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The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes
and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal
accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated
to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM
receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitiv-
ity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity
progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues.
The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM
limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused
on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little
attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cog-
nate cell surface receptors. This review will address what is currently known about the roles played by
adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how
excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to
develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction cular disorders, and cancers [1]. Insulin resistance is a pathological
The global epidemic of overweight and obesity is escalating and
has become a major health challenge. Obesity is implicated as a
cause of many devastating diseases, including diabetes, cardiovas-
condition closely associated with obesity, which may underlie the
links between obesity and chronic metabolic diseases [2]. Adipo-
cytes undergo dramatic expansion during the development of obe-
sity. At the same time, the adipose tissue of obese individuals
becomes fibrotic in both subcutaneous and omental fat depots
[3,4]. Of note, obese insulin-resistant subjects with a similar body
mass index display increased fibrosis in adipose tissues than obese
insulin-sensitive subjects [5]. These studies suggest that fibrosis in
the adipose tissue is closely associated with obesity and insulin
resistance. However, how adipose tissue fibrosis occurs and exerts
its metabolic impacts on the pathophysiology of obesity and insu-
lin resistance is unknown. It is suggested that the excess deposition
of extracellular matrix (ECM) components, such as collagens and
osteopontin (OPN), in adipose tissues triggers the necrosis of adi-
pocytes, which attracts classically activated pro-inflammatory
macrophages and causes tissue inflammation and metabolic dys-
function (Fig. 1). In addition to imposing physical restriction on
adipose tissue expansion, excess ECM deposition may cause adipo-
cyte death and adipose inflammation through the signalling via
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Fig. 1. Adipose tissue remodelling during the development of obesity. Adipose
tissues undergo dramatic remodelling during the development of obesity. These
include enlargement of adipocytes, accumulation of extracellular matrix compo-
nents, increased formation of new blood vessels and increased perfusion of
capillaries, and increased infiltration of pro-inflammatory macrophages (M1-like).

2 D. Lin et al. / Biochemical Pharmacology xxx (2016) xxx–xxx
integrins and CD44. In this review, we summarize the recent find-
ings on adipose tissue ECM remodelling and the roles played by
ECM receptors, e.g. integrins, CD44, and CD36. We propose a new
concept that the interaction of adipose ECM molecules with their
cognate receptors expressed not only by adipocytes but also by a
diverse array of cells, i.e. pre-adipocytes, macrophages, and vascu-
lar endothelial cells, should contribute to adipose tissue inflamma-
tion, apoptosis, angiogenesis, and subsequent metabolic
deteriorations in obesity. A similar concept has been proposed in
the biology of the skeletal muscle and liver, which was recently
reviewed elsewhere [6]. Despite a novel perception in the context
of obesity and insulin resistance, ECM–ECM receptor pathways
have been long implicated in the biology of pulmonary fibrosis,
wound healing, and tumour growth [7–9].
2. ECM components in the adipose tissue

2.1. Collagens

Collagens, as the most abundant structural components of the
ECM, not only support tissue architecture but also cell functions,
including cell adhesion, migration, differentiation, morphogenesis,
and wound healing [10]. In adipose tissues, it is known that the
ECM undergoes constant remodelling to allow adipocytes to
rapidly expand and shrink in parallel with weight gain and loss
[11]. Abnormal expression of ECM components, modifiers, and
Table 1
The ECM, ECM modifiers and ECM receptor remodelling in the adipose tissue of obesity a

ECM Collagen I, III, V, and VI
Osteopontin
Hyaluronan
Thrombospondin 1

ECM modifier MMP2, 3, 11, 12, 13, 14, 19
MMP7, 16, 24
MMP9
MMP15
TIMP-1
TIMP-2
TIMP-3
TIMP-4

