
JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.1 (1-14)

Big Data Research ••• (••••) •••–•••
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

GDPS: An Efficient Approach for Skyline Queries over Distributed

Uncertain Data ✩

Xiaoyong Li, Yijie Wang ∗, Xiaoling Li, Xiaowei Wang, Jie Yu

National Key Laboratory for Parallel and Distributed Processing, College of Computer Science, National University of Defense Technology, Changsha, Hunan
410073, China

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

Keywords:
Uncertain data
Probabilistic skyline
Distributed query
Grid summary

The skyline query as an important aspect of big data management, has received considerable attention
from the database community, due to its importance in many applications including multi-criteria
decision making, preference answering, and so forth. Moreover, the uncertain data from many applications
have become increasing distributed, which makes the central assembly of data at one location for storage
and query infeasible and inefficient. The lack of global knowledge and the computational complexity
derived from the introduction of the data uncertainty make the skyline query over distributed uncertain
data extremely challenging. Although many efforts have addressed the skyline query problem over
various distributed scenarios, existing studies still lack the approaches to efficiently process the query.
In this paper, we extensively study the distributed probabilistic skyline query problem and propose an
efficient approach GDPS to address the problem with an optimized iterative feedback mechanism based
on the grid summary. Furthermore, many strategies for further optimizing the query are also proposed,
including the optimization strategies for the local pruning, tuple selecting and the server pruning.
Extensive experiments on real and synthetic data sets have been conducted to verify the effectiveness
and efficiency of our approach by comparing with the state-of-the-art approaches.

© 2014 Published by Elsevier Inc.
1. Introduction

In recent years, uncertain data management has received in-
creasing attention with the emergence of many practical appli-
cations in domains like sensor network [1], RFID network [2],
data cleaning and extraction [3], location-based service [4], market
surveillance and social data collections [5]. The uncertainty is in-
herent in these applications, which may be derived from the noisy
measurement, inference models, improper operator and considera-
tion for privacy-preserving [6]. Due to the rapid increasing amount
of data accumulated, analyzing large collections of uncertain data
has become a challenging task.

Skyline operator as an important advanced query type, is neces-
sary in order to help users to handle the huge amount of available
data by identifying a set of interesting data objects. The skyline
query is also known as the Pareto-optimum problem, which is a
typical multi-objective optimization problem in nature. Given a set

✩ This article belongs to Scalable Computing for Big Data.

* Corresponding author.
E-mail addresses: sayingxmu@nudt.edu.cn (X. Li), wangyijie@nudt.edu.cn

(Y. Wang), lixiaoling@nudt.edu.cn (X. Li), wangxiaowei@nudt.edu.com (X. Wang),
yujie@nudt.edu.cn (J. Yu).
http://dx.doi.org/10.1016/j.bdr.2014.07.003
2214-5796/© 2014 Published by Elsevier Inc.
of multidimensional objects, the skyline query retrieves the objects
in the set that are not dominated by others, where an object p1 is
said to dominate another object p2, if p1 is not worse than p2 in
all dimensions, but is strictly better than p2 in at least one dimen-
sion. The most classical example for the skyline query is the hotels
selection [7]. As shown in Fig. 1, each point in the 2-dimensional
space (x, y) corresponds to a hotel record, where x and y axes
represent the price of the hotel and the distance to the bench,
respectively. The users usually only need to consider the points in
the plotted line, as all the other points are dominated by the points
in the line which are defined as skylines.

Recently, lots of efforts have been conducted to address the
skyline queries over uncertain data [8–14]. However, all these stud-
ies focus on the query processing over centralized data sets, and
cannot deal with the queries over distributed uncertain data. In
reality, a large amount of uncertain data is collected by many
emerging applications which contain multiple sources in a dis-
tributed manner, due to the increasing number of available data
sources and the available network services. The typical scenarios
include distributed sensor networks [15], distributed clouds [16]
and multi-source data integration [17]. In these applications, data
are usually collected from vast number of data sources among ge-
ographically scattered sites, which makes the central assembly of

http://dx.doi.org/10.1016/j.bdr.2014.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:sayingxmu@nudt.edu.cn
mailto:wangyijie@nudt.edu.cn
mailto:lixiaoling@nudt.edu.cn
mailto:wangxiaowei@nudt.edu.com
mailto:yujie@nudt.edu.cn
http://dx.doi.org/10.1016/j.bdr.2014.07.003

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.2 (1-14)

2 X. Li et al. / Big Data Research ••• (••••) •••–•••

,
Fig. 1. An example of the skyline query.

data for storage and query at one location infeasible and ineffi-
cient [18]. Thus, until recently, there appear some studies target
at distributed queries over uncertain data, such as the ranking
queries [19,20] and join [21].

Actually, the distributed skyline query as an important aspect
of big data management has many important applications. For in-
stance, consider the services selection in distributed clouds where
customers may want to select good services to fulfill their Qual-
ity of Service (QoS) requirements. The geographically located cloud
providers offers large number of similar services at different prices
and performance levels with different features, such as response
time, stability, accuracy, reliability, cost, and elasticity [22]. Besides,
the features are usually uncertain, due to the derivation from the
user experiences or measured with software and hardware moni-
toring tools [22]. Thus, modeling the services as uncertain records
and evaluating them with skyline queries to make recommenda-
tion for users has great significance.

Moreover, in the distributed stock trade systems, a trader needs
to know which stocks worldwide are worth investing based on the
historical trading records, which may be geographically distributed
over a large number of sites. Generally, we can evaluate each stock
based on multiple attributes like average price, change, last close
price, estimated price, volume, etc. Furthermore, the recording errors
caused by systems or improper operators by human beings may
make failed deals be recorded successful, and vise versa. Thus, each
stock can be viewed as an uncertain record. Accordingly, a sky-
line query against those distributed uncertain databases will help
traders get those most interesting (skyline) stocks.

Another real-life example is online comparative shopping, in
which a search engine needs to get good bargains from many dis-
tributed shopping sites according to multiple criteria like price,
quality, time, etc. Moreover, we can additionally attach an attribute
credit to represent the credibility of the record, which is usu-
ally determined by the feedbacks of the customers. Therefore, to
evaluate the bargains fairly, we can model the evaluation as a dis-
tributed skyline query problem, aiming at retrieving the global sky-
line bargains over all distributed sites for decision-making. Besides
all the above mentioned applications, the distributed uncertain
skyline queries are also widely in many other domains like finan-
cial computing services or social networking services, such as the
similarity match in Facebook and Twitter, as the data with uncer-
tainty in the systems are geographically distributed over multiple
data centers.

Skyline queries over certain data has received considerable
attention in various distributed scenarios like P2P systems [13,
23–27], web information systems [28], distributed data streams [29]
and wireless sensor networks [30,31]. Nevertheless, the introduc-
tion of the data uncertainty makes the approaches cannot be
applied to uncertain data. To the best of our knowledge, only
the works [32,33] have investigated the distributed skyline query
problem. Ding et al. [32] for the first time propose algorithms to
address the query with an iterative feedback mechanism. How-
ever, the pruning capability of the algorithms is limited, as they
adopted the local information to prune the unqualified tuples. If
we can use some global knowledge of all the tuples, then the
query performance can be further improved. Thus, our team pub-
lishes a short work and proposes a novel strategy to improve the
queries based on the grid summary in [33]. Although our earlier
proposed approach GBPS in [33] can improve the query efficiency,
many problems for optimizations remain to be solved.

In this paper, we extensively investigate the distributed prob-
abilistic skyline query problem and propose an efficient approach
called Grid summary based Distributed Probabilistic Skyline (GDPS)
to address the problem. The approach can achieve excellent pro-
gressiveness in outputting the results with much less bandwidth
consumption. In summary, we make the following contributions in
this paper:

• We formalize the distributed probabilistic skyline query and
propose to use grid summary to capture the distribution and
the global knowledge of the skyline probabilities for all the
tuples, which can be used to the query optimization.

• We propose a general framework to process the skyline
queries over distributed uncertain data with grid summary.

• We propose several novel strategies for the query optimiza-
tion, which significantly further reduces the communication
overhead.

• We conduct extensive experiments on real and synthetic data
sets with real deployment under parameter settings to confirm
the effectiveness and efficiency of our approach.

This paper significantly extends an earlier published conference
paper [33] in many substantial ways. First, we provide more details
about the background and the related work. Second, we describe
the pruning process of the query with grid summary in more de-
tail. Third, we introduce many strategies for improving the query
with optimized iteration process. Finally, we reconsider the exper-
imental settings and conduct more extensive experiments to eval-
uate the performance of the proposals. Through the experiments,
we can find that the proposed approach GDPS is more efficient
than the GBPS approach in [33].

The remainder of the paper is organized as follows. Section 2
provides a brief review of related work. In Section 3, we provide
some preliminaries. Section 4 presents the grid summary, which
can be seamlessly integrated to the following query optimization.
Section 5 describes the general framework of GDPS approach for
distributed probabilistic skyline computation in detail. In Section 6,
we propose several novel strategies to further optimize the queries.
The experimental evaluation is presented in Section 7. Finally, we
conclude our paper in Section 8.

