
JID:BDR AID:9 /EDI [m5G; v1.150; Prn:10/04/2015; 10:31] P.1 (1-9)

Big Data Research ••• (••••) •••–•••
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

The Evolvement of Big Data Systems: From the Perspective

of an Information Security Application ✩

Gang Chen a,∗, Sai Wu a, Yuan Wang b

a College of Computer Science, Zhejiang University, Hangzhou, 310027, PR China
b Netease (Hangzhou) Inc, Wangshang Road, Binjiang District, Hangzhou, 310052, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 September 2014
Accepted 4 January 2015
Available online xxxx

Keywords:
MapReduce
Pregel
Spark
Real-time analysis
Information security

Recently, Google revealed that it has replaced the 10-year old MapReduce with its new systems
(e.g., DataFlow) which can provide better performances and support more sophisticated applications.
Simultaneously, other new systems, such as Spark, Impala and epiC, are also being developed to
handle new requirements for big data processing. The fact shows that since their emergence, big data
techniques are changing very fast. In this paper, we use our experience in developing and maintaining the
information security system for Netease as an example to illustrate how those big data systems evolve.
In particular, our first version is a Hadoop-based offline detection system, which is soon replaced by a
more flexible online streaming system. Our ongoing work is to build a generic real-time analytic system
for Netease to handle various jobs such as email spam detection, user pattern mining, game log analysis,
etc. The example shows how the requirements of users (e.g., Netease and its clients) affect the design of
big data system and drive the advance of technologies. Based on our experience, we also propose some
key design factors and challenges for future big data systems.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

In a recent announcement from Google,1 MapReduce [11] is
abandoned as it is unable to handle the amounts of data Google
wants to analyze these days. A new hyper-scale system, DataFlow,
is considered as its successor which supports both batch and
streaming data processing. Programmers can create complex pro-
cessing pipelines using DataFlow to manipulate a huge size of data.
In fact, besides DataFlow, Google already develops a series of big
data systems, such as Dremel [22], Spanner [8] and Pregel [21], to
replace the original two, MapReduce and BigTable [7]. Those sys-
tems show how big data technology evolves inside Google.

The same technology revolution also happens in the academic
community. As the most popular open-source implementation of
MapReduce, Hadoop attracts many research efforts [17] and has
been widely applied to various real-world applications. However,
Hadoop is also found inefficient in processing iterative jobs [4,
23]. So GraphLab [20,13] which adopts a vertex-centric processing

✩ This article belongs to Visions on Big Data.

* Corresponding author.
E-mail addresses: cg@zju.edu.cn (G. Chen), wusai@zju.edu.cn (S. Wu),

wangyuan@corp.netease.com (Y. Wang).
1 http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-

mapreduce-favor-new-hyper-scale-analytics-system/.
http://dx.doi.org/10.1016/j.bdr.2015.01.002
2214-5796/© 2015 Elsevier Inc. All rights reserved.
model similar as Pregel is being developed to support large-scale
data mining algorithms. Most existing systems such as MapRe-
duce (Hadoop) and Pregel (GraphLab) provide a fixed programming
model for users, while the flexibility of the model determines the
difficulty of writing programs on top of it. To address the problem,
epiC [5,14] allows users to create their own programming model,
simplifying the development of big data application and improv-
ing the performance significantly. The design of big data system is
also affected by the advancement in computer hardware. As mem-
ory becomes cheaper and cheaper, we can equip a compute node
with a very large memory, so that data can be fulled maintained
in the distributed memory of a cluster. This observation motivates
the development of in-memory based processing system, such as
Spark,2 which can run a job 100 times faster than Hadoop.

In summary, the design of big data systems keeps evolving
when we need to handle larger-scale of data and more challenging
user demands. This is also verified by our experience in develop-
ing and maintaining an information security system for Netease3

which is collaborative project between Netease and Zhejiang Uni-
versity. In this paper, the information security system, especially
its email spam module, is used as an example to illustrate how we

2 http :/ /spark.apache .org/.
3 http :/ /www.163 .com.

http://dx.doi.org/10.1016/j.bdr.2015.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:cg@zju.edu.cn
mailto:wusai@zju.edu.cn
mailto:wangyuan@corp.netease.com
http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system/
http://spark.apache.org/
http://www.163.com
http://dx.doi.org/10.1016/j.bdr.2015.01.002
http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system/