ECM receptor b2 integrin (aLb2, aMb2, aXb2, and aDb2)
CD44
CD36
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receptors in adipose tissues is a hallmark of obesogenic adipose tis-
sue remodelling (Table 1). Excessive collagen deposition in adipose
tissues has been seen in various animal models of metabolic dis-
eases. In genetically obese and diabetic db/db mice, the mRNA
levels of a group of collagens (mainly types I, III, V, and VI) are
increased in white adipose tissues, and high-fat diet (HFD) further
increases those collagen expressions [12]. Type VI collagen is
highly enriched in adipose tissues, and its gene-targeted deletion
(Col6a1) results in less restricted expansion of adipose tissues cou-
pled with a substantial improvement in whole-body energy
homoeostasis [3]. The overexpression of a cleaved fragment of
the a-3 chain of collagen VI (Col6a3), named endotrophin, in mice
stimulates fibrotic collagen deposition in adipose tissues and trig-
gers adipose inflammation and insulin resistance [13]. In obese
humans, the expression of collagen V is increased in adipose tis-
sues that demonstrate a decreased number of capillaries [14].
Increased collagen V is colocalized with blood vessels, and the
addition of collagen V to an angiogenesis assay inhibits endothelial
budding, suggesting an inhibitory role of collagen V in angiogene-
sis [14]. These data suggest that excessive collagen deposition in
the adipose tissue poses physical barriers against adipocyte hyper-
trophy during obesity progression and may also inhibit angiogen-
esis within adipose tissues.
2.2. Osteopontin

Osteopontin (OPN), also known as secreted phosphoprotein 1, is
an ECM glycoprotein expressed in various cell types and tissues
including the adipose tissue [15]. OPN expression is drastically
increased in adipose tissues of HFD-induced and genetically obese
mice as well as obese humans [16]. OPN is highly expressed in adi-
pose tissue macrophages [17]. The genetic deletion of OPN in mice
prevents HFD-induced obesity [18,19] and attenuates macrophage
infiltration in adipose tissues, improving insulin sensitivity [17].
Similarly, neutralization of OPN using a monoclonal OPN antibody
[20] or OPN gene silencing selective to adipose tissue macrophages
[21] in mice suppresses adipose tissue inflammation and insulin
resistance. It is hypothesized that action of OPN is mediated
through engagement of a number of receptors, but particularly
through CD44 and integrin avb3 [15].
2.3. Hyaluronan

Hyaluronan (HA) is a linear glycosaminoglycan consisting of
chemically unmodified repeating disaccharide units of D-
glucuronic acid and N-acetyl-D-glucosamine [22]. HA binds to
cell-surface receptors (CD44 and HA-mediated motility receptor)
nd insulin resistance.

Mice Human References

" (db/db; ob/ob; HFD) " [3,12,14]
" (db/db; HFD) " [16,17]
" (ob/ob; HFD) [24]
" (HFD) " [27,29]

" (HFD, ob/ob, db/db) [41,42]
; (HFD, ob/ob, db/db) [41,42]
; (HFD) " [37,41]

; [37]
" (HFD) [41]
; (HFD males) [64]
; (ob/ob, db/db) [42]
; (HFD) [41]

" (HFD) " [64]
" (HFD) " [86–88]

" [96]
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and influences cellular responses such as proliferation and migra-
tion [23]. HA content is increased in hypertrophic 3T3-L1 cells
and in the adipose tissues of diabetogenic LDL receptor-deficient
and ob/ob mice, possibly due to an increased expression of HA syn-
thase 2 [24]. Increased HA content has been demonstrated to facil-
itate monocyte adhesion and chemotaxis [24]. In contrast, the
reduction of HA by exogenous hyaluronidase inhibits adipogenesis
of 3T3-L1 cells [25]. Moreover, chronic treatment of HFD-fed obese
mice with a PEGylated human recombinant hyaluronidase PH-20
decreases adiposity and adipose inflammation to prevent insulin
resistance [26].
2.4. Thrombospondins

Thrombospondin 1 (THBS1) is a large adhesive ECM glycopro-
tein expressed predominantly in visceral adipose tissues and its
expression is elevated in insulin-resistant, obese humans [27,28].
In mice, HFD acutely induces Thbs1 expression in visceral adipose
tissues and increases the circulating THBS1 level [29]. The genetic
deletion of Thbs1 renders mice protected from adipose tissue
inflammation and insulin resistance [29,30]. Most importantly, a
recent study suggests that circulating THBS1 may induce fibrotic
damage to skeletal muscle and insulin resistance as Thbs1-null
skeletal muscles are protected from HFD-induced collagen deposi-
tion [29]. This is the first study that suggests a potential role of cir-
culating ECM protein in the crosstalk between the adipose tissue
and the skeletal muscle in obesity and insulin resistance. Despite
the important role played by THBS1 in adipose tissue inflammation
and insulin resistance, THBS2 does not seem to play a substantial
role in adipose tissue development and HFD-induced obesity, at
least in mice [31].
3. ECM modifiers in the adipose tissue