2. Related work

Skyline computation has recently attracted considerable atten-
tion in database community and experienced the overall trends
from centralized queries to distributed or parallel queries, static
skylines to dynamic (or relative) skylines, all space queries to sub-
space queries, certain data to uncertain data. Particularly, the dis-
tributed skyline queries and uncertain skyline queries are both
important and still evolving research areas in database commu-
nity [34,35].

Moreover, we observe that the two areas have been each stud-
ied quite extensively but separately, despite the fact that the
two often arise concurrently in many applications. Therefore, we
present the related work from two aspects: distributed skyline
queries over certain data and uncertain skyline queries. Section 2.1
first reviews previous distributed skyline query processing tech-
niques over certain data. Then, the related work of uncertain sky-
line queries is introduced in Section 2.2.

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.3 (1-14)

X. Li et al. / Big Data Research ••• (••••) •••–••• 3
Table 1
Summary of approaches for distributed skyline queries.

Approaches Network structure Skyline query type Partitioning Environment

MANETs [30] no overlay global data P2P
QTree [36] unstructured P2P approximate data P2P
DSL [37] CAN constrained space P2P
SKYPEER [24] super-peer subspace data P2P
SWSMA [31] no overlay global data sensor network
SKYPEER+ [38] super-peer subspace data P2P
BITPEER [39] super-peer subspace data P2P
PaDSkyline [25] no overlay constrained data P2P
iSky [26] BATON global space P2P
SkyFrame [40] BATON/CAN global/approximate space P2P
FDS [27] no overlay global data P2P
AGiDS [41] no overlay global data P2P
BOCS [42] no overlay global data data streams
SkyPlan [42] no overlay global data P2P
2.1. Distributed skyline queries

The first distributed algorithm is proposed in [28], which fo-
cuses on the skyline query processing over vertical data distribu-
tion. Later, a number of algorithms for processing the distributed
skylines over horizontal data distribution have been proposed in
various scenarios, especially for the P2P environments. A com-
parative overview of distributed skyline literature is presented in
Table 1.

Generally, the approaches that assume horizontal data distribu-
tion can be classified in two categories: the approaches with space
partitioning and the approaches with data partitioning [41].

• Approaches with space partitioning: the approaches usually as-
sume space partitioning among peers and each peer is re-
sponsible for a disjoint partition of the data space. Thus, the
location of each data is controlled by the system and the peers
are often organized as a particular structure to optimize the
queries, such as structured P2P.

• Approaches with data partitioning: data partitioning is assumed
and each peer autonomously stores its own data. Thus, the
queries usually assume no particular network topology and no
data reorganization among the peers in the system.

2.1.1. Approaches with space partitioning
To improve the queries, a structured P2P or special network

overlay is often employed in this category of approaches. Specif-
ically, DSL is proposed in [37] to process the constrained skyline
query determined by CAN [43]. Wang et al. [40] propose SkyFrame
based on a tree-based overlay (BATON) [44] for assigning data to
peers. In addition, iSky is proposed in [26] to process the skyline
also based on BATON, which employs another transformation iMin-
Max to assign data to the peers. The common of these approaches
is that a server cannot freely decide the tuples in its own storage,
whereas our techniques allow arbitrary horizontal partitioning.

2.1.2. Approaches with data partitioning
Since the data partitioning in this category is assumed, opti-

mizing the queries by reassigning data is infeasible, thus many
novel data structures are proposed to improve the query in many
literatures. For example, Hose et al. [36] use distributed data sum-
maries (QTree) to improve the routing to find the skyline points.
Cui et al. [25] propose PaDSkyline by using of MBRs (Minimum
Bounding Regions) to summarize the data stored at each server,
and compute the skylines within each group using specific plans.
This is improved by SkyPlan [42] by generating execution cost-
aware execution plans. Rocha-Junior et al. [41] propose a frame-
work AGiDS based on a grid summary to capture the data distri-
bution on each server, in order to reduce the amount of transferred
data. Although we also use grid summary to optimize the pruning,
the collected summaries and the processing strategies are distinct,
due to the data uncertainty.

Moreover, Vlachou et al. [24] propose SKYPEER to solve the
problem of subspace skyline queries in large-scale peer-to-peer
networks, while in our work, we focus on the skyline queries in
the full space. SKYPEER+ [38] further improves the thresholding
scheme and routing in SKYPEER. Besides, Zhu et al. [27] propose
a feedback-based distributed skyline (FDS) algorithm to compute
skylines with economical bandwidth cost at the expense of several
round-trips.

2.1.3. Approaches in other environments
Besides P2P environment, Xin et al. [31] propose an energy-

efficient algorithm (SWSMA) to address the skyline query problem
in wireless sensor networks. Relying on a distributed data stream
model, Sun et al. [29] propose an algorithm (BOCS) for skyline
queries over data streams.

Hose et al. [34] provide a comprehensive survey on skyline pro-
cessing in highly distributed environments. Note that, all the afore-
mentioned approaches focus on the processing distributed skylines
over certain data, which can use the additivity principle [34] to
address the skyline query problem. However, none of them can be
used to deal with the skyline queries over distributed uncertain
data.

2.2. Uncertain skyline queries

Currently, there is a growing body of work on answering sky-
line queries over uncertain data in a centralized manner [9–14,45]
since its introduction [8]. To process the p-skyline that retrieves
the objects whose probabilities of being skyline is greater than the
threshold p, the Bottom-up and Top-down algorithms are proposed
in [8] to optimize the query. Besides, all skyline query problem is
extensively addressed in [11].

Moreover, Böhm et al. [12] study the continuous case of the
probabilistic skyline query where each object is modeled as a
mixture Gaussian distribution. To improve the query, all the ob-
jects can be indexed with the Gaussian tree [46] in the parameter
space. Zhang et al. [13] extend the probabilistic skyline opera-
tor to data streams with a sliding window model. Li et al. [47]
address the parallel skyline queries over uncertain data streams
with sliding window partitioning and grid index. Besides, Lian and
Chen [9] first introduces the concept of probabilistic reverse sky-
line and proposed algorithms for processing the query including
the monochromatic and bichromatic fashions.

Uncertain skyline computation in distributed environments
poses inherent challenges and requires non-traditional uncertain
skyline techniques due to the distribution of content and lack of

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.4 (1-14)

4 X. Li et al. / Big Data Research ••• (••••) •••–•••
global knowledge. Ding et al. [32] first propose DSUD and its ex-
tension e-DSUD to process the distributed probabilistic skylines.
The efficiency of the algorithms stems from a highly optimized
feedback mechanism, where the central server transmits the pre-
cious information to each local site to prevent the delivery of a
large number of unqualified skyline tuples. Nevertheless, the prun-
ing capabilities of the algorithms are greatly limited by the local
knowledge for pruning, which can be greatly alleviated by our
proposed GDPS approach with the grid filtration and many other
optimizations.

3. Preliminaries

In this section, we first provide some preliminaries related to
our work, including the data uncertainty model, the system model
and the problem definition.

3.1. Uncertainty model

Generally, the data in real world primarily includes certain data
and uncertain data, and there is no strict definition or classifica-
tion standards currently for the data. The Trio system [48] in-
troduces various models to capture data uncertainty at different
levels, where the data is classified into two types: exact data and
inexact data [48]. There are many ways to describe inexact data,
such as uncertain data, probabilistic data, fuzzy data, approximate
data, incomplete data, interval data and imprecise data, etc.

According to the different granularities of uncertain entity, the
data uncertainty can be specified by three levels: group-based (or
table-based), object-based (or tuple-based) and attribute-based [49].
Generally, the following two kinds of uncertainty are extensively
investigated in most of the studies:

1. Tuple-level uncertainty: also called existential uncertainty,
which describes the probability for the presence or absence of
the tuples. In most cases, the tuple independence assumption
is used, in which the presence probabilities of different tuples
are independent/disjoint of one another and mutual exclusiv-
ity may be defined to constrain the tuples in the database.

2. Attribute-level uncertainty: this type only refers to the uncer-
tainties of the individual attributes, and usually includes two
kinds of values: fuzzy value and ambiguity value. Fuzzy means
that the value is difficult to be specified precisely, while ambi-
guity indicates that the value is randomly selected from many
alternative values.

Moreover, according to the relationship of objects, two kinds
of object-based model are frequently used with the possible world
semantics: independent model and general model [50]. In the in-
dependent model, the objects are independent to each other and
most of the existing studies on uncertain queries are assumed with
this model to simplify the queries. While the general model is a
general case, objects in which may be correlated, thus generation
rules are often defined to describe the exclusive relationship of the
objects.

Similar to the works [32,48,51,52], we also focus on the tuple-
level data uncertainty with independent model of possible world
semantics. Furthermore, the tuple uncertainty is represented by
the discrete probability value by the form of 〈x, 0.7〉, where x de-
notes the tuple information, and 0.7 is the existential probability
of the tuple, which is represented by a discrete value in [0, 1].

