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Cloud computing is a type of parallel distributed computing system that has become a frequently used 
computer application. MapReduce is an effective programming model used in cloud computing and large-
scale data-parallel applications. Hadoop is an open-source implementation of the MapReduce model, and 
is usually used for data-intensive applications such as data mining and web indexing. The current Hadoop 
implementation assumes that every node in a cluster has the same computing capacity and that the 
tasks are data-local, which may increase extra overhead and reduce MapReduce performance. This paper 
proposes a data placement algorithm to resolve the unbalanced node workload problem. The proposed 
method can dynamically adapt and balance data stored in each node based on the computing capacity 
of each node in a heterogeneous Hadoop cluster. The proposed method can reduce data transfer time to 
achieve improved Hadoop performance. The experimental results show that the dynamic data placement 
policy can decrease the time of execution and improve Hadoop performance in a heterogeneous cluster.

© 2014 Published by Elsevier Inc.
1. Introduction

In recent years, with the rapid development of the Internet, 
network service has become one of the most frequently used com-
puter applications. Search engine, webmail, and social network ser-
vices are currently indispensable data-intensive applications. Be-
cause increasingly more people use web services, processing a 
large amount of data efficiently can be a substantial problem. Cur-
rently, the method for processing a large amount of data involves 
adopting parallel computing. In 2004, Google proposed MapReduce 
[10]. Since then the Google File System [11] and Bigtable [8] have 
used MapReduce to construct a data center that can process at 
least 20 petabytes a day. Because of the scalability, simplicity, and 
fault tolerance of the MapReduce model, it is frequently used in 
parallel data processing in large-scale clusters. Yahoo! [6] is the 
main developer of Hadoop, which is the most famous open source 
that implements the Google MapReduce model [2,3]. Hadoop is 
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used to process hundreds of terabytes of data on Linux with 10,000 
cores. In addition, Facebook [7] and Amazon [1] have also adopted 
Hadoop to manage and process large amounts of data.

MapReduce exhibits several advantages that differ from those of 
traditional parallel computing systems. First, regarding scalability, 
even when new machines are added to a cluster, the system still 
works well without reconstruction or much modification. Second, 
regarding fault tolerance, the MapReduce model can automatically 
manage failures and mitigate complexity of fault tolerance mecha-
nisms. When a machine fails, MapReduce moves the task that was 
run on the failed machine to be rerun on another machine. Third, 
regarding simplicity, programmers can use the MapReduce model 
without needing to understand thoroughly the details of parallel 
distributed programming. A program executed using the MapRe-
duce model partitions jobs into a numerous tasks to be assigned 
and run on multiple nodes in the cluster, and the program collects 
the processing results of each node to be return.

In the Hadoop architecture, data locality is one of the cru-
cial factors affecting Hadoop performance. However, in a hetero-
geneous environment, the data required for performing a task is 
often nonlocal, which affects the performance of Hadoop. In a 
Hadoop default environment, each node has the same ability of 
execution and hard disk capacity in a homogeneous cluster. When 
data are written into the Hadoop distributed file systems (short 
HDFS), the data are partitioned into numerous blocks of the same 
size, and Hadoop balance the load by distributing the blocks to 
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each node equally. Such a data placement strategy can achieve load 
balance, which is highly efficient and practical in a homogeneous 
cluster. In a homogeneous environment, each node is assigned to 
the same workload, implying that moving a large amount of data 
from one node to another is unnecessary. However, in a heteroge-
neous environment, the nodes of the execution and hard disk ca-
pacity may not be the same. If these nodes are executed using the 
Hadoop default strategy, a higher execution capacity node com-
pletes tasks with local data blocks faster than the lower execution 
capacity nodes can. After executing tasks with local data blocks, 
the faster nodes process the tasks with nonlocal data blocks. Be-
cause the unprocessed data blocks may be located in slower nodes, 
additional overhead is required to move these data blocks from 
a fast node to a slow node. The nodes demonstrating different 
abilities create the need for more data blocks to be moved; thus, 
the extra overhead becomes higher, resulting in decreased over-
all performance of Hadoop. Therefore, we develop a dynamic data 
placement policy in a heterogeneous environment to reduce the 
transmission time required to move data blocks from fast nodes to 
slow nodes, thereby improving the performance of Hadoop.

