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The skyline query as an important aspect of big data management, has received considerable attention 
from the database community, due to its importance in many applications including multi-criteria 
decision making, preference answering, and so forth. Moreover, the uncertain data from many applications 
have become increasing distributed, which makes the central assembly of data at one location for storage 
and query infeasible and inefficient. The lack of global knowledge and the computational complexity 
derived from the introduction of the data uncertainty make the skyline query over distributed uncertain 
data extremely challenging. Although many efforts have addressed the skyline query problem over 
various distributed scenarios, existing studies still lack the approaches to efficiently process the query. 
In this paper, we extensively study the distributed probabilistic skyline query problem and propose an 
efficient approach GDPS to address the problem with an optimized iterative feedback mechanism based 
on the grid summary. Furthermore, many strategies for further optimizing the query are also proposed, 
including the optimization strategies for the local pruning, tuple selecting and the server pruning. 
Extensive experiments on real and synthetic data sets have been conducted to verify the effectiveness 
and efficiency of our approach by comparing with the state-of-the-art approaches.

© 2014 Published by Elsevier Inc.
1. Introduction

In recent years, uncertain data management has received in-
creasing attention with the emergence of many practical appli-
cations in domains like sensor network [1], RFID network [2], 
data cleaning and extraction [3], location-based service [4], market 
surveillance and social data collections [5]. The uncertainty is in-
herent in these applications, which may be derived from the noisy 
measurement, inference models, improper operator and considera-
tion for privacy-preserving [6]. Due to the rapid increasing amount 
of data accumulated, analyzing large collections of uncertain data 
has become a challenging task.

Skyline operator as an important advanced query type, is neces-
sary in order to help users to handle the huge amount of available 
data by identifying a set of interesting data objects. The skyline 
query is also known as the Pareto-optimum problem, which is a 
typical multi-objective optimization problem in nature. Given a set 

✩ This article belongs to Scalable Computing for Big Data.

* Corresponding author.
E-mail addresses: sayingxmu@nudt.edu.cn (X. Li), wangyijie@nudt.edu.cn

(Y. Wang), lixiaoling@nudt.edu.cn (X. Li), wangxiaowei@nudt.edu.com (X. Wang), 
yujie@nudt.edu.cn (J. Yu).
http://dx.doi.org/10.1016/j.bdr.2014.07.003
2214-5796/© 2014 Published by Elsevier Inc.
of multidimensional objects, the skyline query retrieves the objects 
in the set that are not dominated by others, where an object p1 is 
said to dominate another object p2, if p1 is not worse than p2 in 
all dimensions, but is strictly better than p2 in at least one dimen-
sion. The most classical example for the skyline query is the hotels 
selection [7]. As shown in Fig. 1, each point in the 2-dimensional 
space (x, y) corresponds to a hotel record, where x and y axes 
represent the price of the hotel and the distance to the bench, 
respectively. The users usually only need to consider the points in 
the plotted line, as all the other points are dominated by the points 
in the line which are defined as skylines.

Recently, lots of efforts have been conducted to address the 
skyline queries over uncertain data [8–14]. However, all these stud-
ies focus on the query processing over centralized data sets, and 
cannot deal with the queries over distributed uncertain data. In 
reality, a large amount of uncertain data is collected by many 
emerging applications which contain multiple sources in a dis-
tributed manner, due to the increasing number of available data 
sources and the available network services. The typical scenarios 
include distributed sensor networks [15], distributed clouds [16]
and multi-source data integration [17]. In these applications, data 
are usually collected from vast number of data sources among ge-
ographically scattered sites, which makes the central assembly of 
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, 
Fig. 1. An example of the skyline query.

data for storage and query at one location infeasible and ineffi-
cient [18]. Thus, until recently, there appear some studies target 
at distributed queries over uncertain data, such as the ranking 
queries [19,20] and join [21].

Actually, the distributed skyline query as an important aspect 
of big data management has many important applications. For in-
stance, consider the services selection in distributed clouds where 
customers may want to select good services to fulfill their Qual-
ity of Service (QoS) requirements. The geographically located cloud 
providers offers large number of similar services at different prices 
and performance levels with different features, such as response 
time, stability, accuracy, reliability, cost, and elasticity [22]. Besides, 
the features are usually uncertain, due to the derivation from the 
user experiences or measured with software and hardware moni-
toring tools [22]. Thus, modeling the services as uncertain records 
and evaluating them with skyline queries to make recommenda-
tion for users has great significance.

Moreover, in the distributed stock trade systems, a trader needs 
to know which stocks worldwide are worth investing based on the 
historical trading records, which may be geographically distributed 
over a large number of sites. Generally, we can evaluate each stock 
based on multiple attributes like average price, change, last close 
price, estimated price, volume, etc. Furthermore, the recording errors 
caused by systems or improper operators by human beings may 
make failed deals be recorded successful, and vise versa. Thus, each 
stock can be viewed as an uncertain record. Accordingly, a sky-
line query against those distributed uncertain databases will help 
traders get those most interesting (skyline) stocks.

Another real-life example is online comparative shopping, in 
which a search engine needs to get good bargains from many dis-
tributed shopping sites according to multiple criteria like price, 
quality, time, etc. Moreover, we can additionally attach an attribute 
credit to represent the credibility of the record, which is usu-
ally determined by the feedbacks of the customers. Therefore, to 
evaluate the bargains fairly, we can model the evaluation as a dis-
tributed skyline query problem, aiming at retrieving the global sky-
line bargains over all distributed sites for decision-making. Besides 
all the above mentioned applications, the distributed uncertain 
skyline queries are also widely in many other domains like finan-
cial computing services or social networking services, such as the 
similarity match in Facebook and Twitter, as the data with uncer-
tainty in the systems are geographically distributed over multiple 
data centers.

Skyline queries over certain data has received considerable 
attention in various distributed scenarios like P2P systems [13,
23–27], web information systems [28], distributed data streams [29]
and wireless sensor networks [30,31]. Nevertheless, the introduc-
tion of the data uncertainty makes the approaches cannot be 
applied to uncertain data. To the best of our knowledge, only 
the works [32,33] have investigated the distributed skyline query 
problem. Ding et al. [32] for the first time propose algorithms to 
address the query with an iterative feedback mechanism. How-
ever, the pruning capability of the algorithms is limited, as they 
adopted the local information to prune the unqualified tuples. If 
we can use some global knowledge of all the tuples, then the 
query performance can be further improved. Thus, our team pub-
lishes a short work and proposes a novel strategy to improve the 
queries based on the grid summary in [33]. Although our earlier 
proposed approach GBPS in [33] can improve the query efficiency, 
many problems for optimizations remain to be solved.

