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During periods of high volume, big data stream applications may not have enough resources to process all 
incoming tuples. To maximize the production of the most critical results under such resource shortages, 
a recent solution, PR (short for Preferential Result), utilizes both static criteria (defined at compile-time) 
and dynamic criteria (identified online at run-time) to prioritize the processing of tuples throughout 
the query pipeline. Unfortunately, locating the optimal criteria placement (i.e., where in the query 
pipeline to evaluate each prioritization criteria) is extremely compute-intensive and runs in exponential 
time. This makes PR impractical for complex big data stream systems. Our proposed criteria selection 
and placement approach, PR-Prune (short for Preferential Result-Pruning), is practical. PR-Prune prunes 
ineffective dynamic criteria and combines multiple criteria along the same pipeline. To achieve this, PR-
Prune seeks to expand the duration in the query pipeline that tuples identified as critical are pulled 
forward. Our experiments use a real data stream from the S&P 500 stocks, synthetic data streams, and 
a diverse set of queries. The results substantiate that PR-Prune increases the production of the most 
critical results compared to the state-of-the-art approaches. In addition, PR-Prune significantly lowers the 
optimization search time compared to PR.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Preferential result applications

Big data streams process large volumes of incoming tuples to 
answer continuous queries. At times they may be unable to pro-
cess all incoming tuples within the response time required for the 
application [1]. Yet it often is imperative for applications to assure 
the production of results from certain objects that are the most 
critical for the application. Under resource duress, Preferential Re-
sult big data streams (or PR) utilize both static application-specific 
preference criteria as well as dynamic criteria identified online to 
determine which tuples should be allocated resources ahead of 
other tuples throughout the query pipeline [2].
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1.2. Examples of systems with preferential results

Outpatient health care: Data stream systems are used to track 
people with dementia [3]. In these systems, monitoring people 
away from their proper location for an extended time (i.e., likely 
lost) is critical. While monitoring people who live on their own 
(i.e., need help) may be reduced based on whether or not re-
sources remain after processing more critical tuples, i.e., tuples 
from people likely to be lost. Periodically when resources are scare, 
monitoring tuples from other people could be temporarily skipped. 
Overloads have been experienced in these systems [4].
Law enforcement: Data stream systems are used to monitor pris-
oners assigned to home arrest [5]. Consider a system that reports 
any prisoner at an improper location who is within 3 miles of an 
officer. At the highest level of urgency, escaped violent prisoners 
(i.e., may cause harm) must be monitored. Next to be monitored 
are prisoners at an improper location (i.e., likely to be in violation). 
Finally, prisoners known to be flight risks ought to be monitored 
when resources are sufficient. These systems get overloaded, e.g., 
in October 2010 an application that monitors released sex offend-
ers across 49 states shutdown for 12 hours [6].
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Table 1
Desired result precedence order.

System load Desired processing order

System not overloaded all results processed

System mildly overloaded 1) aggressive investments
2) conservative investments
3) stocks under evaluation

System moderately overloaded 1) aggressive investments
2) conservative investments

System extremely overloaded 1) aggressive investments

1.3. Running example: stock market

Mutual fund companies often determine what to buy or sell 
by monitoring the social buzz on different business sectors, i.e., 
business sectors mentioned in recent news and blogs.
(Stock Market Query) /*Operators*/
SELECT S.company_name, S.symbol, S.price

FROM Stock as S, News as N, Blogs as B
WHERE contains(S.BusinessSector, 

N.BusinessSector)
/*op1*/

AND contains(S.BusinessSector, 
B.BusinessSector)

/*op2*/

WINDOW 30 sec;
Consider the following desired processing order of tuples in 

such a system (Table 1) defined by the user at compile-time. First, 
tuples from aggressive investments should be processed. If re-
sources remain, then tuples from conservative investments should 
be processed. Until there are adequate resources to process all 
other tuples, the processing of certain tuples can be temporarily 
skipped altogether (e.g., tuples from stocks under evaluation).

1.4. Critical tuples

Resources should be allocated to particular tuples based upon 
the application’s desired processing order (Table 1) and the 
amount of available resources. When the Stock Market Application
is extremely overloaded, the CPU resources should be dedicated to 
the tuples most critical for the application. The most critical results 
are generated from these tuples. In the Stock Market example, the 
most critical results are formed when news tuples join with aggres-
sive stock tuples based upon their business sector, i.e., op1. Next, 
these join results from operator op1 are joined with blog tuples
based upon their business sector, i.e., op2.

These most critical results are created by two classes of tuples. 
The first class are so called native significant tuples. That is, sig-
nificant tuples satisfy static precedence criteria defined explicitly by 
the user at compile-time. For example, a significant tuple in the 
stock stream can be identified as an aggressive or as a conserva-
tive investment simply by checking if its attributes match criteria 
selected by the user (Table 1) [7,8].

The second class are promising tuples. Promising tuples are tu-
ples estimated to be highly likely to produce critical results by associ-
ation, i.e., by joining with significant tuples. For example, tuples in 
the news stream may join with significant stock tuples and thus 
produce critical results due to their association with their join 
partners. The criteria to identify promising tuples are dynamic. It 
requires knowledge of which join attributes of the current signifi-
cant stock tuples are also prevalent in tuples in both the news and 
blog streams. The identification of such dynamic criteria is accom-
plished at run-time [2].

1.5. How PR adapts the allocation of resources

PR adapts which tuples are preferentially allocated resources 
when due to system load changes the data stream system is unable 
to process all incoming critical tuples. Many things can change the 
system load. It could be changed by the number of incoming tuples 
that are significant. Namely, increasing the percentage of signifi-
cant tuples in the pipeline increases the chance that some critical 
tuples will not be processed due to limited resources. It could be 
changed by the distribution of promising tuples varying over time 
as this will cause the number of significant tuples that have join 
partners to vary as well. Regardless of what causes the system load 
changes, PR adapts how resources are allocated accordingly.

The goal of PR is to ensure that given the available memory 
that the most critical tuples are processed. When resources are 
sufficient, PR will process all tuples. When they are not, PR will 
process the most critical tuples first. If resources remain then they 
are dedicated to ensuring that the next most critical tuples are 
processed (and so on).

To achieve this, criteria of critical results are identified for each 
join operator. These criteria are then pushed backwards through 
the query pipeline to operators before their respective join opera-
tor that identify and pull forward significant and promising tuples. 
The query plan optimizer seeks to find the best query plan by 
adjusting the cost of precedence determination. The cost of prece-
dence determination is adjusted by modifying both which prece-
dence criteria are evaluated and where each of these criteria are 
evaluated in the query plan.

1.6. State-of-the-art & shortcomings

As we show in Section 3.3, the time complexity of the PR opti-
mizer is exponential in the number of criteria that identify promis-
ing tuples and the number of operators in the query plan where 
such criteria could be evaluated. Thus, it is costly to determine the 
most effective combination of precedence criteria and where such 
criteria should be evaluated. When optimization takes a long time, 
it may delay or even worse yet prevents the production of some 
critical query results. In the Stock Market application this could 
result in the company losing money or, in the worse case, going 
bankrupt. No existing approach addresses this critical problem. It 
is now the focus of our work.

1.7. Our PR approach & contributions

We now propose a new a criteria selection and placement ap-
proach that provides an efficient optimization algorithm by prun-
ing the query plan search space, named PR-Prune. To prune the 
query plan search space is challenging. Namely, we want to elim-
inate some options but never to prune the best query plan. KEW: 
Challenges
Our contributions include:
1) We outline the design of PR-Prune. We describe how PR-Prune
utilizes a statistics reduction methodology to eliminate inferior 
statistics used to find prioritization criteria and how PR-Prune
reduces the number join operators that pull promising tuples by 
combining the needs of multiple consecutive join operators.
2) We show that the complexity of PR-Prune is significantly less 
than the standard PR optimization. We summarize the theoretical 
contribution.
3) Our experimental study, using real data, synthetic data sets, and 
a wide variety of queries, shows that PR-Prune consistently pro-
duces more critical results than the state-of-the-art systems. We 
quantify the improvements in our experimental study.

2. PR model and queries

2.1. PR queries

In the PR model, a set of P-CQL queries {q1, . . . ,q j} process con-
tinuous streams {s1, . . . , sn} of tuples (symbols in Table 2). Each 
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Table 2
Notations for PR query plans.

Notation Meaning

ti a tuple
ti .srnk significant rank of ti

ti .prnk promising rank of ti

ti .opc designated operator of ti (operator where promising rank 
ends)

ti .rnk rank of ti (max rank of ti .srnk or ti .prnk)

q j a query
q j .SML set of static monitoring levels of query q j

q j .NumRnks number of possible ranks in query q j

smlk a static monitoring level in q j .SML
smlk .srnk significant rank of smlk
smlk .mem membership criteria of smlk

DML set of dynamic monitoring levels
dmll a dynamic monitoring level in DML
dmll .sx stream that tuples must reside in for dmll
dmll .opc designated operator for dmll
dmll .prnk promising rank of dmll
dmll .mem membership criteria of dmll

prm a PR query plan
prm.ASML set of activated static monitoring levels in prm
prm.ADML set of activated dynamic monitoring levels in prm

sn a stream

opo an operator

ERs(prm, srnk) expiration rate of potential significant tuples at significant 
rank srnk in prm

ERp(prm,prnk) expiration rate of potential promising tuples at promising 
rank prnk in prm

P-CQL query is a CQL query [9] extended to support multi-tiered 
monitoring criteria.
(P-CQL Extension to Stock Market Queries)
RANK 1 /* aggressive investments */
CRITERIA (S.ownedByCompany=TRUE) AND
(S.aggressive=TRUE)

RANK 2 /* conservative investments */
CRITERIA (S.ownedByCompany=TRUE) AND
(S.conservative=TRUE)

RANK 3 /* stocks under evaluation */
CRITERIA (S.underEvaluation= TRUE)

Each pair of rank and criteria clauses specify which objects 
in the tuple stream the user would prefer to produce results 
from compared to other objects when resources are scarce. At 
compile-time these clauses are specified by the user as a part of 
the query. Hence, they are referred to as static monitoring levels
q j .SML. Each static monitoring level smlk consists of a significant 
rank smlk.srnk and membership criteria smlk.mem. The significant 
rank smlk.srnk denotes the degree of static monitoring level smlk ’s 
significance. Static monitoring level smlk is more significant than 
level smll if smlk.srnk < smll.srnk. For example, consider the Stock 
Market P-CQL query above. Respectively, static monitoring levels 
sml1, sml2, and sml3 identify aggressive investments, conservative 
investments, and stocks under evaluation. Static monitoring level 
sml1 is more significant than static monitoring level sml3, i.e., 
(sml1.srnk = 1) ∧ (sml3.srnk = 3) thus (sml1.srnk < sml3.srnk).

