
 

A Combined Optimization Algorithm for Multi-objective Flexible Job 
Shop Scheduling Problem 

Li Li1, Wang Keqi2+, and Yue Qi3 
1,3Information and Computer Engineering College, Northeast Forestry University, Harbin, China 

2Forestry Engineering Automation Discipline, Northeast Forestry University, Harbin, China 

Abstract. In order to exert the advantage of ant colony algorithm and particle swarm optimization 
algorithm respectively, a method combined the two algorithms was designed for solving multi-objective 
flexible job shop scheduling problem in this paper. The proposed algorithm was composed by two phases. 
The first phase made use of the fast convergence of PSO to search the particles optimum position and made 
the position as the start point of ants. In the second phase, the traditional ant colony algorithm was improved 
and was used to search the global optimum scheduling according to its characters of positive feedback and 
structure of solution set. The combined algorithm was validated by practical instances. The results obtained 
have shown the proposed approach is feasible and effective for the multi-objective flexible job shop 
scheduling problem.  
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1.  Introduction  
Job shop scheduling problem is a method of resource allocation for simple-objective or multi-objective 

optimization scheduling with constraints. Job shop scheduling problem is a sub-set of scheduling problem, 
and it is a NP hard problem for its large number of constraints. Classical job shop scheduling problem has 
been paid much attention to and has been studied widely. As an extension of classical job shop scheduling, 
flexible job shop scheduling problem (FJSSP) reduces the constraints on machine. Each operation is allowed 
to be executed on more than one machine from allowed machine set. Multi-objective flexible job shop 
scheduling problem (MFJSSP) is more complex and closer to real production than classical job shop 
scheduling problem. Bruker and Schile carried out the research earlier [1]. It has become an important research 
point for CIMS to obtain the optimization solution of MFJSSP. 

ACA is proposed by Italian researcher Dorigo[2] in1991. This algorithm can find better solution quickly 
with characters of positive feedback and powerful capability of distributed transaction.Today, applying ACA 
in solving multi-objective combination optimization problem becomes a very worthy subject of study. PSO 
algorithm is proposed by Eberhart[3] in 1995. It has a wide range of global search capability. The convergence 
speed of PSO is fast. It has scalability and it is easy to integrate with other algorithms. But the local search for 
the latter part of PSO algorithm is poor and the use of feedback information is not sufficient. 

In this paper, we improve traditional ACA and make full use of the fast convergence of PSO and the 
positive feedback of ACA to combine the two algorithms in solving MFJSSP. 

2. Formulation of multi-objective flexible job shop scheduling problem  
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For FJSSP, there are several objects. The first is based on production time, such as makespan, total 

workload, critical machine workload, etc.; The second is based on date of delivery, such as cost of advance 
and/or delay; The third is based on cost, such as cost of starting machines, changing line, processing, overtime 
pay, compensation for overdue, stock on line, scheduling management, etc.. These objections are always 
conflict with each other in real production. We can design different object and its weigh according to our need 
for real production.  

In this paper, the objects for FJSSP include makespan (F1(C)), total workload (F2(C)) and critical machine 
workload (F3(C)).  

Formulation of FJSSP can be described as follows. 
Machine set M=｛M1, M2, …, Mm｝; 
Job set J=｛J1,J2,…,Jj｝; 
The operations of each job and the processing time of each operation on machines are given; 
The start time, finish time and processing time of operation Ji (i∈[1,j]) on machine m are noted Stjim, Ftjim 

and Δtjim; 

j i m j i m j i mF t = S t + tΔ                                                   (1)                     
The object function is as (2). 

( ) ( ) ( ) ( )1 1 2 2 3 3F C = w F C + w F C + w F C× × ×                                           (2) 

Other constraints are as follows. 
• Only one job can be carried on one machine at the same time.  
• Order constraints only exist in operations of the same job.  
• Once an operation starts, it can not be terminated before it finishes. 
•  Different job has the same priority.  
• Start and operations changing time on machine are neglected. 
The algorithm optimization objec is to obtain a solution to make the object function value minimum with 

satisfying the constraints. 

3. PSO ALGORITHM 
In PSO algorithm, each particle has its position x, velocity v and reasonable solutions. The best solution of 

particle and swarm is saved as pid and pgd. The update rule of v and x is as (3) and (4). 