In this paper, we extensively investigate the distributed prob-
abilistic skyline query problem and propose an efficient approach 
called Grid summary based Distributed Probabilistic Skyline (GDPS) 
to address the problem. The approach can achieve excellent pro-
gressiveness in outputting the results with much less bandwidth 
consumption. In summary, we make the following contributions in 
this paper:

• We formalize the distributed probabilistic skyline query and 
propose to use grid summary to capture the distribution and 
the global knowledge of the skyline probabilities for all the 
tuples, which can be used to the query optimization.

• We propose a general framework to process the skyline 
queries over distributed uncertain data with grid summary.

• We propose several novel strategies for the query optimiza-
tion, which significantly further reduces the communication 
overhead.

• We conduct extensive experiments on real and synthetic data 
sets with real deployment under parameter settings to confirm 
the effectiveness and efficiency of our approach.

This paper significantly extends an earlier published conference 
paper [33] in many substantial ways. First, we provide more details 
about the background and the related work. Second, we describe 
the pruning process of the query with grid summary in more de-
tail. Third, we introduce many strategies for improving the query 
with optimized iteration process. Finally, we reconsider the exper-
imental settings and conduct more extensive experiments to eval-
uate the performance of the proposals. Through the experiments, 
we can find that the proposed approach GDPS is more efficient 
than the GBPS approach in [33].

The remainder of the paper is organized as follows. Section 2
provides a brief review of related work. In Section 3, we provide 
some preliminaries. Section 4 presents the grid summary, which 
can be seamlessly integrated to the following query optimization. 
Section 5 describes the general framework of GDPS approach for 
distributed probabilistic skyline computation in detail. In Section 6, 
we propose several novel strategies to further optimize the queries. 
The experimental evaluation is presented in Section 7. Finally, we 
conclude our paper in Section 8.

2. Related work

Skyline computation has recently attracted considerable atten-
tion in database community and experienced the overall trends 
from centralized queries to distributed or parallel queries, static 
skylines to dynamic (or relative) skylines, all space queries to sub-
space queries, certain data to uncertain data. Particularly, the dis-
tributed skyline queries and uncertain skyline queries are both 
important and still evolving research areas in database commu-
nity [34,35].

Moreover, we observe that the two areas have been each stud-
ied quite extensively but separately, despite the fact that the 
two often arise concurrently in many applications. Therefore, we 
present the related work from two aspects: distributed skyline 
queries over certain data and uncertain skyline queries. Section 2.1
first reviews previous distributed skyline query processing tech-
niques over certain data. Then, the related work of uncertain sky-
line queries is introduced in Section 2.2.
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Table 1
Summary of approaches for distributed skyline queries.

Approaches Network structure Skyline query type Partitioning Environment

MANETs [30] no overlay global data P2P
QTree [36] unstructured P2P approximate data P2P
DSL [37] CAN constrained space P2P
SKYPEER [24] super-peer subspace data P2P
SWSMA [31] no overlay global data sensor network
SKYPEER+ [38] super-peer subspace data P2P
BITPEER [39] super-peer subspace data P2P
PaDSkyline [25] no overlay constrained data P2P
iSky [26] BATON global space P2P
SkyFrame [40] BATON/CAN global/approximate space P2P
FDS [27] no overlay global data P2P
AGiDS [41] no overlay global data P2P
BOCS [42] no overlay global data data streams
SkyPlan [42] no overlay global data P2P
2.1. Distributed skyline queries

The first distributed algorithm is proposed in [28], which fo-
cuses on the skyline query processing over vertical data distribu-
tion. Later, a number of algorithms for processing the distributed 
skylines over horizontal data distribution have been proposed in 
various scenarios, especially for the P2P environments. A com-
parative overview of distributed skyline literature is presented in 
Table 1.

Generally, the approaches that assume horizontal data distribu-
tion can be classified in two categories: the approaches with space 
partitioning and the approaches with data partitioning [41].

• Approaches with space partitioning: the approaches usually as-
sume space partitioning among peers and each peer is re-
sponsible for a disjoint partition of the data space. Thus, the 
location of each data is controlled by the system and the peers 
are often organized as a particular structure to optimize the 
queries, such as structured P2P.

• Approaches with data partitioning: data partitioning is assumed 
and each peer autonomously stores its own data. Thus, the 
queries usually assume no particular network topology and no 
data reorganization among the peers in the system.

2.1.1. Approaches with space partitioning
To improve the queries, a structured P2P or special network 

overlay is often employed in this category of approaches. Specif-
ically, DSL is proposed in [37] to process the constrained skyline 
query determined by CAN [43]. Wang et al. [40] propose SkyFrame
based on a tree-based overlay (BATON) [44] for assigning data to 
peers. In addition, iSky is proposed in [26] to process the skyline 
also based on BATON, which employs another transformation iMin-
Max to assign data to the peers. The common of these approaches 
is that a server cannot freely decide the tuples in its own storage, 
whereas our techniques allow arbitrary horizontal partitioning.

2.1.2. Approaches with data partitioning
Since the data partitioning in this category is assumed, opti-

mizing the queries by reassigning data is infeasible, thus many 
novel data structures are proposed to improve the query in many 
literatures. For example, Hose et al. [36] use distributed data sum-
maries (QTree) to improve the routing to find the skyline points. 
Cui et al. [25] propose PaDSkyline by using of MBRs (Minimum 
Bounding Regions) to summarize the data stored at each server, 
and compute the skylines within each group using specific plans. 
This is improved by SkyPlan [42] by generating execution cost-
aware execution plans. Rocha-Junior et al. [41] propose a frame-
work AGiDS based on a grid summary to capture the data distri-
bution on each server, in order to reduce the amount of transferred 
data. Although we also use grid summary to optimize the pruning, 
the collected summaries and the processing strategies are distinct, 
due to the data uncertainty.

Moreover, Vlachou et al. [24] propose SKYPEER to solve the 
problem of subspace skyline queries in large-scale peer-to-peer 
networks, while in our work, we focus on the skyline queries in 
the full space. SKYPEER+ [38] further improves the thresholding 
scheme and routing in SKYPEER. Besides, Zhu et al. [27] propose 
a feedback-based distributed skyline (FDS) algorithm to compute 
skylines with economical bandwidth cost at the expense of several 
round-trips.