The optimizer periodically selects which static monitoring lev-
els are used to identify tuples to pull forward. We refer to the 
current set of selected monitoring levels as the set of activated sig-
nificant monitoring levels denoted by Asml . If no resource shortage 
exists then no monitoring levels would be activated and tuples will 
then be processed in FIFO order. However, if a resource shortage 
arises, then some monitoring levels would be activated and tuples 
will be processed in significance order based upon the activated 
static monitoring levels.
Fig. 1. Estimated significant tuples example.

2.2. Significant tuples

Significant tuples satisfy the membership criteria of an activated 
static monitoring level [7,8]. A tuple may satisfy the membership 
criteria of more than one activated static monitoring level.

Definition 1. Significant tuple ti is designated with one significant 
rank ti .srnk which corresponds to the most significant of all the 
activated static monitoring levels that tuple ti satisfies the criteria 
of.

Consider stock tuple ti that is both an aggressive invest-
ment (i.e., sml1.mem(ti) = true) and is under evaluation (i.e., 
sml3.mem(ti) = true). The set of activated static monitoring lev-
els ASML contains static monitoring levels 1, 2, and 3, i.e., ASML =
{sml1, sml2, sml3}. Tuple ti ’s significant rank is thus 1, i.e.,
ti .srnk = 1.

2.3. Promising tuples

Promising tuples are likely to create critical query results by 
joining with significant tuples at a join operator [2]. Consider a 
symmetric binary hash join operator opi [10] that combines tuples 
from streams s1 (e.g., news stream) and s2 (e.g., stock stream). In-
coming tuples to this join operator opi for the news s1 and stock 
s2 streams are stored respectively in the news and stock stream 
state. Join results are created by combining an incoming tuple ti
from one stream (e.g., news stream) with matching tuples t j in 
the state for the other stream (e.g., stock stream state) based upon 
the join criteria.

Consider news tuple ti and the two stock tuples stored in the 
stock state that satisfy join criteria c2 (i.e., business sector = Ad-
vertising) (Fig. 1). One of the stock tuples from the advertising 
business sector is a significant tuple, while the other is not. If news 
tuple ti is from the advertising business sector (i.e., satisfies the 
join criteria c2) then tuple ti will be a promising tuple. That is, tu-
ple ti has a high chance to produce a critical join result when it 
joins with the significant stock tuple from the advertising business 
sector in the stock stream state. However, this news tuple ti may 
also join with the insignificant stock tuples from the advertising 
business sector and thus produce non-critical join results.
Adapting the rank of tuple: Whether or not a tuple is considered 
to be a promising tuple may adapt during processing. Significant tu-
ples can produce critical query results on their own and thus are 
significant for the entire query pipeline. Thus if stock tuple ti is an 
aggressive investment then it retains its significant rank through-
out the pipeline (Fig. 1). In contrast, promising tuples are only 
promising because of their potential to join with significant tuples 
at a future join operator opo . After proceeding past this operator 
opo they may no longer have any known potential of producing 
critical query results. Hence after they have been processed by 
operator opo , these promising tuples should no longer be prefer-
entially allocated resources. In other words, they are only promising 
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Table 3
Example: ranking query plans.

PR plan CPU overhead ERs(prm,1) ERs(prm,2) ERs(prm,3) ERp(prm,1) ERp(prm,2) ERp(prm,3)

pr1 1022 0 2 15 0 35 75
pr2 1256 0 2 15 0 35 75
pr3 1956 0 2 95 0 80 89
pr4 1006 9 123 90 89 90 87
for a portion of the query pipeline, namely, until they reach the oper-
ator opo .

Reconsider Fig. 1. Consider news tuple t j from the advertising 
business sector (i.e., join criteria c2). In this case, tuple t j has the 
potential to join at a given join operator with a significant stock 
tuple from the advertising business sector due to the existence of 
such a tuple in the stock stream state. Thus tuple t j is a promising 
tuple only until it reaches the join operator in Fig. 1.

The set of dynamic monitoring levels (DML) are constructed at 
run-time by the optimizer to indicate the criteria and rank of 
promising tuples at join operators (Section 3.3.1). Each dynamic 
monitoring level dmll denoted as (sn; opc ; prnk; mem designates 
1) the stream dmll.sn of the promising tuples, 2) the operator at 
which the promising tuples are predicted to join with significant 
tuples called the designated operator dmll.opc , 3) a promising rank 
dmll.prnk, and 4) the membership criteria dmll.mem that identifies 
such promising tuples. Under limited resources, the optimizer also 
selectively activates some dynamic monitoring levels (Section 3.3.2
covers how the optimizer chooses which monitoring levels to acti-
vate).

Definition 2. A promising tuple ti has one promising rank ti .prnk
and one designated operator ti .opc . These attributes are set to 
the attributes of the activated dynamic monitoring level dmll (i.e., 
ti .prnk = dmll.prnk and ti .opc = dmll.opc) that satisfies the follow-
ing criteria. The rank of dmll is set to the most critical of all the ac-
tivated dynamic monitoring levels that tuple ti satisfies the mem-
bership criteria of. In order for tuple ti to retain its promising rank 
(and preferential resource allocation) for the longest duration of 
the pipeline, the designated operator of dmll is the furthest down 
the pipeline of all the activated dynamic monitoring at promising 
rank dmll.prnk that tuple ti satisfies the membership criteria of.

2.4. Tuple rank

Tuple ti can have both significant and promising rank. Each des-
ignation refers to distinct critical results that tuple ti may create. 
Significant rank, being global, applies to all results that tuple ti
creates at any operator. Promising rank, being localized, applies to 
some results that tuple ti creates at a specific operator only.

Tuple ti is allocated resources based upon the maximum of its 
significant and promising ranks. Tuple ti is assigned a rank at-
tribute ti .rnk that is the maximum of tuple ti ’s significant and 
promising ranks.

2.5. Optimal PR plan

A PR query plan represents a P-CQL query q j . Each PR plan prm
is modeled as a one directional flow network composed of PR alge-
bra operators as nodes and data exchange interfaces that transfer 
tuples between operators as edges (Section 3.1). The PR query al-
gebra is composed of rank classifier operators and PR augmented 
standard operators as outlined in Section 3.1.2.

The optimal PR plan allocates resources to tuples to maximize 
the throughput of the critical query results in precedence order. 
When resources are limited, such a plan ensures that tuples with 
the highest rank rnk are processed first. To achieve this, tuples 
with significant and/or promising rank of rnk are processed before 
those with lower or no rank.

An expired tuple is a tuple that is no longer processed due to 
inadequate resources. A tuple may expire at any point along the 
query pipeline. If all tuples that can have the significant rank of 
srnk are being devoted adequate processing cycles then the num-
ber of such tuples that expire throughout the query pipeline (or 
the expiration rate of potential significant tuples ERs(ppr

m , srnk) at 
significant rank srnk) should be low and ideally zero.

Definition 3. Expiration Rate of Potential Significant Tuples
ERs(prm, srnk) is the number of tuples that satisfy static criteria 
for rank srnk and have expired.

The optimal PR plan also improves the flow of tuples that 
can have promising rank prnk until they reach their designated 
operator. If all tuples that can have promising rank prnk are be-
ing devoted adequate processing cycles then the number of such 
tuples that expire before reaching their designated operator (or 
the expiration rate of potential promising tuples ERp(prm, prnk) at 
promising rank prnk) should be low (ideally zero).

Definition 4. Expiration Rate of Potential Promising Tuples
ERp(prm, prnk) is the number of tuples that satisfy dynamic cri-
teria at promising rank prnk that expire before they reach their 
designated operator in PR plan prm .

Definition 5. The optimal PR plan compared to all possible PR 
plans minimizes the expiration rate of both significant (Defini-
tion 3) and promising tuples (Definition 4) for each rank starting 
from the highest rank and remains within the available system ca-
pacity.

Consider the example in Table 3. Assume the resources required 
to execute each PR plan are within the available system capacity. 
PR plan pr1 is the best for the following reasons. For the highest 
rank rnk = 1 (i.e., the most critical query results), PR plan pr4 has 
an expiration rate of potential significant tuples greater than 0, i.e., 
ERs(pr4, 1) > 0. For the next highest rank rnk = 2, PR plan pr3 has 
an expiration rate of potential promising tuples greater than PR 
plans pr1 and pr2. For all ranks, PR plans pr1 and pr2 have equal 
expiration rates. However, compared to PR plan pr2, pr1 has the 
lowest CPU overhead cost. Thus, PR plan pr1 is the preferred solu-
tion.

3. PR architecture

The online adaptive PR architecture (Fig. 2) is derived from the 
architecture of self adaptive software [11]. It contains the PR Ex-
ecutor, PR Monitor, PR Optimizer, and PR Adaptor. The PR Executor 
(Section 3.1) runs the current PR plan and produces query results. 
The PR Monitor (Section 3.2) gathers statistics to locate the op-
timal PR plan at runtime. The PR Optimizer (Section 3.3) uses 
the statistics collected to select a new optimal PR plan for the 
current system load. This “new” PR plan is forwarded to the PR 
Adaptor (Section 3.4) which in turn adapts the current PR plan 
to the new plan. The PR architecture is designed such that online 
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Fig. 2. PR architecture.

Fig. 3. Stock market PR plan.
PR plan adaption requires no expensive infrastructure changes [2]. 
Namely, each query operator is designed to be able to adapt online 
how they allocate resources. The PR Adaptor notifies each opera-
tor of their required changes via notifications sent along a control 
exchange interface. To not delay adaption, PR supports a control 
exchange interface between each operator and the PR Adaptor 
dedicated to handling these notifications. This is similar to how 
interrupts are handled in real-time operating systems [12]. Our PR-
Prune approach is part of the PR Optimizer (Section 3.3). The other 
components are part of PR [2].

