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DNA, RNA and protein are three major kinds of biological macromolecules with up to billions of basic 
elements in such biological organisms as human or mouse. They function at molecular, cellular and 
organismal levels individually and interactively. Traditional assays on such macromolecules are largely 
experimentally based, which are usually time consuming and laborious. In the past few years, high-
throughput technologies, such as microarray and next-generation sequencing (NGS), were developed. 
Consequently, large genomic datasets are being generated and computational tools to analyzing these 
data are in urgent demand. This paper reviews several state-of-the-art high-throughput methodologies, 
representative projects, available databases and bioinformatics tools at different molecular levels. Finally, 
challenges and perspectives in processing genomic big data are discussed.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Why do some siblings look alike but have different heights 
and/or blood types? How do people get old and suffer from dis-
eases? It’s so amazing that nature always gets its rules to “design” 
living organisms. The rules are so stringent that humans are similar 
to each other, but they are also flexible enough to allow differences 
between any two individuals.

In biological sciences, an observable trait or characteristic, such 
as hair color or body height, is called a phenotype. Phenotypes 
are the results of both genetics and environment, as well as their 
interactions. Even though we still know very little about how en-
vironments affect phenotypes, scientists have a relatively much 
better understanding in the genetic factors. In 1952, Alfred Her-
shey and Martha Chase found that DNA is the hereditary material 
in any organism [1]. DNA, deoxyribonucleic acid, is a double-helix 
macromolecule. Its two strands are composed of numerous linear-
arranged nucleotides. There are four kinds of nucleotides in total, 
which are distinguished by their nitrogen-containing nucleobases, 
guanine (G), adenine (A), thymine (T), and cytosine (C). In a DNA 
molecule, there are fragments called genes that can be coded for 
proteins, the basic functional elements in an organism. Such pro-
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tein coding genes only occupy less than 2% of all DNA sequences, 
but other nearly 98% of the sequences, though not directly coded 
for proteins, are not junk. Recent studies found that they contain 
various gene regulatory elements like enhancers and silencers, or 
code for noncoding RNAs, such as microRNAs, small nuclear RNA 
and long noncoding RNAs (lncRNA) [2–4]. In Eukaryotes, which 
have a nucleus in each of their cells, DNAs coil around proteins 
called histone and are densely organized into chromosomes, and 
stably exist in the nucleus (see Fig. 1).

Another important biological macromolecule is called ribonu-
cleic acid (RNA), which is the product of DNA transcription. RNAs 
are transcribed in the nucleus, and most of them are exported to 
the cytoplasm. They are single-stranded chains of nucleotides, dis-
tinguished by guanine (G), adenine (A), cytosine (C) and uracil (U). 
There are several kinds of RNA, such as messenger RNA (mRNA), 
transfer RNA (tRNA) and ribosomal RNA (rRNA). Messenger RNA is 
the most imperative modality of RNA. It can be further translated 
into proteins with the help of tRNA. Some other forms of RNAs in-
clude microRNAs and lncRNAs. Although most of them cannot be 
translated into functional proteins, they still play their roles in the 
regulation of gene expression.

Proteins, the end-products of protein-coding genes, are the 
most essential functional macromolecules. Amino acids are the 
basic elements of proteins. They are linked to each other with 
peptide bonds and to form a polypeptide chain. The sequence of 
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Fig. 1. From nucleotide to nucleus. Note: Base pair is a pair of nucleotides from two 
chains linked by hydrogen bonds. Such base pairs are formed according to a certain 
pattern, A–T, C–G. The abbreviation of base pair, bp, refers to the length unit of 
double-helixed DNA sequence.

Fig. 2. Flow of information among DNA, RNA and protein.

amino acids on a polypeptide chain is the primary structure of pro-
teins and the chain can be folded to form secondary and tertiary 
structures. The function of a protein is predominantly associated 
with its structure [5]. Proteins play vital roles in almost every cel-
lular functions [6], including gene regulation, catalysis, immunity, 
growth, transport, signaling, and cell differentiation. Thus, compre-
hending protein functions will help us understand various cellular 
processes and reveal essential biological pathways.