2.1.3. Approaches in other environments
Besides P2P environment, Xin et al. [31] propose an energy-

efficient algorithm (SWSMA) to address the skyline query problem 
in wireless sensor networks. Relying on a distributed data stream 
model, Sun et al. [29] propose an algorithm (BOCS) for skyline 
queries over data streams.

Hose et al. [34] provide a comprehensive survey on skyline pro-
cessing in highly distributed environments. Note that, all the afore-
mentioned approaches focus on the processing distributed skylines 
over certain data, which can use the additivity principle [34] to 
address the skyline query problem. However, none of them can be 
used to deal with the skyline queries over distributed uncertain 
data.

2.2. Uncertain skyline queries

Currently, there is a growing body of work on answering sky-
line queries over uncertain data in a centralized manner [9–14,45]
since its introduction [8]. To process the p-skyline that retrieves 
the objects whose probabilities of being skyline is greater than the 
threshold p, the Bottom-up and Top-down algorithms are proposed 
in [8] to optimize the query. Besides, all skyline query problem is 
extensively addressed in [11].

Moreover, Böhm et al. [12] study the continuous case of the 
probabilistic skyline query where each object is modeled as a 
mixture Gaussian distribution. To improve the query, all the ob-
jects can be indexed with the Gaussian tree [46] in the parameter 
space. Zhang et al. [13] extend the probabilistic skyline opera-
tor to data streams with a sliding window model. Li et al. [47]
address the parallel skyline queries over uncertain data streams 
with sliding window partitioning and grid index. Besides, Lian and 
Chen [9] first introduces the concept of probabilistic reverse sky-
line and proposed algorithms for processing the query including 
the monochromatic and bichromatic fashions.

Uncertain skyline computation in distributed environments 
poses inherent challenges and requires non-traditional uncertain 
skyline techniques due to the distribution of content and lack of 
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global knowledge. Ding et al. [32] first propose DSUD and its ex-
tension e-DSUD to process the distributed probabilistic skylines. 
The efficiency of the algorithms stems from a highly optimized 
feedback mechanism, where the central server transmits the pre-
cious information to each local site to prevent the delivery of a 
large number of unqualified skyline tuples. Nevertheless, the prun-
ing capabilities of the algorithms are greatly limited by the local 
knowledge for pruning, which can be greatly alleviated by our 
proposed GDPS approach with the grid filtration and many other 
optimizations.

3. Preliminaries

In this section, we first provide some preliminaries related to 
our work, including the data uncertainty model, the system model 
and the problem definition.

3.1. Uncertainty model

Generally, the data in real world primarily includes certain data
and uncertain data, and there is no strict definition or classifica-
tion standards currently for the data. The Trio system [48] in-
troduces various models to capture data uncertainty at different 
levels, where the data is classified into two types: exact data and 
inexact data [48]. There are many ways to describe inexact data, 
such as uncertain data, probabilistic data, fuzzy data, approximate 
data, incomplete data, interval data and imprecise data, etc.

According to the different granularities of uncertain entity, the 
data uncertainty can be specified by three levels: group-based (or 
table-based), object-based (or tuple-based) and attribute-based [49]. 
Generally, the following two kinds of uncertainty are extensively 
investigated in most of the studies:

1. Tuple-level uncertainty: also called existential uncertainty, 
which describes the probability for the presence or absence of 
the tuples. In most cases, the tuple independence assumption 
is used, in which the presence probabilities of different tuples 
are independent/disjoint of one another and mutual exclusiv-
ity may be defined to constrain the tuples in the database.

2. Attribute-level uncertainty: this type only refers to the uncer-
tainties of the individual attributes, and usually includes two 
kinds of values: fuzzy value and ambiguity value. Fuzzy means 
that the value is difficult to be specified precisely, while ambi-
guity indicates that the value is randomly selected from many 
alternative values.

Moreover, according to the relationship of objects, two kinds 
of object-based model are frequently used with the possible world
semantics: independent model and general model [50]. In the in-
dependent model, the objects are independent to each other and 
most of the existing studies on uncertain queries are assumed with 
this model to simplify the queries. While the general model is a 
general case, objects in which may be correlated, thus generation 
rules are often defined to describe the exclusive relationship of the 
objects.

Similar to the works [32,48,51,52], we also focus on the tuple-
level data uncertainty with independent model of possible world 
semantics. Furthermore, the tuple uncertainty is represented by 
the discrete probability value by the form of 〈x, 0.7〉, where x de-
notes the tuple information, and 0.7 is the existential probability 
of the tuple, which is represented by a discrete value in [0, 1].

Generally, for a possible world W , the probability of W ap-
pears is P (W ) = ∏

t∈W P (t) × ∏
t /∈W (1 − P (t)). Let Ω be the set of 

all possible worlds, then 
∑

W ∈Ω P (W ) = 1. Assume that SKY(W )

denote the set of elements in W that form the skyline of W , then 
the probability that e appears in the skylines of the possible worlds 
will be P sky(e) = ∑

e∈SKY(W ),W ∈Ω P (W ).

3.2. System model

Similar to the work [32], we focus on the tuple-level un-
certainty with independent model of possible world semantics. 
Furthermore, the tuple uncertainty is represented by the dis-
crete probability value by the form of 〈A1, A2, . . . , An, p〉, where 
〈A1, A2, . . . , An〉 denotes the deterministic tuple information, and 
p denotes the existential probability of the tuple, which is repre-
sented by a discrete value within [0, 1].

Moreover, we assume that the data are horizontally partitioned 
to all the local sites, and make no assumption on the existence 
of any overlay network that connects local sites in an inten-
tional manner. Thus, a querying server (called coordinator) directly 
communicates with all the local sites, which is also the cur-
rent commonly used processing framework for distributed skyline 
queries [19–21,27,32,41].

In the network, each local site owns part of the whole data. 
All the nodes including the coordinator and the local sites have 
their own capabilities for storing and processing. Moreover, all the 
tuples in each local site are independent and the tuples have the 
existent level uncertainty, whose uncertainty is represented by the 
discrete probabilities.

Generally, a good distributed skyline algorithm should achieve 
the following objectives:

• Minimization of bandwidth consumption. The communication 
overhead is usually the dominator factor due to the network 
delay and the economic cost associated with transmitting large 
amounts of data over a network when querying distributed 
uncertain data [19,32].

