
Big Data Research 2 (2015) 127–144
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Practical Identification of Dynamic Precedence Criteria to Produce

Critical Results from Big Data Streams

Karen Works a,∗,1, Elke A. Rundensteiner b,∗
a Westfield State University, Westfield, MA, USA
b Worcester Polytechnic Institute, Worcester, MA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 March 2015
Received in revised form 13 September
2015
Accepted 17 September 2015
Available online 30 September 2015

Keywords:
Big data streams
Critical result production
Rapid online adaption

During periods of high volume, big data stream applications may not have enough resources to process all
incoming tuples. To maximize the production of the most critical results under such resource shortages,
a recent solution, PR (short for Preferential Result), utilizes both static criteria (defined at compile-time)
and dynamic criteria (identified online at run-time) to prioritize the processing of tuples throughout
the query pipeline. Unfortunately, locating the optimal criteria placement (i.e., where in the query
pipeline to evaluate each prioritization criteria) is extremely compute-intensive and runs in exponential
time. This makes PR impractical for complex big data stream systems. Our proposed criteria selection
and placement approach, PR-Prune (short for Preferential Result-Pruning), is practical. PR-Prune prunes
ineffective dynamic criteria and combines multiple criteria along the same pipeline. To achieve this, PR-
Prune seeks to expand the duration in the query pipeline that tuples identified as critical are pulled
forward. Our experiments use a real data stream from the S&P 500 stocks, synthetic data streams, and
a diverse set of queries. The results substantiate that PR-Prune increases the production of the most
critical results compared to the state-of-the-art approaches. In addition, PR-Prune significantly lowers the
optimization search time compared to PR.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Preferential result applications

Big data streams process large volumes of incoming tuples to
answer continuous queries. At times they may be unable to pro-
cess all incoming tuples within the response time required for the
application [1]. Yet it often is imperative for applications to assure
the production of results from certain objects that are the most
critical for the application. Under resource duress, Preferential Re-
sult big data streams (or PR) utilize both static application-specific
preference criteria as well as dynamic criteria identified online to
determine which tuples should be allocated resources ahead of
other tuples throughout the query pipeline [2].

* Corresponding authors.
E-mail addresses: kworks@westfield.ma.edu (K. Works), rundenst@cs.wpi.edu

(E.A. Rundensteiner).
1 This work was started during Karen’s Ph.D. study at WPI.
http://dx.doi.org/10.1016/j.bdr.2015.09.001
2214-5796/© 2015 Elsevier Inc. All rights reserved.
1.2. Examples of systems with preferential results

Outpatient health care: Data stream systems are used to track
people with dementia [3]. In these systems, monitoring people
away from their proper location for an extended time (i.e., likely
lost) is critical. While monitoring people who live on their own
(i.e., need help) may be reduced based on whether or not re-
sources remain after processing more critical tuples, i.e., tuples
from people likely to be lost. Periodically when resources are scare,
monitoring tuples from other people could be temporarily skipped.
Overloads have been experienced in these systems [4].
Law enforcement: Data stream systems are used to monitor pris-
oners assigned to home arrest [5]. Consider a system that reports
any prisoner at an improper location who is within 3 miles of an
officer. At the highest level of urgency, escaped violent prisoners
(i.e., may cause harm) must be monitored. Next to be monitored
are prisoners at an improper location (i.e., likely to be in violation).
Finally, prisoners known to be flight risks ought to be monitored
when resources are sufficient. These systems get overloaded, e.g.,
in October 2010 an application that monitors released sex offend-
ers across 49 states shutdown for 12 hours [6].

http://dx.doi.org/10.1016/j.bdr.2015.09.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:kworks@westfield.ma.edu
mailto:rundenst@cs.wpi.edu
http://dx.doi.org/10.1016/j.bdr.2015.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2015.09.001&domain=pdf

128 K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144
Table 1
Desired result precedence order.

System load Desired processing order

System not overloaded all results processed

System mildly overloaded 1) aggressive investments
2) conservative investments
3) stocks under evaluation

System moderately overloaded 1) aggressive investments
2) conservative investments

System extremely overloaded 1) aggressive investments

1.3. Running example: stock market

Mutual fund companies often determine what to buy or sell
by monitoring the social buzz on different business sectors, i.e.,
business sectors mentioned in recent news and blogs.
(Stock Market Query) /*Operators*/
SELECT S.company_name, S.symbol, S.price

FROM Stock as S, News as N, Blogs as B
WHERE contains(S.BusinessSector,

N.BusinessSector)
/*op1*/

AND contains(S.BusinessSector,
B.BusinessSector)

/*op2*/

WINDOW 30 sec;
Consider the following desired processing order of tuples in

such a system (Table 1) defined by the user at compile-time. First,
tuples from aggressive investments should be processed. If re-
sources remain, then tuples from conservative investments should
be processed. Until there are adequate resources to process all
other tuples, the processing of certain tuples can be temporarily
skipped altogether (e.g., tuples from stocks under evaluation).

1.4. Critical tuples

Resources should be allocated to particular tuples based upon
the application’s desired processing order (Table 1) and the
amount of available resources. When the Stock Market Application
is extremely overloaded, the CPU resources should be dedicated to
the tuples most critical for the application. The most critical results
are generated from these tuples. In the Stock Market example, the
most critical results are formed when news tuples join with aggres-
sive stock tuples based upon their business sector, i.e., op1. Next,
these join results from operator op1 are joined with blog tuples
based upon their business sector, i.e., op2.

These most critical results are created by two classes of tuples.
The first class are so called native significant tuples. That is, sig-
nificant tuples satisfy static precedence criteria defined explicitly by
the user at compile-time. For example, a significant tuple in the
stock stream can be identified as an aggressive or as a conserva-
tive investment simply by checking if its attributes match criteria
selected by the user (Table 1) [7,8].

The second class are promising tuples. Promising tuples are tu-
ples estimated to be highly likely to produce critical results by associ-
ation, i.e., by joining with significant tuples. For example, tuples in
the news stream may join with significant stock tuples and thus
produce critical results due to their association with their join
partners. The criteria to identify promising tuples are dynamic. It
requires knowledge of which join attributes of the current signifi-
cant stock tuples are also prevalent in tuples in both the news and
blog streams. The identification of such dynamic criteria is accom-
plished at run-time [2].

1.5. How PR adapts the allocation of resources

PR adapts which tuples are preferentially allocated resources
when due to system load changes the data stream system is unable
to process all incoming critical tuples. Many things can change the
system load. It could be changed by the number of incoming tuples
that are significant. Namely, increasing the percentage of signifi-
cant tuples in the pipeline increases the chance that some critical
tuples will not be processed due to limited resources. It could be
changed by the distribution of promising tuples varying over time
as this will cause the number of significant tuples that have join
partners to vary as well. Regardless of what causes the system load
changes, PR adapts how resources are allocated accordingly.

The goal of PR is to ensure that given the available memory
that the most critical tuples are processed. When resources are
sufficient, PR will process all tuples. When they are not, PR will
process the most critical tuples first. If resources remain then they
are dedicated to ensuring that the next most critical tuples are
processed (and so on).

To achieve this, criteria of critical results are identified for each
join operator. These criteria are then pushed backwards through
the query pipeline to operators before their respective join opera-
tor that identify and pull forward significant and promising tuples.
The query plan optimizer seeks to find the best query plan by
adjusting the cost of precedence determination. The cost of prece-
dence determination is adjusted by modifying both which prece-
dence criteria are evaluated and where each of these criteria are
evaluated in the query plan.

1.6. State-of-the-art & shortcomings

As we show in Section 3.3, the time complexity of the PR opti-
mizer is exponential in the number of criteria that identify promis-
ing tuples and the number of operators in the query plan where
such criteria could be evaluated. Thus, it is costly to determine the
most effective combination of precedence criteria and where such
criteria should be evaluated. When optimization takes a long time,
it may delay or even worse yet prevents the production of some
critical query results. In the Stock Market application this could
result in the company losing money or, in the worse case, going
bankrupt. No existing approach addresses this critical problem. It
is now the focus of our work.

1.7. Our PR approach & contributions

We now propose a new a criteria selection and placement ap-
proach that provides an efficient optimization algorithm by prun-
ing the query plan search space, named PR-Prune. To prune the
query plan search space is challenging. Namely, we want to elim-
inate some options but never to prune the best query plan. KEW:
Challenges
Our contributions include:
1) We outline the design of PR-Prune. We describe how PR-Prune
utilizes a statistics reduction methodology to eliminate inferior
statistics used to find prioritization criteria and how PR-Prune
reduces the number join operators that pull promising tuples by
combining the needs of multiple consecutive join operators.
2) We show that the complexity of PR-Prune is significantly less
than the standard PR optimization. We summarize the theoretical
contribution.
3) Our experimental study, using real data, synthetic data sets, and
a wide variety of queries, shows that PR-Prune consistently pro-
duces more critical results than the state-of-the-art systems. We
quantify the improvements in our experimental study.

2. PR model and queries

2.1. PR queries

In the PR model, a set of P-CQL queries {q1, . . . ,q j} process con-
tinuous streams {s1, . . . , sn} of tuples (symbols in Table 2). Each

K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144 129
Table 2
Notations for PR query plans.

Notation Meaning

ti a tuple
ti .srnk significant rank of ti

ti .prnk promising rank of ti

ti .opc designated operator of ti (operator where promising rank
ends)

ti .rnk rank of ti (max rank of ti .srnk or ti .prnk)

q j a query
q j .SML set of static monitoring levels of query q j

q j .NumRnks number of possible ranks in query q j

smlk a static monitoring level in q j .SML
smlk .srnk significant rank of smlk
smlk .mem membership criteria of smlk

DML set of dynamic monitoring levels
dmll a dynamic monitoring level in DML
dmll .sx stream that tuples must reside in for dmll
dmll .opc designated operator for dmll
dmll .prnk promising rank of dmll
dmll .mem membership criteria of dmll

prm a PR query plan
prm.ASML set of activated static monitoring levels in prm
prm.ADML set of activated dynamic monitoring levels in prm

sn a stream

opo an operator

ERs(prm, srnk) expiration rate of potential significant tuples at significant
rank srnk in prm

ERp(prm,prnk) expiration rate of potential promising tuples at promising
rank prnk in prm

P-CQL query is a CQL query [9] extended to support multi-tiered
monitoring criteria.
(P-CQL Extension to Stock Market Queries)
RANK 1 /* aggressive investments */
CRITERIA (S.ownedByCompany=TRUE) AND
(S.aggressive=TRUE)

RANK 2 /* conservative investments */
CRITERIA (S.ownedByCompany=TRUE) AND
(S.conservative=TRUE)

RANK 3 /* stocks under evaluation */
CRITERIA (S.underEvaluation= TRUE)

Each pair of rank and criteria clauses specify which objects
in the tuple stream the user would prefer to produce results
from compared to other objects when resources are scarce. At
compile-time these clauses are specified by the user as a part of
the query. Hence, they are referred to as static monitoring levels
q j .SML. Each static monitoring level smlk consists of a significant
rank smlk.srnk and membership criteria smlk.mem. The significant
rank smlk.srnk denotes the degree of static monitoring level smlk ’s
significance. Static monitoring level smlk is more significant than
level smll if smlk.srnk < smll.srnk. For example, consider the Stock
Market P-CQL query above. Respectively, static monitoring levels
sml1, sml2, and sml3 identify aggressive investments, conservative
investments, and stocks under evaluation. Static monitoring level
sml1 is more significant than static monitoring level sml3, i.e.,
(sml1.srnk = 1) ∧ (sml3.srnk = 3) thus (sml1.srnk < sml3.srnk).

The optimizer periodically selects which static monitoring lev-
els are used to identify tuples to pull forward. We refer to the
current set of selected monitoring levels as the set of activated sig-
nificant monitoring levels denoted by Asml . If no resource shortage
exists then no monitoring levels would be activated and tuples will
then be processed in FIFO order. However, if a resource shortage
arises, then some monitoring levels would be activated and tuples
will be processed in significance order based upon the activated
static monitoring levels.
Fig. 1. Estimated significant tuples example.

2.2. Significant tuples

Significant tuples satisfy the membership criteria of an activated
static monitoring level [7,8]. A tuple may satisfy the membership
criteria of more than one activated static monitoring level.

Definition 1. Significant tuple ti is designated with one significant
rank ti .srnk which corresponds to the most significant of all the
activated static monitoring levels that tuple ti satisfies the criteria
of.

Consider stock tuple ti that is both an aggressive invest-
ment (i.e., sml1.mem(ti) = true) and is under evaluation (i.e.,
sml3.mem(ti) = true). The set of activated static monitoring lev-
els ASML contains static monitoring levels 1, 2, and 3, i.e., ASML =
{sml1, sml2, sml3}. Tuple ti ’s significant rank is thus 1, i.e.,
ti .srnk = 1.