3.1. MMPs

Matrix metalloproteinases (MMPs), a family of calcium-
dependent and zinc-containing endopeptidase, are responsible
for the degradation of virtually all ECM proteins [32,33]. MMPs
play an essential role in regulating ECM remodelling in both nor-
mal physiology and diseases [33,34]. MMP family members are
categorized into soluble collagenase (MMP1, -8, -13), gelatinase
(MMP2, -9), stromelysin (MMP3, -10, -11), matrilysin (MMP7, -
26), membrane-type MMPs (MT-MMPs) (MMP14, -15, -16, -17, -
24, -25), and elastase (MMP12) [34]. Dysregulation of MMPs are
implicated in the pathophysiology of obesity and diabetes in
humans [35–37]. Plasma concentrations of gelatinases (MMP2
and -9), two major circulating MMPs, are increased in obese [38]
and diabetic humans [39,40]. The adipose expression of MMP9
positively correlates with the homoeostasis model assessment
index of insulin resistance (HOMA-IR) in obese humans [37].

The specific role played by each MMP in the pathogenesis of
obesity and insulin resistance has not been fully defined. MMP
expression in the adipose tissue is differentially regulated in
HFD-fed obese mice [41,42]. A series of MMP gene targeting were
tested in mice to determine the role of each MMP in obesity and
diabetes, and the results have been variable. The genetic deletion
of MMP3 (stromelysin-1) causes hyperphagia and obesity in
HFD-fed mice [43]. The responsible substrate or the site of action
of MMP3 in metabolism is unknown. MMP3 cleaves OPN [44];
therefore, the loss of MMP3 may exacerbate OPN-dependent adi-
pose inflammation. Similarly, MMP11 (stromelysin-3)-null mice
are more prone to HFD-induced obesity [45]. The gene targeting
of MMP10 (stromelysin-2) did not cause any significant changes
in adipose tissue size and function after 15-week HFD [46].
Please cite this article in press as: D. Lin et al., Adipose extracellular matrix re
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Mice lacking a gelatinase, MMP2 (gelatinase A), are resistant to
obesity induced by HFD feeding, displaying smaller fat pads and
smaller adipocytes [47]. The genetic deletion of another gelatinase,
MMP9 (gelatinase B), however, did not demonstrate a significant
change in weight, fat mass, fasting blood glucose and insulin levels
after 15 weeks of HFD [48]. As MMP9 is highly expressed by adi-
pose tissue macrophages [49], a further study should be needed
to fully define the impact of genetic deletion of MMP9 on adipose
inflammation and metabolism. Interestingly, a pharmacological
inhibition of MMPs with a relative specificity to MMP2 and
MMP9 reduces weight gain and fat pad weights in ob/ob mice [50].

Among MT-MMPs, MMP14 (MT1-MMP) and MMP15 (MT2-
MMP) act as major pericellular collagenases [51]. The loss of
MMP14 causes severe lipodystrophic phenotype, underscoring its
dominant role in adipose tissue development in mice [52].
MMP14 haploinsufficiency confers mice a protection from diet-
induced obesity and a genetic variance in human MMP14 gene is
associated with obesity and diabetes [36]. While MMP14 is the
major regulator of MMP2 activation [53], the gene deletion of both
MMP2 and MMP14 causes a synthetic lethality, underscoring the
critical biological pathways regulated through the interplay
between MMP2 and MMP14 [54]. In humans, MMP15 (MT2-
MMP) is down-regulated in white adipose tissues of obese humans
[37]. The exact role of MMP15 in regulating adipose tissue size and
function is unknown. Unlike MMP14, the gene deletion of MMP15
alone does not cause a significant developmental defect; however,
the loss of both MMP14 and -15 causes embryonic lethality due to
the defective development of the placenta [55]. As such, the func-
tional interplay of MMP14 with MMP2 and/or MMP15 may play a
synergistic role in regulating adipose tissue function as well. The
roles played by other MT-MMPs (MMP16, -17, -24, -25) in the reg-
ulation of obesity and diabetes are unknown.