Generally, for a possible world W , the probability of W ap-
pears is P (W) = ∏

t∈W P (t) × ∏
t /∈W (1 − P (t)). Let Ω be the set of

all possible worlds, then
∑

W ∈Ω P (W) = 1. Assume that SKY(W)

denote the set of elements in W that form the skyline of W , then
the probability that e appears in the skylines of the possible worlds
will be P sky(e) = ∑

e∈SKY(W),W ∈Ω P (W).

3.2. System model

Similar to the work [32], we focus on the tuple-level un-
certainty with independent model of possible world semantics.
Furthermore, the tuple uncertainty is represented by the dis-
crete probability value by the form of 〈A1, A2, . . . , An, p〉, where
〈A1, A2, . . . , An〉 denotes the deterministic tuple information, and
p denotes the existential probability of the tuple, which is repre-
sented by a discrete value within [0, 1].

Moreover, we assume that the data are horizontally partitioned
to all the local sites, and make no assumption on the existence
of any overlay network that connects local sites in an inten-
tional manner. Thus, a querying server (called coordinator) directly
communicates with all the local sites, which is also the cur-
rent commonly used processing framework for distributed skyline
queries [19–21,27,32,41].

In the network, each local site owns part of the whole data.
All the nodes including the coordinator and the local sites have
their own capabilities for storing and processing. Moreover, all the
tuples in each local site are independent and the tuples have the
existent level uncertainty, whose uncertainty is represented by the
discrete probabilities.

Generally, a good distributed skyline algorithm should achieve
the following objectives:

• Minimization of bandwidth consumption. The communication
overhead is usually the dominator factor due to the network
delay and the economic cost associated with transmitting large
amounts of data over a network when querying distributed
uncertain data [19,32].

• Progressiveness. The algorithm should quickly return some
early results soon after the beginning and produce a majority
of the remaining results well before the end of the query [27].

Without loss of generality, as studied for many problems over
distributed data, a critical requirement is to reduce the communi-
cation cost. Thus, our main objective of this paper is to retrieve
the global q-skylines progressively by minimizing the total band-
width consumption for the query, which is similar to the studies
in [19–21,27,32,41].

3.3. Problem definition

Given a centralized data set D and a tuple t ∈ D with existential
probability P (t). The skyline probability of a tuple t actually equals
the probability that t exists and all the tuples that dominate t do
not exist [32]. Thus, the skyline probability Psky(t, D) of tuple t
against D can be calculated as:

Psky(t, D) = P (t) ×
∏
t′∈D

(
1 − P

(
t′)) (1)

Thus, we can further define the q-skyline as follows:

Definition 1 (q-skyline). Given a probability threshold q (0 ≤ q ≤ 1),
the q-skyline returns the set of uncertain objects, each of which
takes a probability of at least q to be in the skyline set.

Based on the above definition, the problem of the distributed
skyline query over uncertain data can be defined as follows:

Definition 2 (Distributed probabilistic skyline query). Given a set of
m distributed sites S = {s1, s2, . . . , sm}, each possesses an uncer-
tain data set Di (1 ≤ i ≤ m) with size ni , and a coordinator H is

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.5 (1-14)

X. Li et al. / Big Data Research ••• (••••) •••–••• 5
Fig. 2. An example of grid partitioning.

responsible for scheduling and processing. The query retrieves the
tuples whose global skyline probabilities are not smaller than a
given threshold q (0 ≤ q ≤ 1) from all the local sites at H. The
global skyline probability P g_sky(t) of the tuple t is defined as:

P g_sky(t) = P (t) ×
∏

t′∈D1, t′≺t

(
1 − P

(
t′))

×
∏

t′∈D2, t′≺t

(
1 − P

(
t′)) × · · · ×

∏
t′∈Dm, t′≺t

(
1 − P

(
t′))

= P (t) ×
m∏

i=1

(∏
t′∈Di , t′≺t

(
1 − P

(
t′))) (2)

Assume that D = D1 ∪ D2 ∪ . . .∪ Dm , then Eq. (2) can be further
written as

P g_sky(t) = P (t) ×
∏

t′∈D,t′≺t

(
1 − P

(
t′)) (3)

Therefore, the goal of the query discussed in this paper is to
retrieve the set of tuples from the global data set D with minimum
bandwidth consumption, where each tuple t satisfies P g_sky(t) ≥ q,
and reduce the overall processing time as far as possible.

4. Grid summary

In this section, we first present the structure of the grid sum-
mary, including the grid partitioning, some grid-based definitions
and the grid summary collection.

4.1. Grid partitioning

Since all the tuples share the same data space, we can divide
the whole space into many cells. Thus, each tuple can find the
cell that it belongs to. For instance, as shown in Fig. 2, the entire
space is divided into many equal-sized cells, the width of the cell
in each dimension is δ. Thus, the cell Ci, j contains all the objects
that satisfy i · δ < e.d1 ≤ (i + 1) · δ and j · δ < e.d2 ≤ (j + 1) · δ. For
simplicity, we denote an item e in Ci, j as e ∈ Ci, j . On the contrary,
for any object e, we can easily locate its corresponding cell Ci, j ,
where i = �e.d1/δ� and j = �e.d2/δ�. Without loss of generality, we
assume that smaller values are preferred in the skyline operator.
Suppose that Ci, j .LB and Ci, j .RT denote the lower left corner and
the upper right corner of the cell Ci, j , then for any item e ∈ Ci, j ,
we have Ci, j .LB ≺ e and e ≺ Ci, j .RT .

Generally, a multi-dimensional tuple t ∈ Pi in the region R j
i

(denoted as Pi ∈ R j
i) means that for each dimension di ∈ D and

p j ∈ Pi , l j ≤ pi < u j . Assume that Numi denotes the number
i i i
Fig. 3. The dominant relationships of cells.

of partitions in dimension i, the domain of each dimension is
U , and the corresponding width of the cell is δ, then we have
Numi = U/δ. Since the value domain of each dimension in this
paper is (0, 1) and each dimension has the same number of divi-
sions, thus Numi = 1/δ and the total number of cells is (1/δ)d .

4.2. Grid-based definitions

Without loss of generality, assume that minimum values are
preferable. In this section, we introduce some definitions related
to the grid summary for the query, which are similar to the defi-
nitions in [41].

Definition 3 (Cell dominance). If the right upper corner u j of R j
i

dominates the left lower lk of Rk
i , then R j

i dominates Rk
i , which is

denoted as R j
i ≺ Rk

i .

Definition 4 (Partial cell dominance). If R j
i does not dominate Rk

i ,
but the left lower l j of R j

i dominates the right corner of Rk
i , then

R j
i partially dominates Rk

i , which is denoted as R j
i � Rk

i .

Definition 5 (Cell incomparable). If there is no point in R j
i can

dominate any point in Rk
i and vice versa, we call R j

i and Rk
i are

incomparable, which can be denoted as R j
i ∼ Rk

i .

As shown in Fig. 3, according to the above definitions, we can
find that R2

i ≺ R4
i , R1

i � R4
i and R1

i ∼ R2
i . Therefore, according to

the definition of the skyline probability of a tuple t discussed in
Section 3.3, we can easily draw the following conclusion for the
local skyline probability Pl_sky(t) of tuple t as follows:

Pl_sky(t) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏
u∈R j

i , u≺t
(1 − P (u)), if t ∈ R j

i ,∏
s∈Rk

i
(1 − P (s)), if R j

i ≺ Rk
i ,∏

r∈Rk
i , r≺t(1 − P (r)), if R j

i ∼ Rk
i

(4)

Assume that the whole space are partitioned into nd cells, then
we can rewrite the local skyline probability of tuple t in site Si

located at grid cell R j
i as follows:

Pl_sky(t) = P (t) ×
∏

t∈Di , t′≺t

(
1 − P

(
t′))

= P (t) ×
nd∏

x=1, x�= j, Rx∼R j
, r∈Rx, r≺t

(
1 − P (r)

)

i i i

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.6 (1-14)

6 X. Li et al. / Big Data Research ••• (••••) •••–•••
×
nd∏

x=1, x�= j, Rx
i ≺R j

i , s∈Rx
i

(
1 − P (s)

)

×
∏

u∈R j
i , u≺t

(
1 − P (u)

)
(5)

To facilitate the illustration of the grid summary, we also pro-
vide the following two definitions.

Definition 6 (Local cell non-existing probability, lnep). The lnep value
of the cell R j

i means the probability that all the tuples do not exist
in the cell R j

i , which can be defined as:

Plnep
(

R j
i

) =
∏
t∈R j

i

(
1 − P (t)

)
(6)

Definition 7 (Global cell non-existing probability, gnep). Given m local
sites, the gnep means the global probability that all the tuples do
not exist in the cell R j

i , which can be defined as:

P gnep
(

R j
i

) =
m∏

s=1

(∏
t∈R j

i

(
1 − P (t)

))
(7)

According to Eqs. (5), (6) and (7), we can use the cell non-
existing probability (lnep and gnep) instead of computing the prob-
abilities of all the tuples to improve the computation in GDPS,
which will be described in detail in Section 5.