2.3. Promising tuples

Promising tuples are likely to create critical query results by
joining with significant tuples at a join operator [2]. Consider a
symmetric binary hash join operator opi [10] that combines tuples
from streams s1 (e.g., news stream) and s2 (e.g., stock stream). In-
coming tuples to this join operator opi for the news s1 and stock
s2 streams are stored respectively in the news and stock stream
state. Join results are created by combining an incoming tuple ti
from one stream (e.g., news stream) with matching tuples t j in
the state for the other stream (e.g., stock stream state) based upon
the join criteria.

Consider news tuple ti and the two stock tuples stored in the
stock state that satisfy join criteria c2 (i.e., business sector = Ad-
vertising) (Fig. 1). One of the stock tuples from the advertising
business sector is a significant tuple, while the other is not. If news
tuple ti is from the advertising business sector (i.e., satisfies the
join criteria c2) then tuple ti will be a promising tuple. That is, tu-
ple ti has a high chance to produce a critical join result when it
joins with the significant stock tuple from the advertising business
sector in the stock stream state. However, this news tuple ti may
also join with the insignificant stock tuples from the advertising
business sector and thus produce non-critical join results.
Adapting the rank of tuple: Whether or not a tuple is considered
to be a promising tuple may adapt during processing. Significant tu-
ples can produce critical query results on their own and thus are
significant for the entire query pipeline. Thus if stock tuple ti is an
aggressive investment then it retains its significant rank through-
out the pipeline (Fig. 1). In contrast, promising tuples are only
promising because of their potential to join with significant tuples
at a future join operator opo . After proceeding past this operator
opo they may no longer have any known potential of producing
critical query results. Hence after they have been processed by
operator opo , these promising tuples should no longer be prefer-
entially allocated resources. In other words, they are only promising

130 K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144
Table 3
Example: ranking query plans.

PR plan CPU overhead ERs(prm,1) ERs(prm,2) ERs(prm,3) ERp(prm,1) ERp(prm,2) ERp(prm,3)

pr1 1022 0 2 15 0 35 75
pr2 1256 0 2 15 0 35 75
pr3 1956 0 2 95 0 80 89
pr4 1006 9 123 90 89 90 87
for a portion of the query pipeline, namely, until they reach the oper-
ator opo .

Reconsider Fig. 1. Consider news tuple t j from the advertising
business sector (i.e., join criteria c2). In this case, tuple t j has the
potential to join at a given join operator with a significant stock
tuple from the advertising business sector due to the existence of
such a tuple in the stock stream state. Thus tuple t j is a promising
tuple only until it reaches the join operator in Fig. 1.

The set of dynamic monitoring levels (DML) are constructed at
run-time by the optimizer to indicate the criteria and rank of
promising tuples at join operators (Section 3.3.1). Each dynamic
monitoring level dmll denoted as (sn; opc ; prnk; mem designates
1) the stream dmll.sn of the promising tuples, 2) the operator at
which the promising tuples are predicted to join with significant
tuples called the designated operator dmll.opc , 3) a promising rank
dmll.prnk, and 4) the membership criteria dmll.mem that identifies
such promising tuples. Under limited resources, the optimizer also
selectively activates some dynamic monitoring levels (Section 3.3.2
covers how the optimizer chooses which monitoring levels to acti-
vate).

Definition 2. A promising tuple ti has one promising rank ti .prnk
and one designated operator ti .opc . These attributes are set to
the attributes of the activated dynamic monitoring level dmll (i.e.,
ti .prnk = dmll.prnk and ti .opc = dmll.opc) that satisfies the follow-
ing criteria. The rank of dmll is set to the most critical of all the ac-
tivated dynamic monitoring levels that tuple ti satisfies the mem-
bership criteria of. In order for tuple ti to retain its promising rank
(and preferential resource allocation) for the longest duration of
the pipeline, the designated operator of dmll is the furthest down
the pipeline of all the activated dynamic monitoring at promising
rank dmll.prnk that tuple ti satisfies the membership criteria of.

2.4. Tuple rank

Tuple ti can have both significant and promising rank. Each des-
ignation refers to distinct critical results that tuple ti may create.
Significant rank, being global, applies to all results that tuple ti
creates at any operator. Promising rank, being localized, applies to
some results that tuple ti creates at a specific operator only.

Tuple ti is allocated resources based upon the maximum of its
significant and promising ranks. Tuple ti is assigned a rank at-
tribute ti .rnk that is the maximum of tuple ti ’s significant and
promising ranks.

2.5. Optimal PR plan

A PR query plan represents a P-CQL query q j . Each PR plan prm
is modeled as a one directional flow network composed of PR alge-
bra operators as nodes and data exchange interfaces that transfer
tuples between operators as edges (Section 3.1). The PR query al-
gebra is composed of rank classifier operators and PR augmented
standard operators as outlined in Section 3.1.2.

The optimal PR plan allocates resources to tuples to maximize
the throughput of the critical query results in precedence order.
When resources are limited, such a plan ensures that tuples with
the highest rank rnk are processed first. To achieve this, tuples
with significant and/or promising rank of rnk are processed before
those with lower or no rank.

An expired tuple is a tuple that is no longer processed due to
inadequate resources. A tuple may expire at any point along the
query pipeline. If all tuples that can have the significant rank of
srnk are being devoted adequate processing cycles then the num-
ber of such tuples that expire throughout the query pipeline (or
the expiration rate of potential significant tuples ERs(ppr

m , srnk) at
significant rank srnk) should be low and ideally zero.

Definition 3. Expiration Rate of Potential Significant Tuples
ERs(prm, srnk) is the number of tuples that satisfy static criteria
for rank srnk and have expired.

The optimal PR plan also improves the flow of tuples that
can have promising rank prnk until they reach their designated
operator. If all tuples that can have promising rank prnk are be-
ing devoted adequate processing cycles then the number of such
tuples that expire before reaching their designated operator (or
the expiration rate of potential promising tuples ERp(prm, prnk) at
promising rank prnk) should be low (ideally zero).

Definition 4. Expiration Rate of Potential Promising Tuples
ERp(prm, prnk) is the number of tuples that satisfy dynamic cri-
teria at promising rank prnk that expire before they reach their
designated operator in PR plan prm .

Definition 5. The optimal PR plan compared to all possible PR
plans minimizes the expiration rate of both significant (Defini-
tion 3) and promising tuples (Definition 4) for each rank starting
from the highest rank and remains within the available system ca-
pacity.

Consider the example in Table 3. Assume the resources required
to execute each PR plan are within the available system capacity.
PR plan pr1 is the best for the following reasons. For the highest
rank rnk = 1 (i.e., the most critical query results), PR plan pr4 has
an expiration rate of potential significant tuples greater than 0, i.e.,
ERs(pr4, 1) > 0. For the next highest rank rnk = 2, PR plan pr3 has
an expiration rate of potential promising tuples greater than PR
plans pr1 and pr2. For all ranks, PR plans pr1 and pr2 have equal
expiration rates. However, compared to PR plan pr2, pr1 has the
lowest CPU overhead cost. Thus, PR plan pr1 is the preferred solu-
tion.

3. PR architecture

The online adaptive PR architecture (Fig. 2) is derived from the
architecture of self adaptive software [11]. It contains the PR Ex-
ecutor, PR Monitor, PR Optimizer, and PR Adaptor. The PR Executor
(Section 3.1) runs the current PR plan and produces query results.
The PR Monitor (Section 3.2) gathers statistics to locate the op-
timal PR plan at runtime. The PR Optimizer (Section 3.3) uses
the statistics collected to select a new optimal PR plan for the
current system load. This “new” PR plan is forwarded to the PR
Adaptor (Section 3.4) which in turn adapts the current PR plan
to the new plan. The PR architecture is designed such that online

K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144 131
Fig. 2. PR architecture.

Fig. 3. Stock market PR plan.
PR plan adaption requires no expensive infrastructure changes [2].
Namely, each query operator is designed to be able to adapt online
how they allocate resources. The PR Adaptor notifies each opera-
tor of their required changes via notifications sent along a control
exchange interface. To not delay adaption, PR supports a control
exchange interface between each operator and the PR Adaptor
dedicated to handling these notifications. This is similar to how
interrupts are handled in real-time operating systems [12]. Our PR-
Prune approach is part of the PR Optimizer (Section 3.3). The other
components are part of PR [2].

3.1. PR executor infrastructure

We now outline the PR Executor and how it executes a PR plan
efficiently. The design of the PR Executor addresses the challenge
of how to efficiently pull certain tuples ahead of others in the
query plan. PR pulls some tuples ahead of others causing tuples
to not be processed in arrival time order. Thus PR Executor must
also address the challenge of supporting out-of-order processing.

3.1.1. Pulling tuples ahead of others
The data exchange interface transfers tuples between operators.

To efficiently process certain tuples before other tuples, PR uses
multiple queues. Operators support one queue for tuples with
each possible rank and one for insignificant tuples. Significant and
promising tuples with the same rank reside in the same queue.
If no monitoring levels are activated then all tuples reside in
the insignificant queue. In this case, the query operators would
process the tuples in FIFO order. Otherwise, each tuple resides in
the queue that corresponds to their rank. In this case, operators
process tuples in rank order. Operator opo starts processing tuples
from the most critical queue. When this is empty and resources
remain, operator opo moves to the second most critical queue. Each
result (i.e., tuple ti) is placed into the incoming queue for tuple ti ’s
rank of the next down stream operator.

Consider the queues for the news stream in Fig. 3. Operator op1
has an incoming queue for news tuples with each possible rank
(e.g., rank 1) and one for insignificant incoming news tuples.

3.1.2. PR query algebra
Our PR algebraic operators support both significant and/or

promising tuples where the rank may adapt at run-time (Sec-
tion 3.4). In PR algebra, traditional operators [13] process tuples as
usual and propagate the appropriate rank related metadata to the
results. Rank classifier operators assign preference related metadata
to tuples.
Projection removes specified attributes from tuples in its input
queues. Selection removes tuples in its input queues that do not
satisfy the specified selection condition. Both send their results
with no changes to their rank related metadata to the next op-
erator.
Join [10] creates results (ti, t j) by matching tuples from streams s1
and s2. Tuple ti is taken from an input queue and processed as fol-

132 K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144
lows. First, tuple ti is stored with its rank related metadata in the
state of tuple ti ’s stream s1. Then, join results (ti, t j) are created
by joining tuple ti with tuples t j stored in stream s2’s state. Next,
result (ti, t j)’s rank related meta data are set. That is, join result
(ti, t j) is assigned the highest rank among the rank related meta
data of tuples ti and t j . If tuples ti and t j have the same promis-
ing rank then result (ti, t j) is assigned the designated operator of
tuples ti and t j that is furthest along the pipeline. Then join result
(ti, t j) is sent to the next operator.

If tuple ti is a promising tuple and its designated operator
is this current join operator, then prior to processing tuple ti ’s
promising rank and designated operator attributes are set to null.
Then tuple ti ’s rank is set to its significant rank, i.e., ti .rnk = ti .srnk.
In this case, tuple ti is not known to be a promising tuple beyond
this join operator but it may turn into a critical tuple at a lower
rank.
Rank classifier (or RC) is a special-purpose operator with static
(SAS) and dynamic assessment set (DAS) parameters. It creates re-
sults by assigning rank related meta data to tuples in its input
queue and then sends these results to the next operator.

The static SAS and dynamic DAS assessment sets contain the
respective criteria of the activated static or dynamic monitoring
levels assessed by the RC operator opo .

RCs process each tuple ti by comparing the criteria in SAS and
DAS to tuple ti in rank order starting from the most critical criteria
in SAS and DAS . Once tuple ti satisfies a static criteria then tuple
ti is not compared to any dynamic criteria of the same or lower
rank. The reason for this is that if tuple ti is a significant tuple
at rank rnk then it is guaranteed to be a critical tuple at rank rnk
for the duration of tuple ti ’s processing. Assigning tuple ti to be
a promising tuple at rank rnk or a rank lower than rnk does not
improve how tuple ti is preferentially processed. However, even if
tuple ti satisfies a dynamic criteria no static criteria comparisons
are eliminated. That is, how tuple ti is preferentially processed will
be affected by whether or not tuple ti is a significant tuple at rank
rnk or a rank lower than rnk.

Before each standard operator in the PR plan prm an RC oper-
ator is placed. The optimizer determines which monitoring levels
are activated and the static SAS and dynamic DAS assessment set
of each RC (Section 3.3). Then the optimizer notifies each RC of
changes to their assessment sets.

Each RC in the PR plan assigns rank related metadata to partic-
ular tuples. The PR optimizer may select a PR plan in which some
RCs may not evaluate the rank related metadata of any monitoring
levels. In this case, the assessment sets of these RC will be empty
and at runtime all tuples will skip being sent to these RCs (Sec-
tion 3.4).