Elastin is another major component of adipose ECM [56]. The
expression of elastin in adipose tissues was found to be less abun-
dant in obesity [14]. MMP12 (macrophage elastase) is the major
MMP that degrades elastin in mice [57]. In HFD (60% fat)-
induced obesity, adipose macrophages, particularly CD11c� resi-
dential macrophages (M2-like) express a high level of MMP12
[58,59]. In their study, the loss of MMP12 exacerbated HFD-
induced adipose hypertrophy but improved insulin sensitivity
[58]. The loss of MMP12 alone, however, did not change elastin
content in adipose tissues under either normal or HFD condition
[59]. Another group reported that the loss of MMP12 did not exert
any significant effects on HFD (42% fat)-induced obesity [60]. It is
unclear whether a difference in dietary fat content or genetic back-
ground may account for the difference in the reported obesity
phenotypes.

Together, these data suggest that MMPs play important but
diverse roles in regulating adipose tissue homoeostasis in obesity;
however, the exact substrates of each MMP responsible for the reg-
ulation of obesity and diabetes phenotypes have not been fully
defined. The functional interplays between MMPs, e.g. MMP2 and
-14, MMP14 and -15, in the regulation of adipose tissue
homoeostasis and metabolism should require further
investigation.

3.2. TIMPs

The MMPs are inhibited by specific endogenous tissue inhibi-
tors of metalloproteinases (TIMPs), which comprise a family of four
protease inhibitors: TIMP-1, -2, -3 and -4 [61]. Circulating levels of
TIMP-1 and -2 are increased in patients with metabolic syndrome
and diabetes [40]. Hypothalamic TIMP-1 expression is regulated by
an adipose-derived hormone, leptin, and the gene deletion of
TIMP-1 causes increased food intake and obesity in female mice
[62]. The overexpression of TIMP-1 in pancreatic b-cells protects
modelling in obesity and insulin resistance, Biochem. Pharmacol. (2016),
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mice from streptozotocin-induced b-cell death and diabetes [63].
While TIMP-1 mostly inhibits soluble MMPs alone, TIMP-2 can
inhibit both soluble and MT-MMPs [51]. The genetic deletion of
TIMP-2 in mice exacerbates HFD-induced obesity and diabetes
[64]. TIMP-2 gene deletion impairs MMP14 (MT1-MMP)-
dependent MMP2 activation [65]; therefore, the phenotype of
TIMP-2-null mice might be partly modified by the impaired
MMP2 activation. TIMP-3 expression is reduced in the adipose tis-
sue of mouse obesity models [42]. The genetic deletion of TIMP-3
in mice causes hepatic steatosis and adipose tissue inflammation
[66], whereas TIMP-3 overexpression in macrophages protects
mice from insulin resistance, adipose inflammation, and hepatic
steatosis [67].

These data may suggest that increased activities of TIMPs in tis-
sues are protective in metabolic regulation, but in a tissue- and
context-dependent manner. While TIMPs are endogenous inhibi-
tors of MMPs that are responsible for degrading excess ECM, it is
unclear whether the beneficial effects of increased TIMP activities
is solely due to the suppressed activity of MMPs and increased
ECM stability or through different target molecules, including
ADAM (a disintegrin and metalloproteinase) and ADAMTS (a disin-
tegrin and metalloproteinase with thrombospondin motifs) [68].
4. ECM receptors in the adipose tissue

