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In many real-world applications, data is collected in high dimensional spaces. However, not all 
dimensions are relevant for data analysis. Instead, interesting knowledge is hidden in correlated subsets 
of dimensions (i.e., subspaces of the original space). Detecting these correlated subspaces independently
of the underlying mining task is an open research problem. It is challenging due to the exponential 
search space. Existing methods have tried to tackle this by utilizing Apriori search schemes. However, 
their worst case complexity is exponential in the number of dimensions; and even in practice they show 
poor scalability while missing high quality subspaces.
This paper features a scalable subspace search scheme (4S), which overcomes the efficiency problem by 
departing from the traditional levelwise search. We propose a new generalized notion of correlated 
subspaces which gives way to transforming the search space to a correlation graph of dimensions. We 
perform a direct mining of correlated subspaces in this graph, and then, merge subspaces based on the 
MDL principle in order to obtain high dimensional subspaces with minimal redundancy. We theoretically 
show that our search scheme is more general than existing search schemes. Our empirical results reveal 
that 4S in practice scales near-linearly with both database size and dimensionality, and produces higher 
quality subspaces than state-of-the-art methods.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The notion of correlation is one of the key elements of statistics 
and is important for many areas of applied science. For instance, 
correlations have just recently been exploited in entropy-based de-
pendency analysis to identify novel structures in global health and 
human gut microbiota data [38]. In data mining, correlations of 
dimensions often indicate the existence of patterns (e.g., for clus-
tering [9], outlier mining [20], or as supervised feature selection 
for classification [16]), and are thus very important for knowledge 
discovery. In high dimensional data, however, patterns are often 
obscured in the full-space due to the presence of noisy features [7]. 
Instead, patterns can be found in (possibly overlapping) correlated 
subsets of dimensions, so-called correlated subspaces of the origi-
nal data space. Detecting such subspaces, commonly referred to as 
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subspace search, is crucial to unravel interesting knowledge and to 
understand high dimensional data.

Example 1. The facility management of our university stores in-
dicator values of buildings, such as electricity, heating, gas, and 
water consumption per time unit. Each dimension is one indica-
tor of a specific building. In such data, not all indicators of all 
buildings are correlated with each other. Instead, there are differ-
ent subsets of correlated indicators, e.g., the heating indicators of 
office buildings, the ones of the Chemistry department, and so on. 
Overlap among subsets is possible since buildings can both be of-
fice buildings and belong to the Chemistry department. In practice, 
detecting subsets of correlated indicators is important for facility 
managers. This is because they can understand the energy con-
sumption of the university better from such subsets. For instance, 
they can apply specialized data analytics on just those subsets to 
find anomalous measurements. An example would be an abnor-
mally high heating value among the office buildings. Clearly, one 
cannot observe such patterns when indicators are uncorrelated 
or data is distributed randomly. Besides, it is preferable to find 
subsets with as many correlated indicators as possible, i.e., high 
dimensional subspaces. Returning redundant lower dimensional
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projections of the same subspace distracts users and misses the 
bigger picture.

Challenges
We observe three open challenges that have to be tackled 

for scalable subspace search, in particular w.r.t. dimensionality of 
data. First, it is unclear how to decide which subspaces have high 
correlations. Existing methods [9,19,20,33], using an Apriori-style 
search scheme, impose a restrictive monotonicity on the corre-
lation model: A relevant subspace has to be relevant in all of 
its lower dimensional projections. However, this is only for effi-
ciency reasons and may cause poor results in terms of quality. 
Second, one needs a scalable scheme to navigate through the 
huge search space. For a data set with 40 dimensions, the to-
tal number of subspaces is 240 (more than 1 trillion). Looking 
at databases in practice (e.g., our facility management stores 540 
dimensions), the search space is astronomically large. Obviously, 
this makes brute-force search impractical. Apriori-style methods, 
though employing the monotonicity restriction, still suffer from 
poor efficiency in practice due to (a) their expensive mining of 
correlated dimension pairs and (b) their level-by-level processing 
that generates a tremendous number of candidates. Third, the fi-
nal set of subspaces should be free of redundancy, i.e., it should 
contain high dimensional subspaces rather than their low dimen-
sional fragments. However, existing methods using the monotonic-
ity restriction, detect fragmented subspaces of low quality which 
are redundant projections of the same high dimensional sub-
space.

Contributions
We address these challenges by proposing a scalable subspace 

search scheme (4S). In general, we depart from the traditional Apri-
ori search scheme and its monotonicity restriction. In particular, 
we make scalable subspace search feasible by creating a new gen-
eralized notion of correlated subspaces: We define a subspace to 
have a high correlation if its member dimensions are all pairwise 
correlated. We later establish a relationship between our notion 
and the well-known total correlation [9] and prove that our no-
tion is more general than existing ones. That is, given the same 
correlation measure, all subspaces found by Apriori-style methods 
are also discovered by 4S. As a result, we expect 4S to discover 
not only subspaces found by such methods, but also interesting 
subspaces missed by them.

4S starts exploring the search space by computing pairwise 
correlations of dimensions. To ensure scalability, we devise two 
new efficient computation methods for this task. The first method 
takes advantage of two upper bounds of correlation scores to early 
prune non-candidate pairs, and hence, reduce computational cost. 
The second method uses AMS Sketch [6] to derive unbiased es-
timators of correlation scores, which in turn can be computed 
efficiently. To our knowledge, we are first to apply the theory 
of AMS Sketch for efficient computation of pairwise correlations 
of continuous random variables. Based on the pairwise correla-
tions computed, we map the subspace search problem to efficient 
mining of maximal cliques in a correlation graph (with theoret-
ical justifications). Hence, we get rid of the levelwise search of 
Apriori-style methods and directly construct higher dimensional 
subspaces by maximal clique mining. Due to this non-levelwise 
processing, 4S neither requires to compute correlations of each 
subspace candidate nor to check an excessive number of its lower 
dimensional projections. To address the fragmentation issue of 
high dimensional correlated subspaces, we transform the prob-
lem to an MDL-based merge scheme of subspaces and merge the 
detected subspaces accordingly. While MDL is an established no-
tion for model selection, its deployment to subspace search is 
new.
Overall, our contributions include:

• A generalized notion of correlated subspaces, relaxing restric-
tions of traditional models.

• A scalable subspace search scheme, including efficient pair-
wise correlation computation and direct construction of high 
dimensional correlated subspaces.

• An MDL-based merge of subspaces to reconstruct fragmented 
subspaces and remove redundancy.

Paper organization
The road map of this paper is as follows. In Section 2, we 

introduce the main notions used. In Section 3, we discuss the 
properties of correlation measures and propose our own measure. 
In Section 4, we formally review the Apriori search scheme. In 
Section 5, we point out the practical requirements for subspace 
search in the era of big data research. In Section 6, we give an 
overview of 4S, with details on mining pairwise correlations in 
Section 7, mining higher dimensional subspaces in Section 8, and 
subspace merge in Section 9. We study the speed up of 4S in Sec-
tion 10, followed by our extensive experiments in Section 11. We 
discuss related work in Section 12 and conclude the paper in Sec-
tion 13.

Please note, that a preliminary version of this paper was pub-
lished in [31]. We build upon that work and make the following 
new contributions: We include a formal discussion of correlation 
measures, and introduce our own measure in Section 3. We discuss 
requirements of subspace search for the era of big data research 
in Section 5, and derive our search scheme out of these require-
ments. We provide proofs on the correctness of our pruning rules 
in Section 7.1, a proof on the NP-hardness of the subspace search 
problem in Section 6, and introduce a formal formulation of our 
subspace merge in Section 9. Further, we include more experi-
ments and discuss the experiment setup in more details. Results 
on a new real-world data set provide more insight into the prac-
tical impact of our work (cf., Section 11.3). More detailed analysis 
on the subspace merge and the reduction of redundancy is now 
provided in Section 11.4.

2. Preliminaries

Consider a database DB of size N and dimensionality D . The 
set of dimensions is denoted as the full-space F = {X1, . . . , XD}. 
Each dimension Xi has a continuous domain dom(Xi) and w.l.o.g., 
we assume dom(Xi) = [−v, v] ⊆ R with v ≥ 0. We write p(Xi) for 
the probability density function (pdf) of Xi . We also write p(xi) as 
a short form for p(Xi = xi). We let P (Xi) stand for the cumulative 
distribution function (cdf) of Xi , and write P (xi) as a short form 
for P (Xi ≤ xi).

A subspace S is a non-empty subset of F . Its dimensionality is 
written as |S|. The subspace lattice of DB consists of D − 1 layers 
{Li}D

i=2. Single dimensional subspaces are excluded since one is 
interested in correlations of two or more dimensions. Every layer 
Li contains 

(D
i

)
subspaces, each having i dimensions.