Consider the PR Plan in Fig. 3. Incoming news and blog tuples
are respectively evaluated by rank classifier operators rc1 and rc4
against dynamic criteria to identify promising tuples at rank 1. We
denote the rank of the criteria in the assessment sets evaluated by
each RC in Fig. 3 by the color of the tear drop in the top of the RC.
First, incoming stock tuples are evaluated by rank classifier opera-
tor rc2 against static criteria to locate significant tuples at rank 1.
Then join operator op1 joins news tuples with stock tuples. De-
pending upon their rank, join results from op1 are routed to either
rc3 and then to join operator op2 or directly to join operator op2
(Section 3.4). RC rc3 evaluates incoming tuples against static crite-
ria to identify significant tuples at rank 2. Finally, the join operator
op2 produces query results by joining blog tuples with combined
stock/news tuples.

3.1.3. Adapting rank of tuples
Cases when tuple ti ’s rank may adapt:

1) Tuple ti ’s rank may be elevated when ti is assigned a significant
and/or promising rank by an RC.
2) Tuple ti ’s rank may be degraded when ti is a promising tuple
and ti reaches its designated operator.
3) Tuple ti ’s rank may be either elevated or degraded when the
optimizer selects a new PR plan (Section 3.3). Tuple ti s rank is
respectively more or less significant than the lowest rank of the
monitoring levels activated in the new PR plan.

Each operator opo places the resulting tuple ti created from the
elevated or degraded tuple t j into a different queue than the incom-
ing queue of operator opo that held tuple t j . Operator opo places
result ti into the appropriate queue based upon tuple ti ’s rank and
the current activated monitoring levels. If tuple ti is placed into
a priority queue then henceforth operators will preferentially allo-
cate resources to tuple ti . If tuple ti is placed into the insignificant
queue then henceforth operators will not preferentially allocate re-
sources to tuple ti . Tuple ti retains the values of its rank related
metadata in case tuple ti is elevated or degraded in the future.

3.1.4. Out-of-order handling
PR pulls some tuples ahead of others causing tuples to not be

processed in arrival time order. Thus PR operators support out-of-
order processing. Strategies have been proposed in the literature to
address out-of-order issues due to external factors such as network
transmission delays [14]. PR can use similar methods to assure
completeness and correctness of results produced. To safely purge
tuples from states, similar to [15], each leaf operator opo peri-
odically sends indicator punctuations when operator opo will no
longer process any tuples from a set period of time. When opera-
tor opo receives such a punctuation, first it assures that no more
tuples are waiting to be processed whose query window is this pe-
riod of time. Then it sends a punctuation to its next operator down
stream when it has no more tuples waiting to be processed whose
query window is also this period of time. This progressively con-
tinues until the punctuation reaches the last operator in the query.

3.2. PR monitor

The PR Monitor gathers statistics to track the progress of tuples
that have the potential to be significant and/or promising tuples.
Periodically, each operator transmits their statistics to the PR Mon-
itor. Once the PR Monitor has collected statistics from all operators,
it then sends them to the PR Optimizer. One optimization used
by the PR Monitor is to reduce the number of statistics collected
by removing statistics of attributes that rarely occur in the tuple
streams.

3.2.1. Monitoring potential static tuples
Static membership criteria are defined in the P-CQL extension

at compile-time (Section 2.1). The PR Monitor uses these static
criteria to collect statistics for each operator on the how many
incoming tuples expire that have the potential to be significant tu-
ples at rank rnk.

Each join operator opi tracks how many tuples that have the
potential to be significant tuples at rank rnk and arrive at operator
opi by their join criteria and input stream. Each non-join operator
op j tracks how many tuples that have the potential to be signif-
icant tuples at rank rnk and arrive at operator op j by the join
criteria of the next join operator in the query pipeline and input
stream. The PR Monitor combines these counts to represent the
frequency of potential significant tuples FSig(opo,sn,rnk,cp) , or the count
of all potential incoming tuples to join operator opo from stream
sn that could be a significant tuple at rank rnk and satisfy join cri-
teria cp .

3.2.2. Monitoring potential promising tuples
Dynamic membership criteria that identifies promising tuples

in the current system are unknown at compile-time. Thus, the PR

K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144 133
Algorithm General Create-a-PR-plan
Input: PCQL query q j

Input: estimated available resources Cavail

Input: initial PR plan prm
Input: Frequency of Potential Significant Tuples collected by PR Monitor FSig

Input: Frequency of Potential Promising Tuples collected by PR Monitor FProm

Output: a generated PR plan prg

1: Create prg by copying prm
2: Create the set of possible dynamic monitoring levels DML using FSig and FProm data
3: Rank = 1
4: Cused = 0

5: while ((Cavail > Cused) and (Rank <= q j .NumRnks)) do
6: add static monitoring levels at rank Rank from q j .SML the set of static monitoring levels of query q j to the set of activated static monitoring levels prg .ASML in the

generated PR plan prg
7: add dynamic monitoring levels at rank Rank from DML (created above in Step 2) to the set of activated dynamic monitoring levels prg .ADML in the generated PR

plan prg
8: for each monitoring level mll in the sets of activated static and dynamic monitoring levels prg .ASML U prg .ADML at rank Rank do
9: Determine which rank classifier in the plan will evaluate monitoring level mll

10: end for

11: Rank = Rank + 1
12: Cused = Estimated CPU used by current version of prg
13: end while
14: return prg

Fig. 4. The general steps to locating one possible PR plan.
Monitor gathers statistics that the PR Optimizer will use to identify
such criteria. To locate potential dynamic membership criteria, the
PR Monitor tracks the attributes of tuples that arrive at join op-
erators as well as the attributes of tuples that expire before they
reach the next join operator in the pipeline. The PR Monitor also
collects statistics to identify at each join operator the join criteria
of incoming tuples that have the potential to be promising tuples.
The frequency of potential promising tuples FProm(opo,sn,rnk,cp) is the
count of all tuples that could be incoming tuples to join operator
opo from stream sn at rank rnk that satisfy join criteria cp where
join criteria cp identifies significant join partners at join opera-
tor opo .

Consider the PR Plan (Fig. 3) for the Stock Market Example (Sec-
tion Running example: stock market). The join criteria of potential
significant tuples at rank 1 into the join operator op1 from the
stock stream are join criteria c1, c2, and c3. Assume that join crite-
ria c1, c2, and c3 respectively are business sector equal to Energy,
Advertising, and Drug Retail.

In the PR Plan (Fig. 3), the join criteria of potential promising
tuples from the news stream at rank 1 into the join operator op1
are criteria c1, c3, and c4.

The number of possible join criteria is exponential given the
possible domains and range of join criteria values. Thus, PR-Prune
reduces the number of frequencies collected by using a heavy hit-
ter algorithm [16]. Informally, while collecting the statistics each
operator periodically removes any statistic whose frequency falls
below a preset error rate. When all statistics have been collected,
each operator returns only the statistics whose frequencies are
above a preset threshold. In addition, if the join criteria is from
a continuous domain then statistics are gathered on a range of
values. This ensures that the join criteria monitored are from a
discrete domain.

3.3. PR optimizer

Upon receiving the statistics, the PR Optimizer selects the opti-
mal order of operators within the query plan and then generates
a new PR plan. First the initial PR plan is created by placing an RC
with empty assessment sets before each standard operator in pm .
Only one RC is required as the static and dynamic assessment sets
of multiple adjacent RCs can be merged. From this initial PR plan,
all possible PR plans can be created by adjusting which static and
dynamic criteria are evaluated and where (i.e., in which signifi-
cance classifier(s)) each static or dynamic criteria is evaluated.

As outlined below, this is challenging as the complexity of dy-
namic priority determination in locating the optimal PR plan is
exponential in the number of dynamic criteria and the number of
designated operators. Our PR-Prune addresses this by reducing dy-
namic criteria and designated operators.

Fig. 4 contans the general steps to locating one possible PR plan.
We now explore the details behind this algorithm.

3.3.1. Creating the set of dynamic monitoring levels
The PR Optimizer creates a dynamic monitoring level for each

join operator opo , stream sn , rank rnk, and join criteria cp where the
frequencies of both potential significant and promising tuples are
greater than 0, i.e., FSig(opo,sn,rnk,cp) > 0 and FProm(opo,sn,rnk,cp) > 0.
When either frequency equals zero then either there are no tuples
in one of the steams that satisfy join criteria cp or tuples that
satisfy join criteria cp already have the potential to be assigned to
a rank more significant than rnk.

Consider PR Plan (Fig. 3). Dynamic criteria at rank 1 for join
operator op1 are join criteria c1 and c3. Join criteria c2 is not clas-
sified as a dynamic criteria. Although there are significant stock
tuples from the Advertising business sector (i.e., join criteria c2),
there are no news tuples in the Advertising business sector. Hence,
the frequency of potential promising tuples that satisfy join crite-
ria c2 is 0, i.e., FProm(op1,newsStream,c2,1) = 0. Similarly, join criteria c4
is also not classified as dynamic criteria.

Each dynamic criteria cp may identify significant join partners
at join operator opo with different ranks. In this case, promising tu-
ples that satisfy cp will create join results at more than one rank.
To keep this practical, each promising tuple that satisfies cp is as-
signed the highest rank of all significant join partners identified by
criteria cp .

Consider PR Plan (Fig. 3). Stock tuples from the Drug Retail
business sector (i.e., join criteria c3) are significant tuples with
ranks of 1 and 2. Thus, the rank of the dynamic monitoring level
created to locate news and blog tuples with this Drug Retail busi-
ness sector (i.e., cp = join criteria c3) is rank 1.

3.3.2. Selecting which static and dynamic monitoring levels to activate
Some of the potential dynamic monitoring levels in DML may

reference join operators that will not have any incoming signifi-

134 K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144
Algorithm Detailed Create-a-PR-plan
Input: PCQL query q j

Input: estimated available resources Cavail

Input: initial PR plan prm
Input: Frequency of Potential Significant Tuples collected by PR Monitor FSig

Input: Frequency of Potential Promising Tuples collected by PR Monitor FProm

Output: a generated PR plan prg

1: Create prg by copying prm
2: Create the set of possible dynamic monitoring levels DML using FSig and FProm data
3: Rank = 1
4: Cused = 0

5: while ((Cavail > Cused) and (Rank <= q j .NumRnks)) do
6: add static monitoring levels at rank Rank from q j .SML the set of static monitoring levels of query q j to the set of activated static monitoring levels prg .ASML in the

generated PR plan prg
7: for each monitoring level mll in the sets of activated static monitoring levels prg .ASML at rank Rank do
8: Determine which rank classifier in the plan will evaluate monitoring level mll
9: end for

10: Identify designated operators, i.e., join operators where significant tuples at rank Rank

11: add dynamic monitoring levels at rank Rank from DML (created above in Step 2) to the set of activated dynamic monitoring levels prg .ADML in the generated PR
plan prg

12: for each monitoring level mll in the sets of activated dynamic monitoring levels prg .ADML at rank Rank do
13: Determine which rank classifier in the plan will evaluate monitoring level mll
14: end for

15: Rank = Rank + 1
16: Cused = Estimated CPU used by current version of prg
17: end while
18: return prg

Fig. 5. The detailed steps to locating one possible PR plan.
cant tuples. A join operator opo is said to be designated if and only
if it has incoming tuples that are significant tuples. Whether or
not incoming tuples to join operator opo are significant (or not) de-
pends upon which static monitoring levels are activated and where
they are evaluated. As a consequence, to determine which dynamic
monitoring levels at rank rnk to active the PR Optimizer must first
find which join operators are designated. Hence, the PR optimizer
firsts select which static monitoring levels to activate and deter-
mines where in the plan to evaluate each static criteria before
considering where to evaluate the dynamic monitoring levels.

Generating one possible PR plan involves the following detailed
steps. (See Fig. 5.)

3.3.3. Determining where to evaluate each static and dynamic criteria
The PR Optimizer must determine which RC(s) should evaluate

which criteria of the activated monitoring levels. We now discuss
how many RCs must evaluate each static and dynamic criteria to
ensure that all possible significant or promising tuples are pulled
forward. Each static or dynamic criteria has an evaluation path, i.e.,
an ordered set of operators that begins at the first and ends at the
last operator in the plan that can evaluate the criteria.
Static evaluation path: Only one rank classifier (RC) in the evalu-
ation path needs to evaluate a given static criteria because signif-
icant tuples retain their rank for the duration of processing. Thus
the PR optimizer only needs to locate the best RC to assess each
static criteria.

Each s-crit s-critk has a static evaluation path, i.e., an ordered
set of operators that respectively begins and ends at the first and
last operators in the plan that can evaluate s-critk , or roughly, the
operators where incoming tuples contain all the attributes required
to evaluate s-critk .
Dynamic evaluation path: In contrast, the rank of promising tu-
ple ti has a short lifespan because tuple ti will drop its promising
rank when it reaches its designated operator, namely the join oper-
ator where ti is estimated to join with a significant tuple. Further
along the pipeline, the tuple ti may be assigned another promising
rank. That is, during its processing, a tuple may be pulled for-
ward to different designated operators along the query pipeline.
The evaluation paths of criteria may overlap. In addition, to en-
sure that for dynamic criteria cp all promising tuples are pulled
forward, dynamic criteria cp may need to be evaluated at multiple
RCs, namely, after any of its designated operator. This is because
tuples may lose their current promising rank at each designated
operator. This is the first place to check if a tuple should be as-
signed the promising rank of a designated operator further along
the query pipeline.