3.1. PR executor infrastructure

We now outline the PR Executor and how it executes a PR plan 
efficiently. The design of the PR Executor addresses the challenge 
of how to efficiently pull certain tuples ahead of others in the 
query plan. PR pulls some tuples ahead of others causing tuples 
to not be processed in arrival time order. Thus PR Executor must 
also address the challenge of supporting out-of-order processing.

3.1.1. Pulling tuples ahead of others
The data exchange interface transfers tuples between operators. 

To efficiently process certain tuples before other tuples, PR uses 
multiple queues. Operators support one queue for tuples with 
each possible rank and one for insignificant tuples. Significant and 
promising tuples with the same rank reside in the same queue.
If no monitoring levels are activated then all tuples reside in 
the insignificant queue. In this case, the query operators would 
process the tuples in FIFO order. Otherwise, each tuple resides in 
the queue that corresponds to their rank. In this case, operators 
process tuples in rank order. Operator opo starts processing tuples 
from the most critical queue. When this is empty and resources 
remain, operator opo moves to the second most critical queue. Each 
result (i.e., tuple ti ) is placed into the incoming queue for tuple ti ’s 
rank of the next down stream operator.

Consider the queues for the news stream in Fig. 3. Operator op1
has an incoming queue for news tuples with each possible rank 
(e.g., rank 1) and one for insignificant incoming news tuples.

3.1.2. PR query algebra
Our PR algebraic operators support both significant and/or 

promising tuples where the rank may adapt at run-time (Sec-
tion 3.4). In PR algebra, traditional operators [13] process tuples as 
usual and propagate the appropriate rank related metadata to the 
results. Rank classifier operators assign preference related metadata 
to tuples.
Projection removes specified attributes from tuples in its input 
queues. Selection removes tuples in its input queues that do not 
satisfy the specified selection condition. Both send their results 
with no changes to their rank related metadata to the next op-
erator.
Join [10] creates results (ti, t j) by matching tuples from streams s1
and s2. Tuple ti is taken from an input queue and processed as fol-
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lows. First, tuple ti is stored with its rank related metadata in the 
state of tuple ti ’s stream s1. Then, join results (ti, t j) are created 
by joining tuple ti with tuples t j stored in stream s2’s state. Next, 
result (ti, t j)’s rank related meta data are set. That is, join result 
(ti, t j) is assigned the highest rank among the rank related meta 
data of tuples ti and t j . If tuples ti and t j have the same promis-
ing rank then result (ti, t j) is assigned the designated operator of 
tuples ti and t j that is furthest along the pipeline. Then join result 
(ti, t j) is sent to the next operator.

If tuple ti is a promising tuple and its designated operator 
is this current join operator, then prior to processing tuple ti ’s 
promising rank and designated operator attributes are set to null. 
Then tuple ti ’s rank is set to its significant rank, i.e., ti .rnk = ti .srnk. 
In this case, tuple ti is not known to be a promising tuple beyond 
this join operator but it may turn into a critical tuple at a lower 
rank.
Rank classifier (or RC) is a special-purpose operator with static 
(SAS) and dynamic assessment set (DAS) parameters. It creates re-
sults by assigning rank related meta data to tuples in its input 
queue and then sends these results to the next operator.

The static SAS and dynamic DAS assessment sets contain the 
respective criteria of the activated static or dynamic monitoring 
levels assessed by the RC operator opo .

RCs process each tuple ti by comparing the criteria in SAS and 
DAS to tuple ti in rank order starting from the most critical criteria 
in SAS and DAS . Once tuple ti satisfies a static criteria then tuple 
ti is not compared to any dynamic criteria of the same or lower 
rank. The reason for this is that if tuple ti is a significant tuple 
at rank rnk then it is guaranteed to be a critical tuple at rank rnk
for the duration of tuple ti ’s processing. Assigning tuple ti to be 
a promising tuple at rank rnk or a rank lower than rnk does not 
improve how tuple ti is preferentially processed. However, even if 
tuple ti satisfies a dynamic criteria no static criteria comparisons 
are eliminated. That is, how tuple ti is preferentially processed will 
be affected by whether or not tuple ti is a significant tuple at rank 
rnk or a rank lower than rnk.

Before each standard operator in the PR plan prm an RC oper-
ator is placed. The optimizer determines which monitoring levels 
are activated and the static SAS and dynamic DAS assessment set 
of each RC (Section 3.3). Then the optimizer notifies each RC of 
changes to their assessment sets.

Each RC in the PR plan assigns rank related metadata to partic-
ular tuples. The PR optimizer may select a PR plan in which some 
RCs may not evaluate the rank related metadata of any monitoring 
levels. In this case, the assessment sets of these RC will be empty 
and at runtime all tuples will skip being sent to these RCs (Sec-
tion 3.4).

Consider the PR Plan in Fig. 3. Incoming news and blog tuples 
are respectively evaluated by rank classifier operators rc1 and rc4
against dynamic criteria to identify promising tuples at rank 1. We 
denote the rank of the criteria in the assessment sets evaluated by 
each RC in Fig. 3 by the color of the tear drop in the top of the RC. 
First, incoming stock tuples are evaluated by rank classifier opera-
tor rc2 against static criteria to locate significant tuples at rank 1. 
Then join operator op1 joins news tuples with stock tuples. De-
pending upon their rank, join results from op1 are routed to either 
rc3 and then to join operator op2 or directly to join operator op2
(Section 3.4). RC rc3 evaluates incoming tuples against static crite-
ria to identify significant tuples at rank 2. Finally, the join operator 
op2 produces query results by joining blog tuples with combined 
stock/news tuples.

3.1.3. Adapting rank of tuples
Cases when tuple ti ’s rank may adapt:

1) Tuple ti ’s rank may be elevated when ti is assigned a significant 
and/or promising rank by an RC.
2) Tuple ti ’s rank may be degraded when ti is a promising tuple 
and ti reaches its designated operator.
3) Tuple ti ’s rank may be either elevated or degraded when the 
optimizer selects a new PR plan (Section 3.3). Tuple ti s rank is 
respectively more or less significant than the lowest rank of the 
monitoring levels activated in the new PR plan.

Each operator opo places the resulting tuple ti created from the 
elevated or degraded tuple t j into a different queue than the incom-
ing queue of operator opo that held tuple t j . Operator opo places 
result ti into the appropriate queue based upon tuple ti ’s rank and 
the current activated monitoring levels. If tuple ti is placed into 
a priority queue then henceforth operators will preferentially allo-
cate resources to tuple ti . If tuple ti is placed into the insignificant 
queue then henceforth operators will not preferentially allocate re-
sources to tuple ti . Tuple ti retains the values of its rank related 
metadata in case tuple ti is elevated or degraded in the future.

3.1.4. Out-of-order handling
PR pulls some tuples ahead of others causing tuples to not be 

processed in arrival time order. Thus PR operators support out-of-
order processing. Strategies have been proposed in the literature to 
address out-of-order issues due to external factors such as network 
transmission delays [14]. PR can use similar methods to assure 
completeness and correctness of results produced. To safely purge 
tuples from states, similar to [15], each leaf operator opo peri-
odically sends indicator punctuations when operator opo will no 
longer process any tuples from a set period of time. When opera-
tor opo receives such a punctuation, first it assures that no more 
tuples are waiting to be processed whose query window is this pe-
riod of time. Then it sends a punctuation to its next operator down 
stream when it has no more tuples waiting to be processed whose 
query window is also this period of time. This progressively con-
tinues until the punctuation reaches the last operator in the query.

3.2. PR monitor

The PR Monitor gathers statistics to track the progress of tuples 
that have the potential to be significant and/or promising tuples. 
Periodically, each operator transmits their statistics to the PR Mon-
itor. Once the PR Monitor has collected statistics from all operators, 
it then sends them to the PR Optimizer. One optimization used 
by the PR Monitor is to reduce the number of statistics collected 
by removing statistics of attributes that rarely occur in the tuple 
streams.

3.2.1. Monitoring potential static tuples
Static membership criteria are defined in the P-CQL extension 

at compile-time (Section 2.1). The PR Monitor uses these static 
criteria to collect statistics for each operator on the how many 
incoming tuples expire that have the potential to be significant tu-
ples at rank rnk.

Each join operator opi tracks how many tuples that have the 
potential to be significant tuples at rank rnk and arrive at operator 
opi by their join criteria and input stream. Each non-join operator 
op j tracks how many tuples that have the potential to be signif-
icant tuples at rank rnk and arrive at operator op j by the join 
criteria of the next join operator in the query pipeline and input 
stream. The PR Monitor combines these counts to represent the 
frequency of potential significant tuples FSig(opo,sn,rnk,cp) , or the count 
of all potential incoming tuples to join operator opo from stream 
sn that could be a significant tuple at rank rnk and satisfy join cri-
teria cp .

3.2.2. Monitoring potential promising tuples
Dynamic membership criteria that identifies promising tuples 

in the current system are unknown at compile-time. Thus, the PR 
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Algorithm General Create-a-PR-plan
Input: PCQL query q j

Input: estimated available resources Cavail

Input: initial PR plan prm
Input: Frequency of Potential Significant Tuples collected by PR Monitor FSig

Input: Frequency of Potential Promising Tuples collected by PR Monitor FProm

Output: a generated PR plan prg

1: Create prg by copying prm
2: Create the set of possible dynamic monitoring levels DML using FSig and FProm data
3: Rank = 1
4: Cused = 0

5: while ((Cavail > Cused) and (Rank <= q j .NumRnks)) do
6: add static monitoring levels at rank Rank from q j .SML the set of static monitoring levels of query q j to the set of activated static monitoring levels prg .ASML in the 

generated PR plan prg
7: add dynamic monitoring levels at rank Rank from DML (created above in Step 2) to the set of activated dynamic monitoring levels prg .ADML in the generated PR 

plan prg
8: for each monitoring level mll in the sets of activated static and dynamic monitoring levels prg .ASML U prg .ADML at rank Rank do
9: Determine which rank classifier in the plan will evaluate monitoring level mll

10: end for

11: Rank = Rank + 1
12: Cused = Estimated CPU used by current version of prg
13: end while
14: return prg

Fig. 4. The general steps to locating one possible PR plan.
Monitor gathers statistics that the PR Optimizer will use to identify 
such criteria. To locate potential dynamic membership criteria, the 
PR Monitor tracks the attributes of tuples that arrive at join op-
erators as well as the attributes of tuples that expire before they 
reach the next join operator in the pipeline. The PR Monitor also 
collects statistics to identify at each join operator the join criteria 
of incoming tuples that have the potential to be promising tuples. 
The frequency of potential promising tuples FProm(opo,sn,rnk,cp) is the 
count of all tuples that could be incoming tuples to join operator 
opo from stream sn at rank rnk that satisfy join criteria cp where 
join criteria cp identifies significant join partners at join opera-
tor opo .