In this study, we develop a data placement strategy that is dif-
ferent from the Hadoop default strategy. The original strategy in 
Hadoop assumes that each node has the same capacity in a ho-
mogeneous environment, and each node is assigned to the same 
workload. However, in a heterogeneous environment, this strategy 
may reduce the efficiency of Hadoop. In the proposed strategy, the 
data are assigned to nodes according to their execution abilities. 
Although the data or resources used by a node can be decreased 
or increased after the data are written into HDFS, the proposed 
strategy can dynamically adjust and reallocate data. In an experi-
ment, we compare the proposed strategy with the Hadoop default 
strategy. We adopt two jobs, WordCount and Grep, to test the 
strategies. For the WordCount job, we improve the execution time 
by nearly 14.5%, and grep could be improved the execution time of 
nearly 23.5%.

The remainder of the paper is organized as follows. Section 2
describe the Hadoop system architecture, MapReduce model, HDFS, 
and motivation for this study. Section 3 describes additional details 
about the proposed strategy that involves selecting the node to al-
locate data blocks and why they are reallocated. Section 4 presents
the experimental results. Finally, Section 5 presents the conclusion 
of this study.

2. Related works and motivation

This section introduces the Hadoop system and motivation for 
this study. Section 2.1 describes the features of Hadoop. Section 2.2
describes the MapReduce model, Section 2.3 presents an overview 
of HDFS. Section 2.4 describes the details of the problem to be 
solved.

2.1. Hadoop

Hadoop is a well-known implementation of the MapReduce 
model platform, which is an open-source supported by the Apache 
Software Foundation. Hadoop is user-friendly for distributed appli-
cation developers because it mitigates complicated managements. 
Hadoop consists of two main parts: MapReduce [5] and Hadoop 
Distributed File System (HDFS) [4], in which MapReduce is re-
sponsible of parallel computing and the HDFS is responsible for 
data management. In the Hadoop system, MapReduce and HDFS 
management parallel process jobs and data, respectively. Hadoop 
partitions a job and data into tasks and blocks, and assigns them 
to nodes in a cluster. Hadoop adopts master/slave architecture, 
in which a master node manages other slave nodes in the clus-
ter. In the MapReduce model, the master is called JobTracker, and 
each slave is called TaskTracker. In the HDFS, the master is called 
NameNode, and each slave is called DataNode. Job and data distri-
butions are managed by the master to assign nodes for computing 
and storing. In the default setting of Hadoop, node computing ca-
pacity and storage capacity are the same in the Hadoop cluster. In 
such a homogeneous environment, the data placement strategy of 
Hadoop can enhance the efficiency of the MapReduce model.

Hadoop uses the distributed architecture that can greatly im-
prove the efficiency of reading and computing, and also uses nu-
merous general PCs that can build a high-performance comput-
ing platform. Spending large amounts of money to buy high-end 
servers is unnecessary. For example, assume that the price of a 
high-end server can buy 10 or more PCs, but the performance of a 
high-end server is lower than 10 sets of the overall performance of 
the PCs. This can further reduce the cost for the data center. This 
is also one of the reasons why Hadoop is frequently used.

2.2. MapReduce

MapReduce is a programming model used in clusters that have 
numerous nodes and use considerable computing resources to 
manage large amounts of data in parallel. MapReduce is proposed 
by Google in 2004. In the MapReduce model, an application to be 
executed is called a “job”. A job can be divided into two parts: 
“map tasks” and “reduce tasks”, in which the map-tasks run the 
map function and the reduce-tasks run the reduce function. Map 
function processes input data assigned by the master and produce 
many intermediate 〈key, value〉 pairs. Based on 〈key, value〉 pairs 
that are generated by map function processes, the reduce function 
then merges, sorts, and finally returns the result.

The MapReduce model mainly entails applying the idea of di-
vide and conquer. It distributes a large amount of data to many 
nodes to perform parallel processing, which reduces the execution 
time and improves the performance. At runtime, input data are 
divided into many of the same sized data blocks; these blocks are 
then assigned to nodes that perform the same map function in par-
allel. After the map function is performed, the generated output is 
an intermediate datum composed of several 〈key, value〉 pairs. The 
nodes that perform the reduce function obtain these intermediate 
data, and finally generate the output data. Fig. 1 shows the MapRe-
duce flow chart.