Each d-crit d-criti has a dynamic evaluation path, i.e., an ordered
set of operators that respectively begins and ends at the first and
last operators in the plan that can evaluate d-criti .
Static vs dynamic evaluation paths: A static evaluation path ends
at the last RC operator in the query plan as significant tuples
remain significant for the entire query pipeline. In contrast, a dy-
namic evaluation path ends at the RC operator that proceeds their
associated designated operator in the query pipeline. Hence to de-
termine the possible dynamic evaluation paths we must locate the
designated operators in the query pipeline.

3.3.4. PR plan search space
We now explore the size of the search space to generate all

possible PR plans by generating all possible options of which lev-
els are activated and all possible options of where each criteria is
evaluated to find the optimal PR plan.
Static priority determination: Recall that each static criteria is
evaluated in one RC in its static evaluation path. In the PR Plan
(Fig. 3), consider identifying significant tuples from the stock
stream at rank 1, i.e., tuples from aggressive investments. Such
tuples can either be identified by RC2 (i.e., before join operator
op1) or by RC3 (i.e., after join operator op1 and before join opera-
tor op2).
Complexity of static priority determination: Assume that in PR
plan prm , there are |SEP| static evaluation paths. Each static
evaluation path sepk contains |sepk.rc| RC operators. There are
|SCrit(sepk, rnk)| static criteria whose static evaluation path is sepk
and rank is rnk. For rank rnk and static evaluation path sepk , there

K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144 135
are |sepk.rc||SCrit(sepk,rnk)| possible combinations of which RC eval-
uates each static criteria in SCrit(sepk, rnk). Hence, for rank rnk,
there are

∏|SEP|
k=1 |sepk.rc||SCrit(sepk,rnk)| possible PR plans where the

static criteria at rank rnk can be evaluated.
Dynamic priority determination: In contrast, each dynamic crite-
ria could be evaluated in many (and even all) RCs in its dynamic
evaluation path. In the PR Plan (Fig. 3), consider locating promising
tuples for join operator op1 from the news stream from the Energy
business sector, i.e., join criteria c1. Such tuples will be promising
at rank 1 for designated operator op1. Rank Classifier RC1 would
be the only operator that need to try to identify these tuples us-
ing the promising criteria (i.e., before join operator op1). This is
because there are no designated operators between RC1 and the
designated operator op1.

Now consider locating promising tuples for join operator op2
from the news stream from the Energy business sector, i.e., join
criteria c1. These tuples will be promising tuples at rank 1 with
designated join operator op2. Such tuples can be located by any
RCs before join operator op2, namely, RC1 and RC3.

If only RC3 evaluates join criteria c1 then such tuples only need
to be located by RC3. This is because there are no designated op-
erators between RC3 and the designated operator for join criteria
c1, i.e., designated operator op2. However, this is not true if RC1
evaluates join criteria c1 and operator op1 is a designated operator
between RC1 and join operator op2, i.e., the designated operator
for join criteria c1. In this case, to ensure that promising tuples for
both designated operators op1 and op2 are pulled forward, RC3 will
also need to evaluate join criteria c1.

Segments within a dynamic evaluation path where a tuple’s
rank can change exist between every pair of consecutive desig-
nated operator in the dynamic evaluation path. We refer to these
segments as dynamic re-evaluation paths.

For the last example above, a dynamic re-evaluation path exists
between operators op1 and ends at RC3. This is because RC3 is the
first RC after designated operator op1 and the last RC before the
next designated operator op2. The optimizer must select one RC in
each dynamic re-evaluation path to evaluate the dynamic criteria.
Complexity of dynamic priority determination: For each dy-
namic criteria cp whose dynamic evaluation path is depl , there
are

∑|depl .rc|
x=1

∏|DREP(depl,rcx)|
m=1 |drepm.rc| possible combinations of

which RCs evaluate dynamic criteria cp . Rank Classifier rcx is the
RC in dynamic evaluation path depl selected by the optimizer.
|DREP(rcx, depl)| denotes the number of dynamic re-evaluation
paths that proceed rcx in dynamic evaluation path depl . |drepm.rc|
denotes the number of RCs in dynamic re-evaluation path drepm
where dynamic criteria d-criti can be re-evaluated.

There are |DCrit(depl, rnk)| dynamic criteria whose dynamic
evaluation path is depl and rank is rnk. Hence, for each rank rnk,
there are

∏|DEP|
l=1 (

∑|depl .rc|
x=1

∏|DREP(rcx)|
m=1 |drepm.rc|)|DCrit(depl,rnk)| possi-

ble PR plans where the dynamic criteria at rank rnk can be evalu-
ated.
The PR search space thus is:

∑|q j .SML|
rnk=1

∏|SEP|
k=1 |sepk.rc||SCrit(sepk,rnk)| ∗

∏|DEP|
l=1 (

∑|depl .rc|
x=1

∏|DREP(depl,rcx)|
m=1 |drepm.rc|)|DCrit(depl,rnk)| .

We notice that the complexity of dynamic priority determi-
nation in the PR problem is exponential in the number of dy-
namic criteria |DEP| and the number of designated operators
|DCrit(depl, rnk)|. It is impractical to exhaustively search for the
optimal PR plan with many dynamic criteria and designated op-
erators.

3.3.5. PR prune optimization strategy
We now introduce PR-Prune, an optimization strategy that re-

duces the complexity of dynamic priority determination. PR-Prune
eliminates inferior dynamic criteria before creating dynamic mon-
itoring levels (i.e., Step 2 below). This reduces the number of
dynamic criteria |DEP| and the number of designated operators
|DCrit(depl, rnk)|. As we will see below, PR Prune discriminately
chooses which dynamic monitoring levels to activate. Finally, PR
Prune also reduces the number of designated operators it creates
(i.e., Step 2d above). This reduces |DREP(depl, rcx)|).

Roughly, locating a single PR Plan in PR-Prune consists of the
following steps. (See Fig. 6.)
Pruning of inferior dynamic criteria: Dynamic priority determi-
nation is more complex than static priority determination. The
number of static criteria at rank rnk is inherently small as they
are defined by users at compile-time. In contrast, the number of
dynamic criteria can be prohibitively large. That is, there may be
a huge number of join criteria at each join operator that identify
promising tuples at rank rnk.
Observation: Some dynamic criteria cp may identify promising tuples
that produce more significant query results than others.

In the PR Plan (Fig. 3), dynamic criteria at rank 1 in join op-
erator op1 are from tuples related to the Energy and Drug Retail
business sectors. More precisely, two join results from the En-
ergy business sector will be produced when the promising tuple
at rank 1 joins with the two significant tuple at rank 1 using join
criteria c1. While four join results from the Drug Retail business
sector will be produced for join criteria c3.

Evaluating the optimal determination location of inferior cri-
teria adds overhead. Each dynamic criteria we do not evalu-
ate reduces the complexity of dynamic priority determination
by: (

∑|depl .rc|
x=1

∏|DREP(depl,rcx)|
m=1 |drepm.rc|) where depl is the dynamic

evaluation path of d-criti .
A dynamic criteria is inferior to the others typically when the

product of the frequencies of potential significant and promising
tuples is extremely low. To eliminate these inferior dynamic cri-
teria, we propose a statistics-based reduction method. Namely, we
remove any dynamic criteria if the product of the frequencies of
potential significant and promising tuples is below a preset thresh-
old.
Activation order of dynamic monitoring levels: Rather than ex-
haustively searching through all possible dynamic monitoring lev-
els to decide which ones to activate, PR-Prune starts with the dy-
namic monitoring levels that are estimated to produce the largest
cardinality of critical join results. This corresponds to the criteria
with the largest product of the frequencies of potential significant
and promising tuples. This helps ensure that resources are allo-
cated to the most promising tuples first.

From these insights, we thus again refine the logic of the PR-
Prune. (See Fig. 7.)
Cost savings: There is clearly a cost savings in reducing the num-
ber of designated operator and the number of dynamic eval-
uation paths. Each designated operator eliminated reduces the
number of possible PR plans that need to be generated by
(
∑|depl .rc|

x=1

∏|DREP(depl,rcx)|
m=1 |drepm.rc|)|DCrit(depl,rnk)| plans. While each

dynamic re-evaluation path eliminated reduces the number of pos-
sible PR plans that need to be generated by

(
∑|depl .rc|

x=1 |drepm.rc|)|DCrit(depl,rnk)| plans.
Reducing the dynamic evaluation paths: In the PR Plan (Fig. 3), as-
sume that tuple ti satisfies the dynamic criteria c1 and c2 at rank
rnk for respective designated operators op1 and op2. Assume that
tuple ti does not satisfy any other criteria. There are two possible
ways in which ti could be processed. First, tuple ti could be eval-
uated by an RC against dynamic criteria c1. In this case, tuple ti
would be a promising tuple at rank rnk with designated operator
op1. After operator op1, tuple ti would then be evaluated by an RC
against dynamic criteria c2. At this point, tuple ti would become
a promising tuple at rank rnk with designated operator op2. The
second alternative is that prior to operator op1, tuple ti could be
evaluated by an RC against dynamic criteria c2. In this case, tuple ti
would a promising tuple at rank rnk with designated operator op2.

136 K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144
Algorithm General PR-Prune Create-a-PR-plan
Input: PCQL query q j

Input: estimated available resources Cavail

Input: initial PR plan prm
Input: Frequency of Potential Significant Tuples collected by PR Monitor FSig

Input: Frequency of Potential Promising Tuples collected by PR Monitor FProm

Output: a generated PR plan prg

1: Create prg by copying prm
2: Create the set of possible dynamic monitoring levels DML using FSig and FProm data
3: Eliminate inferior dynamic criteria from the set of possible dynamic monitoring levels DML
4: Rank = 1
5: Cused = 0

6: while ((Cavail > Cused) and (Rank <= q j .NumRnks)) do
7: add static monitoring levels at rank Rank from q j .SML the set of static monitoring levels of query q j to the set of activated static monitoring levels prg .ASML in the

generated PR plan prg
8: for each monitoring level mll in the sets of activated static monitoring levels prg .ASML at rank Rank do
9: Determine which rank classifier in the plan will evaluate monitoring level mll

10: end for

11: Identify designated operators, i.e., join operators where significant tuples at rank Rank
12: Reduce the set of designated operators found in the previous step

13: add dynamic monitoring levels at rank Rank from DML (created above in Step 2) to the set of activated dynamic monitoring levels prg .ADML in the generated PR
plan prg

14: for each monitoring level mll in the sets of activated dynamic monitoring levels prg .ADML at rank Rank do
15: Determine which rank classifier in the plan will evaluate monitoring level mll
16: end for

17: Rank = Rank + 1
18: Cused = Estimated CPU used by current version of prg
19: end while
20: return prg

Fig. 6. The general PR-Prune steps to locating one possible PR plan.

Algorithm Detailed PR-Prune Create-a-PR-plan
Input: PCQL query q j

Input: estimated available resources Cavail

Input: initial PR plan prm
Input: Frequency of Potential Significant Tuples collected by PR Monitor FSig

Input: Frequency of Potential Promising Tuples collected by PR Monitor FProm

Output: a generated PR plan prg

1: Create prg by copying prm
2: Create the set of possible dynamic monitoring levels DML using FSig and FProm data
3: Eliminate inferior dynamic criteria from the set of possible dynamic monitoring levels DML
4: Rank = 1
5: Cused = 0

6: while ((Cavail > Cused) and (Rank <= q j .NumRnks)) do
7: add static monitoring levels at rank Rank from q j .SML the set of static monitoring levels of query q j to the set of activated static monitoring levels prg .ASML in the

generated PR plan prg
8: for each monitoring level mll in the sets of activated static monitoring levels prg .ASML at rank Rank do
9: Determine which rank classifier in the plan will evaluate monitoring level mll

10: end for

11: Identify designated operators, i.e., join operators where significant tuples at rank Rank
12: Reduce the set of designated operators found in the previous step

13: add dynamic monitoring levels at rank Rank from DML (created above in Step 2) to the set of activated dynamic monitoring levels prg .ADML in the generated PR
plan prg

14: for each monitoring level mll in the sets of activated dynamic monitoring levels prg .ADML at rank Rank in order of highest to lowest product of the frequencies of
potential significant and promising tuples do

15: Determine which rank classifier in the plan will evaluate monitoring level mll
16: end for

17: Rank = Rank + 1
18: Cused = Estimated CPU used by current version of prg
19: end while
20: return prg

Fig. 7. The detailed PR-Prune steps to locating one possible PR plan.
In both cases, tuple ti would be promoted as a promising tu-
ple at rank rnk across both operators. In the first case, tuple ti

would be evaluated twice and promoted as a promising tuple at
rank rnk across each operator individually. In the second case, tu-
ple ti would be evaluated once but promoted as a promising tuple
at rank rnk across both operators.

