
JID:BDR AID:9 /EDI [m5G; v1.150; Prn:10/04/2015; 10:31] P.1 (1-9)

Big Data Research ••• (••••) •••–•••
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

The Evolvement of Big Data Systems: From the Perspective 

of an Information Security Application ✩

Gang Chen a,∗, Sai Wu a, Yuan Wang b

a College of Computer Science, Zhejiang University, Hangzhou, 310027, PR China
b Netease (Hangzhou) Inc, Wangshang Road, Binjiang District, Hangzhou, 310052, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 September 2014
Accepted 4 January 2015
Available online xxxx

Keywords:
MapReduce
Pregel
Spark
Real-time analysis
Information security

Recently, Google revealed that it has replaced the 10-year old MapReduce with its new systems 
(e.g., DataFlow) which can provide better performances and support more sophisticated applications. 
Simultaneously, other new systems, such as Spark, Impala and epiC, are also being developed to 
handle new requirements for big data processing. The fact shows that since their emergence, big data 
techniques are changing very fast. In this paper, we use our experience in developing and maintaining the 
information security system for Netease as an example to illustrate how those big data systems evolve. 
In particular, our first version is a Hadoop-based offline detection system, which is soon replaced by a 
more flexible online streaming system. Our ongoing work is to build a generic real-time analytic system 
for Netease to handle various jobs such as email spam detection, user pattern mining, game log analysis, 
etc. The example shows how the requirements of users (e.g., Netease and its clients) affect the design of 
big data system and drive the advance of technologies. Based on our experience, we also propose some 
key design factors and challenges for future big data systems.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

In a recent announcement from Google,1 MapReduce [11] is 
abandoned as it is unable to handle the amounts of data Google 
wants to analyze these days. A new hyper-scale system, DataFlow, 
is considered as its successor which supports both batch and 
streaming data processing. Programmers can create complex pro-
cessing pipelines using DataFlow to manipulate a huge size of data. 
In fact, besides DataFlow, Google already develops a series of big 
data systems, such as Dremel [22], Spanner [8] and Pregel [21], to 
replace the original two, MapReduce and BigTable [7]. Those sys-
tems show how big data technology evolves inside Google.

The same technology revolution also happens in the academic 
community. As the most popular open-source implementation of 
MapReduce, Hadoop attracts many research efforts [17] and has 
been widely applied to various real-world applications. However, 
Hadoop is also found inefficient in processing iterative jobs [4,
23]. So GraphLab [20,13] which adopts a vertex-centric processing 
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model similar as Pregel is being developed to support large-scale 
data mining algorithms. Most existing systems such as MapRe-
duce (Hadoop) and Pregel (GraphLab) provide a fixed programming 
model for users, while the flexibility of the model determines the 
difficulty of writing programs on top of it. To address the problem, 
epiC [5,14] allows users to create their own programming model, 
simplifying the development of big data application and improv-
ing the performance significantly. The design of big data system is 
also affected by the advancement in computer hardware. As mem-
ory becomes cheaper and cheaper, we can equip a compute node 
with a very large memory, so that data can be fulled maintained 
in the distributed memory of a cluster. This observation motivates 
the development of in-memory based processing system, such as 
Spark,2 which can run a job 100 times faster than Hadoop.

In summary, the design of big data systems keeps evolving 
when we need to handle larger-scale of data and more challenging 
user demands. This is also verified by our experience in develop-
ing and maintaining an information security system for Netease3

which is collaborative project between Netease and Zhejiang Uni-
versity. In this paper, the information security system, especially 
its email spam module, is used as an example to illustrate how we 

2 http :/ /spark.apache .org/.
3 http :/ /www.163 .com.
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apply big data techniques in real-world application and how we 
change our design for new performance requirements. The remain-
ing of the paper is organized as follows. First, we introduce the 
background of Netease information security system and its chal-
lenges in detecting the malicious information. Then, we present 
the design of our first version detection system which is based 
on Hadoop and HBase.4 The Hadoop version is able to find more 
than 80% spams and works quite well until the number of emails, 
blog comments and microblogs per second increases to a new ex-
tent. Because Hadoop only supports batch processing, detection of 
new spams suffers a significant delay which may cause terrible 
user experience when new spams are flooding over Netease ser-
vices. Hence, we replace the Hadoop system with a new streaming 
system based on Apache S4.5 The new system applies human feed-
backs to dynamically update its classification model, so that new 
spams can be detected more efficiently. However, we find that it is 
not easy to implement a complex classification model in the new 
system. We need the support for both batch and stream process-
ing and a more flexible interface that can be used to integrate with 
various Netease services. So in our ongoing work, we are trying to 
build a new generic analytic system for big data. Its goal is:

• To provide a real-time or near real-time analytic service for 
extremely large data.

• To support high throughput updates from applications without 
violating the data consistence and affecting the performance of 
analysis.