4.1. Integrins

Integrins are heterodimeric transmembrane receptors ensuring
the communication between ECM and the intracellular environ-
ment. In mammals, there are eighteen a and eight b subunits that
can be non-covalently assembled into 24 heterodimeric combina-
tions [69]. The specific integrin expression patterns determine
which ECM substrate can bind to the cell and further regulate
the downstream signalling events. In brief, integrins are classified
into several subfamilies including collagen receptors, laminin
receptors, Arg-Gly-Asp (RGD) receptors and leucocytes-specific
receptors [69]. Collagen and laminin receptor integrins share com-
mon b1 subunit and leucocyte-specific receptor integrins share
common b2 subunit. It has been shown that integrin b1 is critical
in regulating HFD-induced insulin resistance in skeletal muscles
[70,71]; however, its role in adipose tissues has not been studied.
On the other hand, leucocyte-derived b2 integrin has been associ-
ated with HFD-induced obesity and insulin resistance in the adi-
pose tissue. Under a HFD condition, mutated b2-integrin knockin
mice display increased neutrophil numbers in white adipose tis-
sues and show significantly increased peripheral insulin resistance
[72]. The b2 integrin subfamily is comprised of 4 members, aLb2
(CD11a/CD18), aMb2 (CD11b/CD18), aXb2 (CD11c/CD18), and
aDb2 (CD11d/CD18). CD11b, CD11c and CD11d expression is
increased in the adipose tissue and circulating monocytes of obese
humans and rodents [73–75]. The majority of macrophages infil-
trated in white adipose tissue in obesity co-express CD11b and
CD11c [76]. Moreover, CD11b deficient mice are protected from
development of HFD-induced insulin resistance through reduction
of alterative activation and proliferation of adipose tissue macro-
phages [77]. CD11c-positive adipose tissue macrophages are iden-
tified as markers of insulin resistance in human obesity [78]. These
studies are consistent and may suggest a contributing role of b2
integrin expressed by neutrophils and macrophages in diet-
induced insulin resistance. Integrin a4 associates with either b1
or b7 subunit to form an integrin that may play a role in cell motil-
ity and migration [79]. Although inhibiting a4 integrin function
and signalling has been shown to block inflammatory responses
associated with mononuclear cell-mediated diseases such as mul-
tiple sclerosis and Crohn’s disease [80,81], their role in low-grade
Please cite this article in press as: D. Lin et al., Adipose extracellular matrix re
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chronic inflammatory conditions, such as obesity-induced insulin
resistance is not well studied. However, it is shown that mice bear-
ing an a4 (Y991A) mutation are protected from development of
HFD-induced insulin resistance through mediating the trafficking
of monocytes into adipose tissues [82].

4.2. CD44

CD44 is a multifunctional cell membrane receptor for ECM com-
ponents, mainly HA and OPN [83]. CD44 transcripts are subject to
alternative splicing, resulting in the expression of CD44 standard
isoform (CD44s) and multiple CD44 variants (CD44v) [84]. CD44s
is ubiquitously expressed in most tissues, whereas the larger vari-
ant isoforms are expressed only in a few epithelial tissues and sev-
eral cancers [85]. The expression of CD44v in adipose tissues has
not been identified and studied. Current studies of CD44 in the adi-
pose tissue in the context of obesity and diabetes have focused on
the standard form of CD44. CD44s is associated with type 2 dia-
betes from expression-based genome-wide association studies
[86]. CD44s expression level in the adipose tissue is positively cor-
related with adipose inflammation and an index of insulin resis-
tance, HOMA-IR in obese individuals and HFD-fed obese mice
[86–88]. Serum CD44s levels are positively correlated with insulin
resistance and glycemic control in human subjects [86]. HFD-fed
CD44 knockout mice remain considerably more insulin sensitive
and glucose tolerant than HFD-fed wildtype control mice and exhi-
bit lower blood insulin levels [89]. Treatment of CD44 monoclonal
antibody suppresses visceral adipose tissue inflammation and
reduces fasting blood glucose levels, weight gain, liver steatosis,
and insulin resistance in a HFD-fed mouse model [88]. These of
course cannot rule out the potential expression and importance
of CD44v in the adipose tissue of obesity and insulin resistance.

4.3. CD36

CD36 also known as fatty acid translocase is an integral mem-
brane protein, which binds many ligands including collagen, THBS,
lipoproteins and fatty acids [90]. CD36 facilitates FFA transport
into the adipose tissue in humans [91]. HFD-fed mice harbouring
CD36 deletion display improved insulin signalling and reduced
macrophage infiltration in the adipose tissue compared with wild-
type mice, with variable effects on HFD-induced whole-body insu-
lin resistance [92–94]. Genetic variation within the CD36 locus is
suggested to contribute to metabolic disease via its effect on body
adiposity [95]. Gene expression studies indicate that CD36 is sig-
nificantly upregulated in the mesenteric adipose tissue of diabetic
patients [96]. AP5258, a CD36 specific inhibitor significantly
increases cell survival of oleic acid-treated mouse and human adi-
pocytes, and partially restores the transcriptional response to oleic
acid in the presence of insulin through JNKs (c-Jun N-terminal
kinases) pathway [97]. Although most of these studies of CD36 in
adipose tissue in obesity and insulin resistance are attributed to
its role as a FFA transporter, the role of ECM binding in the process
of FFA uptake is potentially significant. This is evidenced by the fact
that an ECM ligand, such as THBS induces the dimerization of
membrane-bound CD36, which is proposed to play an important
role in signal transduction [98].
5. Proposed model for how ECM-receptor interaction is linked
to obesity-associated insulin resistance