Clearly, there is less overhead if we allocate resources to
promising tuples for the longest duration of query processing.

K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144 137
Hence, it is best to assign tuple ti to the designated operator that
is furthest along the query pipeline, i.e., operator op2.
Observation: If multiple consecutive join operators in the query pipeline
have the same join criteria then only the last join operator in the se-
quence should be used to identify potential dynamic criteria.

Reconsider PR Plan (Fig. 3). Join operators op1 and op2 both
use the same join criteria attribute, i.e., business sector. If we use
the dynamic criteria located at operator op1 then there is no guar-
antee that the same business sectors exist in the news and blog
streams over the same query window. That is, a critical join result
tuples generated by op1 may not contain a business sector in the
blog stream. This would cause no result to be created by join op-
erator op2. Preferentially allocating resources to pull forward news
tuples from such a business sector may not generate any additional
significant query results.

However, since op1 and op2 both use the same join criteria
attribute the frequency statistics can be shared across both oper-
ators. Then dynamic criteria learned by operator op2 can ensure
that such tuples will match some tuples in both the news as well
as blog stream.

In summary, PR-Prune eliminates designated operators by only
assigning the last join operator of all adjacent join operators that
use the same join criteria to be the designated operator. Then PR-
Prune identifies the dynamic criteria of this join operator, namely,
the join operator furthest along the query pipeline.
PR-prune plan search space: The PR-Prune search space for plan
pi is thus:

∑|q j .SML|
rnk=1

∏|SEP|
k=1 |sepk.rc||SCrit(sepk,rnk)| ×

∏|RDEP|
l=1 (

∑|depl .rc|
x=1

∏|RDREP(depl,rcx)|
m=1 |drepm.rc|)|RDCrit(depl,rnk)| . RDEP is

the reduced set of dynamic evaluation paths. RDREP(depl, rcx) is
the reduced set of dynamic re-evaluation paths that follow rank
classifier rcx in dynamic evaluation path depl . RDCrit(depl, rnk) is
the reduced set of dynamic criteria whose dynamic evaluation path
is depl and rank is rnk.

3.3.6. Optimal order of operators in PR plan
Selecting the optimal ordering of operators within a plan is

NP-hard [17]. The complexity only increases if we simultaneously
consider both the optimal ordering of operators and allocation of
resources. Given a query plan pm selected using traditional query
optimization techniques [18], the PR optimizer locates the opti-
mized PR plan prm for a given traditional query plan pm .

3.4. PR adaptor

After the optimizer selects a new optimized PR plan, the PR
Adaptor adapts the current PR plan to the new one. A challenge to
any online query plan adaption is how to do so efficiently so as to
require the least amount of resources and the shortest amount of
time. A key to how PR efficiently supports the adaption of PR plans
is the retention of a rank classifier (a.k.a., RC) before each standard
operator. As we explain in further detail below, simply changing
the attributes of the RC operators allows the PR current plan to
change to a new PR plan. This allows PR to adapt the PR plan
online without requiring any operators or data exchange interfaces
to be added, removed, or reordered.

To not delay adaption, a control exchange interface is dedicated
to sending notifications between the PR Adaptor and each operator.
To adapt which and where static and dynamic criteria are evalu-
ated, the PR Adaptor simply sends each RC a notification about
their new static and dynamic assessment sets.

Since our design requires that an RC exist before each opera-
tor, it is possible that some RCs in the PR plan do not evaluate any
static or dynamic monitoring levels and thus, have empty assess-
ment sets. Operators do not send tuples to such RCs. Such RCs are
simply skipped. To skip extraneous RCs, standard operators con-
trol where they send results. They send results to either: 1) the
next down stream RC rcp and then to the next down stream oper-
ator opo or 2) directly to the next down stream operator opo , i.e.,
skipping RC rcp . To adapt where results are sent, the PR Adaptor
notifies each operator of the whether or not to send their results
to the next down stream RC.

In short, PR quickly adapts the PR plan online. The adaption
does not require any infrastructure changes. Instead, each operator
locally adapts online how they allocate resources to any future in
process tuples (Section 3.1.3).

4. Experimental evaluation

4.1. Experimental setup

Alternative solutions. We compare PR with the PR-Prune Opti-
mizer (or PR-Prune) to PR with the basic PR Optimizer solution
(or PR) [2]. Both approaches identify and pull promising tuples
forward. However, PR-Prune reduces the optimization time for cri-
teria identification and placement which allows PR-Prune to pull
promising tuples forward sooner than PR. We also study the tra-
ditional data stream management system which does not em-
ploy any resource allocation methodology (or Trad). Trad demon-
strates that our experimental scenarios require a resource alloca-
tion methodology to ensure the throughput of the most critical
results. We also analyze the state-of-the-art resource allocation
methodologies for data streams (Section 5), namely, semantic (or
Sem), random (or Rand) [19], and Proactive Promotion (or PP) [7,8].

PP [7,8] only pulls significant tuples forward. It does not iden-
tify nor pull forward promising tuples. As shown in [2], this limits
the number of critical results produced by PP as compared to PR.
Sem selects which incoming significant tuples will be processed
(or dropped) upon their arrival. Rand randomly selects tuples to
process upon their arrival based upon the estimated number of
tuples that can be processed within their lifespan given the cur-
rent statistics. Both Sem and Rand process all tuples in FIFO order.
In contrast, PP locates significant tuples at the optimal RC operator
in the query pipeline using a cost-based optimization strategy. PP
processes all tuples in rank order. Studying these approaches high-
lights the benefits of efficiently pulling promising tuples forward
(i.e., PR-Prune). Trad simply processes all tuples in FIFO order. It
neither sheds nor allocates resources to specific tuples based upon
their rank.

All systems were implemented in the same data stream man-
agement system, in our case, CAPE [20]. PR-Prune, PR, PP, and Sem
use the same set of static criteria to identify significant tuples.
Unlike the other approaches, PR-Prune and PR generate dynamic
criteria to identify promising tuples. In our experiments, operators
in PR-Prune and PR send join criteria statistics whose frequency is
above 5% to the PR monitor.
Experimental methodology. Compared to alternative solutions, we
explore the following research questions: 1) Is PR-Prune more ef-
fective at increasing the throughput of the most critical query
results? 2) What affect does the number of promising tuples in
the streams have on the effectiveness of PR-Prune? 3) How does
varying the number of join operators or dynamic evaluation paths
affect PR-Prune? 4) How does the optimization search time of PR-
Prune compare to that of the PR? 5) What is the runtime CPU and
memory overhead of PR-Prune?

Our experiments adapt the variables that most directly affect
PR-Prune. The quantity of promising tuples affects the number of
tuples in the workload that may benefit from being pulled forward.
PR-Prune’s effectiveness is based upon efficiently adapting the PR
plan to allow it to identify promising tuples at their designated
join operator and creating critical join results. The number of join
operators in a query affects the query complexity and number of
tuples in the workload that may benefit from being pulled forward.

138 K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144
In addition, this demonstrates PR-Prunes ability across a diverse set
of queries, namely, adding additional join operators creates unique
distinct query plans. Varying the number of dynamic evaluation
paths affects the optimization search time and the number of op-
erators over which each promising tuple can be pulled forward.
Queries. Most experiments use the Stock Market Query (Sec-
tion 1.3) with the P-CQL extension. This query has three static
monitoring levels that define the significant tuples in the stock
stream. We henceforth refer to this query as the Stock Market
Query.
Data streams. The stock market stream was created from the pric-
ing information on the S&P 500 stocks gathered over July 18, 2012
via Yahoo Finance [21]. A selection committee from Standard &
Poor’s determines which of the 500 leading companies publicly
traded in the U.S. stock market are in the S&P 500. It is consid-
ered to be a good metric of how well the U.S. economy is doing.

Stock Data Set 1 mimics the monitoring levels of an investment
company. The stock market can change rapidly. Thus many mutual
funds are diversified. That is, the stocks chosen to belong to a fund
are distributed across different business sectors and investment
types (i.e., aggressive versus conservative). In Stock Data Set 1, 4.6%
of the stocks in the stock stream were randomly chosen to respec-
tively have significant ranks 1, 2, and 3.

News and blog data streams were created by randomly select-
ing from either the sectors in the Global Industry Classification
Standard (GICS) or the subsectors in the Industrial Classification
Benchmark (ICB). These streams represent the industries or busi-
ness sectors mentioned in current postings. GICS was developed by
Morgan Stanley Capital International (MSCI) and Standard & Poor’s.
It contains 10 sectors that categorize the industries of companies
in the S&P 500 by their stock symbol. ICB was created by Dow
Jones and FTSE. It contain 100 subsectors that classify the business
sector of the companies in the S&P 500 by their stock symbol.

Most experiments use the News/Blog Data Set 1 which mimics
the average stock market day when no particular ICB subsector
dominates the news. In News/Blog Data Set 1, the ICB subsectors
were randomly placed into the news and blog streams with the
constraint that 15% of tuples in each window in the news and
blog streams are promising tuples, i.e., contain the same the ICB
subsectors as the significant tuples in the Stock Data Set 1.
Hardware. Our experiments were conducted in a compute cluster.
Each host has two AMD 2.6 GHz Dual Core Opteron CPUs and 1 GB
memory. Each solution (i.e., PR-Prune, PR, PP, Sem, or Trad) was
distributed across 2 processing nodes. The query executor was run
on one node. The system monitoring, optimizing, and plan adap-
tion components were run on the other node.
Metrics and measurements. All experiments were run 3 times for
10 minutes. The results are averaged over these runs. Most of our
experiments measure separately for each monitoring level the cu-
mulative throughput of critical query results.

4.2. Experimental results

Effectiveness at increasing throughput of the most significant re-
sults. First, we compare the throughput of each approach. This
experiment uses Stock and News/Blog Data Set 1, and the Stock
Market Query. The window size = 1000 tuples.

Figs. 6a–c show the average cumulative throughput for monitor-
ing levels 1–3 respectively as it changes over 10 minutes. Overall
compared to the alternative approaches PR-Prune produced more
of most critical results (i.e., level 1) (Fig. 6a). Quantitatively, PR-
Prune produced 98%, 95%, 45%, 33%, and 9% more of the most
critical results than Trad, Rand, Sem, PP, and Pr respectively. In ad-
dition, for the second most critical results (i.e., level 2), PR-Prune
produced more results than PR, PP, Rand, and Trad (Fig. 6b). Quan-
titatively, PR-Prune produced 97%, 88%, 24%, and 18% more of the
second most critical results than Trad, Rand, PP, and Pr respec-
tively. Only Sem produced slightly more critical results at level 2
than PR-Prune, namely, 13% more. Rand, Sem, and Trad all process
tuples in FIFO order. Thus they cannot guarantee that resources
are dedicated to the most critical tuples first. Finally, for the least
critical monitoring level, (i.e., level 3) PR-Prune produced more re-
sults than PR, PP, Rand, and Trad (Fig. 6c). Quantitatively, PR-Prune
produced 96%, 83%, 22%, and 17% more of the least most critical
results than Trad, Rand, PP, and Pr respectively. Again, only Sem
produced more of the least critical results than PR-Prune, namely,
79% more.

Even though Sem produced significantly more of the least crit-
ical results, PR-Prune was most efficient at dedicating resources to
producing the most critical query results. Namely, the goal of PR-
Prune is to efficiently dedicate the resources to produce the most
critical results, followed by the next most critical results (and so
on) until no resources remain. PR-Prune is indeed effective at in-
creasing the throughput of the most critical results. This is due to
PR-Prune’s ability to efficiently pull forward both significant and
promising tuples. In addition, although Sem produces more critical
results at monitoring levels 2 and 3, it produces notably less of the
most critical results. In the Stock Market Example this could have
severe financial consequences.
Varying the number of promising tuples. We now explore how the
number of promising tuples in the streams affects the throughput
of critical results. This experiment uses Stock and News/Blog Data
Set 1, and the Stock Market Query. The window size = 1000 tuples.
In this experiment, we use four distinct News/Blog Data Sets. These
datasets emulate days where particular ICB subsectors dominate
the news.

In the 25% News/Blog Data Set (DS25), 25% of ICB subsectors
of the significant tuples in the Stock Data Set 1 were randomly se-
lected and placed into tuples in each window in the news and blog
streams. In other words, only 25% of all the significant tuples have
corresponding join partners and 75% have no join partners. Simi-
larly, in the 50% (DS50), 75% (DS75), and 100% (DS100) News/Blog
Data Sets, respectively 50%, 75%, and 100% of ICB subsectors of
the significant tuples in the Stock Data Set 1 were randomly se-
lected and placed into tuples in each window in the news and
blog streams. In DS50, DS75, and DS100, respectively only 50%,
75%, and 100% have corresponding join partners, i.e., 50%, 25%, and
0% have no join partners. Figs. 5a–d show the average cumulative
throughput for monitoring levels 1–3 respectively after 10 minutes
respectively for the DS25, DS50, DS75, and DS100 Data Sets.

