
JID:BDR AID:1 /FLA [m5G; v 1.134; Prn:21/07/2014; 13:47] P.1 (1-10)

Big Data Research ••• (••••) •••–•••
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

FlexAnalytics: A Flexible Data Analytics Framework for Big Data 

Applications with I/O Performance Improvement ✩

Hongbo Zou a,∗, Yongen Yu b, Wei Tang c, Hsuan-Wei Michelle Chen d

a Queensland University of Technology, Brisbane, Qld 4001, Australia
b Illinois Institute of Technology, Chicago, IL 60616, USA
c Argonne National Laboratory, Argonne, IL 60439, USA
d San Jose State University, San Jose, CA 95192, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

Keywords:
I/O bottlenecks
In-situ analytics
Data preparation
Big data
High-end computing

Increasingly larger scale applications are generating an unprecedented amount of data. However, the 
increasing gap between computation and I/O capacity on High End Computing machines makes a severe 
bottleneck for data analysis. Instead of moving data from its source to the output storage, in-situ analytics 
processes output data while simulations are running. However, in-situ data analysis incurs much more 
computing resource contentions with simulations. Such contentions severely damage the performance of 
simulation on HPE. Since different data processing strategies have different impact on performance and 
cost, there is a consequent need for flexibility in the location of data analytics. In this paper, we explore 
and analyze several potential data-analytics placement strategies along the I/O path. To find out the best 
strategy to reduce data movement in given situation, we propose a flexible data analytics (FlexAnalytics) 
framework in this paper. Based on this framework, a FlexAnalytics prototype system is developed for 
analytics placement. FlexAnalytics system enhances the scalability and flexibility of current I/O stack on 
HEC platforms and is useful for data pre-processing, runtime data analysis and visualization, as well as 
for large-scale data transfer. Two use cases – scientific data compression and remote visualization – have 
been applied in the study to verify the performance of FlexAnalytics. Experimental results demonstrate 
that FlexAnalytics framework increases data transition bandwidth and improves the application end-to-
end transfer performance.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Big data applications running on High-End Computing (HEC) 
machines are generating large volumes of data in a single exe-
cution, and these data volumes are only expected to increase in 
future. Since this massive data is key to scientific discovery, the 
ability to rapidly store, move, analyze, and visualize data is critical 
for scientists’ productivity. Yet the growth of data volume imposes 
numerous requirements on I/O performance, which results in I/O 
bottlenecks in current HEC machines. Furthermore, the enlarged 
gap between computational power and I/O performance further 
worsens I/O performance. These two folds combined together re-
sult in undesirable situations, where I/O bottlenecks devastate the 
efficiency and scaling of scientific simulations and associated data 
analyses and visualizations. Scientists are forced to wait a substan-

✩ This article belongs to Scalable Computing for Big Data.

* Corresponding author.
E-mail address: hongbo.zou@student.qut.edu.au (H. Zou).
http://dx.doi.org/10.1016/j.bdr.2014.07.001
2214-5796/© 2014 Elsevier Inc. All rights reserved.
tial portion of the simulation runtime writing data to the storage 
[15] or simply forgo writing out data in order to keep total I/O 
within reasonable bounds. These trends will be speeded up in the 
planning for exascale computing platforms in which the attainable 
I/O performance is further exacerbated by increased contention on 
shared resources [30,31,38] on those platforms.

To improve I/O performance, in-situ data analytics has emerged 
as an effective way to substitute for the traditional offline data an-
alytics and overcome the increasingly severe I/O bottleneck for sci-
entific applications running at the petascale and beyond. Through 
processing data before placing it on disk, in-situ analytics can re-
duce I/O costs (both in time and in power), extract and deliver 
valuable insights from live simulation output in time, and gain im-
proved end-to-end performance. The utility of in-situ processing is 
demonstrated by its wide use by leading scientific applications, like 
the Metagenomics [21], the Cosmology Simulation [26,27], and the 
Maya [19]. Furthermore and enabled by standard parallel I/O inter-
faces like ADIOS and MPI-IO [5], there are emerging infrastructures 
that support online data analytics, including FastBit [28], FlexQuery 
[35], and others [7,20,33].

http://dx.doi.org/10.1016/j.bdr.2014.07.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:hongbo.zou@student.qut.edu.au
http://dx.doi.org/10.1016/j.bdr.2014.07.001


JID:BDR AID:1 /FLA [m5G; v 1.134; Prn:21/07/2014; 13:47] P.2 (1-10)

2 H. Zou et al. / Big Data Research ••• (••••) •••–•••
Fig. 1. Scientific data analytics system architecture overview.
Speeding up data processing to keep pace with simulation 
pushes the in-situ analytics to be separated from simulation and 
parallelly executed on independent computational resources, such 
as shared compute cores (helper-core), separate nodes dedicated 
to analytics (termed ‘staging nodes’), or I/O nodes. The separated 
locations of placing simulation and data analytics, however, intro-
duce the extra data movement along the I/O path. The challenge 
becomes how to balance the conflict between parallelly using lim-
ited and costly computational resources and the extra data move-
ment cost. Fig. 1 depicts a typical scientific data analytics architec-
ture. It is comprised of the scientific simulation and its associated 
data pre-analytics functions for processing simulation results. The 
simulation is run on some high end HPC system, and data visu-
alization is performed on the visualization cluster. The output of 
analysis or visualization directly stores in storage system for sci-
ence users access through Wide Area Networks (WAN) connection. 
Our study takes the further step of ‘augmenting’ the data analyt-
ics to any data processing techniques (such as data compression, 
query) for data reduction purpose.

Data compression has been proven to be a very effective data 
analytics method in improving end-to-end performance in the 
wide-area networking domain, in which the large size data are 
compressed and transferred with the worst networks bandwidth 
[14,36,39]. In HEC domain, the applicability of data compression 
has been studied and applied to many [22,34,36]. In addition, ex-
ploration and visualization of scientific data often are described as 
‘visualization queries’ posed on simulation outputs. Typical queries 
include point selection, subsetting, cutting planes, global data sum-
maries, and feature extraction. Such queries often return only sub-
sets of the original data and can significantly reduce the amounts 
of data that have to be moved and/or further processed for display. 
Modern visualization systems exploit early data reduction within 
their visualization engine to optimize visualization performance 
[35]. Examples include ‘contracts’ in VisIt [24], ‘events’ in VTK [23], 
and ‘rendering information’ in ParaView [7]. So, data compression 
and visualization query can be considered as two kinds of effective 
in-situ data analytics for data reduction.