JID:BDR AID:9 /EDI [m5G; v1.150; Prn:10/04/2015; 10:31] P.2 (1-9)

2 G. Chen et al. / Big Data Research ••• (••••) •••–•••
apply big data techniques in real-world application and how we
change our design for new performance requirements. The remain-
ing of the paper is organized as follows. First, we introduce the
background of Netease information security system and its chal-
lenges in detecting the malicious information. Then, we present
the design of our first version detection system which is based
on Hadoop and HBase.4 The Hadoop version is able to find more
than 80% spams and works quite well until the number of emails,
blog comments and microblogs per second increases to a new ex-
tent. Because Hadoop only supports batch processing, detection of
new spams suffers a significant delay which may cause terrible
user experience when new spams are flooding over Netease ser-
vices. Hence, we replace the Hadoop system with a new streaming
system based on Apache S4.5 The new system applies human feed-
backs to dynamically update its classification model, so that new
spams can be detected more efficiently. However, we find that it is
not easy to implement a complex classification model in the new
system. We need the support for both batch and stream process-
ing and a more flexible interface that can be used to integrate with
various Netease services. So in our ongoing work, we are trying to
build a new generic analytic system for big data. Its goal is:

• To provide a real-time or near real-time analytic service for
extremely large data.

• To support high throughput updates from applications without
violating the data consistence and affecting the performance of
analysis.

• To enable third-party programmers to implement new appli-
cations on top of the exposed interfaces.

In this paper, we will present our initial design of the system and
discuss some key challenges in implementing such a system. We
hope that our experience can help developers design their big data
systems by selecting the proper techniques.

2. Information security system

Netease is one of the largest email service providers in China. It
provides both the free email service for individuals and the ad-
vanced email service for corporations. Due to its popularity in
China, Netease email system becomes the target of many mali-
cious advertisements. Besides, Netease is also a service provider of
news, microblogging and e-commerce. All those applications can
be considered as the sources of malicious information. Attackers
send forged messages to users to advertise their products, obtain
users’ personal information or even distribute virus via attach-
ments. Therefore, spam detection is a key feature in the system to
improve user experience. Netease collaborates with Zhejiang Uni-
versity to develop its information security system, which can fil-
ter out the malicious information before delivering them to users.
We integrate some state-of-the-art technologies from the research
community to the real system to improve the performance.

The very first version of information security system developed
by Netease is, in fact, a rule-based system. It maintains a database
for malicious information senders, sensitive keywords and some
other features. If an email or microblog shows one of the features,
it will be marked as spam. Surprisingly, such a simple approach
provides a very good performance at its early stage. For example,
more than 60% spams can be identified by sender IDs. However,
when senders of spams become more strategic, the rule-based ap-
proach is unable to identify most spams.

4 http :/ /hbase .apache .org/.
5 http :/ /incubator.apache .org /s4/.
Different from the rule-based approach, our goal is to develop
a model-based information filter which, given a document (e.g.,
emails or microblogs) set D, classifies the documents into the ham
set H and spam set S . Users can selectively view or delete the
documents based on the ham or spam tags. The core part of the
system is a classifier which can be trained either offline or on-
line using a well-tagged document dataset. Most current learning
models, such as Naive Bayes [24] or SVM [9], can be adopted to
provide a satisfied precision and recall ratio. In the following dis-
cussion, we show the three versions of our information security
systems and the key factors that lead to those specific designs. To
simplify the presentation, we use email spam detection module as
the example in the following discussion, because other malicious
information modules actually follow the same design.

3. Hadoop-based system

The first rule of designing a spam detection system is that it
cannot delay the delivery of an email. In other words, it should be
non-intrusive for the email system. So we build a Hadoop-based
system which trains the classification model in an offline manner
while classifies the incoming emails in real-time. The design is also
based on the requirement of Netease which is listed as below:

Scalability At that time, Netease email system needs to pro-
cess thousands of emails per second averagely. For the
Hadoop-based approach, the online classifier is very ef-
ficient because it only computes the distances between
the new email and the ham/spam cluster. A single server
can handle more than ten thousands emails per second.
Hence, there is no performance bottleneck here. For the
offline part, we collect more than one hundred million
emails per day, which are approximately a few hundred
gigabytes of semi-structured data. Tagging the emails and
training a Naive Bayes model take about two hours in a
10-node cluster which is not very good but acceptable.