In this experiment, we did not control the number of critical
results that can be produced by each scenario. The data streams
was randomly produced for each Data Set. Therefore there is no
correlation between the results from different Data Sets. We can
view the results independently to observe trends in how PR-Prune
performs in scenarios where there are few versus many promising
tuples.

Regardless of the data set used, PR-Prune produced more of the
most critical results than the other approaches (Figs. 7a–d). The
gains achieved by PR-Prune increases when the stream contains
fewer promising tuples (e.g., DS25) compared to when the stream
contains more promising tuples (e.g., DS100).

In all scenarios, compared to Trad, PR-Prune between 71 and
85 fold more of the most critical results (i.e., level 1). Respectively
for DS25, DS50, DS75 and DS100, PR-Prune produced between 1.3
and 19.8 fold, 1.5 and 23 fold, 1.7 and 15.9 fold, and 1.6 and 22 fold
more of the most critical results (i.e., level 1) than PR, PP, Sem, and
Rand. This is as expected. Namely, PR-Prune is designed to pull the
promising tuples forward that have the estimated highest potential
of producing the most critical query results.

Locating promising tuples adds overhead. PR-Prune efficiently
determines which dynamic criteria to use to locate promising tu-

K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144 139
Fig. 8. Effective at increasing throughput of the most significant results.
ples while taking the overhead of locating promising tuples. Com-
pare the results in the DS100 scenario to the DS25 scenario. DS100
has more possible dynamic criteria to evaluate than DS25. How-
ever, even with these additional dynamic criteria in the DS100
scenario PR-Prune is still more efficient than the other approaches.
This is demonstrated by the fact that PR-Prune produced more of
the most critical query results than the other approaches.
Varying the workload and number of dynamic evaluation paths.
We now compare how varying the workload and number of dy-
namic evaluation paths affects PR-Prune compared to PP and PR.
Comparing PR-Prune to PP demonstrates the benefit to pulling
promising tuples forward. While the comparison to PR highlights
the advantage of reducing the optimization time and thus quickly
pulling promising tuples forward. The data streams was again ran-
domly produced for each Data Set. Therefore there is no correlation
between the results from different Data Sets. We can view the re-
sults independently to observe trends in how PR-Prune performs
in scenarios.
Varying the number of join operators. This experiment again uses
Stock and News/Blog Data Set 1 where the window size = 1000
tuples. However in this experiment we vary the number of join
operators from 2, 4, to 8 operators. The 2 join operator experiment
uses the Stock Market Join Query. While the 4 and 8 join operators
query plans respectively extend the Stock Market Join Query by 2
and 6 join operators. Each join operator added combines the cur-
rent results respectively with an additional news or blog stream.
Such queries are used to locate hot news trends across multiple
news sources. Figs. 8a–c show the average cumulative throughput
for monitoring levels 1–3 respectively after 10 minutes. Overall PR-
Prune consistently produced more of the most critical results (i.e.,
level 1) than PR and PP.
Varying the number of dynamic evaluation paths. This experiment
uses the Stock and News/Blog Data Set 1 and the 8 join query
outlined above where the window size = 1000 tuples. The number
of dynamic evaluation paths is varied by adjusting how many of
the consecutive join operators shared the same join attribute.
In the 1 path query, all 8 join operators share the same join at-
tribute. PR-Prune will seek to pull promising tuples forward across
the entire query path. While respectively in the 2, 4, and 8 path
queries, 4, 2, to 0 (no) join operators share the same join attribute.
In the 2 path query PR-Prune will seek to pull promising tuples
forward across the first and the last four consecutive join opera-
tors in the query pipeline. In the 4 path query PR-Prune will seek
to pull promising tuples forward across the first, second, third, and
last two consecutive join operators in the query pipeline. In the 8
path query PR-Prune will respectively seek to pull promising tuples
forward across each join operator individually.

To achieve this we vary which incoming news and blog streams
are generated from the GICS sectors and which streams are gener-
ated from ICB subsectors. When there is 1 path, all 8 news streams
are generated from ICB subsectors, i.e., all 8 join operators share
the same join attribute. Thus PR-Prune would pull promising tu-
ples forward across all 8 join operators. While in the 8 paths case,
every other news streams is generated from ICB subsectors or GICS
sectors, i.e., no consecutive join operators share the same join at-
tribute. In this case, PR-Prune would pull promising tuples only
across one individual join operator at a time.

Figs. 9a–c show the average cumulative throughput for moni-
toring levels 1–3 respectively over 10 minutes. Overall PR-Prune
consistently produced more of the most critical results (i.e., level 1)
than PR and PP. It can be seen that PR-Prune produces more of the
most critical results than PR and PP regardless of the number of
dynamic evaluation paths.
Optimization search time. We now compare the optimization
search time of PR-Prune to PR to respectively locate the “best”
or optimal PR plan for queries that contain a varied number of
dynamic evaluation paths (Fig. 10). Namely, we analyze the opti-
mizer search time for the 1, 2, 4, and 8 path experiment outlined
above. In the 1 path case, PR-Prune took 31.6% less time than PR to
search for the “best” PR plan. While in the 8 paths case, PR-Prune
took 14.3% less time.

This is as expected. In the 1 path case, PR Prune will elimi-
nate potential designated operators and combine all join operators

140 K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144
Fig. 9. Varying the number of promising tuples.

Fig. 10. Varying the number of join operators.
into a single dynamic evaluation path (Section 3.3.5). While in the
8 path case, PR Prune will not be able to eliminate any poten-
tial designated operators and a dynamic evaluation path will be
created for each join operator. However, in both cases PR Prune re-
duces the optimizer search time by eliminating inferior dynamic
criteria (Section 3.3.5).
Execution-runtime CPU overhead. To measure the runtime over-
head we evaluate the cumulative throughput using the worst case
scenario for PR-Prune (Fig. 11c), namely, when no static monitoring
levels are defined. This experiment uses the Stock Market Query
(Section 1.3) without the P-CQL extension. In addition, no tuples
expire (i.e., query lifespan = ∞). Thus, all tuples are processed
in FIFO order. The overhead of the resource allocation methodolo-
gies (Sem, Rand, PP, PR, PR-Prune) here correspond to the cost to
collect and evaluate runtime statistics. This is the worst case sce-
nario as although these systems will never be overloaded, they will

K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144 141
Fig. 11. Varying the number of dynamic evaluation paths.
Fig. 12. Optimization search time.

continue to utilize resources to evaluate how to allocate resources.
This experiment uses the Stock and News/Blog Data Set 1 where
the window size is 1000 tuples.

As shown by our results (Fig. 13c), the overhead of PR-Prune
compared to the overhead of the alternative state-of-the-art re-
source allocation methodologies is minimal. PR and PR-Prune re-
quire more detailed statistics than PP and Sem (Section 3.2). That
is, PP and Sem only collect statistics regarding static monitor-
ing levels. In contrast, PR-Prune and PR collect statistics regarding
both static and dynamic monitoring levels. Rand and Trad have
respectively significantly less and no statistics gathering overhead
than the other approaches. However, as shown in the experiments
above, this minimal overhead is well worth it in systems that re-
quire preferential resource allocation.
Memory overhead. We now evaluate the average number of tu-
ples in the state and input queues of the last join operator (i.e.,
operator op2 in the Stock Market Query) in the query pipeline us-
ing the scenario outline above (Fig. 13a and b). As per our results,
the memory overhead of PR-Prune is comparable to the current
state-of-the-art approaches.

All approaches process tuples in FIFO order. In PP, PR, and PR-
Prune, all tuples will reside in the insignificant queue. The number
of tuples in the queue of PR-Prune and PR is slightly higher than
the other approaches. This is mainly due to the extra overhead to
support additional monitoring statistics which leaves PR-Prune and
PR less resources to process tuples.

Sem, Rand, and Trad process tuples in FIFO order. Their join op-
erators internally determine when to purge their states by tracking
when it processes the last tuple from a given window. PR does
not necessarily process tuples in arrival time order. It uses punc-
tuations to signal when to purge their states (Section 3.1.4). This
causes the purge to be delayed longer than for other methods and
subsequently the state to be slightly larger.

4.3. Summary of experimental findings

We now summarize our key findings.
1) PR-Prune increases the throughput of the most critical re-

sults.
2) Regardless of the number of promising tuples in the streams,

the query complexity, or the number of dynamic evaluation paths
PR-Prune successfully produced a larger quantity of highly critical
results than the state-of-the-art competitors.

3) The optimization search time of PR-Prune is significantly
lower than PR especially for scenarios with dynamic evaluation
paths that contain multiple operators (roughly 32% reduction in
search time; see Fig. 12).

4) PR-Prune does require some fairly negligible CPU and mem-
ory overhead. As shown in our experiments above, this overhead is
justified in systems that must ensure that resources are dedicated
to producing the most critical query results first (see Fig. 13).

5. Related work

We now review the related work beyond that in Section 1.6.
Result ordering methods adapt the order in which the results

are produced [22–24]. These approaches produce all results re-
gardless of how long it takes. The Juggle operator [22,23], built
for exploratory queries, allows the users to adjust which rows or

142 K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144
Fig. 13. Execution-runtime CPU and memory overhead.
columns in the results are generated first. [24] reorders tuples in
data stream management systems per user preferences. In contrast,
PR may not always produce all results. That is, some tuples may
expire. When resources are scarce, PR uses the available resources
to reorder tuples identified as central to producing the most criti-
cal query results.

Result selection methods restrict which results are produced
[25–28]. Top k [25,26], web search [27], and preference queries [28]
limit the number of results produced, often a fixed small cardinal-
ity, by ranking tuples based upon user preferences. For instance,
they may return only the set of most interesting results that will
fit on a screen. In contrast, PR uses the available resources to pro-
cess as many tuples identified as central to producing as many of
the critical query results as possible.

There are many resource allocation approaches that reduce the
workload [29–39]. One approach is load shedding [29–35]. Load
shedding drops less significant tuples. It only allocates resources
to the tuples not dropped, specifically, the most significant tuples.
Once a tuple is chosen to be processed, the tuple will not be shed
at any point along the query pipeline. [33] described a load shed-
ding scheme that dynamically determines when, how many, and
where in the query plan resources will be allocated to the most
significant tuples. While [40] introduced a load shedding algorithm
for mining data streams.

Another resource allocation approach that reduces the workload
is spilling [36–39]. Spilling temporarily moves less significant tu-
ples to memory to be processed later and allocates resources to the
tuples not spilled, specifically, the most significant tuples. Many
approaches, such as XJoin [36], Hash-Merge Join [37], and MJoin
[38], push tuples temporarily to disk when no available memory
remains. [39] considers how spilling tuples in one operator affects
the other operators in the same plan.

There are also many resource allocation approaches where opti-
mization decisions concern locally reordering the workload [41–43].
[41] makes localized decisions about subsets of interest in the data
stream between neighboring operators in the query pipeline and
allocates resources to these subsets of interest. In this approach
operators use punctuations to communicate interest in particular
subsets of the data stream. Each operator sends a “request” to its
adjacent operator in the pipeline asking for specific tuples to be
pulled forward. In other words, each individual operator makes
local resource allocation decisions that serve its particular inter-
est. In complex queries that contain multiple join operators, each
join operator may end up requesting different types of tuples. This
could waste resources by pulling tuples forward that are only im-
portant to one operator but may be overall counter productive for
other operators. Ultimately, such an uncoordinated approach may
produce fewer rather than more significant query results. In com-
parison, [42] extended join operators to makes localized decisions
about how to allocate resources to process the most profitable
segments of the join windows. As another direction, [43] makes
localized decisions about which tuples that join operations are per-
formed on based upon the input stream rates, time correlation
between the streams and properties of the tuples stored in the
join state.

PR-Prune instead requires a global coordinated approach that
considers the impact of pulling promising tuples forward on the
production of critical query results. PR-Prune seeks to efficiently
and adaptively adjust resource allocation throughout the query
pipeline. Namely, PR-Prune makes centralized decisions about how
it is best to allocate resources at each operator in the query
pipeline.