Numerous studies have demonstrated that the increased depo-
sition of ECM components and the presence and activation of ECM
receptor pathways in the adipose tissue are associated with
obesity-associated inflammation and insulin resistance. The under-
modelling in obesity and insulin resistance, Biochem. Pharmacol. (2016),
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Fig. 2. Proposed model for how the activation of ECM receptor pathway in the
adipose tissue is linked to obesity-associated insulin resistance. It is proposed that
activation of ECM-receptor pathway would induce the expression of genes that
mediate the metabolically unfavourable processes, including adipocyte death,
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matrix; FAK: focal adhesion kinase; ERM: ezrin–radixin–moesin; MAPKs: mitogen-
activated protein kinases; VEGF: vascular endothelial growth factor; ATM: adipose
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lying mechanisms however, are not fully understood. We propose
the following potential downstream pathways of ECM-receptor
signalling that may mediate the process. These include induction
of adipocyte death, inhibition of angiogenesis in adipose tissues
and the promotion of inflammatory cytokine production and
macrophage infiltration (Fig. 2). It is worth noting that these path-
ways share analogies to those leading to pulmonary fibrosis,
wound healing and tumour growth [7–9]. Similarities and differ-
ences of adipose ECM remodelling in comparison to cancer ECM
dynamics are highlighted in the following section.
5.1. Induction of adipocyte death

The ECM in the adipose tissue surrounding adipocytes not only
provides structural support but regulates cell proliferation and
death. Adipocyte death is increased progressively during the devel-
opment of obesity with a frequency of 80% death rate in mice after
16 weeks of HFD feeding, coincident with widespread deposition of
collagen [99]. It is hypothesized that excessive deposition of adi-
pose ECM components physically constraints the expansion of adi-
pocytes and causes adipocyte death [3]. We hypothesize that ECM
receptor pathways (e.g. integrins) would trigger downstream gene
regulation that mediates processes that regulate adipocyte necro-
sis or apoptosis. This hypothesis is supported by the fact that ob/
ob mice that lack collagen VI (Col6a1) display a reduced necrotic
cell death accompanied by enlarged adipocytes and improved sys-
temic insulin resistance [3]. Reduced adipocyte death in these mice
is associated with a significant reduction of spliced form of Xbp1, a
marker for endoplasmic reticulum stress which causes cells to
undergo apoptosis through activation of CHOP and JNK [3]. Adipo-
cyte death may cause adipose inflammation and insulin resistance
because necrotic adipocytes become a phagocytic stimulus that
attracts macrophages [99].

The concept that augmented ECM receptor signalling in adipose
tissue induces adipocyte death is at odds with its proposed role in
tumour biology. Many of the changes in the ECM, ECM modifiers
Please cite this article in press as: D. Lin et al., Adipose extracellular matrix re
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and ECM receptors in expanding adipocytes occur during tumour
cell growth including increased deposition of various collagens
(e.g. I, II, III, V and IX) [9], increased levels of MMPs (e.g. MMP1,
2, 3, 7, 9, 12, 14, 21, 24, 25) and TIMPs (e.g. TIMP 1, 2, 3) [100],
and increased ECM receptor signalling (e.g. hyaluronan and CD44
signalling) [101]. However, it is shown that this ECM remodelling
in cancer facilitates tumour cell growth, invasion, and metastasis
[9,101]. In cancer, activated integrin signalling upon ECM binding
initiates pro-survival signals through increased nuclear factor-jB
(NF-jB) or PI3K-AKT activity, decreased p53 activation and
increased expression of the pro-survival molecules BCL-2 and FLIP
[102]. Although disparate from our proposal that activated ECM
signalling in the adipose tissue would cause adipocyte death and
associated inflammatory response (Fig. 2), research in cancers
would provide insight to our understanding of adipose tissue biol-
ogy in obesity and insulin resistance.