We aim at mining subspaces across all lattice layers whose 
member dimensions are highly correlated. Note that the search 
space is huge. For a dataspace with D dimensions the total num-
ber of possible subspaces is O (2D). For one subspace, one needs 
O (D · N) time to process, e.g., to compute the correlation. An over-
all complexity of O (D · N · 2D) makes brute-force search impracti-
cal. Even more sophisticated search schemes have severe scalability 
problems (see Section 4). Hence, we will propose a new scalable 
solution (see Section 6).
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3. Correlation measure

To mine correlated subspaces, we need a multivariate correla-
tion measure Corr for subspace assessment. Consider a
d-dimensional subspace S . Without loss of generality, we assume 
that S = {X1, . . . , Xd}. In principle, the correlation score of S , de-
noted as both Corr(S) and Corr(X1, . . . , Xd), quantifies to which 
extent its joint probability function differs from the product of its 
marginal probability functions. The larger the difference, the higher 
Corr(S) is. Hence, if all dimensions of S are statistically indepen-
dent, Corr(S) = 0. Formally, we expect that

Corr(S) = Corr(X1, . . . , Xd) ∼ diff

(
p(X1, . . . , Xd),

d∏
i=1

p(Xi)

)

(1)

with diff being an instantiation of a difference function.
Our goal is to have a correlation measure that captures both 

linear and non-linear correlation. The measure should also per-
mit direct calculation on empirical data without having to estimate 
probability density functions, or rely on discretization as in [9,38]. 
To this end, there are several options in the literature. Arguably, 
one of the most popular multivariate correlation measures is total 
correlation [10]. It is based on Shannon (differential) entropy and 
is widely used in many fields [24,40,44]. The formal definition of 
total correlation is as follows.

Definition 1. The total correlation of {X1, . . . , Xd} is

T (X1, . . . , Xd) =
d∑

i=2

H(Xi) − H(Xi |X1, . . . , Xi−1)

where H(Xi) is the Shannon (differential) entropy of Xi , and 
H(Xi |X1, . . . , Xi−1) is the conditional entropy of Xi given
X1, . . . , Xi−1.

Total correlation detects both linear and non-linear correlation. 
However, for continuous data it requires the pdfs, which in general 
are not available at hand and needs estimation [10]. Thus, total 
correlation in general is not directly computable on empirical data.

To address the issue and to achieve our goal, we propose a new 
correlation measure which is based on cdfs, is non-parametric (no 
prior assumption on the data distribution is required), and permits 
computation on empirical data in closed form. It is defined as fol-
lows.

Definition 2. The correlation score of S = {X1, . . . , Xd} is

Corr(X1, . . . , Xd) =
v∫

−v

. . .

v∫
−v

(
P (x1, . . . , xd)

− P (x1) · · · P (xd)
)2

dx1 · · ·dxd.

The lemma below immediately follows.

Lemma 1. Corr(X1, . . . , Xd) ≥ 0 with equality iff p(X1, . . . , Xd) =
p(X1) · · · p(Xd).

According to Lemma 1, one can see that our correlation mea-
sure meets the expected property of a correlation measure laid out 
in Eq. (1). Further, we prove that it can be computed in closed form 
on empirical data. Let {Xi(1), . . . , Xi(N)} be realizations of Xi . We 
have:
Theorem 1.

Corr(X1, . . . , Xd) = 1

N2

N∑
i=1

N∑
j=1

d∏
k=1

(
v − max

(
Xk(i), Xk( j)

))

− 2

Nd+1

N∑
i=1

d∏
k=1

N∑
j=1

(
v − max

(
Xk(i), Xk( j)

))

+ 1

N2d

d∏
k=1

N∑
i=1

N∑
j=1

(
v − max

(
Xk(i), Xk( j)

))
.

Proof. Our proof is based on [42]. In particular, let ind(α) be an 
indicator function with value 1 if α is true and 0 otherwise. It 
holds that

P (a1, . . . ,ad)

=
v∫

−v

. . .

v∫
−v

ind(x1 ≤ a1) · · · ind(xd ≤ ad)

× p(x1, . . . , xd)dx1 · · ·dxd. (2)

Using empirical data, Eq. (2) becomes:

P (a1, . . . ,ad) = 1

N

N∑
i=1

d∏
k=1

ind
(

Xk(i) ≤ ak
)
.

Likewise: P (ak) = 1
N

∑N
i=1 ind(Xk(i) ≤ ak). Therefore,

Corr(X1, . . . , Xd) equals to:

v∫
−v

. . .

v∫
−v

(
1

N

N∑
i=1

d∏
k=1

ind
(

Xk(i) ≤ xk
)

−
d∏

k=1

1

N

N∑
i=1

ind
(

Xk(i) ≤ xk
))2

dx1 · · ·dxd. (3)

Expanding Eq. (3), we have:

v∫
−v

. . .

v∫
−v

(
1

N2

N∑
i=1

N∑
j=1

d∏
k=1

ind
(
max

(
Xk(i), Xk( j)

) ≤ xk
)

− 2

Nd+1

N∑
i=1

d∏
k=1

N∑
j=1

ind
(
max

(
Xk(i), Xk( j)

) ≤ xk
)

+ 1

N2d

d∏
k=1

N∑
i=1

N∑
j=1

ind
(
max

(
Xk(i), Xk( j)

) ≤ xk
))

dx1 · · ·dxd

Bringing the integrals inside the sums, we obtain:

1

N2

N∑
i=1

N∑
j=1

d∏
k=1

v∫
−v

ind
(
max

(
Xk(i), Xk( j)

) ≤ xk
)
dxk

− 2

Nd+1

N∑
i=1

d∏
k=1

N∑
j=1

v∫
−v

ind
(
max

(
Xk(i), Xk( j)

) ≤ xk
)
dxk

+ 1

N2d

d∏
k=1

N∑
i=1

N∑
j=1

v∫
−v

ind
(
max

(
Xk(i), Xk( j)

) ≤ xk
)
dxk

by which we arrive at the final result. �
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Fig. 1. Example showing the subspace lattice exploration of Apriori approach APR.

Algorithm 1: APR.

1 CAND2 = Set of min
(
MAX_NUM, (D

2

))
subspaces in L2 with the highest 

correlation;
2 OUT = CAND2;
3 i = 2;
4 while CANDi �= ∅ do
5 CANDi+1 = {S ∈ Li+1 : ∀S ′ ⊂ S ∧ |S ′| = i ⇒ S ′ ∈ CANDi};
6 CANDi+1 = Top min(MAX_NUM, |CANDi+1|) subspaces of CANDi+1 with 

the highest correlation;
7 OUT = OUT ∪ CANDi+1;
8 i = i + 1;

9 Return OUT;

Using Theorem 1, computing our measure Corr on empirical 
data is straightforward. Thus, we will use Corr as the correlation 
measure in 4S. In fact, one can also plug Corr into existing sub-
space search schemes. However, in the next section we point out 
why these search schemes are not suited to big data applications.

4. Existing search schemes

Existing methods explore the search space based on the Apriori 
principle (APR) using a correlation measure for subspace assess-
ment, e.g., total correlation as used in [9].

For APR, one can either keep a top number of subspaces at 
each layer (beam-based) or impose a threshold on the subspace 
correlation (threshold-based). Recently, [20,33] point out that the 
beam-based scheme allows more intuitive parameterization than 
the threshold-based one. Thus, for better presentation, we stick 
to the former. However, our discussion is also applicable to the 
threshold-based scheme [9,19].

We illustrate the lattice exploration of APR in Fig. 1. Its pseu-
docode is in Algorithm 1. APR starts at layer L2 (Line 1). For 
each layer Li visited, APR computes the total correlation T (S)

for each candidate subspace S ∈ Li . The top min
(
MAX_NUM, 

(D
i

))
subspaces CANDi with the highest total correlation are selected 
(Lines 1 and 6). MAX_NUM is the beam size. CANDi is also used 
to determine which subspaces to examine in the next layer Li+1. 
In particular, a subspace Si+1 in Li+1 is considered iff all of its 
i-dimensional projections are in CANDi (Line 5). This is known as 
the monotonicity restriction, which causes redundant processing: 
To reach one subspace, one needs to generate and examine all of 
its lower dimensional projections, even though not all of them are 
relevant.

APR stops when either there is no more layer to explore, or the 
set of candidate subspaces in the current layer is empty. Assume 
that MAX_NUM is set such that APR reaches layer Lk . We have:
Lemma 2. The time complexity of APR is O
(
Δ · ∑k

i=2

(D
i

))
where Δ is 

the cost of computing the correlation of each subspace.

Proof. For each layer Li (i ≥ 2) with 
(D

i

)
subspaces, the worst 

case time complexity to compute the correlation for all of its 
subspaces is O

(
Δ · (D

i

))
. Thus, the overall time complexity is 

O
(
Δ · ∑k

i=2

(D
i

))
. �

Regarding Δ, we have Δ = Θ(N) with total correlation [9], and 
Δ = Θ(N2) with our Corr measure.