This paper presents a detailed assessment of using data com-
pression and visualization query to reduce data movement cost 
along I/O path, especially with flexible placement strategies. Be-
cause the data compression and visualization query incur compu-
tational resource contention with simulation, such analytics ser-
vicing for data reduction should be carefully studied and devised. 
Understanding when, where, and how to use such data analytics 
in I/O path so as to improve the end-to-end application perfor-
mance is the major goal of this paper. In this paper, we make the 
following contributions: (1) We present a latency based quantita-
tive model to dynamically make a decision whether should reduce 
data for next step and what data analytics should be selected to 
apply on data with the comprehensive consideration on the cost 
of both I/O and computational resource. (2) We analyze the end-
to-end latency of four potential analytics placement strategies with 
the above quantitative model. (3) We propose a flexible analytics 
framework and implement a prototype system for such framework. 
(4) We conduct experiments to show that flexibly choosing the 
best data movement mode in various resource changes can im-
prove total execution time compared to the execution time without 
this service.

The reminder of the paper is organized as follows. Section 2
presents background information about data compression, visual-
ization query, and in-situ analytics. Section 3 describes the ana-
lytics quantitative model and latency analysis of four placement 
strategies with model. Section 4 is the implementations of flexible 
analytics placement system with the integration with I/O mid-
dleware. Section 5 presents flexible analytics system built for the 
GKW data and the measurements of performance and cost. Parallel 
analytics is checked on this section for performance optimization. 
Section 6 reviews related work, and Section 7 concludes the paper.

2. Background

To develop a flexible data analytics framework, compression 
methods, data visualization query, and data analytics placement 
strategies are briefly introduced here. Data compression and vi-
sualization query are considered as two common data analytics to 
reduce data here. Data analytics placement strategies lists four po-
tential placement strategies for the typical scientific data analytics 
architecture.

2.1. Data compression

Data compression aims to reduce redundant information in data 
to save the consumption of resources such as storage space or I/O 
bandwidth, and therefore this technique has very important appli-
cation in the areas of data storage and transmission [6]. Apart from 
the space savings, data compression provides another benefit that 
compressed data could be stored and transmitted faster, thereby 
improving the performance of I/O intensive workloads. However, 
compression is a compute-intensive operation and imposes an ex-
tra processing cost and resource contention on compute node [14]. 
Therefore, the design and choosing of data compression algorithms 
involve trade-offs among various factors, including the degree of 
compression, the amount of distortion introduced (using in lossy 
data compression), and the computational resources required to 
compress and decompress the data [3]. To facilitate the following 
discussion in the paper, a brief introduction will be given about 
lossy and lossless compression algorithms.

Lossless data compression algorithms usually exploit statistical 
redundancy to represent data more concisely without losing in-
formation, and can reconstruct the original data exactly from the 
compressed data [17]. There are two key metrics – compression 
ratio and (de)compression speed that are used to evaluate the per-
formance of lossless data compression algorithms. Different com-
pression algorithm has different compression ratio. Even the same 
compression algorithm could have varying compression ratio with 
different original data format. In general, the compression ratio of 
text format data is higher than binary format, and the compres-
sion ratio of repetitive data is higher than random data. Processor 
power has direct relationship with compression speed. The com-
pression speed is also affected by compression buffer, but we don’t 
want to extend this discussion at here.

Lossy data compression is contrasted with lossless compression 
and can reconstruct an approximation of the original data. In these 



JID:BDR AID:1 /FLA [m5G; v 1.134; Prn:21/07/2014; 13:47] P.3 (1-10)

H. Zou et al. / Big Data Research ••• (••••) •••–••• 3
Table 1
Data reduction queries.

Query Type Description

Max, Min, Average, Sum, Stdev Statistics Max/Min/Average/Sum/Stdev (var_double_array)
Range Similarity Range(variable, dimensions, start_pos, end_pos)
Select, Lineout Visualization Select(variable, threshold1, threshold2)

Lineout(variable, start_pos, end_pos)
Expression Combination Self-defined function, select(lineout(variables, start_pos, end_pos), threshold1, threshold2)

Fig. 2. Potential locations of reduction analytics located in I/O path.
algorithms, some loss of information is acceptable [10]. The lossy 
data compression is also could be evaluated by compression ratio 
and (de)compression speed. Compression accuracy is a new metric 
involved by lossy compression. Accuracy is used to judge the differ-
ence between original data and decompressed data. The inherited 
deficiency of information loss limits the application area of lossy 
compression on lossless requirement. This paper doesn’t explore 
compression algorithms in depth. We use a lossy compression de-
veloped by [11] to evaluate our flexible analytics framework.

2.2. Data visualization query

Exploration and visualization of scientific data may be de-
scribed as ‘data queries’ posed on simulation outputs. Typical 
queries include point selection, subsetting, cutting planes, global 
data summaries, and feature extraction. Such queries often return 
only subsets of the original data and can significantly reduce the 
amounts of data that have to be moved and/or further processed 
for display. Modern visualization systems exploit early data reduc-
tion within their visualization engine to optimize visualization per-
formance [35]. Examples include ‘contracts’ in VisIt [24], ‘events’ in 
VTK [23], and ‘rendering information’ in ParaView [7].

In this study, adaptive data reduction uses only four types of 
data reduction queries, as shown in Table 1. Statistics queries cal-
culate the features of a given variable. Similarity queries are used 
to filter out the values with close features. Visualization queries are 
similar to the former in terns of implementation, but the specified 
features are those relevant for visualization. Combination queries 
provide a simple pipeline method to help users combine basic 
queries to construct their won data requests. These four query 
categories have been widely adopted by the visualization commu-
nity and provide the basic quantitative analysis for data visualiza-
tion [35].

2.3. Data analytics placement strategies

To explore the possible places on where data analytics can be 
placed in scientific data analytics architecture, analytics placement 
strategies is introduced here. In general, data analytics can be sim-
ply classified into four types according to execution time and loca-
tion [32].

(1) Inline Processing: analysis/visualization routines are synchron-
ously performed by the simulation. ParaView [7], VisIt [24]
and other in-situ visualization works [35] fall into this cat-
egory. Inline processing is easy to code and implement by 
scientists. The sequential execution of simulation and analytics 
introduces extra data waiting time for both of their execution.
(2) Helper-core Processing: some cores on the compute nodes are 
dedicated to perform select analysis actions. Examples include 
Functional Partitioning [12] and Software Accelerator. Helper 
cores parallelly analyze and reduce data immediately after 
data produced. It involves some resource contention, such as 
memory, to simulation; In (1) and (2), data compression and 
analytics services share compute nodes with simulation. The 
compressed data is prepared for the further processing or stor-
age saving.