In 1956, Francis Crick stated that the genetic information flows 
within biological systems as the central dogma [7], and revised it 
in 1970 [8]. The common statement of the central dogma is on the 
flow of sequence information, which draws connections between 
the sequences of nucleotides in DNA and RNA and of amino acids 
in proteins. Generally, information in DNA can be replicated with 
DNA replication, can flow into RNA by transcription and then flow 
into protein by translation. In some special cases, information in 
RNA can also flow back into DNA with reverse transcription, or 
replicate with RNA replication. The process is illustrated in Fig. 2.

The genetic information flow is quite stringent because of the 
proof reading and repair system in high organisms. However, mi-
nor mistakes are inevitable, such as genetic variations at DNA level, 
gene expression changes at RNA level and amino acid alterations 
at protein level. Some of them may not affect the function of the 
end-product protein, but many of them may cause severe diseases. 
In this regard, it is important to read on these sequence infor-
mation at different molecular levels and find the real cause of 
the diseases. However, since there are tens of thousands of dif-
ferent DNA, RNA and protein molecules in a single cell, it is hard 
to get such large-scale sequence information, let alone to analyze 
them with traditional approaches. Fortunately, with the advance of 
high-throughput technologies and consequent OMICS1 data analy-
sis tools, scientists have the opportunity to retrieve and decode the 
information for many genes in parallel. Especially with the com-
pletion of the Human Genome Project in 2003, scientist obtained 
nearly 99% of the human genome sequence (3.109 Gbp2) and 
many other organisms’ genome sequences [9]. Recently, NGS and 
even third-generation sequencing (TGS) emerged and have become 
prevalent, which greatly reduced sequencing prices so that gener-
ating multi-dimensional high-throughput data becomes a routine 
in biomedicine and biological sciences (Fig. 3). One major challenge 
is how to integrate the various OMICS data to interpret complex 
biological functions.

In the following sections, we will discuss the available method-
ologies and databases on NGS data generated from different molec-
ular levels. More importantly, we will present research gaps and 
challenges we are currently facing, and encourage researchers, par-
ticularly these from mathematics, statistics and computer science 
areas, to mine these genomic big data for biomedical research.

2. Genomics and genetic variants

The whole genetic material of an organism is called a genome. 
For most living organisms, that is a complete set of DNA. The 
analysis of genome with bioinformatics approaches is called ge-
nomics. Genomics data are usually large in size. For example, the 
human genome size is 3.2 Gbp and a mouse’s is 2.7 Gbp. Such 
large sequences are not practical to be obtained serially in a single 
read. Usually, DNAs are “cut” into numerous small pieces and se-
quenced. Then these small DNA fragments are assembled together 
and stored as reference genome.

There are several genomic databases available publically for 
research use. The NCBI Genome database (http :/ /www.ncbi .nlm .
nih .gov /genome/), maintained by the US National Institutes of 
Health (NIH), is the most commonly used one. It contains whole 
genome sequences or assemblies for over 10,000 organisms of 
eukaryotes, prokaryotes, viruses, as well as plasmids and or-
ganelles. Sequencing data and their annotations can be down-
loaded freely. UCSC genome browser (https :/ /genome .ucsc .edu /
cgi-bin /hgGateway) is another popular database with a visualiza-
tion function for genomes.

Whole genome/exome sequencing greatly facilitates the detec-
tion of genetic variants, including small variations (with range 
<1 kbp, like Single Nucleotide Polymorphisms (SNPs), microsatel-
lites, small indels3) [11] and structural variations (with range 
around 1 Kbp ∼ 3 Mbp, like Copy-Number Variants (CNVs), in-
sertions, deletions, inversions and translocations4) [12,13]. Such 
genetic variants are sources of phenotypic polymorphisms and on-
sets of diseases. It is no doubt that revealing the function of them 

1 OMICS, a general designation for biological studies with names ending in 
“-omics”, such as genomics, transcriptomics, proteomics, interactomics and epige-
nomics.

2 1 Gbp = 1000 Mbp = 1,000,000 Kbp = 1,000,000,000 bp.
3 SNP is a single base pair genetic variant with the frequency larger than 1% in a 

population. Microsatellite is a repeating sequence of 2–5 base pairs of DNA. Indels 
are the insertions or deletions (of nucleotides) in a small scale in the DNA.