When executing jobs, the JobTracker manages all jobs schedul-
ing and task distributions, and each TaskTracker is responsible for 
performing tasks and returns the results to the JobTracker. Job-
Tracker and TaskTrackers use heartbeat message to communicate 
and transfer data. Each TaskTtracker has a different number of task 
slots, which are usually based on the performance of nodes, to set 
the number of task slots. Each task slot can perform a task at once. 
When a TaskTracker has empty task slots, it uses the regular heart-
beat message to inform the JobTracker. If some tasks have yet to be 
performed, the JobTracker uses a heartbeat response for assigning 
tasks to TaskTrackers and sends the information required to per-
form the tasks. When the task is completed, a TaskTracker uses a 
heartbeat for sending data and informing the JobTracker.

The advantage of MapReduce is that it is easy to use. By using 
this model, many parallel computing details are hidden. The sys-
tem automatically assigns nodes that differ from the mapper and 
reducer for computing. When programming, a programmer does 
not need to spend extra time on data and program division. There-
fore, a programmer does not need to have a deep understanding of 
parallel computing. A programmer must simply focus on the nor-
mal function processing rather than the parallel processing. This 
can simplify the application development process substantially and 
shorten the development time.

In recent years, MapReduce has been used increasingly more in 
large-scale distributed systems. For example, Google uses MapRe-
duce to manage large amounts of data daily. Yahoo! is developed 
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Fig. 1. The overview of the MapReduce model.
Hadoop, which is a platform that involves using the MapReduce 
model, and Mars [12] also entails using the MapReduce model de-
veloped as a graphics processing unit (GPU) hardware platform.

2.3. HDFS

The HDFS is implemented by Yahoo! based on the Google File 
System, which is used with the MapReduce model. It consists of a 
NameNode and many DataNodes. The NameNode is responsible for 
the management of the entire file system, file information (such 
as namespace and metadata), and storage and management. It also 
partitions the files that are written in HDFS into many same sized 
blocks, and then allocates these blocks to different DataNodes. By 
contrast, DataNodes are responsible for storing data blocks. The 
initial default block size of the HDFS is 64 MB. When a file is less 
than 64 MB and does not take up an entire block, it does not waste 
the extra space. When an HDFS client reads data from the HDFS, it 
asks the NameNode to find DataNodes that have data blocks that 
must be read, and then data from those DataNodes are read simul-
taneously and finally combined into a complete file. When writing 
data, an HDFS client first requests the NameNode for creating a 
file. After the NameNode accepted, the HDFS client directly writes 
the file to the assigned DataNodes.

Using this distributed file system, the read rate is much faster 
than that of a single node. When a larger file must be read, the 
file can be read from many nodes simultaneously, which is more 
efficient than a single node read. This reduces the time of access 
data and is similar to the average depletion of a hard disk, which 
further reduces the cost of hardware maintenance. Regarding large 
data storage, even if the size of the files that must be written to 
the HDFS is larger than one physical hard disk capacity, the file 
can be divided into several blocks to be stored. For example, each 
node in the cluster is only 500 GB of hard disk capacity, but this 
cluster could still be used to store files of over 1 TB even 1 PB, 
as long as the total hard disk capacity contributed by all nodes 
in the cluster is adequately large. Fig. 2 shows a simplified HDFS 
architecture diagram.

The Hadoop default data placement strategy assumes that the 
storage capacity of each node is the same, and Hadoop balances 
loads by distributing the blocks to each node averagely. Under this 
assumption, the NameNode assigns map tasks to DataNodes with 
data blocks needing to be processed. This can not only reduce un-
necessary data transfer time but achieve the load balancing effect 
and further enhance the effectiveness of Hadoop.