(3) Dedicated-nodes Processing: the analytics are executed on 
non-simulation nodes, such as staging area and active storage 
[16]. Remote Processing needs additional computational re-
source for analytics and incurs the extra data movement cost.

(4) Offline Processing: data is read back for analysis [8] after writ-
ten to storage. Offline processing can statically provide enough 
resource and tools to analyze data in details.

Any one of the above four placement strategies can be selected 
and executed independently. Or, some of placement strategies can 
be combined together and executed hybrid data processing strat-
egy. The details will be extended in Section 3 according to our 
flexible data analytics framework design requirements.

3. Methodology

HEC machine is a complex system, which generally consists 
with three components – compute nodes, analytics nodes, and 
storage. To reduce I/O overheads on applications, some HEC ma-
chines allocate part of compute nodes to conduct staging func-
tionality, called staging nodes. Data analytics can be placed and 
executed on staging nodes to reduce data before writing data into 
storage.

3.1. Flexible analytics placements

We introduce data analytics into peta-scale computing to re-
duce the data movement. To achieve this goal, we investigate 
where data analytics can be placed among I/O path. In general, 
a scientific application includes two parts – simulation and analyt-
ics, some application including visualization. Simulation and inline 
analytics is executed on compute node after an application sub-
mission. Among application execution, the output data is dumped 
to I/O nodes for storage saving. As shown in Fig. 2, data analytics 
can be placed at point 1 to reduce the output dumping to storage.

If data analytics is placed on staging nodes, there are numer-
ous data movements produced between compute nodes to staging 



JID:BDR AID:1 /FLA [m5G; v 1.134; Prn:21/07/2014; 13:47] P.4 (1-10)

4 H. Zou et al. / Big Data Research ••• (••••) •••–•••
Table 2
Notations in performance quantitative model.

Notation Description

ρ1 = ρc Available Processor Cycles Ratio (<1, sharing processor with 
other processes, >1 using multiple processors to parallel 
execution). ρc is available cycles ratio on compression side. 
And ρd is available cycles ratio on decompression side.

ρd

BW Available Data Transfer Bandwidth
Bdata The Size of Data Block
Tc , Td Compression/Decompression Throughput
δ Compression Ratio (compressed/original)
ε1 = εc The Impact Factor of Cache. εc is impact factor in 

compression side. εd is impact factor in decompression side.εd

toriginal Total end-to-end latency to original (uncompressed) data 
transfer

tcompression Time to compress the data (algorithm dependent)
tdecompression Time to decompress the data (algorithm dependent)
ttransfer Transfer time
ttotal Total end-to-end data transfer latency

nodes. Point 2 in Fig. 2 shows the potential position to place an-
alytics to reduce the data size moving from compute nodes to 
staging nodes. Such case is the primary study case in the paper. 
After the data analysis, the reduced data needs to be written into 
storage for saving. In Fig. 2, point 3 shows that the data analytics 
is used to reduce movement cost between staging nodes and I/O 
nodes.

The listed three points in Fig. 2 show the potential places for 
data analytics. Adaptive placement algorithm will find out the best 
place to apply the analytics to the data and reduce the movement 
cost.

3.2. Analytics algorithms quantitative model

To evaluate and compare the performance of different analyt-
ics method and placement strategies, we quantitate the analytics 
algorithms in this section. Because data queries are explicitly re-
quested by client terminal with special use case, we only show 
the compression quantitative model for general data reduction re-
quest here. A set of performance and cost metrics are defined for 
quantitative model description. We then derive a simple perfor-
mance model to compare the different compression algorithms. 
The model has been developed and successfully applied in prac-
tice to implement adaptive compression choosing.

Table 2 lists the notations used in compression performance 
quantitative model. Every notation is described and simply ex-
plained in the table. However, there are still two notations, ρ and 
ε, need to be explained here. ρ notates the available processor 
cycles ratio for compression computation. Because compression is 
a computation-intensive task, the processor idle cycles ratio in-
dicates how many available processor cycles could be used for 
compression. ρ = 1 when a special core is exclusively used by 
compression process. Parallel compression is executed on multi-
ple processors if ρ > 1. In addition, ε stands for the impact factor 
related cache. Compression process needs to swap data from mem-
ory for compression; therefore the available size of cache space 
directly impacts compression performance. ε = 1, when there is 
no other processes share multiple level caches with compression 
process. To simplify our discussion, the impact factor of cache is 
set as 1 (ε = 1) in the paper. The following equations calculate the 
cost (latency) of data transfer from sender to receiver when com-
pression is running.1

Eq. (1) gives the end-to-end original data transfer latency on 
networking with available bandwidth BW . Eqs. (2) and (4) give 

1 We give ρ and ε in equations to simplify the discussion. And, ρcρdεc and εd

are distinct when they need to be measured.
compression and decompression time on sender and receiver re-
spectively. Eq. (3) gives the transfer time of compressed data from 
sender to receiver. Eq. (5) shows the total cost.

toriginal = Bdata/BW; (1)

tcompression = Bdata/(Tc ∗ ρ ∗ ε); (2)

ttransfer = (Bdata ∗ δ)/BW; (3)

tdecompression = Bdata/(Td ∗ ρ ∗ ε); (4)

ttotal = tcompression + ttransfer + tdecompression; (5)

With the above quantitative analysis, the data transfer costs 
can be compared with/without compression under the selected 
compression algorithm. Therefore, the compression decision can be 
made by the If statement as follows:

If (toriginal > ttotal)
{

Select the algorithm with Min(ttotal);
Compress with the selected algorithm;

}
Else

Don’t Compress;

To implement I f statement, the quantitative metrics are clas-
sified into two categories with different information collecting 
method:

Profiling Information:
Compression/Decompression Speed (Tc, Td),
Compression Ratio (δ).

Monitoring Metrics:
Available Processor Cycle Ratio (ρ),
Available Data Transfer Bandwidth (BW),
The Impact Factor of Cache (ε).

3.3. Total end-to-end latency analysis

To explore the resource cost of the analytics, we analyze the to-
tal end-to-end latency in all cases. According to the different trans-
fer destination, I/O path are roughly classified into two categories – 
memory-to-memory transfer and memory-to-storage one. Because 
the connection bandwidth of two categories is totally different, 
the analytics cost varies with the available resource. toriginal > ttotal
gives the condition that compression is selected. The following 
analysis is based on this condition.