• Progressiveness. The algorithm should quickly return some 
early results soon after the beginning and produce a majority 
of the remaining results well before the end of the query [27].

Without loss of generality, as studied for many problems over 
distributed data, a critical requirement is to reduce the communi-
cation cost. Thus, our main objective of this paper is to retrieve 
the global q-skylines progressively by minimizing the total band-
width consumption for the query, which is similar to the studies 
in [19–21,27,32,41].

3.3. Problem definition

Given a centralized data set D and a tuple t ∈ D with existential 
probability P (t). The skyline probability of a tuple t actually equals 
the probability that t exists and all the tuples that dominate t do 
not exist [32]. Thus, the skyline probability Psky(t, D) of tuple t
against D can be calculated as:

Psky(t, D) = P (t) ×
∏
t′∈D

(
1 − P

(
t′)) (1)

Thus, we can further define the q-skyline as follows:

Definition 1 (q-skyline). Given a probability threshold q (0 ≤ q ≤ 1), 
the q-skyline returns the set of uncertain objects, each of which 
takes a probability of at least q to be in the skyline set.

Based on the above definition, the problem of the distributed 
skyline query over uncertain data can be defined as follows:

Definition 2 (Distributed probabilistic skyline query). Given a set of 
m distributed sites S = {s1, s2, . . . , sm}, each possesses an uncer-
tain data set Di (1 ≤ i ≤ m) with size ni , and a coordinator H is 
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Fig. 2. An example of grid partitioning.

responsible for scheduling and processing. The query retrieves the 
tuples whose global skyline probabilities are not smaller than a 
given threshold q (0 ≤ q ≤ 1) from all the local sites at H. The 
global skyline probability P g_sky(t) of the tuple t is defined as:

P g_sky(t) = P (t) ×
∏

t′∈D1, t′≺t

(
1 − P

(
t′))

×
∏

t′∈D2, t′≺t

(
1 − P

(
t′)) × · · · ×

∏
t′∈Dm, t′≺t

(
1 − P

(
t′))

= P (t) ×
m∏

i=1

( ∏
t′∈Di , t′≺t

(
1 − P

(
t′))) (2)

Assume that D = D1 ∪ D2 ∪ . . .∪ Dm , then Eq. (2) can be further 
written as

P g_sky(t) = P (t) ×
∏

t′∈D,t′≺t

(
1 − P

(
t′)) (3)

Therefore, the goal of the query discussed in this paper is to 
retrieve the set of tuples from the global data set D with minimum 
bandwidth consumption, where each tuple t satisfies P g_sky(t) ≥ q, 
and reduce the overall processing time as far as possible.

4. Grid summary

In this section, we first present the structure of the grid sum-
mary, including the grid partitioning, some grid-based definitions 
and the grid summary collection.

4.1. Grid partitioning

Since all the tuples share the same data space, we can divide 
the whole space into many cells. Thus, each tuple can find the 
cell that it belongs to. For instance, as shown in Fig. 2, the entire 
space is divided into many equal-sized cells, the width of the cell 
in each dimension is δ. Thus, the cell Ci, j contains all the objects 
that satisfy i · δ < e.d1 ≤ (i + 1) · δ and j · δ < e.d2 ≤ ( j + 1) · δ. For 
simplicity, we denote an item e in Ci, j as e ∈ Ci, j . On the contrary, 
for any object e, we can easily locate its corresponding cell Ci, j , 
where i = �e.d1/δ� and j = �e.d2/δ�. Without loss of generality, we 
assume that smaller values are preferred in the skyline operator. 
Suppose that Ci, j .LB and Ci, j .RT denote the lower left corner and 
the upper right corner of the cell Ci, j , then for any item e ∈ Ci, j , 
we have Ci, j .LB ≺ e and e ≺ Ci, j .RT .

Generally, a multi-dimensional tuple t ∈ Pi in the region R j
i

(denoted as Pi ∈ R j
i ) means that for each dimension di ∈ D and 

p j ∈ Pi , l j ≤ pi < u j . Assume that Numi denotes the number 
i i i
Fig. 3. The dominant relationships of cells.

of partitions in dimension i, the domain of each dimension is 
U , and the corresponding width of the cell is δ, then we have 
Numi = U/δ. Since the value domain of each dimension in this 
paper is (0, 1) and each dimension has the same number of divi-
sions, thus Numi = 1/δ and the total number of cells is (1/δ)d .

4.2. Grid-based definitions

Without loss of generality, assume that minimum values are 
preferable. In this section, we introduce some definitions related 
to the grid summary for the query, which are similar to the defi-
nitions in [41].

Definition 3 (Cell dominance). If the right upper corner u j of R j
i

dominates the left lower lk of Rk
i , then R j

i dominates Rk
i , which is 

denoted as R j
i ≺ Rk

i .

Definition 4 (Partial cell dominance). If R j
i does not dominate Rk

i , 
but the left lower l j of R j

i dominates the right corner of Rk
i , then 

R j
i partially dominates Rk

i , which is denoted as R j
i � Rk

i .

Definition 5 (Cell incomparable). If there is no point in R j
i can 

dominate any point in Rk
i and vice versa, we call R j

i and Rk
i are 

incomparable, which can be denoted as R j
i ∼ Rk

i .

As shown in Fig. 3, according to the above definitions, we can 
find that R2

i ≺ R4
i , R1

i � R4
i and R1

i ∼ R2
i . Therefore, according to 

the definition of the skyline probability of a tuple t discussed in 
Section 3.3, we can easily draw the following conclusion for the 
local skyline probability Pl_sky(t) of tuple t as follows:

Pl_sky(t) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏
u∈R j

i , u≺t
(1 − P (u)), if t ∈ R j

i ,∏
s∈Rk

i
(1 − P (s)), if R j

i ≺ Rk
i ,∏

r∈Rk
i , r≺t(1 − P (r)), if R j

i ∼ Rk
i

(4)

Assume that the whole space are partitioned into nd cells, then 
we can rewrite the local skyline probability of tuple t in site Si

located at grid cell R j
i as follows:

Pl_sky(t) = P (t) ×
∏

t∈Di , t′≺t

(
1 − P

(
t′))

= P (t) ×
nd∏

x=1, x�= j, Rx∼R j
, r∈Rx, r≺t

(
1 − P (r)

)

i i i
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×
nd∏

x=1, x�= j, Rx
i ≺R j

i , s∈Rx
i

(
1 − P (s)

)

×
∏

u∈R j
i , u≺t

(
1 − P (u)

)
(5)

To facilitate the illustration of the grid summary, we also pro-
vide the following two definitions.