Consider the PR Plan (Fig. 3) for the Stock Market Example (Sec-
tion Running example: stock market). The join criteria of potential 
significant tuples at rank 1 into the join operator op1 from the 
stock stream are join criteria c1, c2, and c3. Assume that join crite-
ria c1, c2, and c3 respectively are business sector equal to Energy, 
Advertising, and Drug Retail.

In the PR Plan (Fig. 3), the join criteria of potential promising 
tuples from the news stream at rank 1 into the join operator op1
are criteria c1, c3, and c4.

The number of possible join criteria is exponential given the 
possible domains and range of join criteria values. Thus, PR-Prune 
reduces the number of frequencies collected by using a heavy hit-
ter algorithm [16]. Informally, while collecting the statistics each 
operator periodically removes any statistic whose frequency falls 
below a preset error rate. When all statistics have been collected, 
each operator returns only the statistics whose frequencies are 
above a preset threshold. In addition, if the join criteria is from 
a continuous domain then statistics are gathered on a range of 
values. This ensures that the join criteria monitored are from a 
discrete domain.

3.3. PR optimizer

Upon receiving the statistics, the PR Optimizer selects the opti-
mal order of operators within the query plan and then generates 
a new PR plan. First the initial PR plan is created by placing an RC 
with empty assessment sets before each standard operator in pm . 
Only one RC is required as the static and dynamic assessment sets 
of multiple adjacent RCs can be merged. From this initial PR plan, 
all possible PR plans can be created by adjusting which static and 
dynamic criteria are evaluated and where (i.e., in which signifi-
cance classifier(s)) each static or dynamic criteria is evaluated.

As outlined below, this is challenging as the complexity of dy-
namic priority determination in locating the optimal PR plan is 
exponential in the number of dynamic criteria and the number of 
designated operators. Our PR-Prune addresses this by reducing dy-
namic criteria and designated operators.

Fig. 4 contans the general steps to locating one possible PR plan.
We now explore the details behind this algorithm.

3.3.1. Creating the set of dynamic monitoring levels
The PR Optimizer creates a dynamic monitoring level for each 

join operator opo , stream sn , rank rnk, and join criteria cp where the 
frequencies of both potential significant and promising tuples are 
greater than 0, i.e., FSig(opo,sn,rnk,cp) > 0 and FProm(opo,sn,rnk,cp) > 0. 
When either frequency equals zero then either there are no tuples 
in one of the steams that satisfy join criteria cp or tuples that 
satisfy join criteria cp already have the potential to be assigned to 
a rank more significant than rnk.

Consider PR Plan (Fig. 3). Dynamic criteria at rank 1 for join 
operator op1 are join criteria c1 and c3. Join criteria c2 is not clas-
sified as a dynamic criteria. Although there are significant stock 
tuples from the Advertising business sector (i.e., join criteria c2), 
there are no news tuples in the Advertising business sector. Hence, 
the frequency of potential promising tuples that satisfy join crite-
ria c2 is 0, i.e., FProm(op1,newsStream,c2,1) = 0. Similarly, join criteria c4
is also not classified as dynamic criteria.

Each dynamic criteria cp may identify significant join partners 
at join operator opo with different ranks. In this case, promising tu-
ples that satisfy cp will create join results at more than one rank. 
To keep this practical, each promising tuple that satisfies cp is as-
signed the highest rank of all significant join partners identified by 
criteria cp .

Consider PR Plan (Fig. 3). Stock tuples from the Drug Retail 
business sector (i.e., join criteria c3) are significant tuples with 
ranks of 1 and 2. Thus, the rank of the dynamic monitoring level 
created to locate news and blog tuples with this Drug Retail busi-
ness sector (i.e., cp = join criteria c3) is rank 1.

3.3.2. Selecting which static and dynamic monitoring levels to activate
Some of the potential dynamic monitoring levels in DML may 

reference join operators that will not have any incoming signifi-
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Algorithm Detailed Create-a-PR-plan
Input: PCQL query q j

Input: estimated available resources Cavail

Input: initial PR plan prm
Input: Frequency of Potential Significant Tuples collected by PR Monitor FSig

Input: Frequency of Potential Promising Tuples collected by PR Monitor FProm

Output: a generated PR plan prg

1: Create prg by copying prm
2: Create the set of possible dynamic monitoring levels DML using FSig and FProm data
3: Rank = 1
4: Cused = 0

5: while ((Cavail > Cused) and (Rank <= q j .NumRnks)) do
6: add static monitoring levels at rank Rank from q j .SML the set of static monitoring levels of query q j to the set of activated static monitoring levels prg .ASML in the 

generated PR plan prg
7: for each monitoring level mll in the sets of activated static monitoring levels prg .ASML at rank Rank do
8: Determine which rank classifier in the plan will evaluate monitoring level mll
9: end for

10: Identify designated operators, i.e., join operators where significant tuples at rank Rank

11: add dynamic monitoring levels at rank Rank from DML (created above in Step 2) to the set of activated dynamic monitoring levels prg .ADML in the generated PR 
plan prg

12: for each monitoring level mll in the sets of activated dynamic monitoring levels prg .ADML at rank Rank do
13: Determine which rank classifier in the plan will evaluate monitoring level mll
14: end for

15: Rank = Rank + 1
16: Cused = Estimated CPU used by current version of prg
17: end while
18: return prg

Fig. 5. The detailed steps to locating one possible PR plan.
cant tuples. A join operator opo is said to be designated if and only 
if it has incoming tuples that are significant tuples. Whether or 
not incoming tuples to join operator opo are significant (or not) de-
pends upon which static monitoring levels are activated and where 
they are evaluated. As a consequence, to determine which dynamic 
monitoring levels at rank rnk to active the PR Optimizer must first 
find which join operators are designated. Hence, the PR optimizer 
firsts select which static monitoring levels to activate and deter-
mines where in the plan to evaluate each static criteria before 
considering where to evaluate the dynamic monitoring levels.

Generating one possible PR plan involves the following detailed 
steps. (See Fig. 5.)

3.3.3. Determining where to evaluate each static and dynamic criteria
The PR Optimizer must determine which RC(s) should evaluate 

which criteria of the activated monitoring levels. We now discuss 
how many RCs must evaluate each static and dynamic criteria to 
ensure that all possible significant or promising tuples are pulled 
forward. Each static or dynamic criteria has an evaluation path, i.e., 
an ordered set of operators that begins at the first and ends at the 
last operator in the plan that can evaluate the criteria.
Static evaluation path: Only one rank classifier (RC) in the evalu-
ation path needs to evaluate a given static criteria because signif-
icant tuples retain their rank for the duration of processing. Thus 
the PR optimizer only needs to locate the best RC to assess each 
static criteria.

Each s-crit s-critk has a static evaluation path, i.e., an ordered 
set of operators that respectively begins and ends at the first and 
last operators in the plan that can evaluate s-critk , or roughly, the 
operators where incoming tuples contain all the attributes required 
to evaluate s-critk .
Dynamic evaluation path: In contrast, the rank of promising tu-
ple ti has a short lifespan because tuple ti will drop its promising 
rank when it reaches its designated operator, namely the join oper-
ator where ti is estimated to join with a significant tuple. Further 
along the pipeline, the tuple ti may be assigned another promising 
rank. That is, during its processing, a tuple may be pulled for-
ward to different designated operators along the query pipeline. 
The evaluation paths of criteria may overlap. In addition, to en-
sure that for dynamic criteria cp all promising tuples are pulled 
forward, dynamic criteria cp may need to be evaluated at multiple 
RCs, namely, after any of its designated operator. This is because 
tuples may lose their current promising rank at each designated 
operator. This is the first place to check if a tuple should be as-
signed the promising rank of a designated operator further along 
the query pipeline.

Each d-crit d-criti has a dynamic evaluation path, i.e., an ordered 
set of operators that respectively begins and ends at the first and 
last operators in the plan that can evaluate d-criti .
Static vs dynamic evaluation paths: A static evaluation path ends 
at the last RC operator in the query plan as significant tuples 
remain significant for the entire query pipeline. In contrast, a dy-
namic evaluation path ends at the RC operator that proceeds their 
associated designated operator in the query pipeline. Hence to de-
termine the possible dynamic evaluation paths we must locate the 
designated operators in the query pipeline.

3.3.4. PR plan search space
We now explore the size of the search space to generate all 

possible PR plans by generating all possible options of which lev-
els are activated and all possible options of where each criteria is 
evaluated to find the optimal PR plan.
Static priority determination: Recall that each static criteria is 
evaluated in one RC in its static evaluation path. In the PR Plan 
(Fig. 3), consider identifying significant tuples from the stock 
stream at rank 1, i.e., tuples from aggressive investments. Such 
tuples can either be identified by RC2 (i.e., before join operator 
op1) or by RC3 (i.e., after join operator op1 and before join opera-
tor op2).
Complexity of static priority determination: Assume that in PR 
plan prm , there are |SEP| static evaluation paths. Each static 
evaluation path sepk contains |sepk.rc| RC operators. There are 
|SCrit(sepk, rnk)| static criteria whose static evaluation path is sepk
and rank is rnk. For rank rnk and static evaluation path sepk , there 
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are |sepk.rc||SCrit(sepk,rnk)| possible combinations of which RC eval-
uates each static criteria in SCrit(sepk, rnk). Hence, for rank rnk, 
there are 

∏|SEP|
k=1 |sepk.rc||SCrit(sepk,rnk)| possible PR plans where the 

static criteria at rank rnk can be evaluated.
Dynamic priority determination: In contrast, each dynamic crite-
ria could be evaluated in many (and even all) RCs in its dynamic 
evaluation path. In the PR Plan (Fig. 3), consider locating promising 
tuples for join operator op1 from the news stream from the Energy 
business sector, i.e., join criteria c1. Such tuples will be promising 
at rank 1 for designated operator op1. Rank Classifier RC1 would 
be the only operator that need to try to identify these tuples us-
ing the promising criteria (i.e., before join operator op1). This is 
because there are no designated operators between RC1 and the 
designated operator op1.