(1) Simulation to Storage (Inline compression): in this case, the 
data is transferred from computational nodes to the storage. 
Such case does not include data decompression. Therefore,

toriginal > ttotal ⇒ toriginal > tcompression + ttransfer; and,

Bdata/BW > Bdata/(Tc ∗ ρ ∗ ε) + (Bdata ∗ δ)/BW

⇒ 1 − δ > BW/(Tc ∗ ρ ∗ ε);
so, Tc ∗ (1 − δ) ∗ ρ ∗ ε > BW; (6)

In Eq. (6), δ and Tc (compression ratio) are constants if the 
compression algorithm and input data format don’t change. 
Therefore, keeping ρ and BW in a proper proportion decides 
the improvement of end-to-end latency. ρ can be greatly in-
creased with the parallel. For data transmission from simula-
tion to storage, although BW is limited by storage, the simula-
tion can provide available processor-cycles for inline compres-
sion to offset such limitation. For example, if BW = 400 Mb/s, 



JID:BDR AID:1 /FLA [m5G; v 1.134; Prn:21/07/2014; 13:47] P.5 (1-10)

H. Zou et al. / Big Data Research ••• (••••) •••–••• 5
Fig. 3. Flexible data analytics system framework.

Fig. 4. Flexible data analytics software stack.
Tc = 100 Mb/s, δ = 50%, and ε = 1, ρ should be equal or 
larger to 4. BW = 400 Mb/s is very common configuration in 
a supercomputer.

(2) Simulations to Staging (Inline compression): in this case, the 
data is transferred from computational nodes to staging nodes. 
This case includes data decompression in staging nodes. There-
fore Eq. (6) becomes

(Tc ∗ Td)/(Tc + Td) ∗ (1 − δ) ∗ ρ ∗ ε > BW; (7)

Actually, Tc < Td (this happens often in compression algo-
rithms), and compression and decompression are executed in 
parallel with multiple blocks transfer, therefore ρc can be cal-
culated with Eq. (6) and ρd in decompression side can be 
derived by

ρd = Tc ∗ ρc/Td; (8)

Eq. (7) gives us the same conclusion with Eq. (6). If the 
BW is very large between computational nodes and staging 
nodes with high-speed networking connection, compression 
becomes an expensive operation in this case. For example, if 
BW = 16 Gb/s (16 384 Mb/s), Tc = 100 Mb/s, Td = 200 Mb/s, 
δ = 50%, and ε = 1, ρ should be equal or larger to almost 
491.520. ρ ≥ 491.520 stands for that the computational area 
needs more than 492 processors for data compression. With 
Eq. (8), there are at least 246 processors to decompression. 
The values given in example are very common configuration 
in HEC.

(3) Helper cores to Staging: this case is same with case (2). Cases
(2) and (3) stand for high-speed memory-to-memory data 
transfer. Such available bandwidth needs fast data compres-
sion to catch the small end-to-end latency.

(4) Staging to Storage: this case is same with case (1). Cases (1) 
and (4) stand for memory-to-storage data transfer. Compres-
sion becomes very effective method to release the I/O bottle-
neck in this case.
4. Design and implementation

4.1. Overview

The quantitative model clears that different use case requests 
different data analytics to reduce data. Many factors, such as trans-
fer bandwidth, available memory, and data format, etc., impact 
the end-to-end performance. With this conclusion, a flexible data 
analytics framework is developed. Fig. 3 shows the flexible data 
analytics system framework (FlexAnalytics). Such framework can 
dynamically deploy data analytics on the I/O path to overcome the 
bandwidth limitations between data source (simulation) and sink 
(storage/user terminal). FlexAnalytics includes five components: 
Policy Engine, Resource Monitoring, Analytics Profiling, Analytics 
Placement Plug-in, and Adapter. Fig. 4 shows the FlexAnalytics 
software stack. FlexAnalytics clearly separates the simulation, an-
alytics, and storage/user terminal into two parts: the data source, 
which is the outputs of the simulation performed on the high end 
HPC system, and the data sinks, which consume the output data 
with data storing and visualization.

FlexAnalytics leverages the ADIOS [9] parallel I/O library which 
provides meta-data rich read/write interfaces to simulation and 
analysis codes. ADIOS has a set of built-in I/O methods under its 
higher level APIs to support various file I/O methods (such as MPI-
IO, HDF5, and NetCDF) as well as data staging methods. ADIOS 
has been used by several leadership scientific codes and is inte-
grated with popular analysis and visualization tools that include 
ParaView, VisIt.

4.2. Data compression profiling

We profile end-to-end latency with 222 MB float data transfer-
ring between two nodes with three data compression algorithms – 
lossy [11], bzip2 [1], and gzip [4]. The profiling results can help us 
to evaluate the selected compression algorithm. Three compression 



JID:BDR AID:1 /FLA [m5G; v 1.134; Prn:21/07/2014; 13:47] P.6 (1-10)

6 H. Zou et al. / Big Data Research ••• (••••) •••–•••
Table 3
Compression algorithm features profiling for binary data on two nodes measure-
ment.

lossy bzip2 gzip

Tc 51.002 MB/s 5.417 MB/s 10.991 MB/s
Td 242.468 MB/s 8.703 MB/s 23.632 MB/s
δ 23.46% 46.18% 71.75%
ε Approximate Linear (we generally set ε = 1 as impact factor to 

eliminate the cache impact with cache exclusively using in this 
benchmark testing).

Fig. 5. End-to-end latency comparison with different compression.

algorithms emphasize the different requirements on the compres-
sion speed and compression ratio. Bzip2 and gzip are lossless data 
compression. Bzip2 is an implementation of the Burrows–Wheeler 
algorithm, which is more effective on data compression ratio. Gzip 
is based on the DEFLATE algorithm, which provides better com-
pression speed and worse compression ratio than bzip2 [2]. We 
check the performance of lossy algorithm described in [11]. The 
lossy compression is better than lossless on speed and ratio. How-
ever, information loss constraints its wide use.

The testing nodes are equipped with 2.13 GHz Intel Xeon Pro-
cessor with 4 MB L3 cache and 12 GB memory. The nodes con-
nected with 16 GB infiniband networks. Table 3 lists the profiling 
information of three compression algorithms: lossy, bzip2, and 
gzip. Lossy compression will be introduced in experimental sec-
tion.

To evaluate the behavior of compression with real-world use 
cases, we measure end-to-end latency on varying transfer band-
width. The compression and decompression have been exclusively 
executed on one single processor. Fig. 5 shows the measurement 
results. The transfer latency of raw data without compression is 
shown in figure as baseline.