Definition 6 (Local cell non-existing probability, lnep). The lnep value 
of the cell R j

i means the probability that all the tuples do not exist 
in the cell R j

i , which can be defined as:

Plnep
(

R j
i

) =
∏
t∈R j

i

(
1 − P (t)

)
(6)

Definition 7 (Global cell non-existing probability, gnep). Given m local 
sites, the gnep means the global probability that all the tuples do 
not exist in the cell R j

i , which can be defined as:

P gnep
(

R j
i

) =
m∏

s=1

(∏
t∈R j

i

(
1 − P (t)

))
(7)

According to Eqs. (5), (6) and (7), we can use the cell non-
existing probability (lnep and gnep) instead of computing the prob-
abilities of all the tuples to improve the computation in GDPS, 
which will be described in detail in Section 5.

4.3. Grid summary collection

Suppose that we want to map the local data set Di to the local 
grid summary G(Di). When mapping Di to G(Di), each tuple t in 
Di is mapped to a certain cell c(t). We use c.CS(D) to denote the 
set of tuples in D mapped to cell c, which is associated with a cell 
probability c.cp, which represents the probability that none of the 
tuples in c.CS(D) exist, i.e.,

c.cp =
∏

t∈c.CS(D)

(
1 − P (t)

)
(8)

Since c.CS(D) = c.CS(D1) ∪ c.CS(D2) ∪ . . . ∪ c.CS(Dm), thus we 
have

c.cp =
∏

t∈c.CS(D)

(
1 − P (t)

) =
m∏

i=1

( ∏
t∈c.CS(Di)

(
1 − P (t)

))
(9)

From the above formula, we can see that the probability actu-
ally equals the gnep value of the cell, i.e.,

c.cp =
∏

t∈c.CS(D)

(
1 − P (t)

) = Pgnep(c) =
m∏

i=1

Plnep(c) (10)

Therefore, we can first compute all the lnep values for all the 
cells locally in each site, and then transmit them to the coordina-
tor. Thus, we can further get the gnep values of the cells based on 
the lnep values with Eq. (10). Note that, the obtained gnep infor-
mation is the key to our query pruning, which will be explained 
in the next section. For brevity, the frequently used symbols in the 
paper are summarized in Table 2.
Table 2
Frequently used symbols.

Symbol Meaning

H The central coordinator server
m The number of local sites
d The dimensionality of the tuples
q The probability threshold
n The number of partitions per dimension
LSi The i-th local site
Di The data set in L Si

D The global uncertain database
L The priority queue maintained by H
D L The set of data maintained in L
SKY H The set of global skylines obtained in H
PRT H The set of tuples pruned in H
CANDi The candidate skylines in Di

P g_sky(t) Global skyline probability of object t
Pl_sky(t, Di) Local skyline probability of t against Di

Pt_sky(t, Di) Temporary skyline probability of t against Di

Psky(t, Di) Skyline probability of t against Di

5. The general framework of GDPS

The general framework of GDPS mainly consists of the prepro-
cessing part and the iteration process part. In the first part, we try 
to prune the unqualified skylines early with our proposed grid 
summary. In the second part, we iteratively compute the global 
skylines with an optimized feedback mechanism.

5.1. Preprocess with grid filtration

The preprocessing part in GDPS consists of the following five 
phases before the iteration process, which is definitely distinct 
from the e-DSUD algorithm.

• Grid-partition phase: each site splits the data space into cells 
with a uniform metric, thus all the tuples can find the cells 
that they belong to;

• Grid-sending phase: each local site computes the local cell 
non-existing probability (lnep) of each cell, and then sends the 
grid summaries to H;

• Sever-calculation phase: H computes the global non-existing 
probability (gnep) of each cell and labels all the cells with the 
probabilities;

• Grid-broadcast phase: H broadcasts all the processed grid 
summaries including the probabilities used for grid filtration 
to all the local sites;

• Grid-filtration phase: after receiving all the information from 
H, each local site prunes all the unqualified tuples based on 
the gnep of each cell.

As shown in Fig. 4, each local site first maps the tuples into 
different cells and sends the lnep values to H, in order to compute 
the gnep values for pruning the unqualified tuples in the following 
processes.

According to the grid summary discussed in Section 4.3, we 
can label all the cells based on the following rule in the Sever-
Calculation phase: If the cell is dominated by a cell whose gnep is 
less than q, then the cell is labeled with “0”, which means that the 
tuples in the cell are unqualified to be the global skylines; Other-
wise, labeled with “1”. Thus, we can rapidly prune all the tuples 
which are labeled with “0”. For example, R32 and R33 in Fig. 5 are 
labeled with “0”, since they are dominated by R21 with lnep < q.

The detailed description of the preprocessing with grid filtra-
tion is shown in Algorithm 1. Note that, the grid summary GS in 
step 8 mainly contains the gnep values and the labeled values of 
all the cells. Besides, the local skyline probability Pl_sky(t, Di) in 
step 12 can be computed by P (t) × ∏

t′∈D ,t′≺t(1 − P (t′)), while 

i
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Fig. 4. The processing based on grid partition.
Fig. 5. The pruning region with grid summary.

the temporary skyline probability Pt_sky(t, Di) of tuple t as men-
tioned in step 13 can be obtained as follows:

Pt_sky(t, Di) = P (t) ×
∏

R g≺t

( ∏
t′∈R g

(
1 − P

(
t′))) (11)

To summarize, in the preprocessing part we collect the global 
knowledge of all the tuples with the grid summary and prune the 
tuples that cannot be the global skylines as far as possible.

5.2. Iteration with optimized feedback

As shown in Algorithm 2, GDPS mainly consists of two parts: 
the preprocessing with grid filtration, and the iteration process 
with feedback. The step 2 and steps 7∼8 correspond to the two 
parts, respectively.

After the preprocessing, we can get the first candidate set 
CANDi (1 ≤ i ≤ m) in each local site, and then we select a repre-
sentative tuple ti

max that is considered as the most likely to be the 
skyline with a certain tuple selecting strategy, which will be dis-
cussed in detail later. After receiving all the representative tuples 
from all the local sites, H starts the iteration process.
Algorithm 1: Preprocessing(D, LS, CAN): Preprocess with grid 
filtration.