4.3. Grid summary collection

Suppose that we want to map the local data set Di to the local
grid summary G(Di). When mapping Di to G(Di), each tuple t in
Di is mapped to a certain cell c(t). We use c.CS(D) to denote the
set of tuples in D mapped to cell c, which is associated with a cell
probability c.cp, which represents the probability that none of the
tuples in c.CS(D) exist, i.e.,

c.cp =
∏

t∈c.CS(D)

(
1 − P (t)

)
(8)

Since c.CS(D) = c.CS(D1) ∪ c.CS(D2) ∪ . . . ∪ c.CS(Dm), thus we
have

c.cp =
∏

t∈c.CS(D)

(
1 − P (t)

) =
m∏

i=1

(∏
t∈c.CS(Di)

(
1 − P (t)

))
(9)

From the above formula, we can see that the probability actu-
ally equals the gnep value of the cell, i.e.,

c.cp =
∏

t∈c.CS(D)

(
1 − P (t)

) = Pgnep(c) =
m∏

i=1

Plnep(c) (10)

Therefore, we can first compute all the lnep values for all the
cells locally in each site, and then transmit them to the coordina-
tor. Thus, we can further get the gnep values of the cells based on
the lnep values with Eq. (10). Note that, the obtained gnep infor-
mation is the key to our query pruning, which will be explained
in the next section. For brevity, the frequently used symbols in the
paper are summarized in Table 2.
Table 2
Frequently used symbols.

Symbol Meaning

H The central coordinator server
m The number of local sites
d The dimensionality of the tuples
q The probability threshold
n The number of partitions per dimension
LSi The i-th local site
Di The data set in L Si

D The global uncertain database
L The priority queue maintained by H
D L The set of data maintained in L
SKY H The set of global skylines obtained in H
PRT H The set of tuples pruned in H
CANDi The candidate skylines in Di

P g_sky(t) Global skyline probability of object t
Pl_sky(t, Di) Local skyline probability of t against Di

Pt_sky(t, Di) Temporary skyline probability of t against Di

Psky(t, Di) Skyline probability of t against Di

5. The general framework of GDPS

The general framework of GDPS mainly consists of the prepro-
cessing part and the iteration process part. In the first part, we try
to prune the unqualified skylines early with our proposed grid
summary. In the second part, we iteratively compute the global
skylines with an optimized feedback mechanism.

5.1. Preprocess with grid filtration

The preprocessing part in GDPS consists of the following five
phases before the iteration process, which is definitely distinct
from the e-DSUD algorithm.

• Grid-partition phase: each site splits the data space into cells
with a uniform metric, thus all the tuples can find the cells
that they belong to;

• Grid-sending phase: each local site computes the local cell
non-existing probability (lnep) of each cell, and then sends the
grid summaries to H;

• Sever-calculation phase: H computes the global non-existing
probability (gnep) of each cell and labels all the cells with the
probabilities;

• Grid-broadcast phase: H broadcasts all the processed grid
summaries including the probabilities used for grid filtration
to all the local sites;

• Grid-filtration phase: after receiving all the information from
H, each local site prunes all the unqualified tuples based on
the gnep of each cell.

As shown in Fig. 4, each local site first maps the tuples into
different cells and sends the lnep values to H, in order to compute
the gnep values for pruning the unqualified tuples in the following
processes.

According to the grid summary discussed in Section 4.3, we
can label all the cells based on the following rule in the Sever-
Calculation phase: If the cell is dominated by a cell whose gnep is
less than q, then the cell is labeled with “0”, which means that the
tuples in the cell are unqualified to be the global skylines; Other-
wise, labeled with “1”. Thus, we can rapidly prune all the tuples
which are labeled with “0”. For example, R32 and R33 in Fig. 5 are
labeled with “0”, since they are dominated by R21 with lnep < q.

The detailed description of the preprocessing with grid filtra-
tion is shown in Algorithm 1. Note that, the grid summary GS in
step 8 mainly contains the gnep values and the labeled values of
all the cells. Besides, the local skyline probability Pl_sky(t, Di) in
step 12 can be computed by P (t) × ∏

t′∈D ,t′≺t(1 − P (t′)), while

i

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.7 (1-14)

X. Li et al. / Big Data Research ••• (••••) •••–••• 7
Fig. 4. The processing based on grid partition.
Fig. 5. The pruning region with grid summary.

the temporary skyline probability Pt_sky(t, Di) of tuple t as men-
tioned in step 13 can be obtained as follows:

Pt_sky(t, Di) = P (t) ×
∏

R g≺t

(∏
t′∈R g

(
1 − P

(
t′))) (11)

To summarize, in the preprocessing part we collect the global
knowledge of all the tuples with the grid summary and prune the
tuples that cannot be the global skylines as far as possible.

5.2. Iteration with optimized feedback

As shown in Algorithm 2, GDPS mainly consists of two parts:
the preprocessing with grid filtration, and the iteration process
with feedback. The step 2 and steps 7∼8 correspond to the two
parts, respectively.

After the preprocessing, we can get the first candidate set
CANDi (1 ≤ i ≤ m) in each local site, and then we select a repre-
sentative tuple ti

max that is considered as the most likely to be the
skyline with a certain tuple selecting strategy, which will be dis-
cussed in detail later. After receiving all the representative tuples
from all the local sites, H starts the iteration process.
Algorithm 1: Preprocessing(D, LS, CAN): Preprocess with grid
filtration.

Input : all the local databases: D = {Di |1 ≤ i ≤ m};
all the local sites: L S = {LSi |1 ≤ i ≤ m};
the probability skyline threshold: q

Output: CAN = {CANDi |1 ≤ i ≤ m}
1 begin
2 H sends the partition metric to LS;
3 foreach LSi do
4 Map tuples in Di to cells with the metric;
5 Compute the lnep values for all the cells;
6 Send all the lnep values to H;

7 H collects all the lnep values and computes the gnep value of each cell
with Eq. (7);

8 H labels each cell with gnep and obtain the grid summary GS;
9 H sends the GS to all the local sites LS;

10 foreach LSi do
11 Prune all the unqualified tuples with G S;
12 Calculate Pl_sky(t, Di) values for all tuples;
13 Compute Pt_sky(t, Di) values for all tuples;
14 Obtain CANDi by filtering the unqualified tuples with Pl_sky(t, Di)

and Pt_sky(t, Di);

Algorithm 2: GDPS.

1 begin
2 Preprocessing(D, LS, CAN);
3 foreach LSi do
4 Select the tuple ti

max from CANDi with a certain strategy;

5 Send ti
max to the coordinator H;

6 H collects the ti
max (1 ≤ i ≤ m) from all the local sites as the set DL ;

7 while D L �= ∅ do
8 IterativeFeedback(DL , LS, SKY H);

9 return SKY H

In the iteration process part of GDPS, we attempt to further
prune the unqualified tuples from the candidate skyline sets to re-
duce the number of tuples that need to be transmitted.

As shown in Algorithm 3, we try to update the temporary sky-
line probability f (t, Dx) = Pt_sky(t, Dx) of tuple t that belongs to

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.8 (1-14)

8 X. Li et al. / Big Data Research ••• (••••) •••–•••
Algorithm 3: IterativeFeedback(D L, LS, SKY H): Iterative pro-
cessing with feedback.

Input: all the local sites: LS = {LSi |1 ≤ i ≤ m};
the set of tmaxs from all the local sites:
D L = {ti

max|1 ≤ i ≤ m};
the candidate sets: CANDi (1 ≤ i ≤ m)

Output: final global skyline set SKY H

1 begin
2 Update Pt_sky(t, D L) for all tuples in D L ;
3 Filter unqualified tuples PRT H from D L ;
4 H pops the tuple tM with the biggest Pt_sky(t, D L) value from D L ;
5 H sends tM to each local site except the site LSt that contains tM ;
6 foreach LSi (except LSt) do
7 Compute the dominance probability of tM with

P i
dop(t) =

∏
t′∈Di ,t′≺t (1 − P (t′));

8 Send the P i
dop(t) value to coordinator H;

9 Prune the tuples from CAN(i) with tM ;

10 H computes the P g_sky(tM) value with Eq. (3) based on the received
values;

11 if P g_sky(tM) ≥ q then
12 add tM to the global skyline set SKY H ;

13 Fetch new tuples NH from LSi and sites that include PRT H ;
14 Update new candidate set in H with DL = D L ∪ NH ;

data set Dx in step 2 according to the following rule:

f (t, D L) =
{

f (t, Di) × ∏
t′∈D L ,t′≺t(1 − P (t′)), if t ∈ NH ,

f (t, D L) × ∏
t′∈NH ,t′≺t(1 − P (t′)), otherwise

(12)

Thus, in step 3 we can safely prune the tuples with
Pt_sky(t, D L) < q from D L . Furthermore, in step 3 we can further
filter the unqualified tuples with the following corollary, which has
been proved in [32].