The results show the (de)compression time of lossless data 
compression accounts for over 98% of end-to-end latency when 
the transfer bandwidth is larger than 1.034 Gb/s. For lossy com-
pression, the (de)compression accounts for over 95% of end-to-end 
latency. If we compress the data in parallel, there are at least 4 
processors for lossy compression, 63 processors for gzip, and 74 
processors for bzip2 to catch up the data transfer with 1.034 Gb/s 
bandwidth. When the transfer bandwidth reduces to 0.258 Gb/s, 
the proportion of (de)compression in latency starts to decrease. 
The latency of data compression and transfer with gzip is bet-
ter than non-compression after the available bandwidth less than 
0.016 Gb/s. The measured results verify our quantitative model. In 
our case, all three compressions are not effective method to opti-
mize data transfer when the bandwidth is larger than 264.19 Mb/s. 
Therefore, the new challenge is how to reduce data (de)compres-
sion time to match the high-speed transfer in HEC.
Fig. 6. Data query features profiling with different query types.

4.3. Visualization query profiling

It is similar with compression analytics. We profile end-to-end 
latency with 222 MB float data transferring between two nodes 
with three different visualization queries – statistics, similarity, and 
combination. Three queries have different workload for comput-
ing resource requirement. Statistic query(ang_vel) is a lightweight 
query, which requests the minimal value of angle velocity in the 
data set. Because the return results are very small data set, the 
statistic query can significantly increase the transmission band-
width online. We inject controlled additional network traffic be-
tween two nodes variability, resulting in available bandwidth vary-
ing from 20 MB/s to 120 MB/s. Fig. 6(a) shows the latency com-
parison of 222 MB data transfer with and without statistics query. 
The lightweight query has great data reduction ratio in our profil-
ing. Therefore, the latency is significantly reduced over 150 times 
when the available bandwidth is less than 20 MB/s.

Figs. 6(b) and (c) show the latency comparison of similarity and 
combination query on temperature and velocity mesh. These two 
queries stand for heavy load and joint query, which request much 
more computing resource for data filtering. So, such queries are 
good for data reduction with high available transfer bandwidth. 
20 MB/s available bandwidth is a special case in the profiling. 
Although similarity and combination queries are heavy load op-
erations, the low available bandwidth still needs data analytics to 
improve I/O performance. Because the data query is the operation 
which is explicitly specified by user terminal, the query cannot be 
applied on the output data in general cases.

4.4. Flexible analytics placement algorithm

The flexible analytics placement algorithm places the data an-
alytics to the best place, to reduce data movement cost, subject 



JID:BDR AID:1 /FLA [m5G; v 1.134; Prn:21/07/2014; 13:47] P.7 (1-10)

H. Zou et al. / Big Data Research ••• (••••) •••–••• 7
Table 4
Profiling and monitoring metrics.

Notation Parameter

Profiling metrics (profiled on idle nodes)
tm Data transfer time per iteration
tc Query execution time per iteration
cp Processor usage (percentage) for the analytics
mp Memory usage (percentage) for the analytics

Monitoring metrics (periodically collected on the candidate place)
Tc Data transfer time per iteration
C p Query execution time per iteration
Mp Processor usage (percentage) for the analytics

to resource availability and performance penalties due to the po-
tential need to share the source’s computing resources with other 
simulation.

Placement takes as inputs the potential locations, resource sta-
tus, and analytics performance profiles. Table 4 shows the profil-
ing and monitoring metrics used as input. Profiling metrics are 
collected by placing analytics onto some idle node, which pro-
vides the policy engine with baseline data about the analytics’ 
running (this should be changed with changed analytics method, 
especially for data query). For example, if an analytics requires 
35% of computing resource for its computation, placement must 
select a place that is presently utilized less than 65%. Profiling 
and monitoring are collected on the candidate places for decision-
making.

Algorithm 1 operates as follows. When the data is generated 
by the simulation, an analytics is selected to reduce the data on 
the idle node, thereby profiling it. Next, the algorithm checks the 
potential places (as shown in the pseudo-code). Monitoring in-
formation (C p, Mp)i and the profiling metrics (tm, tc, cp, mp) are 
collected by algorithm on all potential places. If the analytics is 
a compute-intensive task, the algorithm needs to allocate appro-
priate computational resources to execute the query in parallel 
(as shown on the algorithm, we currently consider an analytics 
task to be compute intensive if its processor utilization is 90% or 
above when it is profiled). A placement decision diverging from 
the query’s initial placement onto an idle node involves analytics 
relocating. If the analytics is relocated, analytics execution time Tc

is again checked on the new place. Placement decisions are re-
evaluated at regular time intervals, an example being an analytics 
relocation from the current (busy) place to the idle place, i.e., if 
Tc > tc + tm . The pseudo-code of Algorithm 1 shows the main idle 
of flexible analytics placement.

4.5. Placement policy engine

The placement policy engine decides where to execute each 
analytics requested by the terminal adapter. The placement deci-
sion is enforced by deploying the analytics code to the best place 
among the data path. The flexible analytics placement algorithm is 
performed in the placement policy engine.

5. Experiments and analysis

Experiments with the Gyro-Kinetic Simulation (GKW) [29] ap-
plication are run on an 80-node Linux cluster. An SGI Altix UV 
1000 system is used as ancillary visualization machine for output 
data analysis. Every node of simulation cluster is equipped with 
four quad-core 2.0 GHz AMD Opteron processors, 32 GB of mem-
ory, a gigabit Ethernet networking connection. The compute node 
runs CentOS 5.7 OS. GKW is a three-dimensional Particle-In-Cell 
(PIC) code used to study the microburbulence. SGI Altix system 
is a shared memory system, which has 1024 2.0 GHz cores (In-
tel Nehalem EX processors), 4 TB of global shared memory, and 
Data: Input data per iteration
Input: An analytics
Result: Place the analytics to the best location

Select the potential locations (N1, N2, N3, . . . , Ni )
Place the analytics on an idle node to profile its performance

for every iterations do
collect (C p , Mp)i on every potential place Ni ;
Max(CM) = (C p , Mp)i;//Ni is the place with maximum resources
if analytics on the idle node then

profile (tm, tc, cp ,mp ) on the idle node;
if cp ≥ 90% ‖ mp ≥ 90% then

execute analytics in parallel;
else
if Max(CM) > (cp ,mp) then

relocate the analytics to the place with Max(CM);
end

else
collect(Tc ) on the location where analytics is running;
if Tc > tc then

relocate the analytics to the place with Max(CM);
collect(Tc ) on the new place;

end
if Tc > tc + tm then

relocate the analytics back to the previous place;
end

end
end

Algorithm 1: Flexible analytics placement.