Update The slow training process is acceptable, because Netease
does not pose requirement for real-time updates. We log
the emails received so far and update the classification
model using the new emails at every 3:00 am when the
system is least busy. As there are too many emails, we
first invoke a Hadoop-based KMeans algorithm to cluster
the emails into small groups. Each group will be sum-
marized and forwarded to the email administrators to
tag it as hams or spams (in Netease, email administra-
tors are responsible for monitoring the email system and
the spam system. They help tune the systems to achieve
their best performances). Fig. 1 shows the interface for
the email administrators. The clustering and tagging pro-
cess may last for one to one and half hour depending on
the number of groups. Then, we need another half hour
to do the model updating.

Model complexity Since MapReduce is a very flexible program-
ming framework, we can implement Naive Bayes, SVM
[6], Decision Tree, Neural Network [19] or other popular
training models. Some complex models such as Neural
Network may take a longer time for training than the
Naive Bayes. So it is a tradeoff between the complexity
of the model and the accuracy of the spam detection.

Fig. 2 shows the workflow of Hadoop-based system which con-
sists of an online classification process and an offline training pro-
cess. In the online process, the email streams are logged to the
distributed file system or a key-value store such as HBase before
forwarded to the classification model. Then the model tags emails

http://hbase.apache.org/
http://incubator.apache.org/s4/

JID:BDR AID:9 /EDI [m5G; v1.150; Prn:10/04/2015; 10:31] P.3 (1-9)

G. Chen et al. / Big Data Research ••• (••••) •••–••• 3
Fig. 1. Result verification UI.
Fig. 2. Hadoop-based system.

as hams or spams and delivers those emails to users with their
tags.

In the offline process, the training job is scheduled at 3:00 am
every day. The first series of Hadoop jobs run the conventional
KMeans algorithm which groups the similar emails into a clus-
ter. In the clustering algorithm, we use the bag-of-word model,
where for a new email Ei ∈D, we transform it into a set of words
Ei = {w1, . . . , wk}.6 The distance between two emails is computed
as the cosine distance of their word vectors. In particular, mappers
compute the distances between an email Ei and all cluster cen-
ters C . Let C j be the cluster center with the minimal distance. We
generate a key value pair (C j, Ei) and shuffle it to the correspond-
ing reducer. So the emails of the same cluster are sent to the same
reducer where a new center is computed. In next job, mappers will
compute the distances between emails and new centers. The pro-
cess continues until no email changes its cluster center in the map
phase. Finally, the cluster result is stored as an inverted list. The
key of the list is the cluster center ID, while the value is a list of
emails that belong to the cluster. We also generate a summary for
the cluster by extracting the highest weighted keywords.

The cluster results are presented to the email administrators
who will identify a whole cluster as hams or spams. The tagging
results along with the emails are then used in updating the ex-
isting classification model. If we use Naive Bayes model, only one
MapReduce job is required. Specifically, two types of mappers are
created. One loads the old model (namely, the probabilities of a
word in the ham and spam email respectively) and one estimates
the probabilities for words in new mails. In reducers, we merge the
probabilities of the same word and use it in the new classification

6 Segmentation tools are used to transform Chinese sentences into words.
model. If we use Neural Network, multiple jobs are processed con-
sequentially. Due to its complexity, we discard the details.

4. Streaming system

The Hadoop-based system worked well until Netease received
a burst of complaints from its clients in some specific periods of
time. Every summary, there is a popular show The Voice of China
(TVC) attracting more than 50 million viewers. The malicious ad-
vertiser forges emails like “you are invited by TVC for interviews”,
“you are given two free tickets for the live show”, etc. Those emails
also contain links to their advertisement URLs or even some cheat-
ing messages such as “transferring money to a specific account”.
As a new type of spams, our Hadoop-based system fails to iden-
tify them in the first few days. The reason is twofold. First, our
classification model is updated in a batch manner. There is a delay
between the emergence of new spams and update of the model.
Second, we incrementally update our model using new emails. So
the importance of new spams will only be recognized when we
get enough samples. A new spam detection system is required to
address the problem which can update its classification model in
real-time. We list our challenges as below:

Scalability The email system needs to handle an increasing num-
ber of emails. When we design the new spam system,
the number of emails per second doubles and keeps in-
creasing. Moreover, different from the Hadoop system, if
we want to update the model in real-time, we need to
perform the training process in an online manner. The
training process should be efficient and light weighted to
avoid delaying the delivery of emails.