Corollary 1. The global skyline probability P g_sky(t) of tuple t from site
Si is upper bounded by its local skyline probability multiplies the upper
bound of its local skyline probabilities to other databases Dx, i.e.,

P g_sky(t) =
m∏

x=1

Psky(t, Dx) ≤ Psky(t, Di)

×
m∏

x=1,x�= j,t∈Dx,s∈L,s≺t

Psky(s, Dx)

P (s)
× (

1 − P (s)
)

= P g_sky(t)
∗ (13)

In addition, steps 4–10 aim to get the global skyline probabil-
ity for tuple tM . After completing all above operations, H fetches a
batch of new tuples from all the local sites and starts a new itera-
tion. Specifically, step 9 prunes all the candidates in each local site
according to the updated local skyline probability P (t) against the
feedback tuple tM , i.e.,

P (t) =
{

Pl_sky(t, Di) × (1 − P (t′)), if t′ ≺ t

Pl_sky(t, Di), otherwise
(14)

After updating the probabilities, we can filter all the unquali-
fied tuples and reorder the new candidates with the updated local
skyline probabilities. The GDPS approach does not terminate until
D L = ∅.

Note that, the reason we adopt grid summary primarily come
from two considerations: (1) we can easily get the grid summary
as illustrated in Section 4.3, and (2) we can optimize the computa-
tion of the dominance probability of the tuples returned from the
coordinator, which corresponds to the step 7 in Algorithm 3. Thus,
the computational time can be greatly reduced.
6. Further optimization

In this section, we further optimize the query from the follow-
ing aspects: (1) pruning optimization in the local sites, (2) the
tuple selecting strategy in each local site, and (3) pruning opti-
mization in the coordinator.

6.1. Local pruning optimization

As discussed in Section 5.2, we prune the local candidates with
the updated local skyline probability P (t). This strategy is not ef-
ficient since we cannot make use of all the feedback tuples in
former iterations. Instead, we can adopt the updated temporary
skyline probability Pt_sky(t, Di) to filter the local candidates in
each local site according to the following observation.

Observation 1. Assume that site Si receives the feedback tuples
from all the other sites are the sets of D F j (1 ≤ j ≤ m ∧ i �= j),
and the total returned set of tuples is DRi = DF1 ∪ DF2 ∪ · · · ∪ DFm ,
where DF j ⊆ D j (1 ≤ j ≤ m ∧ j �= i). Therefore, we have

P g_sky(t) =
m∏

i=1

Psky(t, Di)

≤ Psky(t, Di) ×
m∏

j=1, j �=i

Psky(t,DF j)

= Psky(t, Di) ×
m∏

j=1, t′∈DF j ,t′≺t

(
1 − P

(
t′))

= Psky(t, Di) × Psky(t,DRi)

= Pt_sky(t, Di) (15)

It must be noted that, the Pt_sky(t, Di) value of tuple t is up-
dated constantly when receiving a new feedback tuple from H
with the following rule:

Pt_sky(t, Di)∗ =
{

(1 − P (t′)), if t′ ≺ t

1, otherwise
(16)

6.2. Tuple selecting optimization

Based on the feedback strategy, one important problem needs
to be addressed: how to choose the “best” tuples from each local
site to the coordinator H? For this problem, we have designed four
typical tuples selecting strategies, which are described as follows:

• Max-Temp: choose the tuple t with the largest updated tempo-
rary skyline probability Pt_sky(t, Di).

• Max-Local: choose the tuple t with the maximum updated lo-
cal skyline probability, which can be calculated with Eq. (14).

• Min-Rank: select the tuple t with the minimum sum of rank
value RankScore of t .

• Max-Domin: select the tuple t with the maximum dominance
region VDRt of t .

Note that, the RankScore in the Min-Rank strategy means that
the sum of the all the ranks for all the dimensions. Assume that
the rank of the value in dimension i is ri , then the RankScore can
be computed by

∑d
i=1 ri , where d is the dimensionality of the tu-

ple.
The dominance region for tuple t is achieved with formula

VDRt = ∏d
k=1(maxk − t.k), where maxk is a pre-defined value larger

than the global domain upper bound bk , and t.k is the value of di-
mension k of tuple t , which is similar to [30]. Assume that the

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.9 (1-14)

X. Li et al. / Big Data Research ••• (••••) •••–••• 9
value range of the dimension k is [sk, bk] in the data space, then
the volume of tuple t ’s dominance region is defined as VDRt =∏d

k=1(bk − t.k).
In this paper, we evaluate all above tuple selecting strategies in

Section 7.2, and we can find that the performance of the Max-Temp
strategy is relatively better than the others.

6.3. Server pruning optimization

Since part of the tuples in L may be filtered in the iteration
part, and the pruned tuples will not be transmitted to the local
sites. If we make use of these tuples for pruning, more tuples
in L can be further filtered. Thus, we can transmit the updated
temporary skyline probability to H for further optimization. In par-
ticularly, we have the following observation.

Observation 2. Assume that PRT H denotes the set of tuples pruned
in L accumulated in all the iterations, and PRT H\Di denotes the
set of tuples in PRT H that do not from site Si . For any tuple t in
L from database Di at local site Si , the upper bound of the global
skyline probability of t will be bounded as:

P g_sky(t) =
m∏

i=1

Psky(t, Di) ≤ Pt_sky(t, Di) × Psky(t, D L)

×
∏

t′∈PRT(H)∧t′ /∈Di

(
1 − P

(
t′ ≺ t

))
= Pt_sky(t, Di) × Psky(t, D L) × Psky(t,PRT H\Di) (17)

The correctness of Eq. (17) is rooted from that, the tuples used
for computing Pt_sky(t, Di), Psky(t, D L) and Psky(t, PRT H\Di) are
independent and not reduplicate. Specifically, if we denote the set
of tuples that have already been used for updating Pt_sky(t, Di) in
site Si as TSDi , then we can easily find that TSDi ∪ D L ∪ PRT H\Di ⊆
D and TSDi ∩ D L ∩ PRT H\Di = ∅. Note that, TSDi includes all the
tuples of Di and all the feedback tuples till now.

Based on the above observation, we can further prune the can-
didate tuples obtained by the step 2–3 in Algorithm 3. Thus, in the
iteration process phase, we only need to maintain all the pruned
tuples in a priority queue in coordinator H , and sort all the tu-
ples with the descending order of the updated temporary skyline
probabilities. With these maintained tuples, more candidates can
be further pruned. Moreover, for the purpose of reducing the com-
putation and the storage cost, we can only maintain a fixed part
number of the pruned tuples and replace the tuples with a certain
heuristic strategy.

7. Experimental evaluation

In this section, we present results of a comprehensive perfor-
mance study to evaluate the effectiveness and efficiency of the
proposed techniques.

7.1. Experimental setup

In our experiments, we evaluate the approaches on both syn-
thetic data sets and real data sets.

Synthetic data sets. The synthetic data sets we used are cre-
ated with two popular distributions [7], i.e., Independent and Anti-
correlated, whose generation follows the description in Fig. 6. The
overall cardinalities of the generated data sets are 2 million and 10
million tuples. Moreover, we use uniform distribution to randomly
assign an occurrence probability to each tuple, where the mean
value and the standard deviation equal 0.7 and 0.3, respectively.
Table 3
System parameters.

Parameter Values

|D| 2 × 106 (2M) 10 × 106 (10M)
m 40 60 80 100
d 2 3 4 5
q 0.3 0.5 0.7 0.9
n 2 6 10 14 18 22 26

Real data sets. The real data sets adopted in our experi-
ments from two aspects: (1) The data set (Zillow) collected from
www.zillow.com that contains information about real estate all
over the United States. We deal with at most four dimensions
namely number of bedrooms and bathrooms, the built year and
the price gap, where the price gap of a house is computed as
the maximum house price in the data set minus the price of
the house. Thus, this type of data is more likely Anti-correlated
data, as a large room tends to has small price gap. (2) The data
set (IPUMS) downloaded from www.ipums.org that contains the
census information of population, including demographic, geo-
graphic, household, income, consumption, etc. Since the attributes
have few correlations among them, the data set is more likely an
independent data set. Note that, the cardinality of the above two
data sets are both 2 ×106 (2M). Moreover, we associate uncertainty
to the data by randomly assigning each tuple with an existen-
tial probability following the normal distribution, whose the mean
value μ equals 0.75 and the standard deviation σ equals 0.25.

We conduct all our experiments with real deployment on a data
center, where each physical host is configured with dual-core In-
tel 2.6 GHz Xeon CPU, 4 GB main memory and a 1 TB hard disk,
gigabit ethernet. Moreover, each host is deployed with two virtual
machines, each of which corresponds to a local site in our exper-
iments. All the evaluated approaches including GDPS, GBPS, DSUD
and e-DSUD are all implemented in C++ running on the CentOS
operating system.