Input : all the local databases: D = {Di |1 ≤ i ≤ m};
all the local sites: L S = {LSi |1 ≤ i ≤ m};
the probability skyline threshold: q

Output: CAN = {CANDi |1 ≤ i ≤ m}
1 begin
2 H sends the partition metric to LS;
3 foreach LSi do
4 Map tuples in Di to cells with the metric;
5 Compute the lnep values for all the cells;
6 Send all the lnep values to H;

7 H collects all the lnep values and computes the gnep value of each cell 
with Eq. (7);

8 H labels each cell with gnep and obtain the grid summary GS;
9 H sends the GS to all the local sites LS;

10 foreach LSi do
11 Prune all the unqualified tuples with G S;
12 Calculate Pl_sky(t, Di) values for all tuples;
13 Compute Pt_sky(t, Di) values for all tuples;
14 Obtain CANDi by filtering the unqualified tuples with Pl_sky(t, Di)

and Pt_sky(t, Di);

Algorithm 2: GDPS.

1 begin
2 Preprocessing(D, LS, CAN);
3 foreach LSi do
4 Select the tuple ti

max from CANDi with a certain strategy;

5 Send ti
max to the coordinator H;

6 H collects the ti
max (1 ≤ i ≤ m) from all the local sites as the set DL ;

7 while D L �= ∅ do
8 IterativeFeedback(DL , LS, SKY H );

9 return SKY H

In the iteration process part of GDPS, we attempt to further 
prune the unqualified tuples from the candidate skyline sets to re-
duce the number of tuples that need to be transmitted.

As shown in Algorithm 3, we try to update the temporary sky-
line probability f (t, Dx) = Pt_sky(t, Dx) of tuple t that belongs to 
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Algorithm 3: IterativeFeedback(D L, LS, SKY H ): Iterative pro-
cessing with feedback.

Input: all the local sites: LS = {LSi |1 ≤ i ≤ m};
the set of tmaxs from all the local sites:
D L = {ti

max|1 ≤ i ≤ m};
the candidate sets: CANDi (1 ≤ i ≤ m)

Output: final global skyline set SKY H

1 begin
2 Update Pt_sky(t, D L) for all tuples in D L ;
3 Filter unqualified tuples PRT H from D L ;
4 H pops the tuple tM with the biggest Pt_sky(t, D L) value from D L ;
5 H sends tM to each local site except the site LSt that contains tM ;
6 foreach LSi (except LSt ) do
7 Compute the dominance probability of tM with 

P i
dop(t) =

∏
t′∈Di ,t′≺t (1 − P (t′));

8 Send the P i
dop(t) value to coordinator H;

9 Prune the tuples from CAN(i) with tM ;

10 H computes the P g_sky(tM ) value with Eq. (3) based on the received 
values;

11 if P g_sky(tM ) ≥ q then
12 add tM to the global skyline set SKY H ;

13 Fetch new tuples NH from LSi and sites that include PRT H ;
14 Update new candidate set in H with DL = D L ∪ NH ;

data set Dx in step 2 according to the following rule:

f (t, D L) =
{

f (t, Di) × ∏
t′∈D L ,t′≺t(1 − P (t′)), if t ∈ NH ,

f (t, D L) × ∏
t′∈NH ,t′≺t(1 − P (t′)), otherwise

(12)

Thus, in step 3 we can safely prune the tuples with
Pt_sky(t, D L) < q from D L . Furthermore, in step 3 we can further 
filter the unqualified tuples with the following corollary, which has 
been proved in [32].

Corollary 1. The global skyline probability P g_sky(t) of tuple t from site 
Si is upper bounded by its local skyline probability multiplies the upper 
bound of its local skyline probabilities to other databases Dx, i.e.,

P g_sky(t) =
m∏

x=1

Psky(t, Dx) ≤ Psky(t, Di)

×
m∏

x=1,x�= j,t∈Dx,s∈L,s≺t

Psky(s, Dx)

P (s)
× (

1 − P (s)
)

= P g_sky(t)
∗ (13)

In addition, steps 4–10 aim to get the global skyline probabil-
ity for tuple tM . After completing all above operations, H fetches a 
batch of new tuples from all the local sites and starts a new itera-
tion. Specifically, step 9 prunes all the candidates in each local site 
according to the updated local skyline probability P (t) against the 
feedback tuple tM , i.e.,

P (t) =
{

Pl_sky(t, Di) × (1 − P (t′)), if t′ ≺ t

Pl_sky(t, Di), otherwise
(14)

After updating the probabilities, we can filter all the unquali-
fied tuples and reorder the new candidates with the updated local 
skyline probabilities. The GDPS approach does not terminate until 
D L = ∅.

Note that, the reason we adopt grid summary primarily come 
from two considerations: (1) we can easily get the grid summary 
as illustrated in Section 4.3, and (2) we can optimize the computa-
tion of the dominance probability of the tuples returned from the 
coordinator, which corresponds to the step 7 in Algorithm 3. Thus, 
the computational time can be greatly reduced.
6. Further optimization

In this section, we further optimize the query from the follow-
ing aspects: (1) pruning optimization in the local sites, (2) the 
tuple selecting strategy in each local site, and (3) pruning opti-
mization in the coordinator.

6.1. Local pruning optimization

As discussed in Section 5.2, we prune the local candidates with 
the updated local skyline probability P (t). This strategy is not ef-
ficient since we cannot make use of all the feedback tuples in 
former iterations. Instead, we can adopt the updated temporary 
skyline probability Pt_sky(t, Di) to filter the local candidates in 
each local site according to the following observation.

Observation 1. Assume that site Si receives the feedback tuples 
from all the other sites are the sets of D F j (1 ≤ j ≤ m ∧ i �= j), 
and the total returned set of tuples is DRi = DF1 ∪ DF2 ∪ · · · ∪ DFm , 
where DF j ⊆ D j (1 ≤ j ≤ m ∧ j �= i). Therefore, we have

P g_sky(t) =
m∏

i=1

Psky(t, Di)

≤ Psky(t, Di) ×
m∏

j=1, j �=i

Psky(t,DF j)

= Psky(t, Di) ×
m∏

j=1, t′∈DF j ,t′≺t

(
1 − P

(
t′))

= Psky(t, Di) × Psky(t,DRi)

= Pt_sky(t, Di) (15)

It must be noted that, the Pt_sky(t, Di) value of tuple t is up-
dated constantly when receiving a new feedback tuple from H
with the following rule:

Pt_sky(t, Di)∗ =
{

(1 − P (t′)), if t′ ≺ t

1, otherwise
(16)

6.2. Tuple selecting optimization

Based on the feedback strategy, one important problem needs 
to be addressed: how to choose the “best” tuples from each local 
site to the coordinator H? For this problem, we have designed four 
typical tuples selecting strategies, which are described as follows:

• Max-Temp: choose the tuple t with the largest updated tempo-
rary skyline probability Pt_sky(t, Di).