Update To improve the user experience, the classification model
continuously changes to catch the trends of new spams.
One metric is to measure the delay between the first
emergence of a spam type and it being tagged as spams
in the system.

Model complexity At our design stage, to reduce the processing
overhead, we prefer the simple model like Naive Bayes,
so that we can provide a real-time response and update
our model efficiently.

The second version of spam detection system is designed as
a streaming system on top of Apache S4. The architecture of our
spam detection system is shown in Fig. 3. Based on the function-
alities, we have three types of streaming nodes, probability node,
classification node and clustering node.

JID:BDR AID:9 /EDI [m5G; v1.150; Prn:10/04/2015; 10:31] P.4 (1-9)

4 G. Chen et al. / Big Data Research ••• (••••) •••–•••
Fig. 3. Architecture of streaming system.
4.1. Probability node

Before our system starts, we learn a probability model offline
using some collected training data. The model is loaded by the
probability node during the initialization. In particular, we assign
an ID Ii to each probability node ni . Ii ranges from 0 to N − 1,
where N is the number of nodes. For each word w j , we say node
ni is its host node of w j , if hash(w j)%N = Ii . We group the words
by their host nodes and generate N input files, one for each prob-
ability node. The file maintains the probability of each word and
the numbers of ham and spam emails that contain the word. When
the system starts, the probability node loads its corresponding file
into memory.

Similar to the Hadoop system, we transform a new email
Ei ∈D into a set of words Ei = {w1, . . . , wk}. We generate key-
value pairs (w j, Ei) for email Ei , which are sent to the probability
node for processing. To reduce the network overhead, in fact, we
group all key-value pairs to one probability node into a batch.
Specifically, the batch Bx for node nx is

Bx = ({(w j, Ei)|hash(w j)%N = Ii},k)

The number of words in the email (k) is appended to the batch, so
the classification node knows that it has received all results for an
email.

Given a batch Bx , the probability node retrieves the probability
P j for each w j in Bx and computes ε j = ln(1 − P j) − lnP j . If we
cannot find P j for word w j (namely, the word does not appear
in the training dataset), we set ε j = 0. Then, a pre-aggregation is
performed:

f (Ei, Bx) =
∑

∀w j∈Bx

ε j

A new key-value pair (Ei, (f (Ei, Bx), |Bx|, k)) is generated and for-
warded to a specific classification node based on the hash value of
the key. The value is a triple, consisting of the aggregation value,
the number of the words in the batch and total number of words
in the email.

4.2. Classification node

The classification node collects the aggregation results of an
email from different probability nodes. For email Ei , the classifi-
cation node updates its η value continuously. When a new aggre-
gation result of batch Bx is received, we update the η value as
η = η + f (Ei, Bx). We also maintain a count ci for Ei . Each time,
ci is updated as ci + |Bx|.

If 1
1+eη > T , we tag Ei as a spam and stop the classification

process for Ei . In other words, we do not need to wait for all ag-
gregation results to make a decision. On the contrary, we can only
tag an email as a ham, when all its results are received (ci = k)
and 1

1+eη < T .
Based on the email’s tag (spam or ham), we shuffle it to dif-

ferent set of clustering nodes. To guarantee that the similar emails
are sent to the same clustering node, we adopt the LSH (Local-
ity Sensitive Hashing) approach. In particular, the LSH based on
p-stable distribution [10] is applied. We first transform the email
Ei into a vector V (Ei) = (v1, . . . , vk), where vi denotes the TF
(term-frequency) value of word wi . To reduce the dimensional-
ity of V (Ei), we map words into m (m << k) buckets and rewrite
V (Ei) as (v1, . . . , vm). Each vi denotes the accumulative TFs of all
words in the ith bucket. The idea of LSH is to define a hash func-
tion h :Rm → U, such that for any two emails Ei and E j :

• If ||V (Ei) − V (E j)|| ≤ r, then P (h(V (Ei)) = h(V (E j))) ≥ p1.
• If ||V (Ei) − V (E j)|| > cr, then P (h(V (Ei)) = h(V (E j))) ≤ p2.

h hashes the vector to an integer. r is the distance between two
vectors. P (h(V (Ei)) = h(V (E j))) denotes the probability that the
two vectors share the same hash value. For a good LSH, p1 >> p2.