Since the monotonicity property imposes strict restrictions on 
high-level layers (i.e., high k), APR tends not to reach high dimen-
sional subspaces. To resolve the issue, MAX_NUM must be very 
large. However, this causes APR to process many candidate sub-
spaces at each layer visited. Further, to process a subspace, APR 
requires to examine exponentially many lower dimensional projec-
tions to ensure that they all have high correlation. These cause its 
runtime to become very high. Even when MAX_NUM is kept low, 
APR still suffers from poor scalability due to its expensive min-
ing of L2, in particular, O (D2 · Δ). Further, setting MAX_NUM to 
low values fails to offset the monotonicity restriction. This prevents 
APR from discovering high dimensional subspaces. Only lower di-
mensional fragments of correlated subspaces are detected. Thus, 
the quality of subspaces is impacted.

Another drawback of using APR is that the higher the layer vis-
ited, the more likely it is that the curse of dimensionality occurs. 
This is because most existing multivariate correlation measures, in-
cluding our Corr measure, suffer from reduction of discriminative 
power in high dimensional spaces—a phenomenon which has been 
demonstrated empirically in [33].

In summary, APR(a) is inefficient, (b) tends to miss high dimen-
sional correlated subspaces, (c) fragments them into many redun-
dant lower dimensional subspaces, and (d) is prone to the curse of 
dimensionality.

5. Subspace search for the era of big data research

Detecting interesting relationships among dimensions (i.e., cor-
related subspaces) in high dimensional spaces lies at the heart of 
big data analytics. It is important for humans to understand their 
data, e.g. in the domains of genomics, physics, political science, 
economics, etc. [38]. However, in practice this is challenging be-
cause more and more dimensions are being added to scientific and 
industrial databases in order to capture the increasing complex-
ity of information. In such cases it is naturally better to present 
a succinct set of correlated subspaces than letting users face with 
the daunting task of exploring the data by themselves. Further-
more, detecting correlated subspaces also helps to steer the focus 
of users to particular views of data where they will likely discover 
interesting patterns.

In general, to address the subspace search problem, one has to 
handle a huge search space, which is exponential in the number 
of dimensions. This is also the reason why we believe that detect-
ing correlated subspaces is a subject of big data research: The ‘big’ 
aspect of data is not only in its physical size, but also in the vir-
tual size of any search space contingent on its structure. In our 
case, methods have to tackle the exponential search space of all 
subspaces.

Before getting to any specific solution, it is important to specify 
the desired properties of a good subspace search scheme. First, to 
explore a search space of large volume, one typically expects many 
of its parts to be pruned out to achieve scalability. In other words, 
it is crucial that the search algorithm is able to avoid unnecessary 
processing of non-promising parts of the search space. This is the 
point where APR-based methods do not deliver the expected scal-
ability: They have to process very many non-candidate subspaces 
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Fig. 2. Example showing the subspace lattice exploration of 4S.

before reaching the relevant ones. As a consequence, they do not 
deliver good results on data sets with medium amounts of dimen-
sions and records (see Section 11). Second, to avoid ‘sequential’ 
processing, a search scheme should have the capability of quickly 
identifying promising subspaces. By quickly, we imply a ‘jump’ pro-
cessing as in [27,28], i.e., the ability to jump to higher dimensional 
subspaces by exploiting the statistics collected from subspaces of 
much lower dimensionality. To meet the efficiency requirement, 
the method to combine low dimensional subspaces (e.g., two di-
mensional ones) must, of course, be efficient. Lastly, the scheme 
for combining subspaces should be reliable, or in other words, the 
promising subspaces it detects should be verifiable to be the actual 
correlated subspaces.

With respect to the requirements mentioned above, there is not 
yet a satisfactory solution for scalable subspace search. The work 
here in turn is our first step towards addressing this shortcoming. 
In particular, we deploy a search scheme whose main goal is to 
efficiently reach the promising subspaces, without spending time 
for irrelevant ones. Further, by means of theoretical analysis using 
information theory, we verify its reliability, and hence, its quality.

Next, we summarize our solution to fulfill these requirements 
and provide more details in the subsequent sections.

6. Overview of 4S processing

We illustrate the lattice exploration of 4S in Fig. 2 and contrast 
it to the APR scheme depicted in Fig. 1. To avoid the exponen-
tial runtime in the data dimensionality, 4S does not explore the 
subspace lattice in a levelwise manner. Instead, 4S initially mines 
subspaces of high correlations in L2. They are then combined to 
directly create higher dimensional subspaces. In short, 4S works 
in three steps. First, we compute the correlation of each pair of 
dimensions and only keep the top K pairs (i.e., subspaces of L2) 
with the largest correlations. Setting K is explained in Section 8.

Second, we construct an undirected correlation graph GD rep-
resenting our search space of subspaces. Its nodes are the dimen-
sions, connected by an edge iff their correlation is in the top 
K values. Following our new notion of correlated subspaces, we 
mine maximal cliques of this correlation graph. They serve as can-
didate subspaces. We also prove that these candidate subspaces 
are likely mutually correlated. The toy example in Fig. 3 displays 
a correlation graph for a 10-dimensional data set. There are 45 
possible subspaces in L2; K = 10 of which are picked to con-
struct GD . From GD , 4S finds three maximal cliques (subspaces): 
S1 = {1, 2, 3, 4}, S2 = {1, 3, 4, 5}, and S3 = {7, 8}.

Third, mining maximal cliques on GD may also produce sub-
spaces that are projections of the same subspaces due to the re-
striction on pairwise correlations (i.e., through K ). For instance, in 
Fig. 3. Example of correlation graph.

Fig. 3, dimension 5 is connected to all dimensions in S1 except for 
dimension 2. This leads to the detection of two separate subspace 
fragments S1 and S2 that have high overlap with each other. It 
would make sense to merge S1 and S2 to create the larger sub-
space {1, 2, 3, 4, 5}. This also helps us to cope with real-world data 
where perfect pairwise correlation between dimensions of corre-
lated subspaces may not always be fulfilled. Thus, we propose to 
merge similar subspaces using an MDL-based approach. Following 
this step, we obtain higher dimensional subspaces with minimal 
redundancy.

Overall, in contrast to APR, we can reach high dimensional cor-
related subspaces with our scalable search scheme, which consists 
of: (a) scalable computation of L2, (b) scalable mining of Lk with 
k > 2, and (c) subspace merge. While APR needs to impose the 
Apriori monotonicity restriction on all layers for the sake of effi-
ciency, we only require that dimensions of subspaces are pairwise 
correlated (i.e., restriction on L2).

There is one remark that we want to highlight regarding our 4S

processing scheme. That is, the subspace search under our problem 
transformation (i.e., after the computation of pairwise correlations 
in L2) is NP-hard. We note that the input of the subspace search 
problem for database DB consists of: (a) the set of all dimen-
sions F , and (b) the set of dimension pairs P ⊆ F × F with the 
largest correlations to be kept. We prove the NP-hardness of the 
subspace search problem by giving a polynomial reduction of the 
classic Maximal Cliques Mining (MCM) problem, which is a NP-
hard problem [18], to subspace search (SS): MCM ≤p SS.

Theorem 2. The subspace search problem under the setting of 4S is NP-
hard.

Proof. First, we map the input graph G = (V, E) of MCM to an in-
put (F , P) of SS. The mapping is straightforward: For each node 
t ∈ V , we add a dimension Xt to the set of dimensions F . After 
that, for each edge e = (t, t′) ∈ E , we add the pair (Xt , Xt′ ) into P . 
Obviously, our mapping is done in polynomial time. Now we have 
to show that the subspace search result (under our notion of cor-
related subspaces) on (F , P) corresponds to a solution of MCM 
in G . This is easy to show as by our convention, each correlated 
subspace S ⊆F has to satisfy:

(a) ∀(Xt , Xt′ ) ⊂ S ⇒ (Xt , Xt′ ) ∈P ;
(b) no proper superset of S is a correlated subspace, i.e., S is max-

imal.

In other words, S represents a maximal clique of G . Thus, solv-
ing SS for the constructed instance (F , P) leads to a valid solution 
of MCM for G . �

Following Theorem 2, without making any assumption on the 
structure of the search space, i.e., the correlation graph GD , SS is 
NP-hard. To overcome the issue, we instead impose restrictions 
on GD . In particular, we heuristically make GD sparse by implic-
itly limiting the maximal degree of its nodes. We accomplish this 
by carefully setting K (more details are in Section 8). By enforcing 
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GD to be sparse, we are able to apply exact and efficient algo-
rithms [18], which have good performance on sparse graphs. Next, 
we introduce the details of 4S (see Sections 7–10), including our 
analysis showing that 4S reliably identifies correlated subspaces 
and is more general than APR in Section 8. We empirically show 
that 4S produces subspaces of higher quality than existing meth-
ods in Section 11.

7. Scalable computation of L2

In L2, we need to compute the correlation score of all pairs of 
dimensions. To this end, for two dimensions X and Y , we have:

Lemma 3.