Other query optimization approaches that consider process-
ing preferences have been introduced by Babcock et al. [44] and
Raman et al. [45]. In Babcock et al. [44], using the probability
distribution of the approach selected, the optimizer selects the
appropriate query plan after considering the relative importance
of predictability vs. performance preference of the user. Prior to
optimization, the user selects the trade-off between predictabil-
ity and performance (which could be at odds sometimes) to find
the appropriate query plan. While Raman et al. [45] introduce the
STAIRS operator, an extension to the ripple join operator. Beyond
the standard join processing, the STAIRS operator allows the sys-
tem to dynamically adjust the intermediate tuples stored in the
cache to optimally process tuples based upon changes in the se-
lectivity, data arrival rates, and/or performance of operators in the

K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144 143
query plan. Our PR Optimizer focuses on discovering criteria to
identify promising tuples based on some preference scheme, se-
lecting which monitoring levels to activate, and deciding where in
the plan to evaluate each criteria of the activated monitoring lev-
els.

Another area is data stream system scheduling. Broadly,
scheduling methods determine which operator to run and for how
long to improve different metrics. There are many efforts that in-
troduce methods whose focus is to improve the metrics of a single
query [46–49]. [46] proposed a rate based scheduling policy based
upon a response time metric for single a query. Aurora [50] first
uses Round Robin to schedule which query to run and a schedul-
ing policy based upon the average tuple latency metric to schedule
operators within the query to run. [48] proposed a scheduling pol-
icy based upon improving the quality of data as a metric. Tick
scheduling [49] strategy is based upon maximizing throughput and
minimizing deadline miss ratio by reducing overheads.

Similarly, there are many efforts that introduce methods whose
focus is to improve the metrics across multiple queries [51–61].
[51] explores the multi-query scheduling as a job-scheduling prob-
lem and utilizes real-time computing approaches. [52] explored
task schedulers that consider the hardware statistics in parallel
processing systems that execute multiple streaming queries. [53]
proposes an adaption to chain scheduling strategy to minimize the
memory overhead and output latency. The Golden Mean schedul-
ing strategy was introduced by [54] that seeks to minimize the
memory overhead and output latency by considering the future
workload. [55] proposed a multi-query scheduling method that
uses a metric based upon reducing the average response time per
query by prioritizing shared operators (i.e., operators that process
tuples for more than one query) and window constraints. [56] in-
troduces a scheduling policy that uses the slowdown metric to
balance the performance and fairness needs of multiple queries.
[57] introduced a multi-query scheduling strategy that recasts the
problem into a job scheduling problem. Chain is a multi-query
scheduling policy that uses a memory usage metric [59]. The work
on [60] extended Chain to use a combined memory usage and re-
sponse time metric. While, [61] extend the Chain scheduling for
complex DAG plans. [58] seeks to maximize the output of all query
results, regardless of their significance, by adjusting the scheduling
of query join operators.

Other efforts look into adapting the scheduling method used
[62–64]. [62] uses machine learning unit to adapt systems pa-
rameters to improve the output latency. [63] periodically selects
a scheduler to support multiple metric objectives. [64] proposed
an adaptive scheduling algorithm that changes the scheduling al-
gorithm online to meet multiple metric objectives.

[65–68] use real time deadlines metrics to schedule operators.
[65,66] proposed a real-time scheduling strategies based upon the
earliest deadline metric. While [67] uses an earliest deadline first
strategy to schedule the periodical queries. [68] proposed a real-
time scheduling strategy that seeks to improve the quality of ser-
vice of multiple queries. In particular, they consider that sections
of the query pipeline may be shared by queries and how to meet
the constraints of multiple queries.

In contrast to these approaches, PR-Prune requires a system
that seeks to schedule which tuples are processed. Namely, PR-
Prune seeks to select the order in which tuples are processed and
control the amount of CPU resources dedicated to processing tu-
ples based upon their significance. Traditional operator scheduling
approaches make coarse grained decisions on how to utilize the
CPU resources available. PR-Prune requires fine grained decisions
on how to utilize the CPU resources available.

Compared to the current scheduling research, PR-Prune requires
a new scheduling metric. Namely, PR-Prune seeks to schedule op-
erators to ensure that the most critical results progress the furthest
along the query pipeline before less critical tuples. Beyond the cur-
rent scheduling research which looks at determining which opera-
tor to run and for how long to improve different metrics, PR-Prune
must also determine which tuples are allocated resources.

6. Conclusions

Our innovative preferential resource allocation optimization
strategy, PR-Prune, efficiently locates online dynamic criteria that
are central for the production of critical query results by pruning
ineffective dynamic criteria and combining multiple criteria along
the same pipeline. Our experimental study confirms that for appli-
cations where priority resource allocation matters and promising
tuples exist, PR-Prune consistently increases the throughput of the
most critical query results compared to the state-of-the-art ap-
proaches. In addition, our experimental study confirms that the
optimization search time of PR-Prune is significantly lower than its
closest competitor, namely, PR.

Acknowledgements

We thank GAANN and NSF grants: IIS-1018443, 0917017,
0414567, and 0551584 for financial support. I personally cannot
thank Dr. Rundensteiner enough for her continued support of my
research and academic career well beyond my graduation from
Worcester Polytechnic Institute.

References

[1] D. Carney, U. Çetintemel, M. Cherniack, et al., Monitoring streams: a new class
of data management applications, VLDB J. (2002) 215–226.

[2] K. Works, E.A. Rundensteiner, Utilizing Dynamic Precedence Criteria to En-
sure the Production of Critical Results from High Volume Big Data Streams,
Academy of Science and Engineering, USA, 2015.

[3] C.-C. Lin, et al., Wireless health care service system for elderly with dementia,
IEEE Trans. Inf. Technol. Biomed. (2006) 696–704.

[4] H.G. Kang, D.F. Mahoney, H. Hoenig, V.A. Hirth, P. Bonato, I. Hajjar, L.A. Lipsitz,
In situ monitoring of health in older adults: technologies and issues, J. Am.
Geriatr. Soc. 58 (8) (2010) 1579–1586.

[5] R.R. Gainey, B.K. Payne, Understanding the experience of house arrest with
electronic monitoring: an analysis of quantitative and qualitative data, Int. J.
Offender Ther. Comp. Criminol. (2000) 84–96.

[6] A. Press, Officials lose track of 16,000 sex offenders after GPS fails, http://www.
foxnews.com.

[7] K. Works, E. Rundensteiner, The proactive promotion engine, in: ICDE, Software
Demonstration, 2011, pp. 1340–1343.

[8] K. Works, E.A. Rundensteiner, Preferential resource allocation in stream pro-
cessing systems, Int. J. Coop. Inf. Syst. 23 (04) (2014) 1450006.

[9] A. Arasu, S. Babu, J. Widom, The CQL continuous query language: semantic
foundations and query execution, VLDB J. (2006) 121–142.

[10] A.N. Wilschut, P.M.G. Apers, Dataflow query execution in a parallel main-
memory environment, in: PDIS, 1991, pp. 68–77.

[11] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D.S. Rosenblum, A.L. Wolf, An architecture-based approach to self-
adaptive software, IEEE Intell. Syst. 3 (1999) 54–62.

[12] J.A. Stankovic, R. Rajkumar, Real-time operating systems, Real-Time Syst.
28 (2–3) (2004) 237–253.

[13] L. Golab, M.T. Özsu, Update-pattern-aware modeling and processing of cont.
queries, in: SIGMOD, 2005, pp. 658–669.

[14] M. Liu, M. Li, D. Golovnya, et al., Sequence pattern query processing over out-
of-order event streams, in: ICDE, 2009, pp. 784–795.

[15] J. Li, D. Maier, K. Tufte, et al., No pane, no gain: efficient evaluation of sliding-
window aggregates over data streams, SIGMOD Rec. 34 (2005) 39–44.

[16] G.S. Manku, R. Motwani, Approximate frequency counts over data streams, in:
VLDB, VLDB Endowment, 2002, pp. 346–357.

[17] S. Babu, R. Motwani, K. Munagala, et al., Adaptive ordering of pipelined stream
filters, in: SIGMOD, 2004, pp. 407–418.

[18] R. Ramakrishnan, et al., Database Management Systems, McGraw-Hill, 2000.
[19] D. Abadi, D. Carney, U. Çetintemel, et al., Aurora: a data stream management

system, in: SIGMOD, 2003, 666 pp.
[20] E.A. Rundensteiner, L. Ding, T. Sutherland, et al., CAPE: continuous query engine

with heterogeneous-grained adaptivity, in: VLDB, 2004, pp. 1353–1356.
[21] Y. Finance, http://finance.yahoo.com/.
[22] V. Raman, B. Raman, J.M. Hellerstein, Online dynamic reordering for interactive

data processing, Tech. rep., Berkeley, CA, USA, 1999.

http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31323837333839s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31323837333839s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6B776F726B733A3230313442696744617461s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6B776F726B733A3230313442696744617461s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6B776F726B733A3230313442696744617461s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4C696E43484C543036s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4C696E43484C543036s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6B616E673230313073697475s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6B616E673230313073697475s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6B616E673230313073697475s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4761696E65793031303232303030s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4761696E65793031303232303030s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4761696E65793031303232303030s1
http://www.foxnews.com
http://www.foxnews.com
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6B776F726B733A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6B776F726B733A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6B776F726B733A32303134s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6B776F726B733A32303134s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4172617375303374686563716Cs1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4172617375303374686563716Cs1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib333833363538s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib333833363538s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6F7265697A7931393939617263686974656374757265s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6F7265697A7931393939617263686974656374757265s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6F7265697A7931393939617263686974656374757265s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib7374616E6B6F766963323030347265616Cs1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib7374616E6B6F766963323030347265616Cs1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31303636323332s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31303636323332s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31302E313130392F494344452E323030392E3935s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31302E313130392F494344452E323030392E3935s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4C693A323030353A4E504E3A313035383135302E31303538313538s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4C693A323030353A4E504E3A313035383135302E31303538313538s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31323837343030s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31323837343030s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31303037363135s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31303037363135s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib353536383633s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib383732383535s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib383732383535s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib636F6E662F766C64622F52756E64656E737465696E657244535A504D3034s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib636F6E662F766C64622F52756E64656E737465696E657244535A504D3034s1
http://finance.yahoo.com/
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib52616D616E3A313939393A4F44523A383933393735s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib52616D616E3A313939393A4F44523A383933393735s1

144 K. Works, E.A. Rundensteiner / Big Data Research 2 (2015) 127–144
[23] V. Raman, J.M. Hellerstein, Partial results for online query processing, in: SIG-
MOD, 2002, pp. 275–286.

[24] J. Jacobi, A. Bolles, M. Grawunder, et al., A physical operator algebra for priori-
tized elements in data streams, Comput. Sci. Res. Dev. 25 (2010) 235–246.

[25] I.F. Ilyas, G. Beskales, M.A. Soliman, A survey of top-k query processing tech-
niques in relational database systems, ACM Comput. Surv. (2008) 1–58.

[26] K. Mouratidis, et al., Continuous monitoring of top-k queries over sliding win-
dows, in: SIGMOD, 2006, pp. 635–646.

[27] J. Teevan, et al., Discovering and using groups to improve personalized search,
in: WSDM, 2009, pp. 15–24.

[28] J. Chomicki, Semantic optimization techniques for preference queries, Inf. Syst.
(2007) 670–684.

[29] A.L. Thao, N. Pham, Panos K. Chrysanthis, Self-managing load shedding for data
stream management systems, in: IEEE International Conference on Data Engi-
neering Workshops, 2013, pp. 1–7.

[30] C. Basaran, K.-D. Kang, Y. Zhou, M.H. Suzer, Adaptive load shedding via fuzzy
control in data stream management systems, in: IEEE International Conference
on Service-Oriented Computing and Applications, 2012, pp. 1–8.

[31] S. Senthamilarasu, M. Hemalatha, Load shedding techniques based on windows
in data stream systems, in: International Conference on Emerging Trends in
Science, Engineering and Technology, 2012, pp. 68–73.

[32] N. Tatbul, U. Çetintemel, S. Zdonik, Staying fit: efficient load shedding tech-
niques for distributed stream processing, in: International Conference on Very
Large Data Bases, 2007, pp. 159–170.

[33] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, M. Stonebraker, Load shed-
ding in a data stream manager, in: VLDB, 2003, pp. 309–320.

[34] B. Babcock, et al., Load shedding for aggregation queries over data streams, in:
ICDE, 2004, p. 350.

[35] F. Reiss, J. Hellerstein, Data triage: an adaptive architecture for load shedding
in telegraphCQ, in: ICDE, 2005, pp. 155–156.

[36] T. Urhan, M. Franklin, XJoin: a reactively scheduled pipelined join operator, IEEE
Data Eng. Bull. 23 (2) (2000) 27–33.

[37] M. Mokbel, M. Lu, W. Aref, Hash-merge join: a non-blocking join algorithm for
producing fast and early join results, in: 20th International Conference on Data
Engineering, 2004. Proceedings, 2004, pp. 251–262.

[38] L. Ding, E.A. Rundensteiner, G.T. Heineman, Mjoin: a metadata-aware stream
join operator, in: DEBS, 2003, pp. 1–8.

[39] B. Liu, Y. Zhu, E. Rundensteiner, Run-time operator state spilling for memory
intensive long-running queries, in: SIGMOD, 2006, pp. 347–358.