5.2. Inhibition of angiogenesis in the adipose tissue

White adipose tissues are highly vascularised and expansion of
the adipose tissue is necessarily accompanied by angiogenesis. It is
hypothesized that excessive deposition of ECM limits the angio-
genic capacity of white adipose tissue in obesity. It is shown that
the hypoxic response in the adipose tissue of ob/ob mice is para-
doxically associated with decreased gene expression of vascular
endothelial growth factor A (VEGFa), vascular endothelial cell
markers, and decreased vessel density [103]. Overexpression of
dominant active hypoxia inducible factor 1 (HIF1) fails to increase
VEGFa expression but induces the gene expression causal for tissue
fibrosis [103]. Likewise, overexpression of VEGFa leads to increased
adipose vascularity and reduced tissue hypoxia [104]. These find-
ings are in contrast to what is found in cancers wherein hypoxia
stimulates angiogenesis via HIF1a/VEGFa pathway [105], and sug-
gest the presence of an obesity-specific relationship between
hypoxia, fibrosis, and angiogenesis. Moreover, increased collagen
V inhibits endothelial budding, suggesting its inhibitory role in
angiogenesis [14]. As adipose tissue fibrosis inhibits the angiogenic
capacity of the tissue, it is reasonable to propose that the sup-
pressed expression of genes necessary for adipose angiogenesis
(e.g. VEGFa) should be mediated by the activation of ECM receptor
pathways by excess ECM deposition. We have previously showed
that genetic deletion of integrin a2b1, one of the collagen binding
receptors is associated with increased vascularization in muscle of
HFD-induced obese mice [70]. The angiogenic capacity of white
adipose tissues is positively associated with glucose homoeostasis.
Mice with adipose-specific deletion of VEGFa display exacerbated
insulin and glucose tolerance on a HFD; in contrast, induction of
VEGFa expression in the adipose tissue reverses glucose intoler-
ance in HFD-induced obese mice [104]. It is hypothesized that
reduced angiogenesis in white adipose tissues leads to reduced
exchange of insulin and other hormones, cytokines and adipokines
from blood to fat, leading to insulin resistance. Although not specif-
ically shown in the adipose tissue, we have successfully demon-
strated such a relationship in an insulin-sensitive metabolic
tissue, i.e., the skeletal muscle. Our previous studies have shown
that defects in recruitment of muscle capillaries contribute to the
development of muscle insulin resistance [106,107]; whereas
improved muscle insulin resistance is associated with increased
muscle capillary density [26,70]. Further studies are needed to
investigate the metabolic impacts of integrin-dependent regula-
tion of angiogenesis in adipose tissues.

Transcriptional co-activators PGC-1a and PGC-1b have been
shown to induce VEGF expression and angiogenesis in muscles
[108–111]. As these two PGC-1 isoforms are operative in white adi-
pose tissues, it is possible that inhibition of angiogenesis in obese,
expanding adipocytes is due to decreased expression and function
modelling in obesity and insulin resistance, Biochem. Pharmacol. (2016),
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Fig. 3. Fibrotic and inflammatory white adipose tissue remodelling in crosstalk with the liver and skeletal muscles. Fibrotic and inflammatory adipose tissue remodelling is
associated with the increased circulating levels of THBS1, OPN, endotrophin in parallel with IL6 and TNFa. These circulating factors derived from expanding adipose tissues
induce insulin resistance of the liver and skeletal muscles.

6 D. Lin et al. / Biochemical Pharmacology xxx (2016) xxx–xxx
of PGC-1a and PGC-1b. This hypothesis is highly supported by the
fact that the expression of both PGC-1a and PGC-1b is decreased in
obesity and mice lacking PGC-1a specifically in the adipose tissue
develops exacerbated insulin resistance on a HFD [112,113]. How-
ever, the role of ECM receptor pathways in the regulation of PGC-1
isoform expression is still unknown and may require further
investigations.