Corr(X, Y )

= 1

N2

N∑
i=1

N∑
j=1

(
v − max(xi, x j)

)(
v − max(yi, y j)

)

− 2

N3

N∑
i=1

(
N∑

j=1

(
v − max(xi, x j)

))(
N∑

j=1

(
v − max(yi, y j)

))

+ 1

N4

N∑
i=1

N∑
j=1

(
v − max(xi, x j)

) N∑
i=1

N∑
j=1

(
v − max(yi, y j)

)
.

Proof. The proof is obtained by simply applying Theorem 1 for 
d = 2. �

Following Lemma 3, we need to compute three terms, referred 
to as T1, T2, and T3, and

Corr(X, Y ) = 1

N2
T1 − 2

N3
T2 + 1

N4
T3.

To compute Corr(X, Y ), we need O (N2) time. For D-dimensional 
data sets, the total runtime required to explore layer L2 becomes 
O (D2 N2). This is a serious problem for any data set. To tackle 
the issue, we introduce two new approaches, MultiPruning and 
Sketching, to boost efficiency regarding both N and D . MultiPruning
calculates the exact correlation. However, it still has issues regard-
ing efficiency for large data sets. Sketching in turn trades accuracy 
for efficiency. Yet it is still better than APR (see Section 11). Note 
that Corr deploys the same estimator as other quadratic measures 
of independence [36], such as [1,43]. The difference only lies in 
different kernels employed. Thus, the ideas of MultiPruning and 
Sketching are also applicable to other measures of the same cat-
egory. In other words, our method is not limited to one correlation 
measure.

7.1. MultiPruning

MultiPruning aims at reducing the runtime by applying prun-
ing rules for Corr(X, Y ) based on two upper bounds of T1. It uses 
the fact that we only keep the top K pairs of dimensions with 
the largest correlation. Let {(xs(i), ys(i))}N

i=1 be {(xi, yi)}N
i=1 sorted 

in descending order w.r.t. X . The upper bounds of T1 are as fol-
lows.

Theorem 3 (Cauchy–Schwarz bound).

T1 ≤
N∑

i=1

√√√√√ N∑
j=1

(
v − max(xi, x j)

)2
N∑

j=1

(
v − max(yi, y j)

)2
.

Proof. Applying the Cauchy–Schwarz inequality, we have that for 
each i ∈ [1, N]:(

N∑
j=1

(
v − max(xi, x j)

)(
v − max(yi, y j)

))2

≤
N∑

j=1

(
v − max(xi, x j)

)2
N∑

j=1

(
v − max(yi, y j)

)2
. (4)

Taking the square root for each side of Eq. (4) and summing up 
over all i ∈ [1, N], we arrive at the final result. �
Lemma 4. It holds that

T1 =
N∑

i=1

(v − xs(i))(v − ys(i))

+ 2
N∑

i=1

(v − xs(i))

N∑
j=i+1

(
v − max(ys(i), ys( j))

)
.

Proof. We have:

T1 =
N∑

i=1

N∑
j=1

(
v − max(xi, x j)

)(
v − max(yi, y j)

)

=
N∑

i=1

N∑
j=1

(
v − max(xs(i), xs( j))

)(
v − max(ys(i), ys( j))

)

=
N∑

i=1

(v − xs(i))(v − ys(i))

+ 2
N∑

i=1

N∑
j=i+1

(
v − max(xs(i), xs( j))

)(
v − max(ys(i), ys( j))

)

=
N∑

i=1

(v − xs(i))(v − ys(i))

+ 2
N∑

i=1

(v − xs(i))

N∑
j=i+1

(
v − max(ys(i), ys( j))

)
. �

Theorem 4 (Sorted-based bound).

T1 ≤
N∑

i=1

(v − xs(i))(v − ys(i)) + 2
N∑

i=1

(v − xs(i))

N∑
j=i+1

(v − ys( j)).

Proof. The proof is derived directly from Lemma 4 and the fact 
that v − max(ys(i), ys( j)) ≤ v − ys( j) . �

The statistics required for the Cauchy–Schwarz bound, for in-
stance 

∑N
j=1(v − max(xi, x j))

2 for 1 ≤ i ≤ N , can be pre-computed 
for each dimension in O (N log N) time. This is from our observa-
tion that

N∑
j=1

(
v − max(xi, x j)

)2

=
∑

x j≥xi

(v − x j)
2 +

∑
x j<xi

(v − xi)
2

=
∑

x ≥x

(v − x j)
2 + (v − xi)

2 · ∣∣{x j : x j < xi}
∣∣.
j i
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Algorithm 2: Computing the statistics of the Cauchy–Schwarz 
bound on X .
1 {(xs(1), org_pos1), . . . , (xs(N), org_posN )} ← Sort {x1, . . . , xN } in descending 

order;
2 sum = 0;
3 for i = 1 → N do
4 ret(org_posi) = sum + (v − xs(i))

2 · (N − i + 1);
5 sum = sum + (v − xs(i))

2;

6 Return {ret(1), . . . , ret(N)};

That is, for each dimension, we first sort its data in descending 
order. Then, we loop through the data once in that order and pre-
compute the required statistics. We illustrate our point by giving in 
Algorithm 2 a sample pseudocode, which computes the statistics of 
the Cauchy–Schwarz bound on X . We note that org_posi stands for 
the original position (before sorting) of xs(i) . A corresponding nu-
merical example is described below.

Example 2. Consider three data points P1 = (1, −1), P2 = (−1, 1), 
and P3 = (0, 0) (i.e., dom(X) = [−1, 1]). To compute the statistics 
for X , we sort X in descending order and obtain {1, 0, −1}. Then, 
we compute 

∑3
j=1(1 −max(xi, x j))

2 (1 ≤ i ≤ 3) by looping through 
the sorted list once and obtain: 0 for P1, 5 for P2, and 2 for 
P3. Similarly, for 

∑3
j=1(1 − max(yi, y j))

2 (1 ≤ i ≤ 3), we obtain: 
5 for P1, 0 for P2, and 2 for P3. We calculate the Cauchy–Schwarz 
bound by looping through the stored statistics once, and achieve: √

0 · 5 + √
5 · 0 + √

2 · 2 = 2.

The statistics required to exactly compute the second term T2
of Corr(X, Y ), which is 

∑N
j=1(v − max(xi, x j)) for 1 ≤ i ≤ N , can be 

pre-computed similarly. The statistics of the third term T3, which 
is 

∑N
i=1

∑N
j=1(v − max(xi, x j)), is also computed during this phase 

by incrementally summing up the statistics of T2 (per dimension).
During the pairwise correlation computation, we maintain the 

top K values seen so far. For a new pair of dimensions (X, Y ), 
we first compute the bounds. This computation is in O (N) (see 
Algorithm 2). Similarly, the exact value of the second term T2 is 
computed. Similarly to Algorithm 2, we obtain the sorted-based 
bound in Theorem 4 in O (N) time. The details are as follows. We 
loop through the data sorted w.r.t. X . For each point (xs(i), ys(i)), 
we compute (v − xs(i))(v − ys(i)) and (v − xs(i)) 

∑N
j=i+1(v − ys( j)). 

We do so by taking into account that

N∑
j=i+1

(v − ys( j)) =
N∑

j=1

(v − ys( j)) −
i∑

j=1

(v − ys( j)).

The sorted-based bound can also be computed w.r.t. Y . So in fact, 
we have two versions of this bound, one for X and one for Y . The 
exact value of T3 is computed in just O (1) time using its pre-
computed statistics, which are 

∑N
i=1

∑N
j=1(v − max(xi, x j)) and ∑N

i=1
∑N

j=1(v − max(yi, y j)).
If any upper bound of Corr(X, Y ) is less than the K th largest 

value so far, we can safely stop computing its actual value. Other-
wise, we compute T1, and hence Corr(X, Y ) (and update the top 
K correlation values), using Lemma 4. That is, for each xs(i) , we 
search for ys(i) in the list of values of Y sorted in descending or-
der. For each value y > ys(i) encountered, we add 2(v −xs(i))(v − y)

to T1. Once ys(i) is found, the search stops. Suppose that the po-
sition found is p, and the list has e elements. We add 2(e − p +
1)(v − xs(i))(v − ys(i)) to T1. We remove ys(i) from the list and pro-
ceed to xs(i+1) . This helps us to avoid scanning the whole list and, 
hence, reduces the runtime. We note that 

∑N
i=1(v − xs(i))(v − ys(i))

is already computed during the sorted-based bound computation.
By means of pruning rules and efficient computation heuris-

tics, MultiPruning is able to achieve efficiency in practice. However, 
as there is no theoretical guarantee on the effectiveness of the 
pruning rules, the worst-case complexity of MultiPruning is still 
O (D2N2). This motivates us to introduce Sketching, which trades 
accuracy for further improvement in scalability.