4 CNVs are the variations in the number of copies of one or more sections of 
the DNA. Inversion is that a segment of a chromosome is reversed end to end. 
Translocations are rearrangements of parts between nonhomologous chromosomes.

http://www.ncbi.nlm.nih.gov/genome/
https://genome.ucsc.edu/cgi-bin/hgGateway
http://www.ncbi.nlm.nih.gov/genome/
https://genome.ucsc.edu/cgi-bin/hgGateway


JID:BDR AID:20 /REV [m5G; v1.149; Prn:6/03/2015; 10:02] P.3 (1-7)

Y. Qin et al. / Big Data Research ••• (••••) •••–••• 3
Fig. 3. DNA sequencing costs (per raw megabase of DNA) in the past 15 years [10].
can assist understanding disease mechanisms and discovering drug 
targets [14].

The 1000 Genomes Project (http :/ /www.1000genomes .org/) is a 
project aimed at producing a comprehensive resource on human 
genetic variations. With the sequencing of around 2500 individ-
uals under three projects, the consortium has characterized 15 
million SNPs, 1 million indels and 20,000 structural variants with 
their locations, allele frequencies, and so on [15]. The Interna-
tional HapMap Project (http :/ /hapmap .ncbi .nlm .nih .gov/) provides 
a map of human haplotype, which is a set of associated SNPs that 
are likely to be inherited together on a chromosome, to acceler-
ate the progress of disease related gene detection [16]. It describes 
more than 3.1 million SNPs in human from a population with 270 
individuals [17] and further expanded the population scale to com-
prehensively study SNPs and CNVs [18]. Resources provided by 
HapMap can aid the implementation of genome-wide association 
studies (GWAS). GWAS is a powerful method used to identify com-
plex disease associated common genetic variants by statistically 
analyzing the differences between sequences of normal people and 
patients at a whole genome level on SNP arrays [17,19]. Moreover, 
The Cancer Genome Atlas (TCGA, http :/ /cancergenome .nih .gov/) is 
a project directed against identifying genetic variants responsible 
for cancer with the utilization of genomic technologies. It aims 
to make genetic discoveries and characterize over 20 tumor types 
[20]. Several successful cases indicated the potency of translating 
cancer genomics into personalized cancer diagnostics and thera-
peutics [21].

High-throughput sequencing technologies and international col-
laborations provide opportunities to discover and characterize mil-
lions of genetic variants with large populations. To ensure high ef-
ficiency, such big data stimulate the development of bioinformatics 
approaches and tools [22]. As SNPs are thought to be most com-
mon form of genetic variation, it is of the most importance to be 
able to identify them quickly and accurately from NGS data. Tools 
for SNP calling are developed based on different statistical mod-
els. For example, MAQ uses Bayesian-based posterior probabilities 
to identify SNPs [23]. GATK toolkit also incorporates a Bayesian 
algorithm [24] to discovery variants for NGS data from multiple se-
quencing approaches and experiments. Recently, a new developed 
FaSD program (http :/ /jjwanglab .org /FaSD/) [25] assumed that the 
number of reads (which are sequenced DNA fragments) mapped 
and cannot be mapped to the reference follows the binomial dis-
tribution. A score is then calculated to measure the polymorphism 
probability that a certain locus is a SNP. If the score is larger than a 
given threshold, this position is thought to be a SNP. FaSD exceeds 
other methods like GATK, SOAPsnp, MAQ, SNVmix2 and Bcftools 
to a certain degree on both accuracy and processing speed. SNP 
calling can be done using FaSD in four hours for 30 GB5 NGS 
data on a standard desktop computer. Furthermore, FaSD-somatic 
(http :/ /jjwanglab .org /FaSD-somatic/) has been developed recently 
to detect somatic mutations in cancer samples [26].