Assume that there exist m local sites, the total number of tuples
is |D|, the probability threshold that user specified is q, and each
local site has the same number of tuples |D|/m. In the following
experiments, we mainly evaluate the proposals in terms of band-
width consumption, i.e., the number of tuples transmitted over the
network. Table 3 summarizes the parameters as well as their val-
ues to be examined, where all the parameters take default values
as indicated in bold unless otherwise specified.

In the experiments, we first evaluate the performance of vari-
ous tuple selecting strategies, and then we evaluate the efficiency
of our proposed approach GDPS against dimensionality d, number
of the local sites m, the probability threshold q and the parti-
tion number per dimension n under the Independent and Anti-
correlated data sets. Finally, we evaluate the proposals under real
data sets.

7.2. Performance with tuple selecting strategies

Firstly, we evaluate four strategies discussed in Section 6
against the dimensionality d, the number of the local sites m,
and the probability threshold q, under the Independent and Anti-
correlated data sets with cardinality 10M, respectively.

As shown in Figs. 7 and 8, the performance of the Max-Domin
strategy is the worst, whereas that of the Max-Temp strategy is
the best, under the Independent and Anti-correlated data sets with
all our considered parameters. The distinct difference between the
results of these two strategies probably stems from the different
skyline querying definitions. In the context of our probabilistic
skyline query, the pruning ability of one tuple relies on not only
the volume of a tuple’s dominance region, but also the existential
probability of the tuple compared to the traditional skyline queries.

http://www.zillow.com
http://www.ipums.org

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.10 (1-14)

10 X. Li et al. / Big Data Research ••• (••••) •••–•••
Fig. 6. An illustration of the synthetic data set.

Fig. 7. Performance vs. Independent data sets.

Fig. 8. Performance vs. Anti-correlated data sets.
Specially, we believe that the superiority of the Max-Temp strat-
egy stems from the similar way of computing the Pt_sky(t, Di) and
P g_sky(t) accumulatively.

Since the Pt_sky(t, Di) value in the Max-Temp strategy is cal-
culated for pruning the unqualified tuples in local sites, we can
directly use it to select tuples to the coordinator H . Since it can
not only save the computation cost, but also get a better perfor-
mance, we adopt the Max-Temp strategy in our GDPS approach to
evaluate the performances.

7.3. GDPS performance with parameters

7.3.1. Performance with dimensionality
As shown in Fig. 9, the total bandwidth consumption increases

as we vary d from 2 to 4 under the Independent and Anti-
correlated data sets, respectively. This is as expected, as the larger
number of dimensionality would make more tuples not to be dom-
inated by others, which would make the final skyline set become
larger. Obviously, e-DSUD and GBPS require less bandwidth than
DSUD, and GDPS requires the least communication cost. Further-
more, we also observe that the Anti-correlated data sets always
have the larger bandwidth consumption than the Independent un-
der the same experimental settings, which is similar to the situa-
tions on centralized data sets.

7.3.2. Performance with number of local sites
Fig. 10 shows the total bandwidth consumption when we vary

m from 40 to 100, under the Independent and Anti-correlated
data sets. The number of transmitted tuples increases as m getting
larger. Since the total number of final skyline tuples that should
be delivered from H is fixed according to the data sets. Thus, the
larger of the number of the local sites is, the more bandwidth con-
sumption will be. Moreover, GDPS requires the least bandwidth
consumption as shown in Fig. 10, which indicates the efficiency
of our proposed grid filtration mechanism in GDPS.

7.3.3. Performance with probability threshold
As shown in Fig. 11, the number of transmitted tuples for all

the approaches decreases as q getting larger. This is as expected,
as the probability threshold affects the total size of the final sky-
lines. Generally, the smaller threshold is, the larger number of the
skylines will be. The reason is that if a tuple t belongs to q-skyline,
then it will be always in the result of q′-skyline if q′ ≤ q. Thus, the
total number of final skylines delivered over the network decreases

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.11 (1-14)

X. Li et al. / Big Data Research ••• (••••) •••–••• 11
Fig. 9. Performance vs. dimensionality d.

Fig. 10. Performance vs. number of local sites m.
according to the increase of q. Note that, the query performance is
very sensitive to the variation of probability threshold, since the
grid filtration and feedback mechanism used in GDPS can prune
most of the unqualified skyline candidates with larger threshold.
Moreover, we can find that in Anti-correlated data set the improve-
ment is limited as most of cells contain few tuples, which limits
the pruning ability.

7.3.4. Performance with grid partition number
In this experiment, we evaluate the effect on the grid partition.

As shown in Fig. 12, the numbers of transmitted tuples decreases
firstly and then towards to steady when we increase the partition
number per dimension n from 2 to 26. The reason for this phe-
nomenon is that, if the number of cells is small, then the number
of tuples in each cell is large, which results in the coarse grid par-
tition and the pruning efficiency is not obvious. On the contrary,
the space partition is more concise, and the filtration is more effi-
cient. Note that, the total cell number exponential increases as we
increase n, which may easily result in the large number of cells,
and increase the computation cost correspondingly. Consequently,
in order to balance the communication cost and computation cost,
we must choose an appropriate number of n.

7.4. Evaluation with real data sets

As illustrated in Section 7.1, we adopt the Zillow and IPUMS
data sets to evaluate the four approaches against dimensionality d,
number of the local sites m and the probability threshold q.

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.12 (1-14)

12 X. Li et al. / Big Data Research ••• (••••) •••–•••
Fig. 11. Performance vs. threshold q.

Fig. 12. Performance vs. grid partition.

Fig. 13. Performance vs. dimensionality with real data.
From Figs. 13, 14 and 15, we can see that the results are also
similar to the results on synthetic data set discussed before, where
the Zillow data set always have the larger bandwidth consumption
than the IPUMS data set under the same experimental settings.
Furthermore, we observe that the bandwidth consumption for the
Zillow data set approaches to the Anti-correlated data set, while
the results of the IPUMS are more close to the Anti-correlated data
set. Nevertheless, the performances of GDPS and GBPS are real rel-
ative better than DSUD and e-DSUD, and GDPS is a little better
than GBPS. Therefore, we can conclude that the proposed approach
GDPS can get better performance compared with other approaches.

8. Conclusions

In this paper, we have addressed the problem of skyline queries
over distributed uncertain data sets. To accelerate the query pro-

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.13 (1-14)

X. Li et al. / Big Data Research ••• (••••) •••–••• 13
Fig. 14. Performance vs. number of local sites with real data.

Fig. 15. Performance vs. threshold with real data.
cessing, we propose an efficient pruning mechanism for prepro-
cessing with grid summary. Furthermore, we propose many strate-
gies for optimizing the queries based on a feedback mechanism.
Extensive experimental results with real data and synthetic data
have verified the effectiveness and efficiency of the proposals. In
our future work, we will consider querying the skylines over com-
plex distributed uncertain data streams, as there are many poten-
tial demands for continuous skyline query currently [53].

Acknowledgements

This work was supported by the National Grand Fundamental
Research 973 Program of China (Grant No. 2011CB302601), the Na-
tional Natural Science Foundation of China (Grant No. 61379052),
the National High Technology Research and Development 863 Pro-
gram of China (Grant No. 2013AA01A213), the Natural Science
Foundation for Distinguished Young Scholars of Hunan Province
(Grant No. 14JJ1026), Specialized Research Fund for the Doctoral
Program of Higher Education (Grant No. 20124307110015).

References

[1] C. Ré, N. Dalvi, D. Suciu, Efficient top-k query evaluation on probabilistic data,
in: Proceedings of the 23rd IEEE International Conference on Data Engineering
(ICDE), IEEE, 2007, pp. 886–895.

[2] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, P. Shenoy, Probabilistic inference
over RFID streams in mobile environments, in: Proceedings of 25th IEEE Inter-
national Conference on Data Engineering (ICDE), 2009, pp. 1096–1107.

[3] R. Gupta, S. Sarawagi, Creating probabilistic databases from information ex-
traction models, in: Proceedings of the International Conference on Very Large
Data Bases (VLDB), 2006.

[4] L. Chen, M. Özsu, V. Oria, Robust and fast similarity search for moving object
trajectories, in: Proceedings of the ACM International Conference on Manage-
ment of Data (SIGMOD), 2005, pp. 491–502.

[5] J. Pei, M. Hua, Y. Tao, X. Lin, Query answering techniques on uncertain and
probabilistic data: tutorial summary, in: Proceedings of ACM SIGMOD, 2008,
pp. 1357–1364.

[6] X. Sun, M. Li, H. Wang, A family of enhanced (l, α)-diversity models for privacy
preserving, Future Gener. Comput. Syst. 27 (2011) 348–356.
[7] S. Börzsönyi, D. Kossmann, K. Stocker, The skyline operator, in: Proceed-
ings of the IEEE International Conference on Data Engineering (ICDE), 2001,
pp. 421–430.