2.4. Motivation

Hadoop assumes that the computing capacity of each node in 
a cluster is the same. In such a homogeneous environment, each 
node is assigned to the same load, and thus it can fully use the 
resources in the cluster. There would not be many nodes that are 
idle or overloaded. However, in real-world applications, clusters are 
Fig. 2. The overview of HDFS read and write.

often worked in a heterogeneous environment [9,13–15]. In such a 
cluster, there is likely to be various specifications of PCs or servers, 
which causes the abilities of the nodes to differ. If such a hetero-
geneous environment still uses the original Hadoop strategy that 
distributes data blocks into each node equally and the load is also 
evenly distributed to each node, then the overall performance of 
Hadoop may be reduced. The major reason is that different com-
puting capacities between nodes cause the task execution time to 
differ so that the faster execution-rate nodes finish processing lo-
cal data blocks faster than other slower nodes do. At this point, the 
master still assigns non-performed tasks to the idle faster node, 
but this node does not own the data needed for processing. The 
required data should be transferred from another node through 
the network. Because waiting for the data transmission time in-
creases the task execution time, it causes the entire job execution 
time to become prolonged. A large number of moved data affects 
the overall Hadoop performance.

For example, in Fig. 3, three nodes are in the cluster, and the 
computing capacities of the three nodes are different. The comput-
ing capacity of Node A is fastest, followed by Node B, and Node C 
is the slowest. Suppose that the computing capacity of Node A is 
two times faster than Node B, and three times faster than Node C. 
As shown in Fig. 3(a), the processing job requiring data blocks 
are near-equally distributed in each node: Node A has three data 
blocks, Node B has four, and Node C has four. After the job begins 
execution, Node A will be the fastest finished node that processes 
the data blocks stored in Node A. As shown in Fig. 3(b), at this 
point, Node B and Node C are finished processing one block respec-
tively; they then process the second block that has not yet been 
processed. Because Node A has an empty task slot, the NameNode 
assigns the unprocessed task to Node A; Node A must then wait 
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Fig. 3. The default data allocation strategy of Hadoop.
for the processing task that requires the data transfer from Node B 
or C (from B to A is assumed in Fig. 3(c)). As shown in Fig. 3(c), 
Node A should wait until the data transfer is finished before con-
tinuing. Finally, as shown in Fig. 3(f), Node A should transfer three 
data blocks from the other two nodes. This extends the job execu-
tion time. A job that has a large amount of data blocks needing to 
be transferred, affects Hadoop performance.

If the amount of transferred data could be reduced, it could ef-
fectively reduce the idle time of the node waiting for data transfer, 
then reduce the task execution time, and further improve the per-
formance of Hadoop. As mentioned, if the average distribution in 
three nodes data blocks in accordance with three node computing 
capacity reallocation, the total execution time can be further re-
duced. Suppose that Node A has six data blocks, Node B has three, 
while Node C has two. As shown in Fig. 4, when performing job, 
Node A performs fastest, but Node A has the data blocks more than 
Node B and Node C, no need to transfer data blocks, nodes could 
use local data to perform tasks. Therefore, the job execution time 
and usage rate of the network can be reduced.

3. Dynamic data placement strategy

In a heterogeneous cluster, the computing capacity for each 
node is not the same. Moreover, for different types of job, the com-
puting capacity ratio of nodes are also not the same. Therefore, 
a Dynamic Data Placement (DDP) strategy is presented according 
to the types of jobs for adjusting the distribution of data blocks. 
The proposed algorithm, namely DDP, consists of two main phases: 
the first phase is performed when the input data are written into 
the HDFS, and the second phase is performed when a job is pro-
cessed. Section 3.1 presents the core of the proposed algorithm: 
how to build a RatioTable. Section 3.2 presents Phase 1: initial allo-
cation of data. Section 3.3 presents Phase 2: capacity decision and 
data reallocation.

3.1. RatioTable

When Hadoop starts, a RatioTable is created in the NameNode, 
which is used to determine the allocation ratio of data blocks in 
nodes when the data is written into the HDFS, and is used to de-
termine whether the data blocks must be reallocated when the job 
is executed. The RatioTable records the types of jobs and the com-
puting capacity ratio of each node. The computing capacity of each 
node is based on the average execution time of a single task in 
that node. The NameNode calculates the computing capacity ratio 
for each node according to the task execution time return by the 
heartbeat message of each DataNode.