• To enable third-party programmers to implement new appli-
cations on top of the exposed interfaces.

In this paper, we will present our initial design of the system and 
discuss some key challenges in implementing such a system. We 
hope that our experience can help developers design their big data 
systems by selecting the proper techniques.

2. Information security system

Netease is one of the largest email service providers in China. It 
provides both the free email service for individuals and the ad-
vanced email service for corporations. Due to its popularity in 
China, Netease email system becomes the target of many mali-
cious advertisements. Besides, Netease is also a service provider of 
news, microblogging and e-commerce. All those applications can 
be considered as the sources of malicious information. Attackers 
send forged messages to users to advertise their products, obtain 
users’ personal information or even distribute virus via attach-
ments. Therefore, spam detection is a key feature in the system to 
improve user experience. Netease collaborates with Zhejiang Uni-
versity to develop its information security system, which can fil-
ter out the malicious information before delivering them to users. 
We integrate some state-of-the-art technologies from the research 
community to the real system to improve the performance.

The very first version of information security system developed 
by Netease is, in fact, a rule-based system. It maintains a database 
for malicious information senders, sensitive keywords and some 
other features. If an email or microblog shows one of the features, 
it will be marked as spam. Surprisingly, such a simple approach 
provides a very good performance at its early stage. For example, 
more than 60% spams can be identified by sender IDs. However, 
when senders of spams become more strategic, the rule-based ap-
proach is unable to identify most spams.

4 http :/ /hbase .apache .org/.
5 http :/ /incubator.apache .org /s4/.
Different from the rule-based approach, our goal is to develop 
a model-based information filter which, given a document (e.g., 
emails or microblogs) set D, classifies the documents into the ham 
set H and spam set S . Users can selectively view or delete the 
documents based on the ham or spam tags. The core part of the 
system is a classifier which can be trained either offline or on-
line using a well-tagged document dataset. Most current learning 
models, such as Naive Bayes [24] or SVM [9], can be adopted to 
provide a satisfied precision and recall ratio. In the following dis-
cussion, we show the three versions of our information security 
systems and the key factors that lead to those specific designs. To 
simplify the presentation, we use email spam detection module as 
the example in the following discussion, because other malicious 
information modules actually follow the same design.

3. Hadoop-based system

The first rule of designing a spam detection system is that it 
cannot delay the delivery of an email. In other words, it should be 
non-intrusive for the email system. So we build a Hadoop-based 
system which trains the classification model in an offline manner 
while classifies the incoming emails in real-time. The design is also 
based on the requirement of Netease which is listed as below:

Scalability At that time, Netease email system needs to pro-
cess thousands of emails per second averagely. For the 
Hadoop-based approach, the online classifier is very ef-
ficient because it only computes the distances between 
the new email and the ham/spam cluster. A single server 
can handle more than ten thousands emails per second. 
Hence, there is no performance bottleneck here. For the 
offline part, we collect more than one hundred million 
emails per day, which are approximately a few hundred 
gigabytes of semi-structured data. Tagging the emails and 
training a Naive Bayes model take about two hours in a 
10-node cluster which is not very good but acceptable.

Update The slow training process is acceptable, because Netease 
does not pose requirement for real-time updates. We log 
the emails received so far and update the classification 
model using the new emails at every 3:00 am when the 
system is least busy. As there are too many emails, we 
first invoke a Hadoop-based KMeans algorithm to cluster 
the emails into small groups. Each group will be sum-
marized and forwarded to the email administrators to 
tag it as hams or spams (in Netease, email administra-
tors are responsible for monitoring the email system and 
the spam system. They help tune the systems to achieve 
their best performances). Fig. 1 shows the interface for 
the email administrators. The clustering and tagging pro-
cess may last for one to one and half hour depending on 
the number of groups. Then, we need another half hour 
to do the model updating.

Model complexity Since MapReduce is a very flexible program-
ming framework, we can implement Naive Bayes, SVM 
[6], Decision Tree, Neural Network [19] or other popular 
training models. Some complex models such as Neural 
Network may take a longer time for training than the 
Naive Bayes. So it is a tradeoff between the complexity 
of the model and the accuracy of the spam detection.

Fig. 2 shows the workflow of Hadoop-based system which con-
sists of an online classification process and an offline training pro-
cess. In the online process, the email streams are logged to the 
distributed file system or a key-value store such as HBase before 
forwarded to the classification model. Then the model tags emails 

http://hbase.apache.org/
http://incubator.apache.org/s4/
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Fig. 1. Result verification UI.
Fig. 2. Hadoop-based system.

as hams or spams and delivers those emails to users with their 
tags.