Angiogenesis is another shared pathway which is proven to be
important in both obesity and cancer. Anti-angiogenesis therapy
for cancers has been proposed for more than 40 years; however,
in both preclinical and clinical settings, the arise of resistance
mechanisms limits the long-term benefit of anti-angiogenesis
therapy [114]. In obesity, the therapeutic angiogenesis for treat-
ment of obesity and metabolic diseases remains a paradoxically
disputed issue [115]. Controversial results exist. For example, early
studies using genetic and HFD-induced obese mice show that
treatment of generic angiogenesis inhibitors including TNP-470
and angiostatin, suppresses adipose angiogenesis and prevents
obesity in mice [116,117]. In contrast, systemic anti-VEGF-A treat-
ment to HFD-fed mice induced weight gain and caused exacer-
bated systemic insulin resistance [118]. Targeting angiogenesis in
white adipose tissues for treating obesity and insulin resistance
remains controversial and has been well reviewed previously
[115].

5.3. Induction of adipose tissue macrophage infiltration and
inflammation

We propose that activation of ECM binding to ECM receptor
mediates intracellular signalling to regulate expression of genes
that mediate inflammation and adipose tissue macrophage infiltra-
tion. Focal adhesion kinase (FAK), a ubiquitously expressed tyro-
sine kinase, which is essential for development and cellular
proliferation, transmits extracellular signals via integrin signalling.
Adipocyte-specific deletion of FAK increases adipose tissue inflam-
mation shown by increased macrophage infiltration and adipocyte
apoptosis [119]. These results suggest that FAK may be essential
for gene expression for adipose tissue remodelling and inflamma-
tion. Chronic treatment of human recombinant pegylated hyaluro-
nidase decreases adipose tissue ECM HA and decreases adipocyte
size and the gene expression of pro-inflammatory markers (e.g.
Please cite this article in press as: D. Lin et al., Adipose extracellular matrix re
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TNFa) in adipose tissue of HFD-fed mice [26]. Genetic deletion of
the main HA receptor CD44 consistently decreases adipose tissue
inflammation in mice following a HFD [89]. These results suggest
that the activation of HA-CD44 pathway regulates macrophage
infiltration and inflammation in the adipose tissue of HFD-fed
mice. It has been previously shown that the genetic deletion of
b2 integrin CD11b protects mice from development of HFD-
induced insulin resistance by suppressing the alterative activation
and the proliferation of adipose tissue macrophages [77].
6. Concluding remarks

It is recently ascertained that fibrosis, excess deposition of ECM
components, in metabolically active, insulin-sensitive tissues,
including the skeletal muscle, adipose tissue and liver has damag-
ing impact on glucose homoeostasis [6,120,121]. Obesogenic ECM
remodelling of white adipose tissues is closely linked with the
increased levels of circulating ECM proteins and ECM-derived pep-
tides in parallel with increased levels of adipose-derived cytokines.
These white adipose tissue-derived ECM or ECM-related molecules
may exert metabolically deleterious effects on metabolic crosstalk
between the adipose tissue, liver, and skeletal muscles (Fig. 3).
Despite a recent implication of ECM-receptor pathway in deter-
mining glucose homoeostasis in the skeletal muscle and liver [6],
its role in the adipose tissue has not been fully defined. We postu-
late that the ECM receptor pathway of adipocytes as well as other
cell types found in adipose tissues, i.e. inflammatory monocytes
and macrophages and vascular endothelial cells are important in
transducing intracellular signalling of adipocyte death, angiogene-
sis, and the infiltration of inflammatory cells, which culminate in
insulin resistance. Tissue-specific mouse models that lack a key
ECM, ECM modifier, ECM receptor, or intracellular mediator, will
help us decipher the importance of the ECM receptor pathway
and its regulators in determining metabolic tissue remodelling,
function and glucose homoeostasis.

We propose the potential of developing therapeutic strategies
that target ECM matrix of metabolically active tissues, including
the liver, skeletal muscle and the adipose tissue. Current anti-
fibrotic drugs being tested in clinical settings have been focused
on cancers (e.g. PEGPH20), heart failure (e.g. FT011) and glaucoma
modelling in obesity and insulin resistance, Biochem. Pharmacol. (2016),
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surgery (e.g. CLT-28643). The effectiveness of their use in obesity,
insulin resistance and type 2 diabetes is unknown and may worth
further investigation.
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