Now consider locating promising tuples for join operator op2
from the news stream from the Energy business sector, i.e., join 
criteria c1. These tuples will be promising tuples at rank 1 with 
designated join operator op2. Such tuples can be located by any 
RCs before join operator op2, namely, RC1 and RC3.

If only RC3 evaluates join criteria c1 then such tuples only need 
to be located by RC3. This is because there are no designated op-
erators between RC3 and the designated operator for join criteria 
c1, i.e., designated operator op2. However, this is not true if RC1
evaluates join criteria c1 and operator op1 is a designated operator 
between RC1 and join operator op2, i.e., the designated operator 
for join criteria c1. In this case, to ensure that promising tuples for 
both designated operators op1 and op2 are pulled forward, RC3 will 
also need to evaluate join criteria c1.

Segments within a dynamic evaluation path where a tuple’s 
rank can change exist between every pair of consecutive desig-
nated operator in the dynamic evaluation path. We refer to these 
segments as dynamic re-evaluation paths.

For the last example above, a dynamic re-evaluation path exists 
between operators op1 and ends at RC3. This is because RC3 is the 
first RC after designated operator op1 and the last RC before the 
next designated operator op2. The optimizer must select one RC in 
each dynamic re-evaluation path to evaluate the dynamic criteria.
Complexity of dynamic priority determination: For each dy-
namic criteria cp whose dynamic evaluation path is depl , there 
are 

∑|depl .rc|
x=1

∏|DREP(depl,rcx)|
m=1 |drepm.rc| possible combinations of 

which RCs evaluate dynamic criteria cp . Rank Classifier rcx is the 
RC in dynamic evaluation path depl selected by the optimizer. 
|DREP(rcx, depl)| denotes the number of dynamic re-evaluation 
paths that proceed rcx in dynamic evaluation path depl . |drepm.rc|
denotes the number of RCs in dynamic re-evaluation path drepm
where dynamic criteria d-criti can be re-evaluated.

There are |DCrit(depl, rnk)| dynamic criteria whose dynamic 
evaluation path is depl and rank is rnk. Hence, for each rank rnk, 
there are 

∏|DEP|
l=1 (

∑|depl .rc|
x=1

∏|DREP(rcx)|
m=1 |drepm.rc|)|DCrit(depl,rnk)| possi-

ble PR plans where the dynamic criteria at rank rnk can be evalu-
ated.
The PR search space thus is:

∑|q j .SML|
rnk=1

∏|SEP|
k=1 |sepk.rc||SCrit(sepk,rnk)| ∗

∏|DEP|
l=1 (

∑|depl .rc|
x=1

∏|DREP(depl,rcx)|
m=1 |drepm.rc|)|DCrit(depl,rnk)| .

We notice that the complexity of dynamic priority determi-
nation in the PR problem is exponential in the number of dy-
namic criteria |DEP| and the number of designated operators 
|DCrit(depl, rnk)|. It is impractical to exhaustively search for the 
optimal PR plan with many dynamic criteria and designated op-
erators.

3.3.5. PR prune optimization strategy
We now introduce PR-Prune, an optimization strategy that re-

duces the complexity of dynamic priority determination. PR-Prune 
eliminates inferior dynamic criteria before creating dynamic mon-
itoring levels (i.e., Step 2 below). This reduces the number of 
dynamic criteria |DEP| and the number of designated operators 
|DCrit(depl, rnk)|. As we will see below, PR Prune discriminately 
chooses which dynamic monitoring levels to activate. Finally, PR 
Prune also reduces the number of designated operators it creates 
(i.e., Step 2d above). This reduces |DREP(depl, rcx)|).

Roughly, locating a single PR Plan in PR-Prune consists of the 
following steps. (See Fig. 6.)
Pruning of inferior dynamic criteria: Dynamic priority determi-
nation is more complex than static priority determination. The 
number of static criteria at rank rnk is inherently small as they 
are defined by users at compile-time. In contrast, the number of 
dynamic criteria can be prohibitively large. That is, there may be 
a huge number of join criteria at each join operator that identify 
promising tuples at rank rnk.
Observation: Some dynamic criteria cp may identify promising tuples 
that produce more significant query results than others.

In the PR Plan (Fig. 3), dynamic criteria at rank 1 in join op-
erator op1 are from tuples related to the Energy and Drug Retail 
business sectors. More precisely, two join results from the En-
ergy business sector will be produced when the promising tuple 
at rank 1 joins with the two significant tuple at rank 1 using join 
criteria c1. While four join results from the Drug Retail business 
sector will be produced for join criteria c3.

Evaluating the optimal determination location of inferior cri-
teria adds overhead. Each dynamic criteria we do not evalu-
ate reduces the complexity of dynamic priority determination 
by: (

∑|depl .rc|
x=1

∏|DREP(depl,rcx)|
m=1 |drepm.rc|) where depl is the dynamic 

evaluation path of d-criti .
A dynamic criteria is inferior to the others typically when the 

product of the frequencies of potential significant and promising 
tuples is extremely low. To eliminate these inferior dynamic cri-
teria, we propose a statistics-based reduction method. Namely, we 
remove any dynamic criteria if the product of the frequencies of 
potential significant and promising tuples is below a preset thresh-
old.
Activation order of dynamic monitoring levels: Rather than ex-
haustively searching through all possible dynamic monitoring lev-
els to decide which ones to activate, PR-Prune starts with the dy-
namic monitoring levels that are estimated to produce the largest 
cardinality of critical join results. This corresponds to the criteria 
with the largest product of the frequencies of potential significant 
and promising tuples. This helps ensure that resources are allo-
cated to the most promising tuples first.

From these insights, we thus again refine the logic of the PR-
Prune. (See Fig. 7.)
Cost savings: There is clearly a cost savings in reducing the num-
ber of designated operator and the number of dynamic eval-
uation paths. Each designated operator eliminated reduces the 
number of possible PR plans that need to be generated by 
(
∑|depl .rc|

x=1

∏|DREP(depl,rcx)|
m=1 |drepm.rc|)|DCrit(depl,rnk)| plans. While each 

dynamic re-evaluation path eliminated reduces the number of pos-
sible PR plans that need to be generated by

(
∑|depl .rc|

x=1 |drepm.rc|)|DCrit(depl,rnk)| plans.
Reducing the dynamic evaluation paths: In the PR Plan (Fig. 3), as-
sume that tuple ti satisfies the dynamic criteria c1 and c2 at rank 
rnk for respective designated operators op1 and op2. Assume that 
tuple ti does not satisfy any other criteria. There are two possible 
ways in which ti could be processed. First, tuple ti could be eval-
uated by an RC against dynamic criteria c1. In this case, tuple ti
would be a promising tuple at rank rnk with designated operator 
op1. After operator op1, tuple ti would then be evaluated by an RC 
against dynamic criteria c2. At this point, tuple ti would become 
a promising tuple at rank rnk with designated operator op2. The 
second alternative is that prior to operator op1, tuple ti could be 
evaluated by an RC against dynamic criteria c2. In this case, tuple ti
would a promising tuple at rank rnk with designated operator op2.
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Algorithm General PR-Prune Create-a-PR-plan
Input: PCQL query q j

Input: estimated available resources Cavail

Input: initial PR plan prm
Input: Frequency of Potential Significant Tuples collected by PR Monitor FSig

Input: Frequency of Potential Promising Tuples collected by PR Monitor FProm

Output: a generated PR plan prg

1: Create prg by copying prm
2: Create the set of possible dynamic monitoring levels DML using FSig and FProm data
3: Eliminate inferior dynamic criteria from the set of possible dynamic monitoring levels DML
4: Rank = 1
5: Cused = 0

6: while ((Cavail > Cused) and (Rank <= q j .NumRnks)) do
7: add static monitoring levels at rank Rank from q j .SML the set of static monitoring levels of query q j to the set of activated static monitoring levels prg .ASML in the 

generated PR plan prg
8: for each monitoring level mll in the sets of activated static monitoring levels prg .ASML at rank Rank do
9: Determine which rank classifier in the plan will evaluate monitoring level mll

10: end for

11: Identify designated operators, i.e., join operators where significant tuples at rank Rank
12: Reduce the set of designated operators found in the previous step

13: add dynamic monitoring levels at rank Rank from DML (created above in Step 2) to the set of activated dynamic monitoring levels prg .ADML in the generated PR 
plan prg

14: for each monitoring level mll in the sets of activated dynamic monitoring levels prg .ADML at rank Rank do
15: Determine which rank classifier in the plan will evaluate monitoring level mll
16: end for

17: Rank = Rank + 1
18: Cused = Estimated CPU used by current version of prg
19: end while
20: return prg

Fig. 6. The general PR-Prune steps to locating one possible PR plan.

Algorithm Detailed PR-Prune Create-a-PR-plan
Input: PCQL query q j

Input: estimated available resources Cavail

Input: initial PR plan prm
Input: Frequency of Potential Significant Tuples collected by PR Monitor FSig

Input: Frequency of Potential Promising Tuples collected by PR Monitor FProm

Output: a generated PR plan prg

1: Create prg by copying prm
2: Create the set of possible dynamic monitoring levels DML using FSig and FProm data
3: Eliminate inferior dynamic criteria from the set of possible dynamic monitoring levels DML
4: Rank = 1
5: Cused = 0

6: while ((Cavail > Cused) and (Rank <= q j .NumRnks)) do
7: add static monitoring levels at rank Rank from q j .SML the set of static monitoring levels of query q j to the set of activated static monitoring levels prg .ASML in the 

generated PR plan prg
8: for each monitoring level mll in the sets of activated static monitoring levels prg .ASML at rank Rank do
9: Determine which rank classifier in the plan will evaluate monitoring level mll

10: end for

11: Identify designated operators, i.e., join operators where significant tuples at rank Rank
12: Reduce the set of designated operators found in the previous step

13: add dynamic monitoring levels at rank Rank from DML (created above in Step 2) to the set of activated dynamic monitoring levels prg .ADML in the generated PR 
plan prg

14: for each monitoring level mll in the sets of activated dynamic monitoring levels prg .ADML at rank Rank in order of highest to lowest product of the frequencies of 
potential significant and promising tuples do

15: Determine which rank classifier in the plan will evaluate monitoring level mll
16: end for

17: Rank = Rank + 1
18: Cused = Estimated CPU used by current version of prg
19: end while
20: return prg

Fig. 7. The detailed PR-Prune steps to locating one possible PR plan.
In both cases, tuple ti would be promoted as a promising tu-
ple at rank rnk across both operators. In the first case, tuple ti

would be evaluated twice and promoted as a promising tuple at 
rank rnk across each operator individually. In the second case, tu-
ple ti would be evaluated once but promoted as a promising tuple 
at rank rnk across both operators.