In the offline process, the training job is scheduled at 3:00 am 
every day. The first series of Hadoop jobs run the conventional 
KMeans algorithm which groups the similar emails into a clus-
ter. In the clustering algorithm, we use the bag-of-word model, 
where for a new email Ei ∈D, we transform it into a set of words 
Ei = {w1, . . . , wk}.6 The distance between two emails is computed 
as the cosine distance of their word vectors. In particular, mappers
compute the distances between an email Ei and all cluster cen-
ters C . Let C j be the cluster center with the minimal distance. We 
generate a key value pair (C j, Ei) and shuffle it to the correspond-
ing reducer. So the emails of the same cluster are sent to the same 
reducer where a new center is computed. In next job, mappers will 
compute the distances between emails and new centers. The pro-
cess continues until no email changes its cluster center in the map
phase. Finally, the cluster result is stored as an inverted list. The 
key of the list is the cluster center ID, while the value is a list of 
emails that belong to the cluster. We also generate a summary for 
the cluster by extracting the highest weighted keywords.

The cluster results are presented to the email administrators 
who will identify a whole cluster as hams or spams. The tagging 
results along with the emails are then used in updating the ex-
isting classification model. If we use Naive Bayes model, only one 
MapReduce job is required. Specifically, two types of mappers are 
created. One loads the old model (namely, the probabilities of a 
word in the ham and spam email respectively) and one estimates 
the probabilities for words in new mails. In reducers, we merge the 
probabilities of the same word and use it in the new classification 

6 Segmentation tools are used to transform Chinese sentences into words.
model. If we use Neural Network, multiple jobs are processed con-
sequentially. Due to its complexity, we discard the details.

4. Streaming system

The Hadoop-based system worked well until Netease received 
a burst of complaints from its clients in some specific periods of 
time. Every summary, there is a popular show The Voice of China 
(TVC) attracting more than 50 million viewers. The malicious ad-
vertiser forges emails like “you are invited by TVC for interviews”, 
“you are given two free tickets for the live show”, etc. Those emails 
also contain links to their advertisement URLs or even some cheat-
ing messages such as “transferring money to a specific account”. 
As a new type of spams, our Hadoop-based system fails to iden-
tify them in the first few days. The reason is twofold. First, our 
classification model is updated in a batch manner. There is a delay 
between the emergence of new spams and update of the model. 
Second, we incrementally update our model using new emails. So 
the importance of new spams will only be recognized when we 
get enough samples. A new spam detection system is required to 
address the problem which can update its classification model in 
real-time. We list our challenges as below:

Scalability The email system needs to handle an increasing num-
ber of emails. When we design the new spam system, 
the number of emails per second doubles and keeps in-
creasing. Moreover, different from the Hadoop system, if 
we want to update the model in real-time, we need to 
perform the training process in an online manner. The 
training process should be efficient and light weighted to 
avoid delaying the delivery of emails.

Update To improve the user experience, the classification model 
continuously changes to catch the trends of new spams. 
One metric is to measure the delay between the first 
emergence of a spam type and it being tagged as spams 
in the system.

Model complexity At our design stage, to reduce the processing 
overhead, we prefer the simple model like Naive Bayes, 
so that we can provide a real-time response and update 
our model efficiently.

The second version of spam detection system is designed as 
a streaming system on top of Apache S4. The architecture of our 
spam detection system is shown in Fig. 3. Based on the function-
alities, we have three types of streaming nodes, probability node, 
classification node and clustering node.
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Fig. 3. Architecture of streaming system.
4.1. Probability node

Before our system starts, we learn a probability model offline 
using some collected training data. The model is loaded by the 
probability node during the initialization. In particular, we assign 
an ID Ii to each probability node ni . Ii ranges from 0 to N − 1, 
where N is the number of nodes. For each word w j , we say node 
ni is its host node of w j , if hash(w j)%N = Ii . We group the words 
by their host nodes and generate N input files, one for each prob-
ability node. The file maintains the probability of each word and 
the numbers of ham and spam emails that contain the word. When 
the system starts, the probability node loads its corresponding file 
into memory.

Similar to the Hadoop system, we transform a new email 
Ei ∈D into a set of words Ei = {w1, . . . , wk}. We generate key-
value pairs (w j, Ei) for email Ei , which are sent to the probability 
node for processing. To reduce the network overhead, in fact, we 
group all key-value pairs to one probability node into a batch. 
Specifically, the batch Bx for node nx is

Bx = ({(w j, Ei)|hash(w j)%N = Ii},k)

The number of words in the email (k) is appended to the batch, so 
the classification node knows that it has received all results for an 
email.

Given a batch Bx , the probability node retrieves the probability 
P j for each w j in Bx and computes ε j = ln(1 − P j) − lnP j . If we 
cannot find P j for word w j (namely, the word does not appear 
in the training dataset), we set ε j = 0. Then, a pre-aggregation is 
performed:

f (Ei, Bx) =
∑

∀w j∈Bx

ε j

A new key-value pair (Ei, ( f (Ei, Bx), |Bx|, k)) is generated and for-
warded to a specific classification node based on the hash value of 
the key. The value is a triple, consisting of the aggregation value, 
the number of the words in the batch and total number of words 
in the email.