Table 5
Compression algorithm features profiling for GKW on 80-node cluster.

lossy bzip2 gzip

Tc 49.672 MB/s 2.491 MB/s 16.242 MB/s
Td 819.767 MB/s 6.523 MB/s 108.698 MB/s
δ 24.33% 97.44% 94.08%

8 GPUs in a single system image. The data movement throughput 
between two machines via shared Lustre file system can reach at 
most 200 MB/s. GKW simulation outputs particle data containing 
two particle arrays for zions and electrons respectively. The par-
ticle arrays consist of millions of unique double precision values. 
The values are high degree of randomness and are the most “hard-
to-compress” scientific dataset [11].

In our configuration, GKW submits four processes in every 
node. Every process generates output data for further data pro-
cessing. Four analytics processes are created to service data trans-
fer in every node. To find out the metrics for analytics selection, 
compression algorithms are profiled. Table 5 shows the profiled 
features of compression algorithms in the cluster. All results pre-
sented in the paper are averaged with at least three runs.

5.1. Bandwidth analysis from simulation to storage

In the experiment, the compression is deployed on computa-
tional side to reduce data size. The available end-to-end bandwidth 
reaches to 62.74 MB/s with 64 computational nodes. We compare 
the expected, estimated, and real-tested bandwidth among end-
to-end connection. Expected bandwidth is the best one, which 
considers compress time is very small and negligible. Therefore, 
BWexpected = BWIO/δ. The estimated bandwidth is calculated by 
Eq. (6) in the paper. Estimated bandwidth shows the maximal 
optimization of data transfer with parallel compression. Any data 
transfer bandwidth is smaller than the min{BWexpected, BWestimated}. 
The experiment is mapped to two scenarios: simulation to stor-
age and staging to storage. Both of them can be summarized as 
memory to storage data transfer model. Fig. 7 shows the tested 
bandwidths with/without compression.



JID:BDR AID:1 /FLA [m5G; v 1.134; Prn:21/07/2014; 13:47] P.8 (1-10)

8 H. Zou et al. / Big Data Research ••• (••••) •••–•••
Fig. 7. Data transfer bandwidth comparison without staging.

Fig. 8. Data transfer bandwidth comparison with staging.

5.2. Bandwidth analysis from simulation to staging nodes

In the experiment, the output of GKW is written to staging 
nodes. The compression service is running on computing nodes to 
reduce the data size. The available end-to-end bandwidth reaches 
to 132.94 MB/s with 64 computational nodes. We configure 4 stag-
ing nodes in the experiment. The experiment simulates two cases: 
simulation to staging and helper core to staging. Both of them 
can be summarized as memory-to-memory transfer model. Fig. 8
shows the tested bandwidth with or without compression.

In the experiment, multiple data blocks transfer from simula-
tion nodes to staging nodes. (De)compression and compression are 
executed on computational nodes and staging nodes separately. 
Because compression processes are executed on same compute 
node and share multi-level cache hierarchy (including L3 cache), 
the cache impact factor should be (ε = 1/2).

5.3. Latency analysis with data query

For data visualization, end users are interested in (i) query la-
tency – the elapsed time between when data is available to when 
query output appears, and (ii) simulation I/O throughput, which is 
impeded if data cannot be moved off the high end machine before 
the application’s next output step – due to application blocking on 
output.

Fig. 9 shows the performance impact of flexible analytics place-
ment on data transfer latency, given variable connection band-
width between the visualization machine and the simulation. We 
inject controlled additional network traffic between simulation 
cluster and ancillary visualization machine, resulting in available 
bandwidth varying from 20 MB/s to 120 MB/s. The GKW simula-
tion generates 1 GB output data per output step.

We compare two cases: one is to move raw simulation output 
data to ancillary visualization machine and run query locally on 
it; the other is to place the query on the simulation cluster to re-
duce data movement between the two machines. Fig. 9 shows that 
Fig. 9. Data request response time test with/without query.

Fig. 10. The improvement of simulation throughput.

the FlexAnalytics system can significantly improve query latencies 
by reducing data movement volumes for all three tested queries. 
Even when the available bandwidth between two machines is at 
its maximum (120 MB/s), there is 23.7% improvement. When avail-
able bandwidth decreases to 20 MB/s, the improvement brought by 
FlexAnalytics can be up to 80%.

5.4. Throughput analysis with data query

Simulation execution throughput (the amount of simulation 
output over a given interval of time) is impaired when output 
data cannot be moved off the high end machine between subse-
quent simulation time steps (i.e., due to blocking on I/O). Fig. 10
shows, under 120 MB/s communication bandwidth, the throughput 
of the simulation running at different scales. When the simulation 
scales beyond 432 cores, the data movement cost become signif-
icant enough so that placing queries near data source becomes 
beneficial. At the scale of 1000+ cores, the advantage of FlexAna-
lytics is as large as 100%.

Results show the FlexAnalytics approach to be capable of plac-
ing queries so as to alleviate communication bottlenecks between 
data sources and analytics processing sites.

6. Related work

In-situ data analytics has been widely used in many data-
intensive applications to reduce data size. Data compression and 
query is useful because it helps minimize storage utilization, re-
duce networks bandwidth and energy consumption in hardware. 
However, most of compressions and queries are not transparently 
operated at the I/O layer, but rather explicitly worked at the appli-
cation level [25,35,39].

In many recent studies [11,25], compression is applied on big 
data research to reduce transfer latency and improve response 
time. All of them concentrate on the study on compression al-
gorithm and data saving on parallel file system. Our work differs 
from these compression studies, as it does not focus on the study 
of compression algorithms. The exploration of compression selec-
tion is conducted in the paper. We investigate the effects of data 
compression on the whole I/O path rather the file system to find 
the best location to place the compression. We show that the com-
pression improves network end-to-end transmission time, network 



JID:BDR AID:1 /FLA [m5G; v 1.134; Prn:21/07/2014; 13:47] P.9 (1-10)

H. Zou et al. / Big Data Research ••• (••••) •••–••• 9
bandwidth, and consequently the I/O performance with the well-
planned placing.