3. Transcriptomics

Corresponding to the concept of genome in DNA, the whole 
set of RNA transcripts in an organism or a certain cell type is 
called the transcriptome. The study on transcriptome with high-
throughput approaches, for example, microarray and RNA-Seq is 
called transcriptomics [27]. Transcriptomics data measures the ex-
pression levels of genes as well as other transcribed DNA elements, 
and helps discover functional non-coding RNA elements. Expres-
sion of a gene varies across different cell types or at different 
developmental stages. High-throughput expression profiles of over 
one million samples can be accessed through ArrayExpress (http :/ /
www.ebi .ac .uk /arrayexpress/) and Gene Expression Omnibus (GEO, 
http :/ /www.ncbi .nlm .nih .gov /geo/) [28], and the number of pro-
files keeps accumulating especially for the data generated by high-
throughput sequencing (RNA-Seq), as shown in Fig. 4.

RNA-Seq is an approach for transcriptome profiling with NGS 
technologies. It was firstly reported in 2008 [29]. Actually it’s not 
the sequencing of RNA directly but its complementary DNA (cDNA) 
by RNA reverse transcriptase. Such data generated by sequencer is 
also of large volume. For example, the latest Illumina Hiseq 2500 
can produce as many as 300 million to 4 billion reads (approxi-
mately 10 GB to 1 TB) in one sequencer run [30]. Bioinformatics 
analysis is the key to make full use of RNA-Seq data, not only for 
detecting gene expression levels but also splicing isoforms. Basic 
RNA-Seq data analysis includes three steps. First, quality control of 
the raw data, which is to filter reads with low sequencing qualities 
and trim adapters at the ends of reads. The second step is to align 
short reads to reference genome or reference transcripts, or de novo
assemble if the reference genome is not available. TopHat [31] is 
one of the most commonly used tools for RNA-Seq reads mapping. 
Then transcripts profiling can be built by Cufflinks [32] and Scrip-
ture [33]. These tools can also be used to measure the expression 
of each transcript and detect genetic variants. Further, differential 
expressed genes can be identified with Cufflinks by comparison 
of expression data on different conditions. A more advance usage 
of RNA-Seq data is construction of gene co-expression networks. 
SpliceNet [34], a novel method based on Large Dimensional Trace, 

5 GB, gigabyte, is the unit of storage in electronic machines.

http://www.1000genomes.org/
http://hapmap.ncbi.nlm.nih.gov/
http://cancergenome.nih.gov/
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http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
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Fig. 4. Number of datasets of different types released in GEO each year. Data was extracted by constructing GEO DataSet database queries with ‘DataSet type’ and ‘publication 
date’.
 

can infer isoform6 specific co-expression networks from exon-level 
RNA-Seq data. It provides a more comprehensive picture to our 
understanding of complex diseases by inferring network rewiring 
between normal and diseased samples at isoform resolution. It can 
be applied to any exon level RNA-Seq or array data.

It is worth mentioning that, together with mRNA, long non-
coding RNAs (lncRNAs) can be detected by Total RNA-Seq. The 
database lncRNAdb (http :/ /www.lncrnadb .org/) provides compre-
hensive annotations of eukaryotic long non-coding RNAs. It will 
greatly assist the research of poorly annotated genes [35].

Challenges for the future of transcriptomics include developing 
fast and accurate transcripts mapping tools which can take all sit-
uations of transcription into consideration [27]. Precise measure 
differential expressed isoforms is also a difficult task nowadays 
[36]. More recently, “Single-Cell RNA-Seq” [37] was developed to 
measure the precise differences between transcripts in each single 
cell. It is able to build transcriptome profile in rare cells, such as 
stem cells and cancer cells. An unsupervised algorithm called Mon-
ocle [38] was applied to temporal transcriptome dynamic analysis 
with Single-Cell RNA-Seq data. However, a robust and comprehen-
sive analysis methods are still limited [39]. How to extract useful 
information from a large amount of noise remains a big challenge.

4. Proteomics

Similarly, a proteome is the entire set of proteins in a cell and 
proteomics is the study of proteome on their structures and func-
tions. It is more complicated as compared to genomics and tran-
scriptomics due to complex spatial structure of a protein, the tem-
porality and spatiality of its existence, the post-translational mod-
ifications (PTMs) and different isoforms [40]. Furthermore, since 
transcriptome can only reflect a roughly estimated level of trans-
lated proteins [41], quantitatively measuring the presences of pro-
teins in a certain cell type under a certain condition is of great 
importance to detect key functional and regulatory proteins.