4.2. Classification node

The classification node collects the aggregation results of an 
email from different probability nodes. For email Ei , the classifi-
cation node updates its η value continuously. When a new aggre-
gation result of batch Bx is received, we update the η value as 
η = η + f (Ei, Bx). We also maintain a count ci for Ei . Each time, 
ci is updated as ci + |Bx|.

If 1
1+eη > T , we tag Ei as a spam and stop the classification 

process for Ei . In other words, we do not need to wait for all ag-
gregation results to make a decision. On the contrary, we can only 
tag an email as a ham, when all its results are received (ci = k) 
and 1

1+eη < T .
Based on the email’s tag (spam or ham), we shuffle it to dif-

ferent set of clustering nodes. To guarantee that the similar emails 
are sent to the same clustering node, we adopt the LSH (Local-
ity Sensitive Hashing) approach. In particular, the LSH based on 
p-stable distribution [10] is applied. We first transform the email 
Ei into a vector V (Ei) = (v1, . . . , vk), where vi denotes the TF 
(term-frequency) value of word wi . To reduce the dimensional-
ity of V (Ei), we map words into m (m << k) buckets and rewrite 
V (Ei) as (v1, . . . , vm). Each vi denotes the accumulative TFs of all 
words in the ith bucket. The idea of LSH is to define a hash func-
tion h :Rm → U, such that for any two emails Ei and E j :

• If ||V (Ei) − V (E j)|| ≤ r, then P (h(V (Ei)) = h(V (E j))) ≥ p1.
• If ||V (Ei) − V (E j)|| > cr, then P (h(V (Ei)) = h(V (E j))) ≤ p2.

h hashes the vector to an integer. r is the distance between two 
vectors. P (h(V (Ei)) = h(V (E j))) denotes the probability that the 
two vectors share the same hash value. For a good LSH, p1 >> p2.

In p-stable LSH, we define h as:

h(V (Ei)) = � V (Ei) × X + b

r
	

where X is an m-dimensional vector and its element is indepen-
dently generated based on the p-stable distribution (currently, we 
use Gaussian distribution). b is an integer, uniformly selected from 
the range [0, r]. Normally, we generate c hash functions h1, . . . , hc , 
so that the similar emails may share the same hash value with a 
higher probability. Then, we use the c hash values as the keys to 
shuffle the emails to different clustering nodes. If the clustering 
node receives duplicate emails, it will just keep one copy.

4.3. Clustering node

The clustering node maintains a buffer to cache the received 
spams/hams. Note that a clustering node only handles either the 
hams or the spams, not the both. When the buffer is full, it runs 
a local clustering algorithm to group the emails based on their 
content similarity. During the clustering process, a new buffer is 
established to collect the received emails. So the clustering process 
is a non-blocking process. In this paper, we apply the correlation 
clustering technique, which has the advantage that it provides a 
clustering method to partition the emails without requiring a spec-
ified cluster number (e.g., the parameter K in KMeans) in advance.

Correlation clustering operates on a signed graph where the 
edges are labeled as positive (+) or negative (−), indicating that 
the two ending nodes are similar or dissimilar. The goal is to clus-
ter the nodes so that the number of disagreements (in terms of 
the number negative edges inside clusters plus the number of pos-
itive edges between clusters) are minimized. The dual problem 
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that maximizes the agreements can be defined similarly. Formally, 
given a signed graph G = (V , E), let E+ be the set of positive 
edges, and E− be the set of negative edges (E = E+ ∪ E−). Cor-
relation clustering computes a clustering such that the following 
cost function is minimized:

cost =
∑

e∈E+
xe +

∑

e∈E−
(1 − xe) (1)

where xe = 0 if the two ending nodes of e are assigned to the 
same cluster, xe = 1 otherwise.

Correlation clustering is an NP-complete problem. However, one 
can rewrite it into an integer program and solve it exactly using IP 
solvers for small graphs. For large graphs, polynomial time approx-
imation algorithms [2] can be applied.

When the buffer is full, we output the emails in the buffer and 
construct the graph G . We let each email denote a node in V and 
compute the similarity between each pair of nodes. The similarity 
of two emails is estimated using the cosine function:

sim(Ei, E j) = V (Ei) × V (E j)

||V (Ei)|| × ||V (E j)||
A threshold θ is pre-defined. If sim(Ei, E j) ≥ θ , we create an edge 
between them. θ is a tunable parameter, but we found that the 
results of correlation clustering is less affected by θ . So in our im-
plementations, we randomly test a few θs in the training process 
and select the best one, which will be fixed for the system.