• Max-Local: choose the tuple t with the maximum updated lo-
cal skyline probability, which can be calculated with Eq. (14).

• Min-Rank: select the tuple t with the minimum sum of rank 
value RankScore of t .

• Max-Domin: select the tuple t with the maximum dominance 
region VDRt of t .

Note that, the RankScore in the Min-Rank strategy means that 
the sum of the all the ranks for all the dimensions. Assume that 
the rank of the value in dimension i is ri , then the RankScore can 
be computed by 

∑d
i=1 ri , where d is the dimensionality of the tu-

ple.
The dominance region for tuple t is achieved with formula 

VDRt = ∏d
k=1(maxk − t.k), where maxk is a pre-defined value larger 

than the global domain upper bound bk , and t.k is the value of di-
mension k of tuple t , which is similar to [30]. Assume that the 
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value range of the dimension k is [sk, bk] in the data space, then 
the volume of tuple t ’s dominance region is defined as VDRt =∏d

k=1(bk − t.k).
In this paper, we evaluate all above tuple selecting strategies in 

Section 7.2, and we can find that the performance of the Max-Temp
strategy is relatively better than the others.

6.3. Server pruning optimization

Since part of the tuples in L may be filtered in the iteration 
part, and the pruned tuples will not be transmitted to the local 
sites. If we make use of these tuples for pruning, more tuples 
in L can be further filtered. Thus, we can transmit the updated 
temporary skyline probability to H for further optimization. In par-
ticularly, we have the following observation.

Observation 2. Assume that PRT H denotes the set of tuples pruned 
in L accumulated in all the iterations, and PRT H\Di denotes the 
set of tuples in PRT H that do not from site Si . For any tuple t in 
L from database Di at local site Si , the upper bound of the global 
skyline probability of t will be bounded as:

P g_sky(t) =
m∏

i=1

Psky(t, Di) ≤ Pt_sky(t, Di) × Psky(t, D L)

×
∏

t′∈PRT(H)∧t′ /∈Di

(
1 − P

(
t′ ≺ t

))
= Pt_sky(t, Di) × Psky(t, D L) × Psky(t,PRT H\Di) (17)

The correctness of Eq. (17) is rooted from that, the tuples used 
for computing Pt_sky(t, Di), Psky(t, D L) and Psky(t, PRT H\Di) are 
independent and not reduplicate. Specifically, if we denote the set 
of tuples that have already been used for updating Pt_sky(t, Di) in 
site Si as TSDi , then we can easily find that TSDi ∪ D L ∪ PRT H\Di ⊆
D and TSDi ∩ D L ∩ PRT H\Di = ∅. Note that, TSDi includes all the 
tuples of Di and all the feedback tuples till now.

Based on the above observation, we can further prune the can-
didate tuples obtained by the step 2–3 in Algorithm 3. Thus, in the 
iteration process phase, we only need to maintain all the pruned 
tuples in a priority queue in coordinator H , and sort all the tu-
ples with the descending order of the updated temporary skyline 
probabilities. With these maintained tuples, more candidates can 
be further pruned. Moreover, for the purpose of reducing the com-
putation and the storage cost, we can only maintain a fixed part 
number of the pruned tuples and replace the tuples with a certain 
heuristic strategy.

7. Experimental evaluation

In this section, we present results of a comprehensive perfor-
mance study to evaluate the effectiveness and efficiency of the 
proposed techniques.

7.1. Experimental setup

In our experiments, we evaluate the approaches on both syn-
thetic data sets and real data sets.

Synthetic data sets. The synthetic data sets we used are cre-
ated with two popular distributions [7], i.e., Independent and Anti-
correlated, whose generation follows the description in Fig. 6. The 
overall cardinalities of the generated data sets are 2 million and 10
million tuples. Moreover, we use uniform distribution to randomly 
assign an occurrence probability to each tuple, where the mean 
value and the standard deviation equal 0.7 and 0.3, respectively.
Table 3
System parameters.

Parameter Values

|D| 2 × 106 (2M) 10 × 106 (10M)
m 40 60 80 100
d 2 3 4 5
q 0.3 0.5 0.7 0.9
n 2 6 10 14 18 22 26

Real data sets. The real data sets adopted in our experi-
ments from two aspects: (1) The data set (Zillow) collected from 
www.zillow.com that contains information about real estate all 
over the United States. We deal with at most four dimensions 
namely number of bedrooms and bathrooms, the built year and 
the price gap, where the price gap of a house is computed as 
the maximum house price in the data set minus the price of 
the house. Thus, this type of data is more likely Anti-correlated 
data, as a large room tends to has small price gap. (2) The data 
set (IPUMS) downloaded from www.ipums.org that contains the 
census information of population, including demographic, geo-
graphic, household, income, consumption, etc. Since the attributes 
have few correlations among them, the data set is more likely an 
independent data set. Note that, the cardinality of the above two 
data sets are both 2 ×106 (2M). Moreover, we associate uncertainty 
to the data by randomly assigning each tuple with an existen-
tial probability following the normal distribution, whose the mean 
value μ equals 0.75 and the standard deviation σ equals 0.25.

We conduct all our experiments with real deployment on a data 
center, where each physical host is configured with dual-core In-
tel 2.6 GHz Xeon CPU, 4 GB main memory and a 1 TB hard disk, 
gigabit ethernet. Moreover, each host is deployed with two virtual 
machines, each of which corresponds to a local site in our exper-
iments. All the evaluated approaches including GDPS, GBPS, DSUD 
and e-DSUD are all implemented in C++ running on the CentOS 
operating system.

Assume that there exist m local sites, the total number of tuples 
is |D|, the probability threshold that user specified is q, and each 
local site has the same number of tuples |D|/m. In the following 
experiments, we mainly evaluate the proposals in terms of band-
width consumption, i.e., the number of tuples transmitted over the 
network. Table 3 summarizes the parameters as well as their val-
ues to be examined, where all the parameters take default values 
as indicated in bold unless otherwise specified.

