets are selected and detailed analyses in terms of pricing and seat allocation
are provided in the next two sub-Sections.

7.1. Pricing result

The two ODs under analysis are (9,7) and (4,1) which loads passengers into Train#2 and Train#4. OD (9,7) departs from
the south end station at 9AM and 4PM respectively, while OD (4,1) departs at 12PM and 7PM.

Results in terms of fare for OD (9,7) for the 9AM departure time are shown in Fig. 6. The results from MNL and LC models
are compared to the existing fare, which is the representative fare pattern for a particular departure time of day and day of
week obtained from the real data. In general, the optimization using LC model provides a stepwise pattern which responds

Table 6
Revenue comparison ($).

(0,D) 5AM (Train#1) 9AM (Train#2) 1PM (Train#3) 4PM (Train#4)

Exist MNL LC Exist MNL LC Exist MNL LC Exist MNL LC
(9,8) 0 28 9 396 190 64 0 0 0 171 86 31
(9,7) 0 1013 994 764 6907 6888 1433 7326 7326 7521 13,310 13,310
(9,6) 0 0 0 0 1882 1686 894 0 0 7244 4317 4317
(9,5) 0 0 1 1704 0 0 1808 0 0 4433 1863 1849
(9,4) 1203 0 0 9589 3709 3606 3575 0 0 14,529 19,035 18,810
(9,3) 137 0 0 183 0 0 0 0 0 1959 0 0
(9,2) 0 0 0 332 0 0 396 0 0 222 0 0
9,1) 149 0 0 694 0 0 0 0 0 422 0 0
(8,7) 0 287 37 244 0 48 690 1123 1085 132 1492 1145
(8,6) 0 0 0 0 0 43 205 655 655 390 871 770
(8,5) 0 0 194 0 99 72 212 733 731 191 975 943
(8,4) 95 0 0 1717 2186 1698 2038 0 0 2693 0 0
(8,3) 0 0 0 212 0 62 0 0 0 827 0 0
(8,2) 0 0 0 0 0 0 0 0 0 0 0
(8,1) 0 0 0 124 0 0 223 0 0 223 0 0
(7,6) 0 0 0 0 0 0 566 658 658 354 584 250
(7,5) 86 456 395 114 357 298 715 688 688 272 611 491
(7,4) 2064 4225 4086 1860 8663 8879 5025 12,461 12,461 2790 9088 9153
(7,3) 273 0 0 152 0 0 1] 0 0 760 0 0
(7,2) 0 0 0 107 0 0 0 0 0 386 0 0
(7,1) 274 0 0 1449 0 0 847 0 0 389 0 0
(6,5) 0 0 0 0 125 84 0 199 200 0 0 0
(6,4) 0 0 0 0 334 278 0] 0 0 0 0 0
(6,3) 0 0 0 0 290 272 0 0 0 0 0 0
(6,2) 0 0 0 0 0 0 140 0 0 124 0 0
(6,1) 0 0 0 0 0 0 281 0 0 298 0 0
(5,4) 32 336 342 0 83 35 0 0 0 0 0 0
(5,3) 0 488 479 0 313 224 0 0 0 0 0 0
(5,2) 93 0 0 124 0 0 0 0 0 140 0 0
(5,1) 795 0 0 978 0 0 520 0 0 523 0 0
(4,3) 71 220 162 0 259 190 0 0 0 71 246 202
(4,2) 2366 3396 3361 2263 3429 3362 5293 6747 6830 3061 4320 4251
(4,1) 4781 4416 4331 5430 6103 5896 10,629 12,364 12,278 7117 9865 9794
(3,2) 396 0 0 370 0 0 0 0 0 0 0 0
3,1) 104 978 956 343 1299 1350 0 0 0 119 0 0
(2,1) 70 181 174 25 227 135 90 243 278 75 100 57
Tot. revenue 12,989 16,023 15,520 29,174 36,456 35,169 35,580 43,197 43,191 57,436 66,761 65,372
% Improve 23.36 15.80 24.96 20.55 21.41 21.39 16.24 13.82

Tot. passenger
Accepted 131 166 166 238 334 336 255 306 306 358 401 399
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more realistically to passenger behavior; this is consistent with expectations that assume price sensitivity to be different
across the sale horizon. The use of LC choice model also enables differentiating passengers into two classes (class 1 and class
2) depending on the train departure time.