[8] J. Pei, B. Jiang, X. Lin, Y. Yuan, Probabilistic skylines on uncertain data, in:
Proceedings of the International Conference on Very Large Data Bases (VLDB),
2007, pp. 15–26.

[9] X. Lian, L. Chen, Monochromatic and bichromatic reverse skyline search over
uncertain data, in: Proceedings of the ACM International Conference on Man-
agement of Data (SIGMOD), 2008, pp. 213–226.

[10] C. Böhm, F. Fiedler, A. Oswald, C. Plant, B. Wackersreuther, Probabilistic skyline
queries, in: Proceedings of the ACM International Conference on Information
and Knowledge Management (CIKM), 2009, pp. 651–660.

[11] M. Atallah, Y. Qi, Computing all skyline probabilities for uncertain data, in: Pro-
ceedings of the ACM Symposium on Principles of Database Systems (PODS),
2009, pp. 279–287.

[12] B. Christian, F. Frank, O. Annahita, Computing all skyline probabilities for uncer-
tain data, in: Proceedings of the IEEE International Conference on Data Mining
(CIKM), ACM, 2009.

[13] W. Zhang, X. Lin, Y. Zhang, W. Wang, J. Yu, Probabilistic skyline operator over
sliding windows, in: Proceedings of the IEEE International Conference on Data
Engineering (ICDE), 2009, pp. 1060–1071.

[14] M. Atallah, Y. Qi, H. Yuan, Asymptotically efficient algorithms for skyline prob-
abilities of uncertain data, ACM Trans. Database Syst. 36 (2) (2011) 12.

[15] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, W. Hong, Model-driven
data acquisition in sensor networks, in: Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), 2004.

[16] M. Alicherry, T. Lakshman, Network aware resource allocation in distributed
clouds, in: Proceedings of the IEEE International Conference on Computer Com-
munications (INFOCOM), 2012, pp. 963–971.

[17] K. Deng, X. Zhou, H. Shen, Multi-source skyline query processing in road net-
works, in: Proceedings of the IEEE International Conference on Data Engineer-
ing (ICDE), IEEE, 2007, pp. 796–805.

[18] Yijie Wang, Sijun Li, Research and performance evaluation of data replication
technology in distributed storage systems, Comput. Math. Appl. 51 (11) (2006)
1625–1632.

[19] F. Li, K. Yi, J. Jestes, Ranking distributed probabilistic data, in: Proceedings of
the International Conference on Management of Data (SIGMOD), ACM, 2009.

[20] M. Ye, X. Liu, W. Lee, D. Lee, Probabilistic top-k query processing in distributed
sensor networks, in: Proceedings of the IEEE International Conference on Data
Engineering (ICDE), 2010.

[21] L. Deng, F. Wang, B. Huang, Probabilistic threshold join over distributed uncer-
tain data, in: Proceedings of the International Conference on Web-Age Infor-
mation Management (WAIM), Springer, 2011, pp. 68–80.

http://refhub.elsevier.com/S2214-5796(14)00004-5/bib52653230303761s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib52653230303761s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib52653230303761s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5472616E32303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5472616E32303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5472616E32303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib477570746132303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib477570746132303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib477570746132303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4368656E3230303561s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4368656E3230303561s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4368656E3230303561s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib50656932303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib50656932303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib50656932303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib53756E3230313141s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib53756E3230313141s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib426F727A736F6E796932303031s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib426F727A736F6E796932303031s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib426F727A736F6E796932303031s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5065693230303761s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5065693230303761s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5065693230303761s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4C69616E32303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4C69616E32303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4C69616E32303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib426F686D32303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib426F686D32303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib426F686D32303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4174616C6C616832303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4174616C6C616832303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4174616C6C616832303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib43687269737469616E32303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib43687269737469616E32303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib43687269737469616E32303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5A68616E673230303962s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5A68616E673230303962s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5A68616E673230303962s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib6174616C6C6168323031316173796D70746F746963616C6C79s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib6174616C6C6168323031316173796D70746F746963616C6C79s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4465736870616E646532303034s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4465736870616E646532303034s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4465736870616E646532303034s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib416C6963686572727932303132s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib416C6963686572727932303132s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib416C6963686572727932303132s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib44656E6732303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib44656E6732303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib44656E6732303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib3138s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib3138s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib3138s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4C6932303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4C6932303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib59653230313050726F626162696C6973746963s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib59653230313050726F626162696C6973746963s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib59653230313050726F626162696C6973746963s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib64656E673230313170726F626162696C6973746963s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib64656E673230313170726F626162696C6973746963s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib64656E673230313170726F626162696C6973746963s1

JID:BDR AID:3 /FLA [m5G; v 1.134; Prn:25/07/2014; 8:33] P.14 (1-14)

14 X. Li et al. / Big Data Research ••• (••••) •••–•••
[22] S. Garg, S. Versteeg, R. Buyya, A framework for ranking of cloud computing
services, Future Gener. Comput. Syst. 29 (4) (2013) 1012–1023.

[23] S. Wang, B. Ooi, A. Tung, L. Xu, Efficient skyline query processing on peer-to-
peer networks, in: Proceedings of the IEEE International Conference on Data
Engineering (ICDE), IEEE, 2007, pp. 1126–1135.

[24] A. Vlachou, C. Doulkeridis, Y. Kotidis, M. Vazirgiannis, Skypeer: efficient
subspace skyline computation over distributed data, in: Proceedings of the
23rd IEEE International Conference on Data Engineering (ICDE), IEEE, 2007,
pp. 416–425.

[25] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, Y. Zhou, Parallel distributed processing of
constrained skyline queries by filtering, IEEE Trans. Knowl. Data Eng. 21 (7)
(2008) 546–555.

[26] L. Chen, B. Cui, H. Lu, L. Xu, Q. Xu, iSky: efficient and progressive skyline
computing in a structured P2P network, in: Proceedings of the 28th IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS), IEEE, 2008,
pp. 160–167.

[27] L. Zhu, Y. Tao, S. Zhou, Distributed skyline retrieval with low bandwidth con-
sumption, IEEE Trans. Knowl. Data Eng. (2009) 384–400.

[28] W. Balke, U. Güntzer, J. Zheng, Efficient distributed skylining for web infor-
mation systems, in: Proceedings of the International Conference on Extending
Database Technology (EDBT), 2004.

[29] S. Sun, Z. Huang, H. Zhong, D. Dai, H. Liu, J. Li, Efficient monitoring of skyline
queries over distributed data streams, Knowl. Inf. Syst. 25 (3) (2010) 575–606.

[30] Z. Huang, C. Jensen, H. Lu, B. Ooi, Skyline queries against mobile lightweight
devices in MANETs, in: Proceedings of the 22nd IEEE International Conference
on Data Engineering (ICDE), IEEE, 2006, p. 66.

[31] J. Xin, G. Wang, L. Chen, X. Zhang, Z. Wang, Continuously maintaining slid-
ing window skylines in a sensor network, in: Proceedings of the International
Conference on Database Systems for Advanced Applications (DASFAA), 2007.

[32] X. Ding, H. Jin, Efficient and progressive algorithms for distributed skyline
queries over uncertain data, IEEE Trans. Knowl. Data Eng. 24 (8) (2012)
1448–1462.

[33] X. Wang, Y. Jia, Grid-based probabilistic skyline retrieval on distributed uncer-
tain data, in: Proceedings of the International Conference on Database Systems
for Advanced Applications Workshops (DASFAAW), 2011, pp. 538–547.

[34] K. Hose, A. Vlachou, A survey of skyline processing in highly distributed envi-
ronments, VLDB J. 21 (3) (2012) 359–384.

[35] Y. Wang, X. Li, X. Li, Y. Wang, A survey of queries over uncertain data, Knowl.
Inf. Syst. 37 (3) (2013) 485–530.

[36] K. Hose, C. Lemke, K. Sattler, Processing relaxed skylines in PDMS using
distributed data summaries, in: Proceedings of the 15th ACM International
Conference on Information and Knowledge Management (CIKM), ACM, 2006,
pp. 425–434.

[37] E. Wu, Y. Diao, S. Rizvi, High-performance complex event processing over
streams, in: Proceedings of the International Conference on Management of
Data (SIGMOD), ACM, 2006, pp. 407–418.

[38] A. Vlachou, C. Doulkeridis, Y. Kotidis, M. Vazirgiannis, Efficient routing of sub-
space skyline queries over highly distributed data, IEEE Trans. Knowl. Data Eng.
22 (12) (2010) 1694–1708.

[39] K. Fotiadou, E. Pitoura, Bitpeer: continuous subspace skyline computation with
distributed bitmap indexes, in: Proceedings of the International Workshop on
Data Management in Peer-to-Peer Systems (DaMaP), ACM, 2008, pp. 35–42.