Mass Spectrometry (MS) techniques are the gold standard for 
both discovery and quantitative proteomics. Reports from MS 
are in XML format and record the mass-to-charge (m/z) ratio 
for each peptide precursor [42]. The MS spectra are then used 
to search the matched peptide sequences with tools such as 
Mascot (http :/ /www.matrixscience .com /search _form _select .html), 
MassSearch (http :/ /www.cbrg .ethz .ch /services /MassSearch _new) and

6 Isoforms are mRNAs transcript from the same gene but may with different splic-
ing so that take different functions.
MS-Viewer under ProteinProspector (http://prospector.ucsf.edu/
prospector/mshome.htm) [43]. Finally, peptide sequences are as-
sembled into proteins and quantified as protein enrichment with 
statistical significance. Labelling approaches such as SILAC (stable-
isotope labelling by amino acids in cell culture) [44] and iTRAQ 
(isobaric tags for relative and absolute quantitation) [45] are cur-
rently prevalent in quantitative and comparative proteomics in 
conjunction with MS, which can relatively accurately measure the 
enrichments of protein complexes in different cells or tissues.

MS-based methods (e.g. electron transfer dissociation (ETD) 
[46]) can also greatly facilitate PTMs analysis. Phosphorylation 
is one of the most widely existed PTMs in biological processes 
and is well studied (as phosphoproteomics). Specific strategies 
(e.g. titanium dioxide chromatography [47]) have been developed 
to quantify phosphopeptide enrichment. With it, over 500,000 
sites were predicted as potential phosphorylation sites. Glycopro-
teomics, studies on another widespread PTM glycosylation, is also 
well developed along with phosphoproteomics [48]. Sites of two 
types of glycosylation, N-linked and O-linked, were identified and 
can assist our comprehension of protein functions in various cell 
types and biological processes. Biological identification is insepa-
rable from development of computational tools. FindMod [49] and 
CSS-Palm [50] are frequently used for PTMs prediction. More re-
sources for PTMs can be found here http :/ /www.biocuckoo .org /link.
php.

With the maturation of proteomics methodologies and the help 
of informatics methods, many pilot projects on proteome land-
scape and comparative proteomics have been implemented. Fol-
lowing human genome project, a draft map of human proteome 
(http :/ /www.humanproteomemap .org) was drawn recently based 
on the proteomics profiling of 30 normal human samples [51]. 
With it, a clear landscape of protein expression was exhibited 
and 808 novel annotations of the human genome were discov-
ered. Other large amounts of proteomics data generated from high-
throughput technologies, like mass spectrometry and microarray, 
have been collected. ExPASy (http :/ /www.expasy.org /proteomics) 
lists dozens of databases on proteomics and over 100 tools. Com-
monly used databases like PROSITE, String, UniProtKB are all in-
cluded in it. It provides a comprehensive repertory of protein 
sequences, structures, functions, abundances, protein–protein in-
teractions (PPIs) and associated bioinformatics tools of great help. 
Aside from that, ProteomeXchange (http :/ /www.proteomexchange .
org /mission) would provide a platform for globally coordinated 
proteomics data submission and dissemination that further pro-
motes data collection, sharing and comprehension [52].

http://www.lncrnadb.org/
http://www.matrixscience.com/search_form_select.html
http://www.cbrg.ethz.ch/services/MassSearch_new
http://prospector.ucsf.edu/prospector/mshome.htm
http://prospector.ucsf.edu/prospector/mshome.htm
http://www.biocuckoo.org/link.php
http://www.humanproteomemap.org
http://www.expasy.org/proteomics
http://www.proteomexchange.org/mission
http://www.biocuckoo.org/link.php
http://www.proteomexchange.org/mission
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Though with booming development, proteomics is still with 
some bottlenecks, including methods that are used to keep pro-
teins in a certain environment, and to image proteins within living 
cells.

5. Interactomics and epigenomics

Organisms working as complete systems are inseparable from 
interactions of molecules from genomic, transcriptomic and pro-
teomic layers, for instance, protein-DNA interaction, protein-RNA 
interaction and PPI as mentioned above. These interactions play 
key roles in the processing and regulation of transcription, transla-
tion and post-translational modifications and can perform cellular 
functions. The study on the whole set of biological molecular inter-
actions in particular cells is called interactomics. Beside the effects 
of molecular interactions, DNA methylations and histone modifica-
tions can also be critical factors to affect gene expressions, known 
as epigenetic control [53]. The whole-genome wide studies on epi-
genetics are called epigenomics. Interactomics and epigenomics 
will be discussed together not only because they both have con-
nections with gene regulation, but also have common detection 
methods.