Fig. 7 shows the corresponding number of accepted passengers in OD (9,7) on each day over the sale horizon. The re-
sponse of passengers demand in both MNL and LC are realistic; when the new fare is lower than the existing (from booking
day 25 onward), the passenger demand increases from the existing significantly.

A summary of the results obtained for these two markets in terms of accepted passengers and corresponding revenue
across different departure times is provided in Figs. 8 and 9 respectively.

The proposed seat allocation strategy also influences capacity distribution for each segment in the network. We observe
for example, that the proposed shares of capacity increase slightly for ODs (9,4), (4,2), and (4,1) and significantly for ODs (9,7)

——MNL —+—LC + Existing

140
120 —
P N

100 va P
£ 8 : :
5 6
=
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20

0
12345678 91011121314151617 18192021 2223 24252627 2829 30 31
Booking day
Fig. 6. OD (9,7) 9AM departure fare.
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Fig. 7. OD (9,7) 9AM departure demand.

= Existing demand
= MNL demand
= LC demand

No. of accepted passengers
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Fig. 8. Total accepted passengers of major markets.
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Fig. 9. Revenue ($) of major ODs.

and (7,4). On the other hand, the proposed shares of capacity for ODs (9,6) and (9,5) decrease. This occurs across all the seg-
ments utilized by these markets.

8. Conclusions and future research

This paper has proposed an empirical study based on ticket reservation data for intercity passenger railway trips. We have
presented a methodological framework that incorporates latent class models for ticket purchase timing decisions in a rail-
way pricing and seat allocation problem. The approach allows RM strategy to explicitly account for passenger taste hetero-
geneity by classifying passengers into classes based on departure schedules instead of using trip purposes which are not
available in the data used for the analysis. Demand response to fare is explicitly represented by an aggregate log-linear func-
tion and is incorporated into the optimization problem. The RM revenue optimization considers a joint problem of pricing
and seat allocation with the objective of maximizing expected ticket revenue for each train trip. The proposed formulation
allows for simultaneous optimization of pricing and seat allocation while accounting for heterogeneous passenger prefer-
ences. The capacity constraints are determined on the basis of the railway network characteristics which allow capacity re-
sources to be efficiently utilized across the network.

Results obtained have illustrated the impacts that the strategy derived from the optimization procedure has on the exist-
ing conditions in terms of fare, capacity distribution, and revenue. Seat allocation policy results into more short-haul trips
acceptance, which contributes to greater revenue than long-haul trip with the same seat capacity. The solution from the pro-
posed framework gives a significant revenue improvement from the actual between 16.24% and 24.96% obtained with MNL
and from the actual between 13.82% and 21.39% obtained with LC choice models respectively, depending on the train depar-
ture times. Finally, the optimization system also provides indications on how to redistribute capacity efficiently across the
markets considered. In conclusions, this paper has illustrated how a railway operator can exploit its existing data sources to
better understand the choice behavior of railway passengers and its impact toward RM strategy. In particular, it shows that
accounting for passenger taste heterogeneity based on discrete and continuous segmentation approach results in more real-
istic representation of the passenger behavior in supporting RM strategy.

The following areas indicate possible avenues for future research. The application of methods that allow for continuous
class segmentation (i.e. parametric and non-parametric mixed logit) should be investigated and results implemented into
the optimization framework. Other choice dimensions should be considered in the railway RM problem; for instance, depar-
ture time and departure day choices are important when making ticket purchase decisions. However, for these choice
dimensions, additional data are necessary to construct plausible choice set for each passenger. From an optimization per-
spective, it will be desirable to consider networks with hub and spoke characteristics, which involves the consideration of
station transfers and of more complex capacity constraints. It will also be interesting to optimize ticket revenue over multi-
ple departures simultaneously by accounting for demand shift across different departures.
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