Table 1 shows an example of the RatioTable. There are three 
nodes in the cluster in which the computing capacity of each node 
is not the same: Node A is the fastest, followed by Node B, and 
Node C is the slowest. The cluster performs both jobs, WordCount 
and Grep. Hence, there are two jobs recorded in the RatioTable. For 
the WordCount job, the computing capacity ratio between nodes 
is 3:1.5:1, in which Node A is three times faster than Node C, and 
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Fig. 4. The best case of data allocation.
Table 1
RatioTable example.

Node A Node B Node C

WordCount 3 1.5 1
Grep 2.5 1.5 1

Node B is one and a half times faster than Node C. For the Grep 
job, the ratio is 2.5:1.5:1, in which Node A is two and a half times 
faster than Node C, and Node B is one and a half times faster than 
Node C.

3.2. Phase 1

When data are written into the HDFS, NameNode first checks 
the RatioTable. These data are used to determine whether this type 
of job has been performed. If the RatioTable has a record of this 
job, the newly written data will be allocated to each node in accor-
dance with the computing capacity that records in the RatioTable. 
If the RatioTable has no record of this job, the data will be equally 
distributed to the nodes in the cluster, and the NameNode will 
add a new record of this type of job in the RatioTable. Each node’s 
computing capacity will be set at 1 for this type of job.

As shown in Table 1, if there are data to be written into the 
HDFS, assume that these data can be partitioned into 11 data 
blocks. If the data are performed for WordCount, then the data 
will be allocated according to the ratio recorded in the RatioTable. 
Therefore, Node A is assigned six (11 ∗ [ 3

3+1.5+1 ] = 6) data blocks, 
Node B is assigned three (11 ∗ [ 1.5

3+1.5+1 ] = 3) data blocks, and 
Node C is assigned two (11 ∗ [ 1

3+1.5+1 ] = 2) data blocks. If the per-
formed job is TeraSort, the NameNode will check the RatioTable 
and find no record of TeraSort. In this case, the data will be equally 
distributed to the three nodes, a record for TeraSort is then cre-
ated for the RatioTable, and the computing capacity among Node 
Fig. 5. The flow chart of Phase 1.

A, Node B and Node C for TeraSort to be set at 1:1:1. Fig. 5 shows 
the flow chart of Algorithm 1 (Phase 1).

3.3. Phase 2

Phase 2 starts when the job begins execution; as the job starts 
executing, each node will first receive the first batch of tasks. 
When the task finishes executing in each DataNode, all DataNodes 
will return the task execution time to the NameNode. The Name-
Node calculates the computing capacity ratio of this job for each 
node according to those execution time. However, each node has 
a different number of task slots. In a DataNode, the tasks in task 
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Algorithm 1: Initial_Data_Allocation.

1 When a data is written into HDFS:
2 JobType ← job type of the data will be performed;
3 DataSize ← obtain from data information;
4 BlockSize ← set by user;

5 TotalBlockNumber = � DataSize
BlockSize �;

6 set Same = 0;
7 for each record in the RatioTable do
8 if compare JobType with record are the same then
9 Same = 1;

10 ComputingCapacityRatio ← obtain from record;
11 for each DataNode in the cluster do
12 NodeCapacity ← obtain from ComputingCapacityRatio;

13 BlockNumber = TotalBlockNumber ∗ [ NodeCapacity∑
each node capacity ];

14 Allocate BlockNumber data blocks to the DataNode;

15 if Same = 0 then
16 ComputingCapacityRatio ← set 1 for each node;
17 Add JobType with ComputingCapacityRatio to RatioTable;
18 for each DataNode in the cluster do
19 NodeCapacity = 1;

20 BlockNumber = TotalBlockNumber ∗ [ NodeCapacity∑
each node capacity ];

21 Allocate BlockNumber data blocks to the DataNode.

slots can be processed in parallel. This causes the computing ca-
pacity ratio that is calculated based on the task execution time to 
be inaccurate. Therefore, the task execution time requires calculat-
ing the ratio of computing capacity for the nodes, and the number 
of task slots must be considered. Therefore, the computing capac-
ity adopts the average time required to complete one task.