Clearly, there is less overhead if we allocate resources to 
promising tuples for the longest duration of query processing. 
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Hence, it is best to assign tuple ti to the designated operator that 
is furthest along the query pipeline, i.e., operator op2.
Observation: If multiple consecutive join operators in the query pipeline 
have the same join criteria then only the last join operator in the se-
quence should be used to identify potential dynamic criteria.

Reconsider PR Plan (Fig. 3). Join operators op1 and op2 both 
use the same join criteria attribute, i.e., business sector. If we use 
the dynamic criteria located at operator op1 then there is no guar-
antee that the same business sectors exist in the news and blog 
streams over the same query window. That is, a critical join result 
tuples generated by op1 may not contain a business sector in the 
blog stream. This would cause no result to be created by join op-
erator op2. Preferentially allocating resources to pull forward news 
tuples from such a business sector may not generate any additional 
significant query results.

However, since op1 and op2 both use the same join criteria 
attribute the frequency statistics can be shared across both oper-
ators. Then dynamic criteria learned by operator op2 can ensure 
that such tuples will match some tuples in both the news as well 
as blog stream.

In summary, PR-Prune eliminates designated operators by only 
assigning the last join operator of all adjacent join operators that 
use the same join criteria to be the designated operator. Then PR-
Prune identifies the dynamic criteria of this join operator, namely, 
the join operator furthest along the query pipeline.
PR-prune plan search space: The PR-Prune search space for plan 
pi is thus: 

∑|q j .SML|
rnk=1

∏|SEP|
k=1 |sepk.rc||SCrit(sepk,rnk)| ×

∏|RDEP|
l=1 (

∑|depl .rc|
x=1

∏|RDREP(depl,rcx)|
m=1 |drepm.rc|)|RDCrit(depl,rnk)| . RDEP is 

the reduced set of dynamic evaluation paths. RDREP(depl, rcx) is 
the reduced set of dynamic re-evaluation paths that follow rank 
classifier rcx in dynamic evaluation path depl . RDCrit(depl, rnk) is 
the reduced set of dynamic criteria whose dynamic evaluation path 
is depl and rank is rnk.

3.3.6. Optimal order of operators in PR plan
Selecting the optimal ordering of operators within a plan is 

NP-hard [17]. The complexity only increases if we simultaneously 
consider both the optimal ordering of operators and allocation of 
resources. Given a query plan pm selected using traditional query 
optimization techniques [18], the PR optimizer locates the opti-
mized PR plan prm for a given traditional query plan pm .

3.4. PR adaptor

After the optimizer selects a new optimized PR plan, the PR 
Adaptor adapts the current PR plan to the new one. A challenge to 
any online query plan adaption is how to do so efficiently so as to 
require the least amount of resources and the shortest amount of 
time. A key to how PR efficiently supports the adaption of PR plans 
is the retention of a rank classifier (a.k.a., RC) before each standard 
operator. As we explain in further detail below, simply changing 
the attributes of the RC operators allows the PR current plan to 
change to a new PR plan. This allows PR to adapt the PR plan 
online without requiring any operators or data exchange interfaces 
to be added, removed, or reordered.

To not delay adaption, a control exchange interface is dedicated 
to sending notifications between the PR Adaptor and each operator. 
To adapt which and where static and dynamic criteria are evalu-
ated, the PR Adaptor simply sends each RC a notification about 
their new static and dynamic assessment sets.

Since our design requires that an RC exist before each opera-
tor, it is possible that some RCs in the PR plan do not evaluate any 
static or dynamic monitoring levels and thus, have empty assess-
ment sets. Operators do not send tuples to such RCs. Such RCs are 
simply skipped. To skip extraneous RCs, standard operators con-
trol where they send results. They send results to either: 1) the 
next down stream RC rcp and then to the next down stream oper-
ator opo or 2) directly to the next down stream operator opo , i.e., 
skipping RC rcp . To adapt where results are sent, the PR Adaptor 
notifies each operator of the whether or not to send their results 
to the next down stream RC.

In short, PR quickly adapts the PR plan online. The adaption 
does not require any infrastructure changes. Instead, each operator 
locally adapts online how they allocate resources to any future in 
process tuples (Section 3.1.3).

4. Experimental evaluation

4.1. Experimental setup

Alternative solutions. We compare PR with the PR-Prune Opti-
mizer (or PR-Prune) to PR with the basic PR Optimizer solution 
(or PR) [2]. Both approaches identify and pull promising tuples 
forward. However, PR-Prune reduces the optimization time for cri-
teria identification and placement which allows PR-Prune to pull 
promising tuples forward sooner than PR. We also study the tra-
ditional data stream management system which does not em-
ploy any resource allocation methodology (or Trad). Trad demon-
strates that our experimental scenarios require a resource alloca-
tion methodology to ensure the throughput of the most critical 
results. We also analyze the state-of-the-art resource allocation 
methodologies for data streams (Section 5), namely, semantic (or 
Sem), random (or Rand) [19], and Proactive Promotion (or PP) [7,8].

PP [7,8] only pulls significant tuples forward. It does not iden-
tify nor pull forward promising tuples. As shown in [2], this limits 
the number of critical results produced by PP as compared to PR. 
Sem selects which incoming significant tuples will be processed 
(or dropped) upon their arrival. Rand randomly selects tuples to 
process upon their arrival based upon the estimated number of 
tuples that can be processed within their lifespan given the cur-
rent statistics. Both Sem and Rand process all tuples in FIFO order. 
In contrast, PP locates significant tuples at the optimal RC operator 
in the query pipeline using a cost-based optimization strategy. PP 
processes all tuples in rank order. Studying these approaches high-
lights the benefits of efficiently pulling promising tuples forward 
(i.e., PR-Prune). Trad simply processes all tuples in FIFO order. It 
neither sheds nor allocates resources to specific tuples based upon 
their rank.

All systems were implemented in the same data stream man-
agement system, in our case, CAPE [20]. PR-Prune, PR, PP, and Sem 
use the same set of static criteria to identify significant tuples. 
Unlike the other approaches, PR-Prune and PR generate dynamic 
criteria to identify promising tuples. In our experiments, operators 
in PR-Prune and PR send join criteria statistics whose frequency is 
above 5% to the PR monitor.
Experimental methodology. Compared to alternative solutions, we 
explore the following research questions: 1) Is PR-Prune more ef-
fective at increasing the throughput of the most critical query 
results? 2) What affect does the number of promising tuples in 
the streams have on the effectiveness of PR-Prune? 3) How does 
varying the number of join operators or dynamic evaluation paths 
affect PR-Prune? 4) How does the optimization search time of PR-
Prune compare to that of the PR? 5) What is the runtime CPU and 
memory overhead of PR-Prune?

Our experiments adapt the variables that most directly affect 
PR-Prune. The quantity of promising tuples affects the number of 
tuples in the workload that may benefit from being pulled forward. 
PR-Prune’s effectiveness is based upon efficiently adapting the PR 
plan to allow it to identify promising tuples at their designated 
join operator and creating critical join results. The number of join 
operators in a query affects the query complexity and number of 
tuples in the workload that may benefit from being pulled forward. 
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In addition, this demonstrates PR-Prunes ability across a diverse set 
of queries, namely, adding additional join operators creates unique 
distinct query plans. Varying the number of dynamic evaluation 
paths affects the optimization search time and the number of op-
erators over which each promising tuple can be pulled forward.
Queries. Most experiments use the Stock Market Query (Sec-
tion 1.3) with the P-CQL extension. This query has three static 
monitoring levels that define the significant tuples in the stock 
stream. We henceforth refer to this query as the Stock Market 
Query.
Data streams. The stock market stream was created from the pric-
ing information on the S&P 500 stocks gathered over July 18, 2012 
via Yahoo Finance [21]. A selection committee from Standard & 
Poor’s determines which of the 500 leading companies publicly 
traded in the U.S. stock market are in the S&P 500. It is consid-
ered to be a good metric of how well the U.S. economy is doing.

Stock Data Set 1 mimics the monitoring levels of an investment 
company. The stock market can change rapidly. Thus many mutual 
funds are diversified. That is, the stocks chosen to belong to a fund 
are distributed across different business sectors and investment 
types (i.e., aggressive versus conservative). In Stock Data Set 1, 4.6% 
of the stocks in the stock stream were randomly chosen to respec-
tively have significant ranks 1, 2, and 3.

News and blog data streams were created by randomly select-
ing from either the sectors in the Global Industry Classification 
Standard (GICS) or the subsectors in the Industrial Classification 
Benchmark (ICB). These streams represent the industries or busi-
ness sectors mentioned in current postings. GICS was developed by 
Morgan Stanley Capital International (MSCI) and Standard & Poor’s. 
It contains 10 sectors that categorize the industries of companies 
in the S&P 500 by their stock symbol. ICB was created by Dow 
Jones and FTSE. It contain 100 subsectors that classify the business 
sector of the companies in the S&P 500 by their stock symbol.

Most experiments use the News/Blog Data Set 1 which mimics 
the average stock market day when no particular ICB subsector 
dominates the news. In News/Blog Data Set 1, the ICB subsectors 
were randomly placed into the news and blog streams with the 
constraint that 15% of tuples in each window in the news and 
blog streams are promising tuples, i.e., contain the same the ICB 
subsectors as the significant tuples in the Stock Data Set 1.
Hardware. Our experiments were conducted in a compute cluster. 
Each host has two AMD 2.6 GHz Dual Core Opteron CPUs and 1 GB 
memory. Each solution (i.e., PR-Prune, PR, PP, Sem, or Trad) was 
distributed across 2 processing nodes. The query executor was run 
on one node. The system monitoring, optimizing, and plan adap-
tion components were run on the other node.
Metrics and measurements. All experiments were run 3 times for 
10 minutes. The results are averaged over these runs. Most of our 
experiments measure separately for each monitoring level the cu-
mulative throughput of critical query results.

4.2. Experimental results

Effectiveness at increasing throughput of the most significant re-
sults. First, we compare the throughput of each approach. This 
experiment uses Stock and News/Blog Data Set 1, and the Stock 
Market Query. The window size = 1000 tuples.