In p-stable LSH, we define h as:

h(V (Ei)) = � V (Ei) × X + b

r
	

where X is an m-dimensional vector and its element is indepen-
dently generated based on the p-stable distribution (currently, we
use Gaussian distribution). b is an integer, uniformly selected from
the range [0, r]. Normally, we generate c hash functions h1, . . . , hc ,
so that the similar emails may share the same hash value with a
higher probability. Then, we use the c hash values as the keys to
shuffle the emails to different clustering nodes. If the clustering
node receives duplicate emails, it will just keep one copy.

4.3. Clustering node

The clustering node maintains a buffer to cache the received
spams/hams. Note that a clustering node only handles either the
hams or the spams, not the both. When the buffer is full, it runs
a local clustering algorithm to group the emails based on their
content similarity. During the clustering process, a new buffer is
established to collect the received emails. So the clustering process
is a non-blocking process. In this paper, we apply the correlation
clustering technique, which has the advantage that it provides a
clustering method to partition the emails without requiring a spec-
ified cluster number (e.g., the parameter K in KMeans) in advance.

Correlation clustering operates on a signed graph where the
edges are labeled as positive (+) or negative (−), indicating that
the two ending nodes are similar or dissimilar. The goal is to clus-
ter the nodes so that the number of disagreements (in terms of
the number negative edges inside clusters plus the number of pos-
itive edges between clusters) are minimized. The dual problem

JID:BDR AID:9 /EDI [m5G; v1.150; Prn:10/04/2015; 10:31] P.5 (1-9)

G. Chen et al. / Big Data Research ••• (••••) •••–••• 5
that maximizes the agreements can be defined similarly. Formally,
given a signed graph G = (V , E), let E+ be the set of positive
edges, and E− be the set of negative edges (E = E+ ∪ E−). Cor-
relation clustering computes a clustering such that the following
cost function is minimized:

cost =
∑

e∈E+
xe +

∑

e∈E−
(1 − xe) (1)

where xe = 0 if the two ending nodes of e are assigned to the
same cluster, xe = 1 otherwise.

Correlation clustering is an NP-complete problem. However, one
can rewrite it into an integer program and solve it exactly using IP
solvers for small graphs. For large graphs, polynomial time approx-
imation algorithms [2] can be applied.

When the buffer is full, we output the emails in the buffer and
construct the graph G . We let each email denote a node in V and
compute the similarity between each pair of nodes. The similarity
of two emails is estimated using the cosine function:

sim(Ei, E j) = V (Ei) × V (E j)

||V (Ei)|| × ||V (E j)||
A threshold θ is pre-defined. If sim(Ei, E j) ≥ θ , we create an edge
between them. θ is a tunable parameter, but we found that the
results of correlation clustering is less affected by θ . So in our im-
plementations, we randomly test a few θs in the training process
and select the best one, which will be fixed for the system.

4.4. Model update

After clustering, the cluster nodes push the results to the spam
management system which notifies the administrators to verify the
precision of the results. The results of verification are also added
into the training dataset to improve the performance of the model.
For a cluster C , we use |C | to denote the number of emails in C .
Let W denote all words in C . We define θ(w j) to return the num-
ber of emails in C that contains w j . Three types of feedbacks can
be collected:

1. If C ’s tag is spam/ham and the rank is “correct”, the number
of spam/ham emails that contain w j increases by θ(w j), while
the total number of spam/ham emails increases by |C |.

2. If C ’s tag is spam and the rank is “false positive”, the number
of hams that contain w j increases by θ(w j), while the total
number of ham emails increases by |C |.

3. If C ’s tag is ham and the rank is “false negative”, the number
of spams that contain w j increases by θ(w j), while the total
number of spam emails increases by |C |.

The feedbacks are used to update the information maintained by
the probability nodes. To reduce the overhead, the feedback is
aggregated into a tuple (w j, h j, H, s j, S), where w j is a specific
word, h j and s j are the hams/spams that contain w j and H and S
represent the total numbers of hams and spams respectively. The
tuple is sent to the probability node using w j as the hash key.
Once receiving the feedback, the probability node starts its update
process.