For example, there are two node: Node A and Node B in which 
Node A is two times faster than Node B. Moreover, assume that 
the map task slot number of Node A is four, and the number of 
Node B is 2. Assume that the times required by Node A to exe-
cute four tasks are 45, 43, 43, and 46 seconds, respectively. The 
four tasks are performed simultaneously, which on average, re-
quires 44.25 seconds to complete one task. The times required 
by Node B to execute two tasks are 39 and 40 seconds, which 
takes an average execution time of 39.5 seconds. If it is just in 
accordance with the average execution time to compare the ef-
ficiency of nodes, Node B is efficiency than that of Node A, but 
actually Node A is two times faster than Node B. Although the 
Node B average execution time is shorter than that of Node A, but 
the number of task slots set for Node A and Node B are not the 
same; Node A can execute four tasks simultaneously, and Node B
can perform only two tasks simultaneously. Therefore, it is rea-
sonable to compute the average time required to complete a task 
obtained by letting the execution time be divided by the number 
of task slots. For mathematical formulas, let Tavg(X) denote the av-
erage execution time to complete a batch of tasks in node X , let 
S(X) denote the number of task slots set for X , and Tt(X) de-
note the average time required to complete one task for X . Then, 
Tt(X) = [ Tavg(X)

S(X)
]. As in the mentioned example, Tt(A) = 11 and 

Tt(B) = 19. Therefore, the efficiency of Node A is close two times 
faster than Node B.

The NameNode will use the Tt(X) of each node X to calcu-
late the computing capacity ratio of each node. After the Name-
Node calculates the computing capacity ratio, it will compare the 
record of the RatioTable. If the computing capacity ratio and record 
are the same, then it will not be transferred to any data blocks. 
However, if they are not same, then data blocks will be trans-
ferred according to the new ratio calculated by the NameNode, 
and the NameNode will modify the record at the RatioTable. The 
transferred data blocks are processed in the background, and the 
Hadoop job does not need to wait until the data transfer is com-
Fig. 6. The flow chart of Phase 2.

pleted to be executed. Fig. 6 is the flow chart of Algorithm 2
(Phase 2).

Algorithm 2: Capacity_Decision_and_Data_Reallocation.

1 When a job start:
2 NodeNumber ← obtain from NameNode;
3 CurrentNumber[NodeNumber] ← set 0 for all entries; // record the 

number of task execution time received from each 
node.

4 TotalExecutionTime[NodeNumber] ← set 0 for all entries;
5 while receive the task execution time from DataNode[i] do
6 SlotNumber ← obtain from DataNode[i];
7 ExecutionTime ← task execution time;
8 TotalExecutionTime[i] = TotalExecutionTime[i] + ExecutionTime;
9 CurrentNumber[i] = CurrentNumber[i] + 1;

10 if CurrentNumber[i] = SlotNumber then
11 Tavg = TotalExecutionTime[i]

SlotNumber ;

12 Tt = Tavg
SlotNumber ;

13 CurrentNumber[i] = 0;
14 TotalExecutionTime[i] = 0;

15 if obtain Tt for each node then
16 PerformanceRatio ← PerformanceRatio and Tt are inversely 

proportional;
17 for record in the RatioTable do
18 if compare PerformanceRatio with record are different then
19 Reallocation data blocks according to PerformanceRatio;
20 Modify the record according to PerformanceRatio.

4. Experimental results

This section presents the experimental environment and the ex-
perimental results for the proposed algorithm.
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Fig. 7. Experimental environment.
Table 2
Each node specification.

Node CPU Memory Disk

Node A (Master) 2 2 GB 50 GB
Node B (Slave) 4 4 GB 50 GB
Node C (Slave) 2 2 GB 50 GB
Node D (Slave) 1 1 GB 50 GB
Node E (Slave) 1 1 GB 50 GB

4.1. Environment

The experimental environment is shown in Fig. 7. We use two 
HP ProLiant DL380 G6 servers and each one has 16 CPUs, 20 GB 
memory, and 500 GB disk. We use VirtualBox 4.1.14 to create our 
computing node. In order to achieve the effect of a heterogeneous 
environment, the capacity of the nodes are not the same. We set 
different amounts of CPU and memory on each node. In total, we 
create the five virtual machines: one master and four slaves. One 
virtual machine as the master has 2 CPUs, 2 GB of memory, and 
50 GB disk; one virtual machine as a slave has 4 CPUs, 4 GB of 
memory, and a 50 GB disk; one virtual machine as a slave has 
2 CPUs, 2 GB of memory, and a 50 GB disk; two virtual machines 
as slaves both have 1 CPU, 1 GB of memory, and a 50 GB disk. 
Table 2 presents the specifications of each node. All of the virtual 
machines adopt the operating system as Ubuntu 12.04 LTS, and the 
used Hadoop version is Hadoop-0.20.205.0.