7.2. Sketching

To better address the scalability issue (i.e., quadratic in N), we 
propose Sketching as an alternative solution. First, we see that T3
is computed in only O (1) time using its pre-computed statistics. 
Thus, our main intuition is to convert the terms T1 and T2 to forms 
similar to that of T3. We observe that T1 and T2 can be perceived 
as dot products of vectors. In particular, T1 is the product of vec-
tors(

v − max(x1, x1), . . . , v − max(x1, xN), . . . ,

v − max(xN , x1), . . . , v − max(xN , xN)
)

and(
v − max(y1, y1), . . . , v − max(y1, yN), . . . ,

v − max(yN , y1), . . . , v − max(yN , yN)
)
.

Likewise, T2 is the product of vectors(
N∑

j=1

(
v − max(x1, x j)

)
, . . . ,

N∑
j=1

(
v − max(xN , x j)

))

and(
N∑

j=1

(
v − max(y1, y j)

)
, . . . ,

N∑
j=1

(
v − max(yN , y j)

))
.

Vector products in turn can be efficiently estimated by AMS 
Sketch [6]. AMS Sketch provides rigorous theoretical bounds for 
its estimation and can outperform other sketching schemes [39]. 
However, to our knowledge, we are first to use this theory to effi-
ciently compute pairwise correlations of continuous random vari-
ables.

Our general idea is to use AMS Sketch to derive unbiased esti-
mators of T1 and T2 that have forms similar to T3. The estimators 
are unbiased since their expected values equal to their respective 
true values. We will prove that the estimators are close to the true 
values of T1 and T2, respectively. Overall, Sketching reduces the 
time complexity of computing Corr(X, Y ) to O (N log N).

Sketching approximates Corr(X, Y ) through unbiased estimators 
by projecting X and Y onto random 4-wise independent vectors. 
Let u, w ∈ {±1}N be two such vectors which are independent to 
each other. We estimate T1 as follows:

Theorem 5. Let Z be a random variable that equals to

N∑
i=1

N∑
j=1

(
v − max(xi, x j)

)
ui w j

N∑
i=1

N∑
j=1

(
v − max(yi, y j)

)
ui w j

then E(Z) = T1 and Var(Z) ≤ 8[E(Z)]2 .

Likewise, we estimate T2 as:

Theorem 6. Let W be a random variable that equals to

N∑
i=1

N∑
j=1

(
v − max(xi, x j)

)
ui

N∑
i=1

N∑
j=1

(
v − max(yi, y j)

)
ui

then E(W ) = T2 and Var(W ) ≤ 2[E(W )]2 .
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We derive Theorems 5 and 6 based on [6]. These theorems 
allow us to approximate T1 and T2 by estimators having forms 
similar to that of T3. Hence, Corr(X, Y ) can be approximated in 
O (N log N) time by pre-computing the statistics required in a way 
similar to MultiPruning. Please note that, we also need to ensure 
estimators to concentrate closely enough around their respective 
mean. To accomplish this, we apply Chebychev’s inequality. The 
variance of Z is upper-bounded by 8[E(Z)]2. By averaging over s1
different values of u and w , the variance is reduced to at most 
8[E(Z)]2

s1
. Using Chebychev’s inequality, we have

P
(∣∣Z − E(Z)

∣∣ > εE(Z)
) ≤ 8

s1ε2
.

If we repeat the averaging s2 = O (1/δ) times and take the median 
of these averages, the relative error of Z w.r.t. E(Z) is at most ε
with probability at least 1 − δ, as proven in [6].

Similarly, by averaging over s1 different values of u, the vari-

ance of W is reduced to at most 2[E(W )]2

s1
. Applying Chebychev’s 

inequality, we have

P
(∣∣W − E(W )

∣∣ > εE(W )
) ≤ 2

s1ε2
.

We again boost the estimation accuracy by repeating the averaging 
s2 = O (1/δ) times.

Sorting all dimensions costs O (DN log N). For each random vec-
tor and each dimension, it costs the same amount of time as that 
of T3 to pre-compute the statistics, which is O (N) (see Section 7.1). 
For all vectors and all dimensions, the total cost of pre-computing 
statistics is O (s1s2 DN). Since s1s2 must be large enough to guar-
antee estimation accuracy, the cost of pre-computing statistics 
dominates that of data sorting. For each pair of dimensions, the 
cost to calculate its (estimated) correlation is O (s1s2). Thus, com-
puting the correlations for all dimension pairs and maintaining the 
top values cost O (s1s2 D2 + D2 log K ), with O (s1s2 D2) dominating. 
Therefore, the total time complexity of Sketching is O (s1s2 DN +
s1s2 D2). In our experiments, D < N , i.e., the time complexity be-
comes O (s1s2 DN), a considerable improvement from O (D2N2). 
We note that the factor s1s2 does not contribute much to the 
overall runtime, and in practice Sketching scales linearly in both 
N and D .

8. Scalable mining of Lk

Based on the set of 2-dimensional subspaces found in L2, de-
noted as S2, we now explain how to mine subspaces in higher-
level layers. According to our notion, a subspace has a high cor-
relation if its member dimensions are all pairwise correlated. We 
now point out that subspaces fulfilling our notion likely have a 
high total correlation. We also formally prove that our new no-
tion of correlated subspaces is more general than that of APR. That 
is, given the same correlation measure, all subspaces found by APR 
are also discovered by our mining scheme. Further, we will demon-
strate empirically later on that, with our notion, 4S produces better 
subspaces than APR. First, let us consider a subspace S with all 
pairs {Xi, X j} ∈ S2. W.l.o.g., assume that S = {X1, . . . , Xd}.

Lemma 5. The total correlation is lower-bounded by

T (X1, . . . , Xd) ≥
d∑

i=2

H(Xi) − H(Xi |Xi−1).

Proof. As conditioning reduces entropy [35], we have:
H(Xi |Xi−1) ≥ H(Xi |X1, . . . , Xi−1). Using Definition 1, we arrive at 
the result. �
By definition, every pair {Xi−1, Xi} ∈ S2 has a high corre-
lation. Following Definition 2, this means that P (Xi−1, Xi) and 
P (Xi−1)P (Xi) deviate from each other. Thus, the joint density 
function p(Xi−1, Xi) of Xi−1 and Xi deviates from the product 
of their marginal density functions, which is p(Xi−1)p(Xi) [42]. 
Consequently, H(Xi) − H(Xi |Xi−1), which equals to the Kullback–
Leibler divergence of p(Xi−1, Xi) and p(Xi−1)p(Xi), is high. Based 
on Lemma 5, we conclude that: T (X1, . . . , Xd) is high. Lemma 5
also holds for any permutation of X1, . . . , Xd . Hence, under any 
permutation of the dimensions of S , S has a high total correla-
tion. This also means: The difference between the joint density 
function of S and the product of its marginal density functions is 
high w.r.t. the Kullback–Leibler divergence. Hence, subspaces ful-
filling our notion likely are mutually correlated, not just pairwise 
correlated. Since many other correlation measures define mutual 
correlation based on the difference between the joint distribution 
and the product of marginal distributions [36], our subspaces are 
also likely mutually correlated under such correlation measures.

We now prove that our new notion of correlated subspaces is 
more general than that of APR:

Theorem 7. Let S be a subspace detected by APR using Corr as cor-
relation measure and given MAX_NUM ≤ K , then all of its pairs 
{Xi, X j} ∈ S2 .

Proof. We use induction:
Let S = {X1, . . . , Xd} be a subspace mined by APR.

Basis: When d = 2, since MAX_NUM ≤ K , we have that S ∈ S2.
Hypothesis: Suppose that Theorem 7 holds for d = n ≥ 2.
Inference: We prove that Theorem 7 also holds for d = n +1, i.e., 

we prove ∀Xi �= X j ∈ S: {Xi, X j} ∈ S2. This is straightforward. For 
Xi �= X j , there exists an n-dimensional subspace U ⊂ S such that 
Xi, X j ∈ U and U is included by APR in the output (cf., monotonic-
ity property). Hence, {Xi, X j} ∈ S2 according to the hypothesis. �

Theorem 7 also holds for other correlation measures, e.g., the 
ones in [9,20,33], with S2 being formed according to the mea-
sure used. It implies that, given the same correlation measure and 
MAX_NUM ≤ K , all subspaces included in the final output of APR 
are also discovered by our mining scheme. This is because any two 
of their dimensions are pairwise correlated, i.e., they form cliques 
in the correlation graph. This shows that our mining scheme is 
more general than APR and, hence, can discover subspaces missed 
by APR. Note that a subspace satisfying the pairwise condition 
is not necessarily included in the final output of APR. Also, the 
monotonicity restriction imposed by APR is only to reduce the run-
time [33], and does not guarantee the quality of subspaces. Our 
empirical study also confirms this.