Proteins can communicate with DNA at various levels, such 
as DNA repair, transcription, and providing structural stability. It 
is the binding domains of proteins that facilitate their interac-
tions with DNA. Usually, non-coding regions such as enhancers, 
insulators and promoters are targeted for gene regulation. Pro-
teins binding to such regions are called Transcription Factors (TFs) 
and the binding sites are called Transcription Factor Binding Sites 
(TFBS). Interactions amongst TFs and TFBSs regulate the tran-
scription of genes differentially on various developmental stages 
and tissue types [54]. Chromatin Immunoprecipitation followed 
by high-throughput DNA Sequencing (ChIP-Seq) has been widely 
used to detect TF-DNA interactions [55]. It can locate DNA regions 
bound by a certain TF. Usually, tens of millions of reads are gen-
erated from one ChIP-Seq and such raw reads could be as large 
as several gigabytes. The raw reads are then mapped to the refer-
ence genome. Generally tens of thousands of regions enriched with 
reads are called as potential TFBSs.

Like ChIP-Seq, protein-RNA interactions can also be detected by 
high-throughput methods. For example, high-throughput sequenc-
ing of CLIP7 cDNA library (HITS-CLIP or CLIP–Seq) provides oppor-
tunities to obtain protein-RNA binding landscape comprehensively 
[56].

In addition to the regulation by proteins or RNAs, distant DNA 
fragments can also interact with each other spatially and work as 
regulatory elements. The Chromosome Conformation Capture (3C) 
methodology was then developed to identify chromosome loca-
tions that interact in the nuclear space. Because 3C can be la-
borious, 4C (circular 3C) [57] and 5C (3C-Carbon Copy) [58] are 
developed to screen interaction partners for the selected genome 
sites at the whole genome [59]. Then, Hi-C technology became 
the first unbiased and real genome-wide adaptation of 3C [60]. 
If hundreds of millions of reads are generated, the resolution of 
chromatin interaction map can be detected at 10 Kbp by Hi-C [61]. 
A recent published study even achieved kilobase resolution with a 
slightly revised method called in situ Hi-C [62].

Methylation of cytosine residues at special regions (generally 
enriched with nucleotide C and G) of the DNA molecule typically 
marks the repression of nearby genes. Bisulfite sequencing (BS-
Seq) is one of the most commonly used high-throughput methods 
to get the whole-genome methylation profile. Special tools were 
devised for aligning reads generated from BS-Seq, like Bismark 

7 CLIP is known as ultraviolet (UV) crosslinking and immunoprecipitation.
[63], BSMAP [64] and RMAPBS [65]. Computational prediction of 
DNA methylation sites and status with methods like CpGIMeth-
Pred [66] is widely adopted to speed up methylation analysis. The 
result reveals that methylation patterns are related with disease 
processes [67]. For example, hypermethylation that silencing tu-
mor suppressor genes is often taken as hallmark of cancer cells 
[68].

Like DNA methylation, histone modification is another well 
studied type of epigenetics. Many histone modifications have been 
described and characterized with relations to gene activation. For 
example, H3K4me3 (trimethylation of histone H3 lysine 4) is usu-
ally an active marker on the gene promoters. ChIP-Seq is also used 
to locate histone modification sites at genome scale. Experimental 
procedures and computational analysis approaches are quite simi-
lar to that used for TFBSs detection.