4.2. Result

WordCount and Grep are two types of jobs run to evaluate the 
performance of the proposed algorithm in a Hadoop heterogeneous 
cluster. WordCount and Grep are MapReduce applications running 
on a Hadoop cluster. WordCount is an application used for count-
ing the words in the input file, and Grep is used to search for 
regular expressions. In each round, 10 jobs are run simultaneously, 
and each job processes different input data respectively, in which 
the size of all input data is 1 GB. The experimental data are run in 
10 rounds in which each round runs 10 jobs, to average the exe-
cution time.

First, the execution time of WordCount and Grep are measured 
for each node to perform different sizes of data.

Fig. 8 shows that the average execution time of 1 GB and 2 GB 
WordCount job respectively. Fig. 9 shows the average execution 
time of 1 GB and 2 GB Grep job respectively. As shown in Fig. 8
and Fig. 9, the performed data size does not affect the computing 
capacity ratio between nodes. The execution time of each node is 
proportional to the data size.

The data shown in Fig. 8 and Fig. 9 are adopted to calculate 
the computing ratio of each node for two types of jobs, as listed 
in Table 3. According to the experimental results, regardless of the 
size of data to be processed, each node’s computing capacity ratio 
Fig. 8. Execution time of WordCount job on each node.

Fig. 9. Execution time of Grep job on each node.

Table 3
The job computing capacity ratio of each node.

Node Job type

WordCount Grep

Slave 1 4 3
Slave 2 2 1.5
Slave 3 1 1
Slave 4 1 1

is maintained. For a WordCount job, based on the average time of 
one job execution, Slave 1 is four times faster than Slave 3, and 
Slave 2 is two times faster than Slave 3.
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Fig. 10. Average time required to complete a WordCount task on each node.

Fig. 11. Average time required to complete a Grep task on each node.

However, when Hadoop perform jobs, it spends extra time to 
start up and clean up, and the tasks are not only map tasks but 
also include reducing tasks. The proposed algorithm mainly in-
volves the part of the map tasks to optimize. However, according to 
the job execution time, calculating the computing ratio may cause 
slight differences. Therefore, different jobs are considered to mea-
sure the average time required to complete a single task.

Fig. 10 shows the average time required to complete a single 
WordCount local task and nonlocal task. Fig. 11 shows the average 
time required to complete a single Grep local task and nonlocal 
task. As shown in Fig. 10 and Fig. 11, the executing time offset of 
each node for executing the local and nonlocal tasks is the same. 
Regardless of computing capacity, the time offset of executing local 
tasks and nonlocal tasks depends on the size of a data block.

When the size of a data block is set to be larger, the time offset 
of executing a local task and nonlocal task is much larger. Accord-
ing to the experimental results, the local task execution time is 
proportional with the data block size. Therefore, when calculating 
the computing capacity ratio of each node, the local task execution 
time is adopted. The setting of a data block size does not affect 
the computing ratio of each node. Therefore, the experimental data 
block size involves using the Hadoop default 64 MB.

Table 4 shows the computing capacity ratio of the average time 
required to complete a single task. This ratio is calculated accord-
ing to the experimental results shown in Fig. 10 and Fig. 11. For 
a WordCount job, the average time required to complete a single 
task, Slave 1 is four and a half times faster than Slave 3, Slave 2 is 
Fig. 12. Impact of data placement strategy on average execution time of WordCount.

Fig. 13. Impact of data placement strategy on average execution time of Grep.

2 times faster than Slave 3. For a Grep job, Slave 1 is three and a 
half times faster than Slave 3, Slave 2 is 2 times faster than Slave 3. 
This ratio are slightly different from the ratio calculated with job 
execution time, because the job is not only map task also includes 
other actions. Therefore, we adopt the ratio of Table 4 records to 
treat as the computing capacity ratio.