Having formally analyzed the theoretical properties of our no-
tion of correlated subspaces, we now map the problem of mining 
subspaces in higher-level layers to maximal clique mining in the 
correlation graph. Consider an undirected correlation graph GD
with nodes being the dimensions. An edge exists connecting two 
dimensions Xi and X j iff {Xi, X j} ∈ S2. A subspace of our inter-
est then forms a clique in GD . To avoid redundancy, we propose 
to mine only maximal cliques, i.e., subspaces are not completely 
contained in each other. We regard maximal cliques of GD as the 
result of this step.

Given D dimensions, the worst-case complexity to find all max-
imal cliques is O (3D/3). To ensure the practicality of 4S, we rely 
on a recent finding [5]. It states that the properties of a data set 
(e.g., distances between data points) are preserved after dimen-
sionality reduction as long as the number of dimensions kept is 
O (log N). As a result, we set K ≤ D log N , i.e., O (D log N). Hence, 
the expected maximal degree of each node in GD is O (log N), i.e., 
each dimension can be part of subspaces (maximal cliques) with 
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expected maximal dimensionality O (log N). This implies that the 
expected degeneracy of GD is O (log N). Following [13], we obtain 
the following result:

Theorem 8. The expected time complexity of mining maximal cliques 
is O (DN1/3 log N). The expected number of maximal cliques is O ((D −
log N)N1/3).

Therefore, using our strategy, we can efficiently and directly 
mine high dimensional subspaces with reduced knowledge loss. 
Further, we achieve this without traversing the subspace lattice in 
a levelwise manner. Note that our scheme is different from ap-
proaches imposing the maximal dimensionality of subspaces. This 
is because the maximal dimensionality is implicitly embedded in 
4S (by setting K ), rather than explicitly. Further, 4S is not con-
strained by the O (log N) bound in practice. This is due to our 
MDL-based merge of subspaces described next, which reconstructs 
high dimensional correlated subspaces from fragments.

9. Subspace merge

We denote the set of dimensions, each belonging to at least 
one maximal clique, as {Xr( j)}l

j=1. Also, {Ci}m
i=1 is the set of maxi-

mal cliques. Due to the pairwise restriction of our subspace notion, 
subspaces (maximal cliques) obtained by mining GD may be pro-
jections of the same higher-dimensional correlated subspaces (see 
Fig. 3). To reconstruct such subspaces and to remove redundancy 
in the output, we merge subspaces into groups such that the new 
set of subspaces guarantees completeness and minimizes redundancy. 
To accomplish this, we first construct a binary matrix B with l
rows and m columns. The rows are dimensions, and the columns 
are cliques. Bi j = 1 iff Xi is in C j , and 0 otherwise.

Example 3. The binary data set B of the example in Fig. 3 is as 
follows:

The columns of B correspond to the three subspaces detected. The 
cells are colored according to the color of its respective subspace.

We transform the subspace merge to grouping similar columns 
of B, each final group constituting one subspace. We aim at achiev-
ing the task without having to define any distance function among 
the dimensions of B. Thus, we apply the merge algorithm pro-
posed in [25] which uses the Minimum Description Length (MDL) 
principle.

Given a set of models M, MDL identifies the best model M ∈
M as the one that minimizes

L(B, M) = L(M) + L(B | M).

Here, L(M) is the length in bits of the description of the model M , 
and L(B | M) is the length of the description of the data B en-
coded by M . That is, MDL helps select a model that yields the best 
balance between goodness of fit and model complexity.

In our problem, each model is a grouping of maximal cliques 
{Ci}m

i=1. Each candidate grouping G = {A1, . . . , Ak} under consider-
ation is a partitioning of {Ci}m , i.e., it must satisfy three proper-
i=1
ties: (a) 
⋃k

i=1 Ai = {Ci}m
i=1, (b) for i �= j: Ai ∩ A j = ∅, and (c) for 

every i: Ai �= ∅.
Each Ai ∈ G can be described by a code table C Ti . This ta-

ble has an entry for each possible value a from dom(Ai). The 
left-hand column of C Ti contains the value, and the right-hand 
column contains the corresponding code (the code assigned by 
MDL encoding). The frequency of a ∈ C Ti is defined as its sup-
port relative to the number of rows l of the binary data set B: 
fr(Ai = a) = supp(Ai = a)/l. The total encoding cost L(B, G) is 
given as:

Definition 3. Let a grouping G = {A1, . . . , Ak} be given. We have: 
L(B, G) = L(G) + L(B | G), where

• L(B | G) = l 
∑k

i=1 H(Ai),

• L(G) = log Bn + ∑k
i=1 L(C Ti),

• L(C Ti) = ∑
a∈dom(Ai)

|Ai | + log log l − log fr(Ai = a)

with fr(Ai = a) �= 0, and Bn being the Bell number.

Following Definition 3, we mine the grouping G that minimizes 
the total encoding cost. However, since the search space is O (2m)

and unstructured, we utilize a heuristic algorithm. We start with 
each attribute forming its own group. Then, we progressively pick 
two groups whose merge leads to the largest reduction in the to-
tal encoding cost, and we merge them. This practice also ensures 
two most similar groups are merged at each step [25]. The algo-
rithm terminates when either there are no more groups to merge, 
or when the current step does not reduce the total encoding cost 
any more. We have the following result:

Theorem 9. The subspace merge guarantees completeness and mini-
mizes redundancy.

That is, our subspace merge ensures that its output subspaces 
contain all the subspaces produced by the second step (complete-
ness). This stems from the fact that MDL guarantees a lossless 
compression [15]. Thus, the original set of subspaces is compressed 
while ensuring that no information loss occurs. Besides, our al-
gorithm heuristically selects the grouping of subspaces that min-
imizes the overall compression cost. For instance, if a grouping 
contains two very similar subspaces (i.e., redundant ones), our al-
gorithm would not pick it since the merge of two subspaces can 
result in a better grouping with a lower encoding cost. Hence, re-
dundancy is minimized.

According to [25], the total time complexity of this step is 
O (lm3), which is O ((D − log N)3lN). Nevertheless, the runtime in 
practice is much smaller because (a) the number of cliques is much 
smaller than the one stated in Theorem 8, (b) the number l of di-
mensions left is small compared to D , and (c) the subspace merge 
algorithm in [25] terminates early. Our experiments also point out 
that the runtime of this step is negligible compared to the first 
step. While APR can also apply this subspace merge, it does not 
achieve the same quality as 4S since it hardly ever reaches high 
dimensional subspaces.

10. Overall complexity analysis

Table 1 summarizes the time complexity reduction achieved by 
4S for each step. The computation of L2 (using Sketching) costs 
O (DN). The mining of Lk costs O (DN1/3 log N). The subspace 
merge costs O ((D − log N)3lN). Thus, the worst-case complexity of 
4S is O ((D − log N)3lN). However, our experiments point out that 
the most time-consuming step is the computation of L2, which 
accounts for nearly 90% of the overall runtime. Hence, overall, we 
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Table 1
Overview of complexity reduction.

Step Brute-force 4S

Computation of L2 O (D2 N2) O (DN)

Mining of Lk O (3D/3) O (DN1/3 log N)

Subspace merge O (2(D−log N)N1/3
) O ((D − log N)3lN)

Overall complexity O (2(D−log N)N1/3
) O ((D − log N)3lN)

for our part conclude that 4S has O (DN) average-case complexity. 
Our experiments also confirm that 4S has near-linear scalability 
with both N and D .

Considering the high time complexity of APR where k is the 
highest layer reached (see Lemma 2), one can see that the speed-
up 4S achieves is a significant improvement: It enables a near-
linear time heuristic search to explore an exponential search space. 
Further, it eliminates the efficiency bottleneck of exploring Lk . 
Nevertheless, we note that 4S does not push the envelop. That is, 
from the linear scalability of 4S, there is in fact still much room 
of improvement towards a truly scalable solution for big data. For 
instance, we could use parallelization: Parallelizing the computa-
tion in L2 is straightforward; parallelizing the search in Lk can be 
done by using special techniques, such as [41].

11. Experiments

We write 4S-M and 4S-S as 4S with MultiPruning and Sketching, 
respectively. We compare 4S with the following methods: FS as 
baseline in full-space; FB [23] using random subspaces for outlier 
mining; EC [9], CMI [33], and HICS [20] representing the APRstyle 
methods; FEM [12] representing the unsupervised feature selec-
tion approaches. For all of these methods, we try several parameter 
combinations in order to find the optimal parameter setting for 
each data set. Finally, we use the results of the parameter combi-
nation showing the best quality results. We note that we attempt 
to find the most relaxing parameters for EC, CMI, and HICS that 
can return good results within five days. As shown later, this prac-
tice, however, is not always possible due to the high complexity of 
APR methods.

For our methods, following Theorem 8, we set K = D log N to 
ensure a reasonable tradeoff between quality and efficiency. For 
4S-S, we need to set s1 and s2. Regarding the former, we fix s1 =
10 000 as large values of s1 yield high estimation accuracy [34]. 
For the latter, we fix s2 = 2 following the observation that smaller 
values for s2 generally result in better accuracy [11].