[40] Y. Chi, et al., Loadstar: a load shedding scheme for classifying data streams, in:
SIAM Conf. on Data Mining, 2005.

[41] R. Fernández-Moctezuma, K. Tufte, J. Li, Inter-operator feedback in data stream
management systems via punctuation, in: CIDR, 2009.

[42] B. Gedik, K.-L. Wu, P.S. Yu, L. Liu, Grubjoin: an adaptive, multi-way, windowed
stream join with time correlation-aware CPU load shedding, IEEE Trans. Knowl.
Data Eng. (2007) 1363–1380.

[43] B. Gedik, et al., Adaptive load shedding for windowed stream joins, in: CIKM,
2005, pp. 171–178.

[44] B. Babcock, S. Chaudhuri, Towards a robust query optimizer: a principled and
practical approach, in: SIGMOD, 2005, pp. 119–130.

[45] V. Raman, A. Deshpande, J. Hellerstein, Using state modules for adaptive query
processing, in: ICDE, 2003, pp. 353–365.

[46] T. Urhan, M.J. Franklin, Dynamic pipeline scheduling for improving interac-
tive query performance, in: International Conference on Very Large Data Bases,
2001, pp. 501–510.

[47] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, M. Stonebraker,
Operator scheduling in a data stream manager, in: VLDB, 2003, pp. 838–849.
[48] M.A. Sharaf, R. Labrinidis, P.K. Chrysanthis, K. Pruhs, Freshness-aware schedul-
ing of continuous queries in the dynamic web, in: Proc. Int. Workshop on the
Web and Databases (WebDB), 2005, pp. 73–78.

[49] Z. Ou, G. Yu, Y. Yu, S. Wu, X. Yang, Q. Deng, Tick scheduling: a deadline based
optimal task scheduling approach for real-time data stream systems, in: W.
Fan, Z. Wu, J. Yang (Eds.), Advances in Web-Age Information Management,
in: Lecture Notes in Computer Science, vol. 3739, Springer, Berlin, Heidelberg,
2005, pp. 725–730.

[50] D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, S. Zdonik, Aurora: a new model and architecture for data
stream management, VLDB J. 12 (2003) 120–139.

[51] Y. Zhou, J. Wu, A.K. Leghari, Multi-query scheduling for time-critical data
stream applications, in: International Conference on Scientific and Statistical
Database Management, 2013, p. 15.

[52] Z. Falt, J. Yaghob, Task scheduling in data stream processing, in: International
Workshop on Databases, Texts, Specifications, and Objects, 2011, pp. 85–96.

[53] S. Qian, Y. Lu, A modified chain scheduling algorithm in data stream system,
in: IEEE International Conference on Computer and Automation Engineering,
vol. 4, 2010, pp. 568–570.

[54] H. Deng, Y. Liu, Y. Xiao, The golden mean operator scheduling strategy in data
stream systems, 2007, pp. 186–191.

[55] M.A. Hammad, M.J. Franklin, W.G. Aref, A.K. Elmagarmid, Scheduling for shared
window joins over data streams, in: VLDB, 2003, pp. 297–308.

[56] M.A. Sharaf, P.K. Chrysanthis, A. Labrinidis, K. Pruhs, Efficient scheduling of het-
erogeneous continuous queries, in: VLDB, 2006, pp. 511–522.

[57] J. Wu, K.-L. Tan, Y. Zhou, QoS-oriented multi-query scheduling over data
streams, in: DASFAA, 2009, pp. 215–229.

[58] Y. Tao, M.L. Yiu, D. Papadias, M. Hadjieleftheriou, N. Mamoulis, RPJ: producing
fast join results on streams through rate-based optimization, in: Proceedings
of the 2005 ACM SIGMOD International Conference on Management of Data,
ACM, 2005, pp. 371–382.

[59] B. Babcock, S. Babu, R. Motwani, M. Datar, Chain: operator scheduling for mem-
ory minimization in data stream systems, in: SIGMOD, 2003, pp. 253–264.

[60] B. Babcock, S. Babu, M. Datar, R. Motwani, D. Thomas, Operator scheduling in
data stream systems, VLDB J. 13 (2004) 333–353.

[61] S. Wang, C. Gupta, A. Mehta, Vpipe: virtual pipelining for scheduling of dag
stream query plans, in: W. Aalst, J. Mylopoulos, M. Rosemann, M.J. Shaw, C.
Szyperski, M. Castellanos, U. Dayal, R.J. Miller (Eds.), Enabling Real-Time Busi-
ness Intelligence, in: Lecture Notes in Business Information Processing, vol. 41,
Springer, Berlin, Heidelberg, 2010, pp. 32–49.

[62] S. Mohammadi, A.A. Safaei, F. Abdi, M.S. Haghjoo, Adaptive data stream man-
agement system using learning automata, Comput. Res. Repos. J., arXiv:abs/
1110.1700.

[63] M. Ghalambor, A. Safaeei, M. Azgomi, DSMS scheduling regarding complex QoS
metrics, in: AICCSA, 2009, pp. 587–594.

[64] T. Sutherland, B. Pielech, Y. Zhu, L. Ding, E.A. Rundensteiner, An adaptive
multi-objective scheduling selection framework for continuous query process-
ing, in: International Database Engineering and Applications Symposium, 2005,
pp. 445–454.

[65] L. Ma, X. Li, Y. Wang, H. Wang, Real-time scheduling for continuous queries
with deadlines, in: SAC, 2009, pp. 1516–1517.

[66] X. Li, Z. Jia, L. Ma, R. Zhang, H. Wang, Earliest deadline scheduling for con-
tinuous queries over data streams, in: International Conference on Embedded
Software and Systems, 2009, pp. 57–64.

[67] Y. Wei, S. Son, J. Stankovic, RTSTREAM: real-time query processing for data
streams, 2006, pp. 141–150.

[68] S. Schmidt, T. Legler, D. Schaller, et al., Real-time scheduling for data stream
management systems, Real-Time Syst. (2005) 167–176.

http://refhub.elsevier.com/S2214-5796(15)00049-0/bib353634373233s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib353634373233s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F7330303435302D3030392D303130322D38s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F7330303435302D3030392D303130322D38s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31333931373330s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31333931373330s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31313432353434s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31313432353434s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31343938373836s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31343938373836s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31323338353930s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31323338353930s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib61646D742D323031332D303031s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib61646D742D323031332D303031s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib61646D742D323031332D303031s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6261736172616E323031326164617074697665s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6261736172616E323031326164617074697665s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib6261736172616E323031326164617074697665s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib73656E7468616D696C6172617375323031326C6F6164s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib73656E7468616D696C6172617375323031326C6F6164s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib73656E7468616D696C6172617375323031326C6F6164s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib74617462756C3230303773746179696E67s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib74617462756C3230303773746179696E67s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib74617462756C3230303773746179696E67s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31333135343739s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31333135343739s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib393738313635s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib393738313635s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31343130313134s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31343130313134s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib75663030s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib75663030s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31333230303032s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31333230303032s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31333230303032s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib44696E673A323030333A4D4D533A3936363631382E393636363339s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib44696E673A323030333A4D4D533A3936363631382E393636363339s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4C69753A323030363A524F533A313134323437332E31313432353133s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4C69753A323030363A524F533A313134323437332E31313432353133s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib43686930356C6F6164737461723A61s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib43686930356C6F6164737461723A61s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib44424C503A6A6F75726E616C732F636F72722F6162732D303930392D32303632s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib44424C503A6A6F75726E616C732F636F72722F6162732D303930392D32303632s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib476564696B3A323030373A47414D3A313331333034392E31333133323235s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib476564696B3A323030373A47414D3A313331333034392E31333133323235s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib476564696B3A323030373A47414D3A313331333034392E31333133323235s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31303939353837s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31303939353837s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib426162636F636B3A323030353A5452513A313036363135372E31303636313732s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib426162636F636B3A323030353A5452513A313036363135372E31303636313732s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib44424C503A636F6E662F696364652F52616D616E44483033s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib44424C503A636F6E662F696364652F52616D616E44483033s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib757268616E303164796E616D6963s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib757268616E303164796E616D6963s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib757268616E303164796E616D6963s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4361726E65793A323030333A4F53443A313331353435312E31333135353233s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4361726E65793A323030333A4F53443A313331353435312E31333135353233s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib536861726166303566726573686E6573732D61776172657363686564756C696E67s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib536861726166303566726573686E6573732D61776172657363686564756C696E67s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib536861726166303566726573686E6573732D61776172657363686564756C696E67s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F31313536333935325F3731s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F31313536333935325F3731s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F31313536333935325F3731s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F31313536333935325F3731s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F31313536333935325F3731s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F7330303737382D3030332D303039352D7As1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F7330303737382D3030332D303039352D7As1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F7330303737382D3030332D303039352D7As1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib7A686F75323031336D756C7469s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib7A686F75323031336D756C7469s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib7A686F75323031336D756C7469s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib66616C74323031317461736Bs1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib66616C74323031317461736Bs1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib7169616E323031306D6F646966696564s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib7169616E323031306D6F646966696564s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib7169616E323031306D6F646966696564s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib48616D6D616430337363686564756C696E67666F72s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib48616D6D616430337363686564756C696E67666F72s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib5368617261663A323030363A4553483A313138323633352E31313634313732s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib5368617261663A323030363A4553483A313138323633352E31313634313732s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib57753A323030393A514D533A313533323234372E31353332323639s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib57753A323030393A514D533A313533323234372E31353332323639s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib74616F3230303572706As1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib74616F3230303572706As1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib74616F3230303572706As1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib74616F3230303572706As1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib426162636F636B3A323030333A434F533A3837323735372E383732373839s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib426162636F636B3A323030333A434F533A3837323735372E383732373839s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib426162636F636B3A323030343A4F53443A313033373039312E31303337303932s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib426162636F636B3A323030343A4F53443A313033373039312E31303337303932s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F3937382D332D3634322D31343535392D395F33s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F3937382D332D3634322D31343535392D395F33s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F3937382D332D3634322D31343535392D395F33s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F3937382D332D3634322D31343535392D395F33s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib737072696E6765726C696E6B3A31302E313030372F3937382D332D3634322D31343535392D395F33s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib44424C503A6A6F75726E616C732F636F72722F6162732D313131302D31373030s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib44424C503A6A6F75726E616C732F636F72722F6162732D313131302D31373030s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib44424C503A6A6F75726E616C732F636F72722F6162732D313131302D31373030s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib35303639333836s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib35303639333836s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib73707A64722D6964656173323030352D6164617074s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib73707A64722D6964656173323030352D6164617074s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib73707A64722D6964656173323030352D6164617074s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib73707A64722D6964656173323030352D6164617074s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4D613A323030393A5253433A313532393238322E31353239363231s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4D613A323030393A5253433A313532393238322E31353239363231s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4C693A323030393A4544533A313534373535332E31353437383933s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4C693A323030393A4544533A313534373535332E31353437383933s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib4C693A323030393A4544533A313534373535332E31353437383933s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31302E313130392F45435254532E323030352E3234s1
http://refhub.elsevier.com/S2214-5796(15)00049-0/bib31302E313130392F45435254532E323030352E3234s1

	Practical Identiﬁcation of Dynamic Precedence Criteria to Produce Critical Results from Big Data Streams
	1 Introduction
	1.1 Preferential result applications
	1.2 Examples of systems with preferential results
	1.3 Running example: stock market
	1.4 Critical tuples
	1.5 How PR adapts the allocation of resources
	1.6 State-of-the-art & shortcomings
	1.7 Our PR approach & contributions

	2 PR model and queries
	2.1 PR queries
	2.2 Signiﬁcant tuples
	2.3 Promising tuples
	2.4 Tuple rank
	2.5 Optimal PR plan

	3 PR architecture
	3.1 PR executor infrastructure
	3.1.1 Pulling tuples ahead of others
	3.1.2 PR query algebra
	3.1.3 Adapting rank of tuples
	3.1.4 Out-of-order handling

	3.2 PR monitor
	3.2.1 Monitoring potential static tuples
	3.2.2 Monitoring potential promising tuples

	3.3 PR optimizer
	3.3.1 Creating the set of dynamic monitoring levels
	3.3.2 Selecting which static and dynamic monitoring levels to activate
	3.3.3 Determining where to evaluate each static and dynamic criteria
	3.3.4 PR plan search space
	3.3.5 PR prune optimization strategy
	3.3.6 Optimal order of operators in PR plan

	3.4 PR adaptor

	4 Experimental evaluation
	4.1 Experimental setup
	4.2 Experimental results
	4.3 Summary of experimental ﬁndings

	5 Related work
	6 Conclusions
	Acknowledgements
	References