With the constant generation of interactomics and epigenomics 
data, several databases and web-based servers have been built up 
to store and interpret them. For example, the International Molec-
ular Exchange (IMEx) consortium (http :/ /www.imexconsortium .
org /home), with 10 active partners, created a curation of non-
redundant of PPI data [69]. There are over 300,000 binary in-
teractions contained in IMEx consortium and the number keeps 
increasing. Constructing and comprehending PPI networks is also 
a respect of proteomics studies. In contrast, ChIP-Array [70] and 
CMGRN [71] provided web-based frameworks to integrate gene 
expression profile and TF binding/epigenetic modification signals 
of ChIP-Seq data for reconstruction of gene regulatory networks. 
Web server PTHGRN [72] links PTMs of proteins and transcrip-
tional gene regulation to explore multilayered networks under-
lying biological complex processes. DDGni [73] can account for 
expression delays in long time series data, which traditional 
methods overlooked, by adopting gapped Smith–Waterman al-
gorithm. For epigenomics, Roadmap Epigenomics Project (http :
/ /www.roadmapepigenomics .org/) is a pilot project and provides 
a wide resource of human epigenomics data which is valuable for 
the research on gene regulation and disease development.

6. Conclusions and perspectives

Biological and biomedicine sciences are now coming into multi-
dimensional OMICS era with high revolutions. The big data are 
generated on different biological components and are greatly 
speeding up clinical translational use. In this paper, we discuss 
several state-of-the-art high-throughput methodologies and data 
integrative approaches to solve biomedical questions or reveal bio-
logical mechanisms. We also demonstrate that NGS data facilitates 
the discovery of genetic variants associated with diseases; tran-
scriptomics data creates a landscape of all transcripts in different 
cell types; proteomics data help quantitatively measure the pres-
ence of proteins and monitor the PTMs of proteins. Big data is also 
generated for multilevel molecular interactions (interactomics) and 
used to help us in understanding how organisms work as biological 
systems. Epigenomics data could further open another view and 
assist us to interpret how epigenetic modifications affect gene ex-
pression. At the same time, several major projects, public databases 
and consortiums regarding big data production and usefulness are 
introduced.

Just like problems of big data shown in other areas, issues on 
data generation, transferring, storage, security, visualization and 
processing exist and challenge scientists in biomedicalfields nowa-
days. Sequencing data are generally stored and handled in high-
performance computing clusters at present. Data analysis needs 
large storage space and has a high requirement on computational 
speed. Taking ChIP-Seq data analysis as an example, if there are 
three mouse cell types to be studied, each cell type would have 
two ChIPed replicates with two control replicates. Hence, there are 

http://www.imexconsortium.org/home
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totally 12 raw data sets and each with around 60 million reads in 
3 GB (after compressed). The file generated by BWA alignment is 
around 10 GB in SAM format and 3 GB in BAM format. The time for 
alignment on a remote server (GNU/Linux 3.2.0-74-generic x86_64) 
with a maximum of 12 processors in a node with 20 GB memory 
is around 6 hours. In total, around 500 GB are needed to store the 
raw, intermediate and final files and nearly one day to process the 
data. We believe that these data can be managed better with ef-
forts through interdisciplinary collaborations from different fields. 
Some ethical issues may need more attention and may be able to 
reach an agreement with negotiation. Thus, special data processing 
is the most challenging. Although various tools have been devel-
oped for different data types, data integration and interpretation is 
far from perfect due to large biological noise and technical defects. 
The mission of bioinformaticians is to reduce noises and improve 
the accuracies and efficiencies in computational prediction with 
the comprehension of biological processes, statistics, mathematics 
and IT sciences.

To make full use of the available data, integrative analytics 
is becoming more and more popular currently. Data generated 
from different platforms at various molecular levels can be inte-
grated together and draw more conclusions. For example, GWASdb 
(http :/ /jjwanglab .org /gwasdb) is a comprehensive database with 
traits/diseases associated SNPs and their comprehensive functional 
annotations, as well as disease classifications [74]. Such well-
rounded data can offer researchers full insights of recent GWA 
studies and help them get as much information from a single 
website. To get comprehensive understanding of the function of a 
TF, ChIP-Seq data is often integrated with expression data. ChIP-
Array (http :/ /wanglab .hku .hk /ChIP-Array), PTHGRN (http :/ /www.
byanbioinfo .org /pthgrn) and BETA (http :/ /cistrome .org /BETA/) are 
well-equipped tools for such integration [70,72,75]. We expect 
that, with integration of big data generated by several platforms, 
biomedicine mechanisms can be explored more easily and thor-
oughly. Furthermore, with sequencing costs going down, and with 
data generation and analysis speed going up, personalized diagno-
sis and therapy can become more and more common.
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