4.4. Model update

After clustering, the cluster nodes push the results to the spam 
management system which notifies the administrators to verify the 
precision of the results. The results of verification are also added 
into the training dataset to improve the performance of the model. 
For a cluster C , we use |C | to denote the number of emails in C . 
Let W denote all words in C . We define θ(w j) to return the num-
ber of emails in C that contains w j . Three types of feedbacks can 
be collected:

1. If C ’s tag is spam/ham and the rank is “correct”, the number 
of spam/ham emails that contain w j increases by θ(w j), while 
the total number of spam/ham emails increases by |C |.

2. If C ’s tag is spam and the rank is “false positive”, the number 
of hams that contain w j increases by θ(w j), while the total 
number of ham emails increases by |C |.

3. If C ’s tag is ham and the rank is “false negative”, the number 
of spams that contain w j increases by θ(w j), while the total 
number of spam emails increases by |C |.

The feedbacks are used to update the information maintained by 
the probability nodes. To reduce the overhead, the feedback is 
aggregated into a tuple (w j, h j, H, s j, S), where w j is a specific 
word, h j and s j are the hams/spams that contain w j and H and S
represent the total numbers of hams and spams respectively. The 
tuple is sent to the probability node using w j as the hash key. 
Once receiving the feedback, the probability node starts its update 
process.

4.5. Performance test

To evaluate the performance of new spam detection system, 
we deploy it on a 16-node cluster of Netease. We compute the 
precision of our spam detection system by comparing the newly 
generated tags to the ground truth. Figs. 4 and 5 show the results.

In our system, we use the feedbacks from the humans to adjust 
our classification model. The feedbacks are achieved by forwarding 
Fig. 4. Precision of spam detection.

Fig. 5. Precision of ham detection.

Fig. 6. Performance of scalability.

the clustering reports of spams or hams to the email administra-
tors of Netease, who are well trained to identify the spams from 
hams efficiently. If we neglect the feedback process, our spam de-
tection system works as a standard Bayes model, where no new 
spam words are inserted into the model. As we can see from the 
figures, our incremental Bayes model significantly improves the 
precision of spam detection by 20%. It is because the model evolves 
based on the feedbacks to handle the new emerging spams. On the 
other hand, the precision of ham detection is slightly worse than 
the standard Bayes, as our system adopts a more aggressive model. 
We do not show the recall in the figures, because the email is 
either spam or ham and the recall can be computed from the pre-
cisions of spam and ham.

Another reason of redesigning the spam detection system is 
that the number of emails increases by orders of magnitude and 
the old system can no longer provide a satisfied performance. 
Therefore, in the new system, we exploit the parallelism of nodes 
to speed up the processing. In the experiments, we vary the num-
ber of cluster nodes in Fig. 6 and observe that our system shows 



JID:BDR AID:9 /EDI [m5G; v1.150; Prn:10/04/2015; 10:31] P.6 (1-9)

6 G. Chen et al. / Big Data Research ••• (••••) •••–•••
Fig. 7. Architecture of real-time analytic system.
a linear scalability, which indicates that to improve the through-
put (number of emails processed per second), we can add more 
compute nodes into the cluster.

5. A generic real-time analytic system

One major problem of our streaming system is lack of flexibility. 
The architecture of probability node, classification node and clustering 
node is tailored for the Naive Bayes model. If we want to adopt a 
more comprehensive model to improve the accuracy, we need to 
completely change the design. Moreover, it is impossible to extend 
the system to support other analytic jobs such as game log analysis 
and social community detection. In summary, the architecture is 
limited to the spam detection system using Naive Bayes model.

Another issue is the scalability and load imbalance problem. 
Clustering nodes are the bottleneck of the system which may slow 
down the whole system, while probability nodes and classifica-
tion nodes only perform simple computations. Because we use 
the streaming system, the configuration of window size affects the 
performance. For probability nodes and classification nodes, the 
window size is 1. Namely, an email will be processed immediately 
at those nodes. On the other hand, the window size of clustering 
nodes equals to the predefined buffer size. When buffer is full, we 
invoke the clustering algorithm. Larger buffer incurs high mem-
ory overhead and delays the update of model. On the contrary, if 
we use a small buffer, we can update the model more frequently. 
However, the clustering results are not good, as some clusters only 
contain few members. This may make the administrators hard to 
decide whether the emails are spams or not and further affect the 
accuracy of the model.

So our ongoing work is to design a generic real-time analytic 
system based on the following considerations:

Scalability The system should be able to support different ana-
lytic jobs of Netease in the next two years. The size of 
data will continuously increase (e.g., the number of email 
per second is expected to increase to more than ten 
thousands). Given limited computation resource, the sys-
tem should provide scalable and efficient services. More-
over, because Netease has several data centers located in 
Hangzhou, Beijing and Guangzhou, the analytic system 
should support the deployment on multiple data centers.
Update The analytic system is expected to handle both batch pro-
cessing and real-time processing. For email spam detec-
tion and malicious payment detection, the system should 
return real-time results, while for the game log analysis 
and social community mining, it may process a huge size 
of data in an offline manner.