))()(())()(()()1( 2211 txtprctxtprctvwtv idgdidididid −+−+×=+                                         (3) 

)1()()1( ++=+ tvtxtx ididid
                                                  (4) 

The flow diagram of PSO algorithm is described as figure 1.  

4. Traditional ant colony algorithm 
The theory of ant colony algorithm is described as follow: ants leave a kind of chemistry material named 

pheromone when they are looking for food. The shorter ways have more chances to be chosen. So the 
pheromone leaved by ant on these ways becomes thicker and thicker, and the chance of these ways being 
chosen by other ants becomes bigger and bigger, too. At last more and more ants choose the shortest way to 
look for food. ACA looks for the best solution according the information exchange between ants. This 
algorithm can find better solution quickly with characters of forward feedback and powerful capability of 
distributed transaction.  

General structure of ant colony is described as follow: 
• Initialize pheromone trail and parameters; 
• While (terminated condition is not met) do the following steps: 
Construct a solution and save the nodes which have been visited by ant into a tabu table; 

Improve the solution; 
Update the pheromone trail by the solution; 
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• Return the best solution having been found. 

5. The improvement of ant colony algorithm for multi-objective flexible job 
shop scheduling problem 
To get better effect, we improved traditional ACA to solve MFJSSP. 

5.1. Structure of our improved ACA 
 

According to the analysis of FJSSP, we improved ACA. The flow diagram of our improved algorithm is 
described as figure 2. 

5.2. Description of  the improved ACA rule 
1) Allowed se: We name each node Pjim. Taking the problem 4×5[4] as instance, if ants set out from the first 

job, the first node will be P11m and the allowed set is﹛P12m, P21m, P31m, P41m﹜. A new allowed set will be 
constructed according to state transition rule and we can put each operation in an appropriate order.    

2) Solution set: In our algorithm, the number of subsets is defined by the number of jobs. Our algorithm 
will choose the best optimum solution of each subset for the global optimum solution. 

3) State transition rule [6]:q is a random number which satisfies a uniform distribution in the range [0, 1]. 
q0 is a designed parameter and the value is as (5). 

     
)lg(g
)lg(g

m

c
0 =q                                                                                    (5) 

gc is the current iterative generation, and gm is the predefined maximum iterative generation. 
Rule of ant k moves from node x to y is as follow: 
if q<q0 

{ }
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                 (6) 

else select y randomly by Pk(x, y) 
where if y∈Jk(x) 
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⋅∑                          (7) 

Else  k ( x , y ) = 0P                                                     (8) 
From x to y, the pheromone trail is noted t(x, y) and the visibility is noted η (x, y). η (x, y) is the heuristic 

value achieved by operation processing time of node y. η (x, y)=1/Δty. When all operations are scheduled, ant 
finishes its work. 

In this rule, α is the weigh of heuristic value achieved by pheromone trails; β is the weigh of heuristic 
value achieved by operation processing time.  

4) Trail intensities update rule: To avoid ACA falling into local optimum, Thomas Stuetzle[5] brought out 
max-min ant system (MMAS).  

In our algorithm, the pheromone trails are limited to an interval [tmin, tmax]. The insistence of pheromone 
is noted ρ (ρ is a parameter in the range [0, 1]). The pheromone increased on the way from x to y is noted 
Δt(x, y). The pheromone increased by ant k on this way is noted Δt(x, y) k. 

a) Local Update Rule:  
t ( x , y ) = t ( x , y ) + t ( x , y )ρ ⋅ Δ                                   (9)  

k = 1

t ( x , y ) = t ( x , y )
K

kΔ Δ∑                                         (10)  
if ant k moves from x to y 

     
t ( x , y ) k

k

Q
T

Δ =
                                               (11)  

else t ( x , y ) kΔ =0                                                   (12)  
Q is total pheromone; Tk is the object function of ant k. 
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b) Global Update Rule: In ACA, the ant with best object function from the very beginning to now has the 

ability to carry out global update. Global update rule is as (13)-(15): 
t ( x , y ) = ( 1 - ) t ( x , y ) + t ( x , y )ρ ρ⋅ ⋅ Δ                     (13)  

if ant with best value moves from x to y 

     
t ( x , y )

b e s t

Q
T

Δ =
                                            (14)  

else t ( x , y ) = 0Δ                                                     (15)  

Tbest is the best object function which has been found till now. 

 c) Trail Intensities Evaporating Rule: In this paper, tmin and tmax are designed as (16), (17) [7]: 

m a x
b e s t

1t
( 1 ) Zρ

=
− ⋅                                           (16) 

m a x
m i n

tt
5

=                                                            (17) 

Zbest is the best object function we have known till now. To avoid early stagnation state, we limit t(x, y) 
as follows: 

if (1-ρ) t(x, y)> tmax 
t(x, y)= tmax 
else if (1-ρ) t(x, y) < tmin 
t(x, y) = tmin. 