[40] S. Wang, Q. Vu, B. Ooi, A. Tung, L. Xu, Skyframe: a framework for skyline query
processing in peer-to-peer systems, VLDB J. 18 (1) (2009) 345–362.

[41] J. Rocha-Junior, A. Vlachou, C. Doulkeridis, K. Nørvåg, Agids: a grid-based strat-
egy for distributed skyline query processing, in: Proceedings of the Data Man-
agement in Grid and Peer-to-Peer Systems (Globe), 2009.

[42] J. Rocha-Junior, A. Vlachou, C. Doulkeridis, K. Nørvåg, Efficient execution plans
for distributed skyline query processing, in: Proceedings of the 14th Inter-
national Conference on Extending Database Technology (EDBT), ACM, 2011,
pp. 271–282.

[43] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-
addressable network, in: Proceedings of the ACM International Conference on
the Applications, Technologies, Architectures and Protocols for Computer Com-
munication (SIGCOMM), 2001.

[44] H. Jagadish, B. Ooi, Q. Vu Baton, A balanced tree structure for peer-to-peer
networks, in: Proceedings of the International Conference on Very Large Data
Bases (VLDB), VLDB Endowment, 2005, pp. 661–672.

[45] Y. Yang, Y. Wang, Towards estimating expected sizes of probabilistic skylines,
Sci. China, Ser. F, Inf. Sci. 54 (12) (2011) 2554–2564.

[46] C. Böhm, A. Pryakhin, M. Schubert, The Gauss-tree: efficient object identifica-
tion in databases of probabilistic feature vectors, in: Proceedings of the 22nd
IEEE International Conference on Data Engineering (ICDE), 2006.

[47] X. Li, Y. Wang, X. Li, Y. Wang, Parallelizing skyline queries over uncertain data
streams with sliding window partitioning and grid index, Knowl. Inf. Syst.,
http://dx.doi.org/10.1007/s10115-013-0725-8.

[48] A. Sarma, O. Benjelloun, A. Halevy, J. Widom, Working models for uncertain
data, in: Proceedings of the IEEE International Conference on Data Engineering
(ICDE), 2006.
[49] Y. Tao, X. Xiao, R. Cheng, Range search on multidimensional uncertain data,
ACM Trans. Database Syst. 32 (3) (2007) 15–63.

[50] M. Soliman, I. Ilyas, K. Chang, Probabilistic top-k and ranking-aggregate queries,
ACM Trans. Database Syst. 33 (3) (2008) 1–54.

[51] N. Dalvi, D. Suciu, Efficient query evaluation on probabilistic databases, VLDB J.
16 (4) (2007) 523–544.

[52] T. Ge, S. Zdonik, S. Madden, Top-k queries on uncertain data: on score distribu-
tion and typical answers, in: Proceedings of the ACM International Conference
on Management of Data (SIGMOD), 2009.

[53] X. Li, Y. Wang, X. Li, Y. Wang, Parallel skyline queries over uncertain data
streams in cloud computing environments, Int. J. Web Grid Serv. 10 (1) (2014)
24–53.

Xiaoyong Li received the B.S. degree in computer
science and technology from the School of Informa-
tion Science and Technology in Xiamen University,
China, in 2006, and received the M.S. and Ph.D. de-
grees in computer science and technology from the
School of Computer Science in the National University
of Defense Technology, China, in 2008 and 2013, re-
spectively. He is a research assistant in National Uni-
versity of Defense Technology. He is also a member of

CCF, IEEE and ACM. His current research interests lie in the areas of data
stream management, network computing, uncertain queries, and cloud
computing.

Yijie Wang received the Ph.D. degree in computer
science and technology from the School of Computer
Science in the National University of Defense Technol-
ogy, China in 1998. She was a recipient of the Na-
tional Excellent Doctoral Dissertation (2001), a recipi-
ent of Fok Ying Tong Education Foundation Award for
Young Teachers (2006) and a recipient of the Natural
Science Foundation for Distinguished Young Scholars
of Hunan Province (2010). Now she is a Professor in

the National Key Laboratory for Parallel and Distributed Processing, Na-
tional University of Defense Technology. Her research interests include
network computing, massive data processing, and parallel and distributed
computing.

Xiaoling Li received the B.S. and M.S. degrees in
computer science and technology from the School of
Computer Science in the National University of De-
fense Technology, China, in 2007 and 2008, respec-
tively. He is a research assistant in National University
of Defense Technology. He is also a student member
of CCF and ACM. His current research interests lie in
the areas of distributed computing, network virtual-
ization, cloud computing, and trusted computing.

Xiaowei Wang received the B.S., M.S. and Ph.D.
degrees in computer science and technology from the
School of Computer Science in the National Univer-
sity of Defense Technology, China, in 2003, 2005 and
2012, respectively. His current research interests lie in
the areas of massive data management, data mining,
and cloud computing.

Jie Yu received the B.S. and M.S. degrees in com-
puter science and technology from the School of Com-
puter Science in the National University of Defense
Technology, China, in 2011 and 2013, respectively.
He is currently a Ph.D. candidate in the School of
Computer Science in the National University of De-
fense Technology. His current research interests in-
clude distributed systems, massive data management
and cloud computing.

http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4761726732303132s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4761726732303132s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib57616E6732303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib57616E6732303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib57616E6732303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib566C6163686F7532303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib566C6163686F7532303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib566C6163686F7532303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib566C6163686F7532303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib43756932303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib43756932303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib43756932303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4368656E3230303861s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4368656E3230303861s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4368656E3230303861s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4368656E3230303861s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5A687532303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5A687532303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib42616C6B6532303034s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib42616C6B6532303034s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib42616C6B6532303034s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib73756E32303130656666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib73756E32303130656666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4875616E673230303661s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4875616E673230303661s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4875616E673230303661s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib58696E32303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib58696E32303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib58696E32303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib44696E6732303132456666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib44696E6732303132456666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib44696E6732303132456666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib57616E673230313147726964s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib57616E673230313147726964s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib57616E673230313147726964s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib486F736532303131s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib486F736532303131s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib77616E6732303133737572766579s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib77616E6732303133737572766579s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib486F736532303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib486F736532303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib486F736532303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib486F736532303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib577532303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib577532303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib577532303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib766C6163686F7532303130656666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib766C6163686F7532303130656666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib766C6163686F7532303130656666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib466F746961646F7532303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib466F746961646F7532303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib466F746961646F7532303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib77616E6732303039736B796672616D65s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib77616E6732303039736B796672616D65s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib526F6368612D4A756E696F7232303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib526F6368612D4A756E696F7232303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib526F6368612D4A756E696F7232303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib726F63686132303131656666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib726F63686132303131656666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib726F63686132303131656666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib726F63686132303131656666696369656E74s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5261746E6173616D7932303031s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5261746E6173616D7932303031s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5261746E6173616D7932303031s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5261746E6173616D7932303031s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4A6167616469736832303035s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4A6167616469736832303035s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib4A6167616469736832303035s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib59616E6732303131746F7761726473s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib59616E6732303131746F7761726473s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib426F686D32303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib426F686D32303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib426F686D32303036s1
http://dx.doi.org/10.1007/s10115-013-0725-8
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5361726D6132303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5361726D6132303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib5361726D6132303036s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib54616F3230303762s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib54616F3230303762s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib536F6C696D616E32303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib536F6C696D616E32303038s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib44616C766932303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib44616C766932303037s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib476532303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib476532303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib476532303039s1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib6C6932303134706172616C6C656Cs1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib6C6932303134706172616C6C656Cs1
http://refhub.elsevier.com/S2214-5796(14)00004-5/bib6C6932303134706172616C6C656Cs1

	GDPS: An Efﬁcient Approach for Skyline Queries over Distributed Uncertain Data
	1 Introduction
	2 Related work
	2.1 Distributed skyline queries
	2.1.1 Approaches with space partitioning
	2.1.2 Approaches with data partitioning
	2.1.3 Approaches in other environments

	2.2 Uncertain skyline queries

	3 Preliminaries
	3.1 Uncertainty model
	3.2 System model
	3.3 Problem deﬁnition

	4 Grid summary
	4.1 Grid partitioning
	4.2 Grid-based deﬁnitions
	4.3 Grid summary collection

	5 The general framework of GDPS
	5.1 Preprocess with grid ﬁltration
	5.2 Iteration with optimized feedback

	6 Further optimization
	6.1 Local pruning optimization
	6.2 Tuple selecting optimization
	6.3 Server pruning optimization

	7 Experimental evaluation
	7.1 Experimental setup
	7.2 Performance with tuple selecting strategies
	7.3 GDPS performance with parameters
	7.3.1 Performance with dimensionality
	7.3.2 Performance with number of local sites
	7.3.3 Performance with probability threshold
	7.3.4 Performance with grid partition number

	7.4 Evaluation with real data sets

	8 Conclusions
	Acknowledgements
	References