Figs. 12 and 13 represent the average execution time of a Word-
Count and a Grep job, compared with the proposed algorithm and 
another three data allocation strategies. In this experiment, we 
used the size of each data as 2 GB, and the data block size is set 
at 64 MB. Each round executes 10 jobs, and perform a total of five 
rounds in which each job processes different data files. Finally, the 
average execution time of one job is used for evaluation.

As shown in Fig. 12 and Fig. 13, the proposed DDP algorithm 
is compared with the Hadoop default strategy, the best case data 
distribution, and the worst case data distribution. The best case 
of distribution represents all of the task processing local data in 
which no data are required to be transferred. If the data are lo-
cally processed, the data blocks must be allocated according to the 
computing capacity ratio of each node. Therefore, data blocks are 
allocated in accordance with the ratio recorded in Table 4. For ex-
ample, suppose that a WordCount job type of data must be written 
into the HDFS. These data can be partitioned into 17 data blocks, 
and the ratio recorded in Table 4 is 4.5, 2, 1, 1. Therefore, if data 
blocks are allocated according to the ratio, then Slave 1 is assigned 
nine data blocks, Slave 2 is assigned to four blocks, Slave 3 and 
Slave 4 are each assigned two blocks. The worst case indicates 
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Table 4
The task computing capacity ratio of each node.

Node Task type

WordCount Grep

Slave 1 4.5 3.5
Slave 2 2 2
Slave 3 1 1
Slave 4 1 1

Fig. 14. The percent of average execution time of a job compare with Hadoop default 
strategy.

that all of the data blocks are concentrated on the same node so 
that other nodes performing tasks must wait until data blocks are 
transferred from the node storing all data blocks, and the node 
computing capacity must be the slowest. Therefore, the worst case 
is the data blocks being placed in Slave 3 or Slave 4.

Fig. 12 shows the different types of data placement policy im-
pacts on WordCount job execution time. The average execution 
time of DDP is closed to the optimal case. Even if using our ap-
proach the first time to perform this type of job does not follow 
computing capabilities to allocate data blocks, it may result in a 
slight delay at the beginning of execution, but the proposed algo-
rithm will adjust the location of data blocks when job performing, 
and after this, the data of this job type to be written into the HDFS 
will be allocated according to the computing ratio. Therefore, the 
average execution time of the proposed algorithm and the best 
case are nearly identical. As shown in Fig. 14, the comparison with 
Hadoop default strategy, DDP can reduce execution time approxi-
mately 14.5%. As shown in Fig. 15, DDP compared with the worst 
case can improve by approximately 24.7%.

Fig. 13 shows the comparison of different data placement poli-
cies on Grep job execution time. For the Grep job, after using the 
proposed algorithm, the average execution time is also extremely 
close to the best case. As shown in Fig. 14, compared with the 
Hadoop, the DDP can reduce the execution time by approximately 
23.5%. As shown in Fig. 15, compared with the worst case, the DDP 
can improve by approximately 32.1%.

5. Conclusion

This paper proposes a data placement policy (DDP) for map 
tasks of data locality to allocate data blocks. The Hadoop default 
data placement strategy is assumed to be applied in a homoge-
neous environment. In a homogeneous cluster, the Hadoop strategy 
Fig. 15. The percent of average execution time of a job compare with worst case.

can make full use of the resources of each node. However, in a het-
erogeneous environment, a produces load imbalance creates the 
necessity to spend additional overhead. The proposed DDP algo-
rithm is based on the different computing capacities of nodes to 
allocate data blocks, thereby improving data locality and reducing 
the additional overhead to enhance Hadoop performance. Finally 
in the experiment, for two types of applications, WordCount and 
Grep, the execution time of the DDP compared with the Hadoop 
default policy was improved. Regarding WordCount, the DDP can 
improve by up to 24.7%, with an average improvement of 14.5%. 
Regarding Grep, the DDP can improve by up to 32.1%, with an av-
erage improvement of 23.5%. In the future, we will focus on other 
types of jobs to improve Hadoop performance.
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