In the experiments, we first evaluate the performance of vari-
ous tuple selecting strategies, and then we evaluate the efficiency 
of our proposed approach GDPS against dimensionality d, number 
of the local sites m, the probability threshold q and the parti-
tion number per dimension n under the Independent and Anti-
correlated data sets. Finally, we evaluate the proposals under real 
data sets.

7.2. Performance with tuple selecting strategies

Firstly, we evaluate four strategies discussed in Section 6
against the dimensionality d, the number of the local sites m, 
and the probability threshold q, under the Independent and Anti-
correlated data sets with cardinality 10M, respectively.

As shown in Figs. 7 and 8, the performance of the Max-Domin
strategy is the worst, whereas that of the Max-Temp strategy is 
the best, under the Independent and Anti-correlated data sets with 
all our considered parameters. The distinct difference between the 
results of these two strategies probably stems from the different 
skyline querying definitions. In the context of our probabilistic 
skyline query, the pruning ability of one tuple relies on not only 
the volume of a tuple’s dominance region, but also the existential 
probability of the tuple compared to the traditional skyline queries. 

http://www.zillow.com
http://www.ipums.org
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Fig. 6. An illustration of the synthetic data set.

Fig. 7. Performance vs. Independent data sets.

Fig. 8. Performance vs. Anti-correlated data sets.
Specially, we believe that the superiority of the Max-Temp strat-
egy stems from the similar way of computing the Pt_sky(t, Di) and 
P g_sky(t) accumulatively.

Since the Pt_sky(t, Di) value in the Max-Temp strategy is cal-
culated for pruning the unqualified tuples in local sites, we can 
directly use it to select tuples to the coordinator H . Since it can 
not only save the computation cost, but also get a better perfor-
mance, we adopt the Max-Temp strategy in our GDPS approach to 
evaluate the performances.

7.3. GDPS performance with parameters

7.3.1. Performance with dimensionality
As shown in Fig. 9, the total bandwidth consumption increases 

as we vary d from 2 to 4 under the Independent and Anti-
correlated data sets, respectively. This is as expected, as the larger 
number of dimensionality would make more tuples not to be dom-
inated by others, which would make the final skyline set become 
larger. Obviously, e-DSUD and GBPS require less bandwidth than 
DSUD, and GDPS requires the least communication cost. Further-
more, we also observe that the Anti-correlated data sets always 
have the larger bandwidth consumption than the Independent un-
der the same experimental settings, which is similar to the situa-
tions on centralized data sets.

7.3.2. Performance with number of local sites
Fig. 10 shows the total bandwidth consumption when we vary 

m from 40 to 100, under the Independent and Anti-correlated 
data sets. The number of transmitted tuples increases as m getting 
larger. Since the total number of final skyline tuples that should 
be delivered from H is fixed according to the data sets. Thus, the 
larger of the number of the local sites is, the more bandwidth con-
sumption will be. Moreover, GDPS requires the least bandwidth 
consumption as shown in Fig. 10, which indicates the efficiency 
of our proposed grid filtration mechanism in GDPS.

7.3.3. Performance with probability threshold
As shown in Fig. 11, the number of transmitted tuples for all 

the approaches decreases as q getting larger. This is as expected, 
as the probability threshold affects the total size of the final sky-
lines. Generally, the smaller threshold is, the larger number of the 
skylines will be. The reason is that if a tuple t belongs to q-skyline, 
then it will be always in the result of q′-skyline if q′ ≤ q. Thus, the 
total number of final skylines delivered over the network decreases 
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Fig. 9. Performance vs. dimensionality d.

Fig. 10. Performance vs. number of local sites m.
according to the increase of q. Note that, the query performance is 
very sensitive to the variation of probability threshold, since the 
grid filtration and feedback mechanism used in GDPS can prune 
most of the unqualified skyline candidates with larger threshold. 
Moreover, we can find that in Anti-correlated data set the improve-
ment is limited as most of cells contain few tuples, which limits 
the pruning ability.

7.3.4. Performance with grid partition number
In this experiment, we evaluate the effect on the grid partition. 

As shown in Fig. 12, the numbers of transmitted tuples decreases 
firstly and then towards to steady when we increase the partition 
number per dimension n from 2 to 26. The reason for this phe-
nomenon is that, if the number of cells is small, then the number 
of tuples in each cell is large, which results in the coarse grid par-
tition and the pruning efficiency is not obvious. On the contrary, 
the space partition is more concise, and the filtration is more effi-
cient. Note that, the total cell number exponential increases as we 
increase n, which may easily result in the large number of cells, 
and increase the computation cost correspondingly. Consequently, 
in order to balance the communication cost and computation cost, 
we must choose an appropriate number of n.

7.4. Evaluation with real data sets

As illustrated in Section 7.1, we adopt the Zillow and IPUMS 
data sets to evaluate the four approaches against dimensionality d, 
number of the local sites m and the probability threshold q.
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Fig. 11. Performance vs. threshold q.

Fig. 12. Performance vs. grid partition.

Fig. 13. Performance vs. dimensionality with real data.
From Figs. 13, 14 and 15, we can see that the results are also 
similar to the results on synthetic data set discussed before, where 
the Zillow data set always have the larger bandwidth consumption 
than the IPUMS data set under the same experimental settings. 
Furthermore, we observe that the bandwidth consumption for the 
Zillow data set approaches to the Anti-correlated data set, while 
the results of the IPUMS are more close to the Anti-correlated data 
set. Nevertheless, the performances of GDPS and GBPS are real rel-
ative better than DSUD and e-DSUD, and GDPS is a little better 
than GBPS. Therefore, we can conclude that the proposed approach 
GDPS can get better performance compared with other approaches.

8. Conclusions

In this paper, we have addressed the problem of skyline queries 
over distributed uncertain data sets. To accelerate the query pro-
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Fig. 14. Performance vs. number of local sites with real data.

Fig. 15. Performance vs. threshold with real data.
cessing, we propose an efficient pruning mechanism for prepro-
cessing with grid summary. Furthermore, we propose many strate-
gies for optimizing the queries based on a feedback mechanism. 
Extensive experimental results with real data and synthetic data 
have verified the effectiveness and efficiency of the proposals. In 
our future work, we will consider querying the skylines over com-
plex distributed uncertain data streams, as there are many poten-
tial demands for continuous skyline query currently [53].
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