We test the quality of subspaces produced by all methods in: 
outlier detection with LOF [8], clustering with DBSCAN [14], and 
classification with the C4.5 decision tree. The first two areas are 
known to yield meaningful results when the subspaces selected 
have high correlations, i.e., include few or no irrelevant dimen-
sions [9,20,23,29,33]. Hence, they are good choices for evaluating 
the quality of correlated subspaces. The third area is to show that 
correlated subspaces found by 4S are also useful for the supervised 
domain. For each method, LOF, DBSCAN, and C4.5 are applied on 
its detected subspaces and the results are combined (following [23]
for LOF, [9] for DBSCAN, and [17] for C4.5), and judged using cor-
responding well-known performance metrics. Regarding parameter 
settings: We set MinPts of LOF to about min(N · 0.005, 100). For 
DBSCAN, we set MinPts from 2 to 10, and ε from 0.01 to 0.04. For 
C4.5, we use the default parameter setting in WEKA.

For this quantitative assessment of subspaces, we use synthetic 
data and 6 real-world labeled data sets from the UCI Reposi-
tory: the Gisette data about handwritten digits; HAR, PAMAP1, 
and PAMAP2 all sensor data sets with physical activity recordings; 
Mutant1 and Mutant2 containing biological data used for cancer 
prediction. Further, we use the facility management’s database of 
Table 2
Characteristics of real-world data sets. Each of them has more than 1 trillion sub-
spaces.

Data set Size Attributes Classes

Gisette 13 500 5000 2
HAR 10 299 561 6
KIT 48 501 540 2
Mutant1 16 592 5408 2
Mutant2 31 159 5408 2
PAMAP1 1 686 000 42 15
PAMAP2 1 662 216 51 18

our university (KIT) with energy indicators recorded from 2006 to 
2011. More details are in Table 2. Note that each of them has more 
than 1 trillion subspaces. This features a challenging search space 
w.r.t. dimensionality for all methods.

Besides, we also further our study on the performance of 4S by 
experimenting it with a real-world unlabeled data set on climate 
and energy consumption. Our objective here is to qualitatively as-
sess the subspaces detected by 4S, e.g., if they make sense to our 
domain expert. Lastly, we investigate how well the subspace merge 
of 4S compresses the output subspaces, or in other words, how 
succinct the output of 4S is.

We assist future comparison, by providing data sets, parame-
ters, and algorithms on our project website.1

11.1. Experiments on synthetic data

Quality on outlier detection. We have created 6 synthetic data sets 
of 10 000 records and 100 to 1000 dimensions. Each data set con-
tains subspace clusters with dimensionality varying from 8 to 24 
and we embed 20 outliers deviating from these clusters. Our per-
formance metric is the Area Under the ROC Curve (AUC), as in 
[23,20,21]. From Table 3, one can see that 4S-M overall has the 
best AUC on all data sets. 4S-S in turn achieves the second-best 
performance. In fact, in most cases, 4S-M correctly discovers all 
embedded subspaces. Though 4S-S does not achieve that, its sub-
spaces are close to the best ones, and it has better performance 
than other methods. We are better than FS, which focuses on the 
full-space where noisy dimensions likely hinder the detection of 
outliers. Our methods outperform FB, which highlights the utility 
of our correlated subspaces compared to random ones. Examining 
the subspaces found by APR-style methods (EC, CMI, and HICS), 
we see that they are either irrelevant, or they are low dimensional 
fragments of relevant subspaces. This explains their poor perfor-
mance. FEM has low AUC since it only mines a single subspace and 
hence, misses other important correlated subspaces where outliers 
are present.

Quality on clustering. Synthetic data sets with 100 to 1000 di-
mensions are used again. Our performance metric is the F1 mea-
sure, as in [29,26]. Table 4 displays clustering results of all meth-
ods. One can see that 4S-M and 4S-S have the best performance on 
all data sets tested. This again highlights the quality of subspaces 
found by our methods.

From the outlier detection and clustering experiments, we can 
see that 4S-S is a good approximation of 4S-M.

APR using subspace merge. For illustration, we only present the 
outlier detection and clustering results on the synthetic data set 
with 10 000 records and 1000 dimensions. From Table 5, by ap-
plying the subspace merge, APR-style methods achieve better AUC 
and F1 values than without merge. Yet, our methods outperform 
all of them. This is because APR-style methods already face severe 
issue with reaching high dimensional subspaces. Thus, applying 
subspace merge in their case cannot bring much of improvement.

1 http :/ /www.ipd .kit .edu /~muellere /4S/.

http://www.ipd.kit.edu/~muellere/4S/
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Table 3
AUC on outlier mining for synthetic data sets. Highest values are in bold.

Data set 4S-M 4S-S FS FB EC CMI HICS FEM

D100 1.00 1.00 1.00 0.65 0.90 0.46 0.43 0.50
D200 1.00 1.00 0.99 0.50 0.85 0.47 0.46 0.48
D400 0.99 0.98 0.96 0.51 0.83 0.46 0.45 0.63
D600 0.99 0.98 0.77 0.54 0.76 0.42 0.29 0.54
D800 0.99 0.87 0.75 0.61 0.74 0.43 0.40 0.59
D1000 0.99 0.92 0.81 0.47 0.75 0.46 0.40 0.64

Table 4
F1 on clustering for synthetic data sets. Highest values are in bold.

Data set 4S-M 4S-S FS FB EC CMI HICS FEM

D100 0.99 0.99 0.72 0.95 0.67 0.50 0.80 0.76
D200 0.89 0.89 0.67 0.66 0.67 0.50 0.80 0.76
D400 0.85 0.83 0.67 0.81 0.67 0.80 0.77 0.75
D600 0.96 0.95 0.67 0.66 0.67 0.67 0.83 0.53
D800 0.99 0.93 0.67 0.67 0.67 0.67 0.83 0.74
D1000 0.91 0.88 0.67 0.67 0.83 0.67 0.74 0.75
Table 5
Comparison with APR using subspace merge on the synthetic data set with 10 000 
records and 1000 dimensions. Highest values are in bold.

Task 4S-M 4S-S EC CMI HICS

Outlier Mining (AUC) 0.99 0.92 0.76 0.49 0.44
Clustering (F1) 0.91 0.88 0.84 0.70 0.76

Fig. 4. Runtime vs. dimensionality on synthetic data.

Scalability. Since FS and FS do not spend time for finding sub-
spaces, we only analyze the runtime of the remaining methods. 
To test scalability to dimensionality, we use data sets with 10 000 
data points and dimensionality of 100 to 1000. Based on Fig. 4, 
we see that 4S-S has the best scalability. FEM scales better than 
4S-M because it only searches for a single subspace. Overall, 4S-S

has near-linear scalability to dimensionality, thanks to our efficient 
search scheme.

For scalability to data size, we use data sets with 100 dimen-
sions and sizes of 10 000 to 100 000. From Fig. 5, we see that 4S-S

scales linearly and is more efficient than 4S-M. This agrees with 
our theoretical analysis.

We also note that the runtime of the first step in our meth-
ods dominates the other two steps. For example, on the data set 
of 10 000 records and 1000 dimensions, 4S-S takes about 150 min-
utes for the first step and only 14 minutes for the remaining two 
steps. These costs in turn are negligible compared to the cost of 
performing clustering and outlier detection on the subspaces de-
tected. For instance, LOF requires about 4 days to process this data 
set. From the results obtained, we can conclude that 4S-S achieves 
the efficiency goal while still ensuring high quality of subspaces 
found. From now onwards, we use 4S-S for the remaining experi-
ments and write only 4S.
Fig. 5. Runtime vs. data size on synthetic data.

11.2. Experiments on real data

We apply all methods to two applications: outlier detection and 
classification. Clustering is skipped here since it conveys similar 
trends among the methods as with synthetic data.

Quality on outlier detection. As a standard procedure in outlier 
mining [23,20,21], the data sets used are converted to two-class 
ones, i.e., each contains only a class of normal objects and a class 
of outliers. This is done by either picking the smallest class or 
down-sampling one class to create the outlier class. The rest forms 
the normal class. From Table 6, 4S achieves the best results. Its 
superior performance compared to other methods, including APR-
style methods techniques (EC, CMI, and HICS), stems from the fact 
that 4S better discovers correlated subspaces where outliers are 
visible. For example, on the KIT data set, 4S finds subspaces where 
several consumption indicators of different buildings of the same 
type (e.g., office buildings, laboratories) cluster very well with a 
few exceptions, possibly caused by errors in smart-meter readings, 
or rare events (e.g., university holidays when energy consumption 
is low or large-scale physics experiments when electricity con-
sumption is extremely high). These subspaces however are not 
discovered by other methods.