Model complexity The system needs to provide a flexible pro-
gramming interface, so that different applications and 
models can be efficiently developed on top of the system. 
The interface is required to be compatible with Hadoop 
to reduce the efforts of migration, as most existing ana-
lytic jobs of Netease are processed in Hadoop.

Fig. 7 shows the architecture of our new analytic system. In 
the bottom layer, machines of multiple data centers are organized 
as virtual compute resource which are dynamically allocated for 
different applications. The core layer of the system is based on a 
modified version of epiC [14], manipulating data from both the 
distributed file system (DFS) and the distributed memory array. 
We also create two computation models, one for batch processing 
and one for the real-time streaming processing. The batch pro-
cessing model is implemented in epiC as a bulk synchronization 
model where a job is processed in multiple steps and we perform 
a global synchronization for compute nodes at the end of each 
step. The real-time streaming model is implemented as an asyn-
chronous model where the compute node will immediately start 
the computation of next step without communicating with others. 
In the following discussion, we briefly introduce our design and 
implementation details.

5.1. epiC engine

epiC is based on the actor model where each compute node is 
considered as an individual actor, communicating with others via 
messages. Each actor performs its own processing specified by a 
user-defined function which accepts messages as its parameters. In 
epiC, actors do not transfer data between each other. Instead, they 
only use messages to indicate the location of a specific partition 
in the DFS. All actors will directly fetch their data from the DFS 
for processing. This strategy allows users to link actors dynami-
cally as a DAG (Directed Acyclic Graph). Note that different from 
previous systems, such as S4 and Dryad [27], epiC does not main-
tain the DAG explicitly which is dynamically set up based on the 
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message flow. The structure of the DAG can even change during 
the processing. This is one of the most important features of epiC, 
the flexibility.

epiC’s flexibility is also reflected on its programming model. 
It provides a simple unit interface, where users can write their 
customized functions. We can implement MapReduce or Pregel 
model on top of epiC. So previous programs written for Hadoop 
can be run on epiC with a few modifications. We can also de-
velop a streaming system on top of epiC by using the asynchronous 
model. Currently, the streaming based spam detection system is 
re-implemented using epiC. Besides Naive Bayes model, it now 
supports other complex classification models.

epiC also supports customized optimizations, so that we can 
extend it to support in-memory processing to further improve the 
performance.

5.2. In-memory processing

Users are no longer satisfied with the performance of offline 
analysis. For example, Netease game designers want to have a real-
time interactive tool to analyze the game log. They may start from 
a very general query, such as retrieving all gamers who have not 
logged in for three days. After examining the list, they can submit a 
more specific query, e.g., grouping gamers who have not logged in 
for three days by their characters’ levels. They expect every query 
to be processed in real-time, so they can adjust their queries adap-
tively.

To build a system that can provide near real-time analytic ser-
vices, we have to apply the in-memory techniques due to slow I/O 
performances of existing hardware. In particular, we are focusing 
on the following points:

• We are implementing a distributed memory array which fol-
lows the same design philosophy of RDD [28] to support scal-
able and fault tolerant data storage in memory. The memory 
array provides an interface for epiC’s units to access its data. 
In this way, we extend epiC to an in-memory processing en-
gine.

• Simply storing the data in memory cannot fully exploit the 
benefit of new architecture. We need some specific optimiza-
tions. For example, new index structures should be designed 
to maximize the hit ratio of L2 cache, instead of reducing I/O 
costs. Radix sort works better than quick sort and merge sort. 
Column-oriented storage model can adopt the late materializa-
tion approach more aggressively.

• Even the price of DRAM continuously drops, it is still too ex-
pensive to create a pure memory cluster to support Petabyte 
scale data. Therefore, a large portion of data are still main-
tained in hard disks. The data partitioning strategy (which part 
of data are maintained in memory) is crucial for the perfor-
mance. Our initial solution is to design a fast loading approach 
which can efficiently parse disk data into memory. The dataset 
for analyzing will be loaded into memory on the fly. How-
ever, this approach incurs high overheads if data are frequently 
swapped in or out from memory.