The area of data compression in cloud computing has received 
many attentions in recent literature. A recent study [3] investi-
gated the effects of compression in MapReduce clusters. This study 
focused on increasing I/O performance in order to reduce clus-
ter power consumption. Our work focuses on improving I/O per-
formance to achieve better end-to-end application performance. 
Another data compression studies focus on applying the data com-
pression into grid computing. The highly parallel-distributed data 
management in grid has the different requirements on data trans-
mission with HEC. Such research is designed for use in Grid com-
puting environments. So, the existing data compression methods 
cannot be applied on HEC directly.

There are a number of related efforts that provide solutions to 
data visualization and analysis in the HPC community [1,13,35]. 
They all use the data sever/client architecture supporting visualiza-
tion by permitting remote users to acquire images via their visual 
client from visual servers located on large-scale machines placed 
‘next’ to simulation. The problem of how to move data from the 
simulation to the visualization machine remains to be unsolved. 
Out work addresses it. In addition, related work on query-driven 
visualization [18] considers static data queries rather than ad hoc, 
dynamic queries enabled by FlexAnalytics. There are also contribu-
tions on data indexing, which we have not yet leveraged. Instead, 
we flexibly place analytics among I/O path to improve both simu-
lation and data access performance. Additional input to out work 
can be derived from out previous work on adaptive compression 
and FlexQuery [35,37].

7. Conclusions and future work

In this paper, we studied questions about how to introduce data 
analytics into HEC to reduce data movement and release severe 
I/O performance bottleneck. To explore the possible solutions, a 
quantitative model is built to evaluate the potential analytics algo-
rithms and placement strategies. Based on this model, we propose 
a flexible analytics framework for I/O performance optimization. 
This flexible placement strategy combines data compression and 
visualization query – two algorithms, which can be dynamically 
selected and switched to achieve the best I/O performance with 
features profiling and real-time system resource status monitor-
ing.

The experiments with the real application of GKW are con-
ducted on an 80-node 1280-core cluster machine and an SGI vi-
sualization machine. The analysis of results shows us that the data 
reduction ratio and available processors are two most important 
factors to impact the analytics selection. The experiments inves-
tigate these two factors in details. Thus, our future work should 
focus on the improvement of on these two factors.

Acknowledgements

The work at Argonne is supported in part by the U.S. De-
partment of Energy (DOE), Office of Science, under Contract DE-
AC02-06CH11357.

References

[1] J.P. Ahrens, et al., Interactive remote large-scale data visualization via priori-
tized multi-resolution streaming, in: Proc. of the 2009 Workshop on Ultrascale 
Visualization, UltraVis’09, 2009.

[2] High-quality data compressor, bzip2, http://www.bzip.org.
[3] Y. Chen, A. Ganapathi, et al., To compress or not to compress compute vs. I/O 
tradeoffs for MapReduce energy efficiency, in: Proc. of the SIGCOMM Workshop 
on Green Networking, 2010, pp. 23–28.

[4] Compression utility, gzip, http://www.gzip.org.
[5] MPI Forum, MPI-2: extension to the message-passing standard.
[6] D.A. Lelewer, D.S. Hirschberg, Data compression, in: Proc. ACM Computing Sur-

veys (CSUR), 1987, pp. 261–296.
[7] N. Fabian, K. Moreland, et al., The ParaView coprocessing library: a scalable, 

general purpose in situ visualization library, in: Proc. IEEE Symp. on Large-Scale 
Data Analysis and Visualization (LDAV2011), 2011, pp. 89–96.

[8] A. Gerndt, B. Hentschel, M. Wolter, T. Kuhlen, C. Bischof, VIRACOCHA: an ef-
ficient parallelization framework for large-scale CFD post-processing in virtual 
environments, in: Proc. ACM/IEEE Conference on Supercomputing (SC04), 2004, 
pp. 50–61.

[9] S. Hodson, S. Klasky, Q. Liu, J. Lofstead, N. Podhorszki, F. Zheng, et al., ADIOS 
1.3.1 User’s Manual, Oak Ridge National Laboratory, 2011, pp. 1–95.

[10] I. Kontoyiannis, Pattern matching and lossy data compression on random fields, 
in: Proc. IEEE Transactions on Information Theory, 2003, pp. 1047–1051.

[11] S. Laksh, N. Shah, S. Ethier, S. Klasky, R. Latham, R. Ross, N. Samatova, Com-
pressing the incompressible with ISABELA: in-situ reduction of spatio-temporal 
data, in: Proc. International European Conference on Parallel and Distributed 
Computing (Euro-Par 2011), 2011, pp. 366–379.

[12] M. Lin, S.S. Vazhkudai, A.R. Butt, F. Meng, X. Ma, Y. Kim, C. Engelmann, G. Ship-
man, Functional partitioning to optimize end-to-end performance on many-
core architectures, in: Proc. ACM/IEEE Conference on Supercomputing (SC10), 
2010, pp. 1–12.

[13] K.-L. Ma, A new approach to remote visualization of large volume data, SIG-
GRAPH Comput. Graph. 44 (3) (2010) 5:1–5:2.

[14] B. Nicolae, High throughput data-compression for cloud storage, in: Proc. of the 
3rd International Conference on Data Management in Grid and Peer-to-Peer 
Systems (Globe’10), 2010, pp. 1–12.

[15] R. Oldfield, S. Arunagiri, P.J. Teller, S.R. Seelam, M.R. Varela, R. Riesen, P.C. 
Roth, Modeling the impact of checkpoints on next-generation systems, in: Proc. 
IEEE Conference on Mass Storage System and Technologies (MSST 2007), 2007, 
pp. 30–46.

[16] J. Piernas, J. Nieplocha, E.J. Felix, Evaluation of active storage strategies for the 
Lustre parallel file system, in: Proc. ACM/IEEE Conference on Supercomputing 
(SC07), 2007, pp. 1–10.

[17] K. Sayood, Introduction to Data Compression, 3rd edition, Morgan Kaufmann, 
2005.

[18] K. Stockinger, et al., Query-Driven Visualization of Large Data Sets, 2005.
[19] M. Slawinska, T. Bode, H. Zou, et al., A Maya use case: adaptable scientific 

workflows with ADIOS for general relativistic astrophysics, in: Proc. of the Con-
ference on Extreme Science and Engineering Discovery Environment, 2013.

[20] X.H. Sun, C. Du, H. Zou, V-mcs: a configuration system for virtual machines, in: 
Proc. IEEE International Conference on Cluster Computing (Cluster’09), 2009.

[21] W. Tang, J. Wilkening, N. Desai, W. Gerlach, A. Wilke, F. Meyer, A scalable data 
analysis platform for metagenomics, in: Proc. of the IEEE Conference on Big 
Data, 2013.