On the PAMAP1 and PAMAP2 data sets, we can only compare 4S

against FS, FB, and FEM. This is because other methods take exces-
sively long time without completing. These data sets contain data 
collected by sensors attached to human bodies when they perform 
different activities, e.g., walking, running, ascending stairs. The best 
AUC of 4S on both data sets once again implies that 4S success-
fully discovers high quality subspaces, which in turn assist in the 
detection of outliers. For example, the subspaces found by 4S on 
PAMAP1 exhibit correlations among the hand, chest, and ankle of 
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Table 6
AUC on outlier mining for real-world data sets. Highest values are in bold. (*) means 
the result is unavailable due to excessive runtime.

Data set 4S FS FB EC CMI HICS FEM

Gisette 0.77 0.67 0.60 0.73 0.74 0.74 0.68
HAR 0.67 0.42 0.53 0.27 0.65 0.15 0.53
KIT 0.73 0.36 0.51 0.33 0.55 0.55 0.44
Mutant1 0.62 0.58 0.55 0.56 0.58 0.57 0.55
Mutant2 0.64 0.57 0.53 0.55 0.58 0.59 0.56
PAMAP1 0.86 0.54 0.47 * * * 0.48
PAMAP2 0.87 0.53 0.45 * * * 0.41

Fig. 6. Runtime (in seconds) of subspace search methods on real-world data sets.
EC, CMI, and HICS did not finish within 5 days on the PAMAP data sets.

Table 7
Classification accuracy for real-world data sets. Highest values are in bold.

Data set 4S Random Forest FEM CFS

Gisette 0.76 0.75 0.72 0.84
HAR 0.83 0.81 0.74 0.85
KIT 0.97 0.96 0.85 0.92
Mutant1 0.99 0.88 0.85 0.97
Mutant2 0.99 0.87 0.89 0.98
PAMAP1 0.91 0.71 0.69 0.87
PAMAP2 0.93 0.71 0.66 0.86

human subjects. There are of course different grouping patterns 
representing different types of activities. In any case, such correla-
tions let records representing transient activities become outliers. 
This is intuitive because those activities are very random and do 
not feature any specific correlation among different parts of hu-
man bodies [37].

In Fig. 6, we show the wall-clock runtime (in seconds) for each 
subspace search method. We note that Apriori search techniques
EC, CMI, and HICS did not finish within 5 days on the PAMAP data 
sets. The results show that 4S is much faster than all competitors.

Quality on classification. We here test 4S against the well-known 
Random Forest classifier [17], FEM for unsupervised feature selec-
tion, and CFS [16] for supervised feature selection. We skip other 
methods since previous experiments already show that 4S outper-
forms them. The classification accuracy (obtained by 10-fold cross 
validation) is in Table 7. Overall, 4S consistently yields better accu-
racy than Random Forest and FEM. It is comparable to CFS which 
has access to the class label. The results obtained show that the 
correlated subspaces found by 4S are also useful for data classifi-
cation.

11.3. Discovering novel correlations on climate data

In this experiment, we evaluate whether 4S can be used to dis-
cover novel correlated subspaces in non-benchmark data. To this 
end, we apply 4S on a large real-world data set of climate and 
energy consumption measurements for an office building in Frank-
furt, Germany [45]. After data pre-processing to handle missing 
values, our final data set contains 35 601 records and 251 dimen-
sions. Example dimensions include room CO2 concentration, indoor 
and outdoor temperature, temperature produced by heating sys-
tems, drinking water consumption, and electricity consumption by 
different devices, etc. Since this data set is unlabeled, we cannot 
calculate clustering/outlier detection/classification quality as above. 
Instead, we focus on detecting correlated subspaces, and inves-
tigate the discovered correlations. Our objective is thus to study 
how climate and energy consumption indicators interact with each 
other.

Overall, the results show that 4S detects many interesting high 
dimensional correlated subspaces—some were already known, oth-
ers are novel. Below we report some of these subspaces whose 
intuitions can be straightforwardly perceived:

• wind speed, wind direction, outdoor temperature, outdoor CO2
concentration, outdoor humidity

• amount of heating by wood, amount of heating by gas, out-
door temperature, temperature of room 401, temperature of 
room 402

• occupation of building, outdoor temperature, amount of drink-
ing water consumption, electricity used for ventilator

• outdoor temperature, light intensity north (of the building), 
south, east, west, amount of solar heating produced

• air temperature supplied to the heating system, temperature 
of the heating boiler, and the amount of heating it produces 
(see Fig. 7)

• room temperature, amount of drinking water consumption, 
and room CO2 concentration (see Fig. 8)

We make the observation that the correlations 4S detected 
range from linear ones (e.g., Fig. 8(c)) to non-linear functional (e.g., 
Fig. 7(b)), and non-linear non-functional (e.g., Fig. 8(b)). In terms of 
runtime, 4S only needs about 1.5 hours to explore the huge search 
space of this data set. In conclusion, the results suggest that 4S is 
a practical tool for scalable correlation analysis—an important fea-
ture which is crucial for understanding and mining large and high 
dimensional real-world data.

11.4. Succinctness of output

We study the benefits of our MDL subspace merge. Our perfor-
mance metric is the reduction ratio, i.e., m

m′ where m and m′ are 
the number of subspaces before and after merging. The results are 
in Fig. 9. We see that the merging phase achieves up to an order of 
magnitude reduction ratio. This verifies our claim that 4S produces 
a succinct set of overlapping correlated subspaces while still guar-
anteeing their quality (see for instance Section 11.2). By providing 
end users with a succinct set of correlated subspaces, in practice 
4S facilitates manual inspection and post-analysis which benefit 
advanced applications based on the knowledge derived from the 
subspaces.

12. Related work

We categorize related literature into the following types:
Feature selection. Related methods such as PCA and others [12,

22] select one subspace only. Since a dimension not relevant for 
one subspace may form a correlated subspace together with other 
dimensions, these simplified schemes likely miss important sub-
spaces. 4S in turn is capable of mining multiple possibly overlap-
ping subspaces.

Subspace search for specific tasks. There exist subspace search 
methods designed specifically for tasks such as outlier detection 
[2,21,30], clustering [3,46,26], and classification [47,16]. However, 
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Fig. 7. Correlation among air temperature, heating temperature, amount of heating.

Fig. 8. Correlation among room temperature, drinking water consumption, and CO2 concentration.
they are strongly coupled with the underlying tasks. For instance, 
supervised feature selection focuses on the correlation between 
each dimension and the class label, not the correlations among di-
mensions. As a result, they tend to have little effect on other tasks. 
4S in turn is unsupervised, and further, not bound to any specific 
task. We have shown that its subspaces are useful for, e.g., outlier 
detection, clustering, and classification.

General subspace search. The methods in [9,19,20,33] are recent 
proposals to mine overlapping subspaces, abstracting from any 
concrete task. They explore the search space using an Apriori-style 
search. However, due to the monotonicity restriction, they detect 
only low dimensional subspaces. Such subspaces in turn likely are 
different projections of the same high dimensional correlated sub-
spaces. This causes redundancy that is well-known for most sub-
space mining models [29,26]. Besides, they suffer severe scalability 
issue due to their expensive mining of correlated dimension pairs, 
and their levelwise search scheme which generates very many can-
didate subspaces. In contrast, 4S aims at a novel scalable search 
scheme that departs from these drawbacks. Experiments show that 
4S yields good results with much less runtime.

Correlation measures. So far we use Corr as the correlation 
measure in 4S. Our method, however, is also applicable to other 
quadratic measures of (in)dependence [4,1,43] whose detailed in-
vestigation is reserved for future work. Recently, we also propose 
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Fig. 9. Reduction ratio of our MDL merging phase. 4S achieves up to an order of 
magnitude reduction ratio.

MAC [32]—a multivariate correlation measure based on Shannon 
entropy. Studying MAC with our subspace search framework, again, 
is beyond the scope of this work.

13. Conclusions

Mining high dimensional correlated subspaces is a very chal-
lenging but important task for knowledge discovery in multi-
dimensional data. We have introduced 4S, a new scalable subspace 
search scheme that addresses the issue. 4S works in three steps: 
scalable computation of L2, scalable mining of Lk (k > 2), and sub-
space merge to reconstruct fragmented subspaces and to reduce 
redundancy. Our experiments show that 4S scales to data sets of 
more than 1.5 million records and 5000 dimensions (i.e., more than 
1 trillion subspaces). Not only being more efficient than existing 
methods, 4S also better detects high quality correlated subspaces 
that are useful for outlier mining, clustering, and classification. The 
superior performance of 4S compared to existing methods comes 
from (a) our new notion of correlated subspaces that has proved 
to be more general than existing notions and hence, allows to dis-
cover subspaces missed by such methods, (b) our scalable subspace 
search scheme that can discover high dimensional correlated sub-
spaces, and (c) our subspace merge that can recover fragmented 
subspaces and remove redundancy.

Directions for future work include a systematic study our search 
scheme with different correlation measures, and the integration of 
the subspace merge into the correlation graph to perform an in-
process removal of redundancy.
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