Figs. 6a–c show the average cumulative throughput for monitor-
ing levels 1–3 respectively as it changes over 10 minutes. Overall 
compared to the alternative approaches PR-Prune produced more 
of most critical results (i.e., level 1) (Fig. 6a). Quantitatively, PR-
Prune produced 98%, 95%, 45%, 33%, and 9% more of the most 
critical results than Trad, Rand, Sem, PP, and Pr respectively. In ad-
dition, for the second most critical results (i.e., level 2), PR-Prune 
produced more results than PR, PP, Rand, and Trad (Fig. 6b). Quan-
titatively, PR-Prune produced 97%, 88%, 24%, and 18% more of the 
second most critical results than Trad, Rand, PP, and Pr respec-
tively. Only Sem produced slightly more critical results at level 2 
than PR-Prune, namely, 13% more. Rand, Sem, and Trad all process 
tuples in FIFO order. Thus they cannot guarantee that resources 
are dedicated to the most critical tuples first. Finally, for the least 
critical monitoring level, (i.e., level 3) PR-Prune produced more re-
sults than PR, PP, Rand, and Trad (Fig. 6c). Quantitatively, PR-Prune 
produced 96%, 83%, 22%, and 17% more of the least most critical 
results than Trad, Rand, PP, and Pr respectively. Again, only Sem 
produced more of the least critical results than PR-Prune, namely, 
79% more.

Even though Sem produced significantly more of the least crit-
ical results, PR-Prune was most efficient at dedicating resources to 
producing the most critical query results. Namely, the goal of PR-
Prune is to efficiently dedicate the resources to produce the most 
critical results, followed by the next most critical results (and so 
on) until no resources remain. PR-Prune is indeed effective at in-
creasing the throughput of the most critical results. This is due to 
PR-Prune’s ability to efficiently pull forward both significant and 
promising tuples. In addition, although Sem produces more critical 
results at monitoring levels 2 and 3, it produces notably less of the 
most critical results. In the Stock Market Example this could have 
severe financial consequences.
Varying the number of promising tuples. We now explore how the 
number of promising tuples in the streams affects the throughput 
of critical results. This experiment uses Stock and News/Blog Data 
Set 1, and the Stock Market Query. The window size = 1000 tuples. 
In this experiment, we use four distinct News/Blog Data Sets. These 
datasets emulate days where particular ICB subsectors dominate 
the news.

In the 25% News/Blog Data Set (DS25), 25% of ICB subsectors 
of the significant tuples in the Stock Data Set 1 were randomly se-
lected and placed into tuples in each window in the news and blog 
streams. In other words, only 25% of all the significant tuples have 
corresponding join partners and 75% have no join partners. Simi-
larly, in the 50% (DS50), 75% (DS75), and 100% (DS100) News/Blog 
Data Sets, respectively 50%, 75%, and 100% of ICB subsectors of 
the significant tuples in the Stock Data Set 1 were randomly se-
lected and placed into tuples in each window in the news and 
blog streams. In DS50, DS75, and DS100, respectively only 50%, 
75%, and 100% have corresponding join partners, i.e., 50%, 25%, and 
0% have no join partners. Figs. 5a–d show the average cumulative 
throughput for monitoring levels 1–3 respectively after 10 minutes 
respectively for the DS25, DS50, DS75, and DS100 Data Sets.

In this experiment, we did not control the number of critical 
results that can be produced by each scenario. The data streams 
was randomly produced for each Data Set. Therefore there is no 
correlation between the results from different Data Sets. We can 
view the results independently to observe trends in how PR-Prune 
performs in scenarios where there are few versus many promising 
tuples.

Regardless of the data set used, PR-Prune produced more of the 
most critical results than the other approaches (Figs. 7a–d). The 
gains achieved by PR-Prune increases when the stream contains 
fewer promising tuples (e.g., DS25) compared to when the stream 
contains more promising tuples (e.g., DS100).

In all scenarios, compared to Trad, PR-Prune between 71 and 
85 fold more of the most critical results (i.e., level 1). Respectively 
for DS25, DS50, DS75 and DS100, PR-Prune produced between 1.3 
and 19.8 fold, 1.5 and 23 fold, 1.7 and 15.9 fold, and 1.6 and 22 fold 
more of the most critical results (i.e., level 1) than PR, PP, Sem, and 
Rand. This is as expected. Namely, PR-Prune is designed to pull the 
promising tuples forward that have the estimated highest potential 
of producing the most critical query results.

Locating promising tuples adds overhead. PR-Prune efficiently 
determines which dynamic criteria to use to locate promising tu-
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Fig. 8. Effective at increasing throughput of the most significant results.
ples while taking the overhead of locating promising tuples. Com-
pare the results in the DS100 scenario to the DS25 scenario. DS100 
has more possible dynamic criteria to evaluate than DS25. How-
ever, even with these additional dynamic criteria in the DS100 
scenario PR-Prune is still more efficient than the other approaches. 
This is demonstrated by the fact that PR-Prune produced more of 
the most critical query results than the other approaches.
Varying the workload and number of dynamic evaluation paths.
We now compare how varying the workload and number of dy-
namic evaluation paths affects PR-Prune compared to PP and PR. 
Comparing PR-Prune to PP demonstrates the benefit to pulling 
promising tuples forward. While the comparison to PR highlights 
the advantage of reducing the optimization time and thus quickly 
pulling promising tuples forward. The data streams was again ran-
domly produced for each Data Set. Therefore there is no correlation 
between the results from different Data Sets. We can view the re-
sults independently to observe trends in how PR-Prune performs 
in scenarios.
Varying the number of join operators. This experiment again uses 
Stock and News/Blog Data Set 1 where the window size = 1000 
tuples. However in this experiment we vary the number of join 
operators from 2, 4, to 8 operators. The 2 join operator experiment 
uses the Stock Market Join Query. While the 4 and 8 join operators 
query plans respectively extend the Stock Market Join Query by 2 
and 6 join operators. Each join operator added combines the cur-
rent results respectively with an additional news or blog stream. 
Such queries are used to locate hot news trends across multiple 
news sources. Figs. 8a–c show the average cumulative throughput 
for monitoring levels 1–3 respectively after 10 minutes. Overall PR-
Prune consistently produced more of the most critical results (i.e., 
level 1) than PR and PP.
Varying the number of dynamic evaluation paths. This experiment 
uses the Stock and News/Blog Data Set 1 and the 8 join query 
outlined above where the window size = 1000 tuples. The number 
of dynamic evaluation paths is varied by adjusting how many of 
the consecutive join operators shared the same join attribute.
In the 1 path query, all 8 join operators share the same join at-
tribute. PR-Prune will seek to pull promising tuples forward across 
the entire query path. While respectively in the 2, 4, and 8 path 
queries, 4, 2, to 0 (no) join operators share the same join attribute. 
In the 2 path query PR-Prune will seek to pull promising tuples 
forward across the first and the last four consecutive join opera-
tors in the query pipeline. In the 4 path query PR-Prune will seek 
to pull promising tuples forward across the first, second, third, and 
last two consecutive join operators in the query pipeline. In the 8 
path query PR-Prune will respectively seek to pull promising tuples 
forward across each join operator individually.

To achieve this we vary which incoming news and blog streams 
are generated from the GICS sectors and which streams are gener-
ated from ICB subsectors. When there is 1 path, all 8 news streams 
are generated from ICB subsectors, i.e., all 8 join operators share 
the same join attribute. Thus PR-Prune would pull promising tu-
ples forward across all 8 join operators. While in the 8 paths case, 
every other news streams is generated from ICB subsectors or GICS 
sectors, i.e., no consecutive join operators share the same join at-
tribute. In this case, PR-Prune would pull promising tuples only 
across one individual join operator at a time.

Figs. 9a–c show the average cumulative throughput for moni-
toring levels 1–3 respectively over 10 minutes. Overall PR-Prune 
consistently produced more of the most critical results (i.e., level 1) 
than PR and PP. It can be seen that PR-Prune produces more of the 
most critical results than PR and PP regardless of the number of 
dynamic evaluation paths.
Optimization search time. We now compare the optimization 
search time of PR-Prune to PR to respectively locate the “best” 
or optimal PR plan for queries that contain a varied number of 
dynamic evaluation paths (Fig. 10). Namely, we analyze the opti-
mizer search time for the 1, 2, 4, and 8 path experiment outlined 
above. In the 1 path case, PR-Prune took 31.6% less time than PR to 
search for the “best” PR plan. While in the 8 paths case, PR-Prune 
took 14.3% less time.

This is as expected. In the 1 path case, PR Prune will elimi-
nate potential designated operators and combine all join operators 
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Fig. 9. Varying the number of promising tuples.

Fig. 10. Varying the number of join operators.
into a single dynamic evaluation path (Section 3.3.5). While in the 
8 path case, PR Prune will not be able to eliminate any poten-
tial designated operators and a dynamic evaluation path will be 
created for each join operator. However, in both cases PR Prune re-
duces the optimizer search time by eliminating inferior dynamic 
criteria (Section 3.3.5).
Execution-runtime CPU overhead. To measure the runtime over-
head we evaluate the cumulative throughput using the worst case 
scenario for PR-Prune (Fig. 11c), namely, when no static monitoring 
levels are defined. This experiment uses the Stock Market Query 
(Section 1.3) without the P-CQL extension. In addition, no tuples 
expire (i.e., query lifespan = ∞). Thus, all tuples are processed 
in FIFO order. The overhead of the resource allocation methodolo-
gies (Sem, Rand, PP, PR, PR-Prune) here correspond to the cost to 
collect and evaluate runtime statistics. This is the worst case sce-
nario as although these systems will never be overloaded, they will 
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Fig. 11. Varying the number of dynamic evaluation paths.
Fig. 12. Optimization search time.

continue to utilize resources to evaluate how to allocate resources. 
This experiment uses the Stock and News/Blog Data Set 1 where 
the window size is 1000 tuples.