5.3. Processing updates

As a real-time system, we cannot apply the batch update 
scheme which is widely adopted in the MapReduce systems. Up-
dates and queries must be processed concurrently. To guarantee 
the consistence of analytic results, two typical strategies are em-
ployed, locking and multi-versions. In Google’s Spanner [8], the 
conventional two-phase locking is used. Although locking affects 
the system’s throughput, Google argues that the programmers and 
users should be responsible for that. If they want a better perfor-
mance, they should avoid using the locks. In our system, we run 
analytic queries and updates together. Because some queries need 
to scan a large portion of data, they may lock the entire database 
blocking all the updates. So in our solution, we adopt the multi-
version approach as in Hyper [15]. We still apply the two-phase 
locking to resolve the conflictions between updates. For each ana-
lytic query, we create a specific version V of data for it. Originally, 
V equals to current dataset. After a few updates, current dataset 
is newer than V . To handle such cases, we replicate a tuple t be-
fore applying any update to it. Let T be the tuples that have not 
been updated during the query processing. We use T ′ to denote 
the set of replicated tuples. V is then materialized as T ∪ T ′ . In 
other words, by using replication, we avoid locking tables for the 
analytic query. Note that if there are multiple analytic queries, we 
may create multiple versions of data. The storage overhead, how-
ever, is low, because we will discard the old versions of data after 
those queries have been processed.

5.4. Deployment on multiple data centers

Designing a system that be deployed on multiple data centers 
is much more challenging. There are a few issues affecting the per-
formance or even correctness of the data processing.

First, the network latency between data centers is much higher 
and unstable. When partitioning data, we should always store the 
data that are frequently accessed together in the same data center. 
An efficient analytic algorithm is partition-aware which intention-
ally avoids shuffling data between nodes in different data centers. 
This violates our design rule, namely, providing a transparent pro-
gramming model for up-layer users. Hence, we are trying to de-
veloping a module for epiC that can automatically optimize the 
performance by considering the network partitions.

Second, the clocks of different data centers are not synchro-
nized. This makes timestamp based approach does not work any 
more. Two consecutive messages may be handled in different or-
ders at each data center. To address the problem, we select some 
nodes as time servers from each center and synchronize their 
clocks. Other nodes will ask the time servers to get the correct 
clock.

Finally, it is difficult to keep the CAP property. If one data center 
fails or disconnects from the network, all its data are not acces-
sible. If we keep a replica for data in that center, we will have 
the consistent issue. It is too costly to keep the replica (normally 
in other data centers) consistent with the master copy. Besides, if 
we use the replica to process updates and failures, when the data 
center recovers, we need to start a synchronization process. To re-
duce the complexity of failure recovery, when a data center fails, 
updates to its data will be rejected. We only use the replica to 
answer the analytic queries. Updates to other data centers are still 
allowed. This simple solution works well when we only have a few 
data centers. A more sophisticated approach is being developed to 
support more complex multi-center architecture.

6. Conclusions and open problems

In this paper, we use the information security system in 
Netease as an example to illustrate how big data system evolves 
when users’ requirements keep changing. We start from an of-
fline Hadoop system to an online streaming system. Finally, we 
want to design a generic system that can provide near real-time 
analytic services for many Netease applications, such as spam de-
tection, game log analysis and social community mining. Based on 
our experiences, no solution can address all big data problems, es-
pecially when 1) data size keeps increasing; 2) more complex user 
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requirements need to be handled; 3) the emergence of new hard-
ware violates the old design; and 4) the old system becomes too 
complicated for maintenance.

In our developing system, we face a series of technical chal-
lenges that have not been well addressed by both academic com-
munity and industry. Currently, we compromise our solution by 
adopting some conventional techniques which may not be the best 
choices for the new real-time analytic system. In summary, we list 
them as below:

1. Performance problem: As mentioned previously, we use in-
memory techniques to speed up our processing. When most 
data can be maintained in memory, the system gives us a real-
time performance. However, there are many cases that only a 
small portion of data can be buffered in memory. For example, 
a one-year game log can be a few hundreds terabytes, while 
our distributed memory is less than 100 TB. When memory 
is the bottleneck, the system degrades as a MapReduce-like 
system. Many data are scanned from disks, incurring high I/O 
overheads. The analytic jobs may take hours to complete. Such 
cases definitely cannot be called as real-time analysis. We still 
do not have a solution for this problem. We try to use com-
pression to reduce the data size, but the compression ratio 
varies a lot and the decompression is also costly.

2. Consistence problem: To guarantee the data consistence when 
updates and queries are processed concurrently, we replicate 
data for each query. However, we find that when many queries 
are running together, the system’s performance slows down 
significantly. This shows that our solution is not a scalable 
solution which cannot handle many concurrent users. If we 
do not maintain multiple replicas, we must use locks which 
are more expensive. One possible solution is to use the non-
locking strategy which predefines some orders of the updates 
and queries, so that we do not need to maintain multiple 
replicas and locks are not required. However, it seems that 
existing non-locking approaches cannot be directly applied to 
our system. We are still searching for a proper one.

3. Failure recovery problem: The failure recovery becomes dif-
ficult for 1) updates are handled in real-time; and 2) data 
are split into many nodes which even belong to different data 
centers. Node failure happens almost every day. It is a non-
trivial problem, as we need to search and update the data in 
the failed node. In current implementation, we adopt a sim-
ple strategy. When failure happens, we only allow the queries 
to run on the replicas, while the updates will be blocked. This 
strategy is sometimes complained by our users who must log 
their new updates and apply them when the failed node re-
covers. A more elegant approach must be designed to replace 
the existing one.