[22] W. Tang, Z. Lan, N. Desai, Y. Yu, et al., Reducing fragmentation on torus-
connected supercomputers, in: Proc. of the IEEE International Parallel and Dis-
tributed Processing Symp. (IPDPS’11), 2011, pp. 828–839.

[23] VTK 6.0.0 documentation, 2013.
[24] Paraview VisIt, OpenSource scientific visualization and graphical analysis tool, 

2012.
[25] B. Welton, D. Kimpe, J. Cope, C. Patrick, et al., Improving I/O forwarding 

throughput with data compression, in: Proc. IEEE International Conference on 
Cluster Computing (Cluster’11), 2011.

[26] J. Wu, Z. Lan, Y. Yu, et al., Performance emulation of cell-based AMR cosmology 
simulations, in: Proc. ACM/IEEE Conference on Supercomputing (SC’12), 2012.

[27] J. Wu, Z. Lan, X. Xiong, et al., Hierarchical task mapping of cell-based AMR 
cosmology simulations, in: Proc. of the International Conference on High Per-
formance Computing, Networking (Cluster’11), 2011.

[28] K. Wu, S. Ahern, et al., FastBit: interactively searching massive data, in: Proc. 
SciDAC, J. Phys. Conf. Ser. 180 (1) (2009) 1–10.

[29] W.X. Wang, Z. Lin, W.M. Tang, W.W. Lee, S. Ethier, J.L.V. Lewandowski, G. Re-
woldt, T.S. Hahm, J. Manickam, Gyro-kinetic simulation of global turbulent
transport properties in tokamak experiments, in: Proc. Physics of Plasmas, 
2006, pp. 59–64.

[30] Y. Yu, D. Rudd, Z. Lan, J. Wu, et al., Improving parallel IO performance of cell-
based AMR cosmology applications, in: Proc. IEEE International Parallel and 
Distributed Processing Symp. (IPDPS’12), 2012, pp. 933–944.

[31] Y. Yu, J. Wu, Z. Lan, et al., A transparent collective I/O implementation, in: Proc. 
IEEE International Parallel and Distributed Processing Symp. (IPDPS’13), 2013, 
pp. 297–307.

[32] F. Zheng, H. Zou, J. Cao, J. Dayal, T. Nugye, G. Eisenhauer, S. Klasky, FlexIO: 
location-flexible execution of in-situ data analytics for large scale scientific ap-

http://refhub.elsevier.com/S2214-5796(14)00002-1/bib31s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib31s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib31s1
http://www.bzip.org
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib33s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib33s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib33s1
http://www.gzip.org
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib36s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib36s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib37s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib37s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib37s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib38s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib38s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib38s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib38s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib39s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib39s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3130s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3130s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3131s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3131s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3131s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3131s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3132s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3132s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3132s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3132s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3133s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3133s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3135s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3135s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3135s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3136s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3136s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3136s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3136s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3137s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3137s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3137s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3138s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3138s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3139s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3230s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3230s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3230s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3231s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3231s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3232s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3232s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3232s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3233s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3233s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3233s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3236s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3236s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3236s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3237s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3237s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3238s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3238s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3238s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3239s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3239s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3330s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3330s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3330s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3330s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3331s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3331s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3331s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3332s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3332s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3332s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3333s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3333s1


JID:BDR AID:1 /FLA [m5G; v 1.134; Prn:21/07/2014; 13:47] P.10 (1-10)

10 H. Zou et al. / Big Data Research ••• (••••) •••–•••
plications, in: Proc. IEEE International Parallel and Distributed Processing Symp. 
(IPDPS’13), 2013, pp. 320–331.

[33] H. Zou, H. Jin, Z. Han, et al., A virtual-service-domain based bidding algorithm 
for resource discovery in computational grid, in: Proc. IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, 2005, pp. 5–53.

[34] H. Zou, H. Jin, Z. Han, et al., HRTC: hybrid resource information service archi-
tecture based on GMA, in: Proc. IEEE International Conference on e-Business, 
2005, pp. 541–544.

[35] H. Zou, K. Schwan, M. Slawinska, G. Eisenhauer, F. Zheng, et al., FlexQuery: 
an online query system for interactive remote visual data exploration at large 
scale, in: Proc. IEEE International Conference on Cluster Computing (Cluster’13), 
2013.
[36] H. Zou, W. Wu, X.H. Sun, et al., An evaluation of parallel optimization for 
OpenSolaris network stack, in: Proc. IEEE 35th Conference on Local Computer 
Networks (LCN), 2010, pp. 296–299.

[37] H. Zou, Y. Yu, W. Tang, M. Chen, Improving I/O performance with adaptive data 
compression for big data applications, in: Proc. IEEE International Parallel and 
Distributed Processing Symp. (IPDPS’14), 2014.

[38] H. Zou, X.H. Sun, et al., A source-aware interrupt scheduling for modern paral-
lel I/O systems, in: Proc. IEEE International Parallel and Distributed Processing 
Symp. (IPDPS’12), 2012, pp. 156–166.

[39] H. Zou, F. Zheng, K. Schwan, et al., Quality-aware data management for large 
scale scientific applications, in: Proc. High Performance Computing, Network-
ing, Storage and Analysis (SC’12), 2012, pp. 816–820.

http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3333s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3333s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3334s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3334s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3334s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3335s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3335s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3335s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3336s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3336s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3336s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3336s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3337s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3337s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3337s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3338s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3338s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3338s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3339s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3339s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3339s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3430s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3430s1
http://refhub.elsevier.com/S2214-5796(14)00002-1/bib3430s1

	FlexAnalytics: A Flexible Data Analytics Framework for Big Data Applications with I/O Performance Improvement
	1 Introduction
	2 Background
	2.1 Data compression
	2.2 Data visualization query
	2.3 Data analytics placement strategies

	3 Methodology
	3.1 Flexible analytics placements
	3.2 Analytics algorithms quantitative model
	3.3 Total end-to-end latency analysis

	4 Design and implementation
	4.1 Overview
	4.2 Data compression proﬁling
	4.3 Visualization query proﬁling
	4.4 Flexible analytics placement algorithm
	4.5 Placement policy engine

	5 Experiments and analysis
	5.1 Bandwidth analysis from simulation to storage
	5.2 Bandwidth analysis from simulation to staging nodes
	5.3 Latency analysis with data query
	5.4 Throughput analysis with data query

	6 Related work
	7 Conclusions and future work
	Acknowledgements
	References