As shown by our results (Fig. 13c), the overhead of PR-Prune 
compared to the overhead of the alternative state-of-the-art re-
source allocation methodologies is minimal. PR and PR-Prune re-
quire more detailed statistics than PP and Sem (Section 3.2). That 
is, PP and Sem only collect statistics regarding static monitor-
ing levels. In contrast, PR-Prune and PR collect statistics regarding 
both static and dynamic monitoring levels. Rand and Trad have 
respectively significantly less and no statistics gathering overhead 
than the other approaches. However, as shown in the experiments 
above, this minimal overhead is well worth it in systems that re-
quire preferential resource allocation.
Memory overhead. We now evaluate the average number of tu-
ples in the state and input queues of the last join operator (i.e., 
operator op2 in the Stock Market Query) in the query pipeline us-
ing the scenario outline above (Fig. 13a and b). As per our results, 
the memory overhead of PR-Prune is comparable to the current 
state-of-the-art approaches.

All approaches process tuples in FIFO order. In PP, PR, and PR-
Prune, all tuples will reside in the insignificant queue. The number 
of tuples in the queue of PR-Prune and PR is slightly higher than 
the other approaches. This is mainly due to the extra overhead to 
support additional monitoring statistics which leaves PR-Prune and 
PR less resources to process tuples.

Sem, Rand, and Trad process tuples in FIFO order. Their join op-
erators internally determine when to purge their states by tracking 
when it processes the last tuple from a given window. PR does 
not necessarily process tuples in arrival time order. It uses punc-
tuations to signal when to purge their states (Section 3.1.4). This 
causes the purge to be delayed longer than for other methods and 
subsequently the state to be slightly larger.

4.3. Summary of experimental findings

We now summarize our key findings.
1) PR-Prune increases the throughput of the most critical re-

sults.
2) Regardless of the number of promising tuples in the streams, 

the query complexity, or the number of dynamic evaluation paths 
PR-Prune successfully produced a larger quantity of highly critical 
results than the state-of-the-art competitors.

3) The optimization search time of PR-Prune is significantly 
lower than PR especially for scenarios with dynamic evaluation 
paths that contain multiple operators (roughly 32% reduction in 
search time; see Fig. 12).

4) PR-Prune does require some fairly negligible CPU and mem-
ory overhead. As shown in our experiments above, this overhead is 
justified in systems that must ensure that resources are dedicated 
to producing the most critical query results first (see Fig. 13).

5. Related work

We now review the related work beyond that in Section 1.6.
Result ordering methods adapt the order in which the results 

are produced [22–24]. These approaches produce all results re-
gardless of how long it takes. The Juggle operator [22,23], built 
for exploratory queries, allows the users to adjust which rows or 
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Fig. 13. Execution-runtime CPU and memory overhead.
columns in the results are generated first. [24] reorders tuples in 
data stream management systems per user preferences. In contrast, 
PR may not always produce all results. That is, some tuples may 
expire. When resources are scarce, PR uses the available resources 
to reorder tuples identified as central to producing the most criti-
cal query results.

Result selection methods restrict which results are produced 
[25–28]. Top k [25,26], web search [27], and preference queries [28]
limit the number of results produced, often a fixed small cardinal-
ity, by ranking tuples based upon user preferences. For instance, 
they may return only the set of most interesting results that will 
fit on a screen. In contrast, PR uses the available resources to pro-
cess as many tuples identified as central to producing as many of 
the critical query results as possible.

There are many resource allocation approaches that reduce the 
workload [29–39]. One approach is load shedding [29–35]. Load 
shedding drops less significant tuples. It only allocates resources 
to the tuples not dropped, specifically, the most significant tuples. 
Once a tuple is chosen to be processed, the tuple will not be shed 
at any point along the query pipeline. [33] described a load shed-
ding scheme that dynamically determines when, how many, and 
where in the query plan resources will be allocated to the most 
significant tuples. While [40] introduced a load shedding algorithm 
for mining data streams.

Another resource allocation approach that reduces the workload
is spilling [36–39]. Spilling temporarily moves less significant tu-
ples to memory to be processed later and allocates resources to the 
tuples not spilled, specifically, the most significant tuples. Many 
approaches, such as XJoin [36], Hash-Merge Join [37], and MJoin 
[38], push tuples temporarily to disk when no available memory 
remains. [39] considers how spilling tuples in one operator affects 
the other operators in the same plan.

There are also many resource allocation approaches where opti-
mization decisions concern locally reordering the workload [41–43]. 
[41] makes localized decisions about subsets of interest in the data 
stream between neighboring operators in the query pipeline and 
allocates resources to these subsets of interest. In this approach 
operators use punctuations to communicate interest in particular 
subsets of the data stream. Each operator sends a “request” to its 
adjacent operator in the pipeline asking for specific tuples to be 
pulled forward. In other words, each individual operator makes 
local resource allocation decisions that serve its particular inter-
est. In complex queries that contain multiple join operators, each 
join operator may end up requesting different types of tuples. This 
could waste resources by pulling tuples forward that are only im-
portant to one operator but may be overall counter productive for 
other operators. Ultimately, such an uncoordinated approach may 
produce fewer rather than more significant query results. In com-
parison, [42] extended join operators to makes localized decisions 
about how to allocate resources to process the most profitable 
segments of the join windows. As another direction, [43] makes 
localized decisions about which tuples that join operations are per-
formed on based upon the input stream rates, time correlation 
between the streams and properties of the tuples stored in the 
join state.

PR-Prune instead requires a global coordinated approach that 
considers the impact of pulling promising tuples forward on the 
production of critical query results. PR-Prune seeks to efficiently 
and adaptively adjust resource allocation throughout the query 
pipeline. Namely, PR-Prune makes centralized decisions about how 
it is best to allocate resources at each operator in the query 
pipeline.

Other query optimization approaches that consider process-
ing preferences have been introduced by Babcock et al. [44] and 
Raman et al. [45]. In Babcock et al. [44], using the probability 
distribution of the approach selected, the optimizer selects the 
appropriate query plan after considering the relative importance 
of predictability vs. performance preference of the user. Prior to 
optimization, the user selects the trade-off between predictabil-
ity and performance (which could be at odds sometimes) to find 
the appropriate query plan. While Raman et al. [45] introduce the 
STAIRS operator, an extension to the ripple join operator. Beyond 
the standard join processing, the STAIRS operator allows the sys-
tem to dynamically adjust the intermediate tuples stored in the 
cache to optimally process tuples based upon changes in the se-
lectivity, data arrival rates, and/or performance of operators in the 
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query plan. Our PR Optimizer focuses on discovering criteria to 
identify promising tuples based on some preference scheme, se-
lecting which monitoring levels to activate, and deciding where in 
the plan to evaluate each criteria of the activated monitoring lev-
els.

Another area is data stream system scheduling. Broadly,
scheduling methods determine which operator to run and for how 
long to improve different metrics. There are many efforts that in-
troduce methods whose focus is to improve the metrics of a single 
query [46–49]. [46] proposed a rate based scheduling policy based 
upon a response time metric for single a query. Aurora [50] first 
uses Round Robin to schedule which query to run and a schedul-
ing policy based upon the average tuple latency metric to schedule 
operators within the query to run. [48] proposed a scheduling pol-
icy based upon improving the quality of data as a metric. Tick 
scheduling [49] strategy is based upon maximizing throughput and 
minimizing deadline miss ratio by reducing overheads.

Similarly, there are many efforts that introduce methods whose 
focus is to improve the metrics across multiple queries [51–61]. 
[51] explores the multi-query scheduling as a job-scheduling prob-
lem and utilizes real-time computing approaches. [52] explored 
task schedulers that consider the hardware statistics in parallel 
processing systems that execute multiple streaming queries. [53]
proposes an adaption to chain scheduling strategy to minimize the 
memory overhead and output latency. The Golden Mean schedul-
ing strategy was introduced by [54] that seeks to minimize the 
memory overhead and output latency by considering the future 
workload. [55] proposed a multi-query scheduling method that 
uses a metric based upon reducing the average response time per 
query by prioritizing shared operators (i.e., operators that process 
tuples for more than one query) and window constraints. [56] in-
troduces a scheduling policy that uses the slowdown metric to 
balance the performance and fairness needs of multiple queries. 
[57] introduced a multi-query scheduling strategy that recasts the 
problem into a job scheduling problem. Chain is a multi-query 
scheduling policy that uses a memory usage metric [59]. The work 
on [60] extended Chain to use a combined memory usage and re-
sponse time metric. While, [61] extend the Chain scheduling for 
complex DAG plans. [58] seeks to maximize the output of all query 
results, regardless of their significance, by adjusting the scheduling
of query join operators.

Other efforts look into adapting the scheduling method used 
[62–64]. [62] uses machine learning unit to adapt systems pa-
rameters to improve the output latency. [63] periodically selects 
a scheduler to support multiple metric objectives. [64] proposed 
an adaptive scheduling algorithm that changes the scheduling al-
gorithm online to meet multiple metric objectives.

[65–68] use real time deadlines metrics to schedule operators. 
[65,66] proposed a real-time scheduling strategies based upon the 
earliest deadline metric. While [67] uses an earliest deadline first 
strategy to schedule the periodical queries. [68] proposed a real-
time scheduling strategy that seeks to improve the quality of ser-
vice of multiple queries. In particular, they consider that sections 
of the query pipeline may be shared by queries and how to meet 
the constraints of multiple queries.

In contrast to these approaches, PR-Prune requires a system 
that seeks to schedule which tuples are processed. Namely, PR-
Prune seeks to select the order in which tuples are processed and 
control the amount of CPU resources dedicated to processing tu-
ples based upon their significance. Traditional operator scheduling 
approaches make coarse grained decisions on how to utilize the 
CPU resources available. PR-Prune requires fine grained decisions 
on how to utilize the CPU resources available.

Compared to the current scheduling research, PR-Prune requires 
a new scheduling metric. Namely, PR-Prune seeks to schedule op-
erators to ensure that the most critical results progress the furthest 
along the query pipeline before less critical tuples. Beyond the cur-
rent scheduling research which looks at determining which opera-
tor to run and for how long to improve different metrics, PR-Prune 
must also determine which tuples are allocated resources.

6. Conclusions

Our innovative preferential resource allocation optimization 
strategy, PR-Prune, efficiently locates online dynamic criteria that 
are central for the production of critical query results by pruning 
ineffective dynamic criteria and combining multiple criteria along 
the same pipeline. Our experimental study confirms that for appli-
cations where priority resource allocation matters and promising 
tuples exist, PR-Prune consistently increases the throughput of the 
most critical query results compared to the state-of-the-art ap-
proaches. In addition, our experimental study confirms that the 
optimization search time of PR-Prune is significantly lower than its 
closest competitor, namely, PR.
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