In our opinion, the big data technology will continuously evolve 
with a larger data size and more comprehensive user require-
ments. It is difficult to predict a clear future for big data systems. 
However, based on our experiences with clients and application 
developers, we find that the following technologies are crucial to 
improve the big data applications to next level.

First, a new processing model is required to inherit the ad-
vantages of both big data systems and state-of-the-art data man-
agement systems. When people find that MapReduce and Hadoop 
cannot provide a satisfied performance, they try to build indexes 
[12], data cubes [18] and query optimizer [25] on top of MapRe-
duce, while those techniques are well adopted by modern database 
systems. On the other hand, to improve the scalability, parallel 
database also embeds MapReduce model into its processing en-
gine.7 The two systems tend to merge into one, and HadoopDB 
[1] is the first try. However, to fully exploit the benefit of scala-
bility of big data systems and performance of database systems, 
a new parallel processing model should be designed from scratch, 
not based on the enhancement of old systems. The new parallel 
model is required to support many state-of-the-art technologies in 
data management systems transparently, such as indexing, query 
optimization, view maintenance and column-oriented storage. It 
should also allow the programmers to implement their customized 
functions using a flexible interface for both batch processing and 
pipeline processing.

Second, big data systems are supposed to handle various types 
of data from different sources. For instance, the information secu-
rity system of Netease maintains data from the email system, news 
system, microblog system and online e-commerce transaction sys-
tem. The smart city system processes data from sensors, cameras, 
mobile phones and many other devices. It is a challenging job to 
analyze those data with different formats together. One typical ap-
plication of information security system is to link a user’s records 
in the game log, microblog system and transaction data to detect 
possible game cheating. This requirement actually joins a relational 
table, a social graph and a text-format log file together. There is 
no such big data tools that can perform the analytic jobs for hy-
brid data formats. GraphX [26] is recently introduced to handle 
relational data and graph data. epiC [14] can also support analyz-
ing multi-format data. Unfortunately, they are limited to specific 
types of data in an explicit way (users have to write the codes for 
handling different data formats by themselves). To facilitate the 
development of big data applications on hybrid data formats, we 
should formally define a set of operators to process the hybrid data 
and translate them into efficient jobs on top of existing processing 
engines such as MapReduce, Spark and epiC.

Third, to exploit the features of new hardware, many existing 
distributed algorithms should be redesigned. A future cluster node 
may be equipped with hybrid hardware consisting of CPU, GPU, 
DRAM, NVM (Non Volatile Memory), SSD and HDD. The big data 
algorithm must be optimized for specific hardware configuration. 
For example, in the in-memory system, the intuition is to maxi-
mize the utilization of L1 cache, while in the disk-based system, 
the main concern is the I/O overhead. So the algorithms of in-
memory system should be designed as cache conscious. One possi-
ble solution is to employ the radix based processing technique. In 
particular, the index adopts the radix tree structure [16] which is 
an in-memory trie tree with adaptive fanouts. The sort algorithm 
is based on the radix sort, a non-comparative sorting algorithm 
which turns out to be a better sorting algorithm for modern hard-
ware [3]. Although some algorithms have been proposed for new 
hardware and hybrid framework, they are mainly targeted at the 
single-node system, while to handle big data applications, we need 
the scalable distributed versions.

Fourth, most end users are still unfamiliar with big data sys-
tems. Even we provide analytic tools for them, they are still un-
aware of what the systems can do for them. So user-friendly vi-
sualization techniques are necessary to narrow the gap between 
big data system and its users. The visualization techniques should 
display the analytic results in an intuitive way, so that users can 
identify the interesting results effectively. Besides, each interac-
tion between users and visualized results will trigger a new query 
for the big data system. To enable a fast response, the back-end 
system is expected to provide a real-time performance and the vi-
sualization algorithms need to transform the users’ event into a 
proper and optimized query. Due to the complexity and diversity 

7 https://blogs.oracle.com/datawarehousing/entry/mapreduce_oracle_
tablefunction.

https://blogs.oracle.com/datawarehousing/entry/mapreduce_oracle_tablefunction
https://blogs.oracle.com/datawarehousing/entry/mapreduce_oracle_tablefunction
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of analysis jobs, visualization algorithms should support as many 
operations as possible, e.g., typical data cube operations like slice, 
drill down/up and roll up.

Last but not the least, big data applications are still limited to 
specific domains, such as finance, e-commerce and biology. New 
applications will emerge when we combine big data technologies 
with other conventional industries, while in the combination pro-
cess, those applications will pose new requirements for big data 
systems, pushing us to search and propose new solutions. We are 
optimistic about the adoption of big data technologies. More users 
will update their systems using big data technologies, when they 
see more successful stories.
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