5) Local search: The method of local search in this paper is described as follow: 
Adjust each operation to the machine with the minimal processing time; 
Adjust each operation to the machine with the second minimal processing time; 
Adjust each operation to the machine with the minimal total processing time. 
Select the best scheduling with the most excellent objective function as the scheduling obtained by 

this ant. Carry out the local update of pheromone trails according to this scheduling. 
6) Choose suitable parameters for the improved ACA: In ACA, parameters affect the algorithm 

performance clearly. In order to make our algorithm obtain excellent performance, we design α=1, β=1.2, 
ρ=0.7, Q=80, n=10 for problem 4×5[4] and n=20 for problem 8×8[4]. 

6. Design of the combined algorithm  
To strengthen the search capability for optimal solution and fast convergence of algorithm, we combine 

PSO with the improved ACA. PSO algorithm has the advantage of fast convergence. Our improved ACA has 
capability of positive feedback. The algorithm has two phases. The first phase makes use of the fast 
convergence of PSO to search the particles optimum position and makes this position as the start position of 
ants. The second phase makes use of the merit of positive feedback and solution set proposed by the improved 
ACA to search the global optimum scheduling. 

The flow diagram of our algorithm is as Figure 3. 

7. Data analysis  
To evaluate the performance of our algorithm in solving multi-objective flexible job shop scheduling, we 

carry out tests with problem 4×5 with 12 operations [4] and problem 8×8 with 27 operations [4]. 

7.1. Problem 4×5 with 12 Operations 
This is a total flexibility instance. Figure 4 is the Gantt chart of optimal solution achieved by our 

algorithm. The object function is 14.8 for this problem. The weigh of F1(C), F2(C) and F3(C) are w1=0.5, 
w2=0.2 , and w3=0.3. 

7.2. Problem 8×8 with 27 Operations 
This is an instance of partial flexibility. Table Ⅰ shows the effectiveness comparison of our algorithm 

and other algorithms [4], [7]. w1=0.4,w2=0.2,w3=0.4. 

TABLE I.  EFFECTIVENESS COMPARISON ON PROBLEM 8×8 WITH 27 OPERATIONS  
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Algorithm  Function 
F(C) F1(C) F2(C) F3 (C) 

Temporal 
Decomposition 33.4 19 91 19 

Approach by 
Localization 26.6 16 75 13 

Controlled GA 26.2 16 77 11 
PSO+SA 25.8 15 75 12 
AL+CGA — 15 79 — 
This paper 25.8 14 77 12 

 
Table 1 shows that the algorithm in combination with PSO and the improved ACA proposed in this paper 

is effective in solving the problem 8×8 with 27 Operations. 

8. Conclusion 
In order to obtain optimal solution, we improve ACA and combine PSO with the improved ACA in 

solving multi-objective flexible job shop scheduling problem in this paper. In the part of our improved ACA, 
the number of subsets is defined by the number of jobs, and an effective local search method is applied for 
better solution. We apply trail intensities evaporating rule to avoid the state of early stagnation. Considering 
the scale of real problem, we design reasonable parameters for the balance of global searching capability and 
convergence. Our algorithm makes full use of the fast convergence of PSO and the positive feedback of ACA 
to strengthen the search capability for optimal solution and quick convergence of algorithm. Based on the 
results analysis obtained by tests, our algorithm is proved to be feasible and effective for multi-objective 
flexible job shop scheduling problem. 
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Fig.1: PSO algorithm flow diagram 

 

 
 

Fig.2: The improved ACA  flow diagram
 

 
Fig.3: The flow diagram of combined algorithm 

 

Fig.4: The gantt chart of optimal solution obtained by 
our algorithm
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