4.5. Performance test

To evaluate the performance of new spam detection system,
we deploy it on a 16-node cluster of Netease. We compute the
precision of our spam detection system by comparing the newly
generated tags to the ground truth. Figs. 4 and 5 show the results.

In our system, we use the feedbacks from the humans to adjust
our classification model. The feedbacks are achieved by forwarding
Fig. 4. Precision of spam detection.

Fig. 5. Precision of ham detection.

Fig. 6. Performance of scalability.

the clustering reports of spams or hams to the email administra-
tors of Netease, who are well trained to identify the spams from
hams efficiently. If we neglect the feedback process, our spam de-
tection system works as a standard Bayes model, where no new
spam words are inserted into the model. As we can see from the
figures, our incremental Bayes model significantly improves the
precision of spam detection by 20%. It is because the model evolves
based on the feedbacks to handle the new emerging spams. On the
other hand, the precision of ham detection is slightly worse than
the standard Bayes, as our system adopts a more aggressive model.
We do not show the recall in the figures, because the email is
either spam or ham and the recall can be computed from the pre-
cisions of spam and ham.

Another reason of redesigning the spam detection system is
that the number of emails increases by orders of magnitude and
the old system can no longer provide a satisfied performance.
Therefore, in the new system, we exploit the parallelism of nodes
to speed up the processing. In the experiments, we vary the num-
ber of cluster nodes in Fig. 6 and observe that our system shows

JID:BDR AID:9 /EDI [m5G; v1.150; Prn:10/04/2015; 10:31] P.6 (1-9)

6 G. Chen et al. / Big Data Research ••• (••••) •••–•••
Fig. 7. Architecture of real-time analytic system.
a linear scalability, which indicates that to improve the through-
put (number of emails processed per second), we can add more
compute nodes into the cluster.

5. A generic real-time analytic system

One major problem of our streaming system is lack of flexibility.
The architecture of probability node, classification node and clustering
node is tailored for the Naive Bayes model. If we want to adopt a
more comprehensive model to improve the accuracy, we need to
completely change the design. Moreover, it is impossible to extend
the system to support other analytic jobs such as game log analysis
and social community detection. In summary, the architecture is
limited to the spam detection system using Naive Bayes model.

Another issue is the scalability and load imbalance problem.
Clustering nodes are the bottleneck of the system which may slow
down the whole system, while probability nodes and classifica-
tion nodes only perform simple computations. Because we use
the streaming system, the configuration of window size affects the
performance. For probability nodes and classification nodes, the
window size is 1. Namely, an email will be processed immediately
at those nodes. On the other hand, the window size of clustering
nodes equals to the predefined buffer size. When buffer is full, we
invoke the clustering algorithm. Larger buffer incurs high mem-
ory overhead and delays the update of model. On the contrary, if
we use a small buffer, we can update the model more frequently.
However, the clustering results are not good, as some clusters only
contain few members. This may make the administrators hard to
decide whether the emails are spams or not and further affect the
accuracy of the model.

So our ongoing work is to design a generic real-time analytic
system based on the following considerations:

Scalability The system should be able to support different ana-
lytic jobs of Netease in the next two years. The size of
data will continuously increase (e.g., the number of email
per second is expected to increase to more than ten
thousands). Given limited computation resource, the sys-
tem should provide scalable and efficient services. More-
over, because Netease has several data centers located in
Hangzhou, Beijing and Guangzhou, the analytic system
should support the deployment on multiple data centers.
Update The analytic system is expected to handle both batch pro-
cessing and real-time processing. For email spam detec-
tion and malicious payment detection, the system should
return real-time results, while for the game log analysis
and social community mining, it may process a huge size
of data in an offline manner.

Model complexity The system needs to provide a flexible pro-
gramming interface, so that different applications and
models can be efficiently developed on top of the system.
The interface is required to be compatible with Hadoop
to reduce the efforts of migration, as most existing ana-
lytic jobs of Netease are processed in Hadoop.

Fig. 7 shows the architecture of our new analytic system. In
the bottom layer, machines of multiple data centers are organized
as virtual compute resource which are dynamically allocated for
different applications. The core layer of the system is based on a
modified version of epiC [14], manipulating data from both the
distributed file system (DFS) and the distributed memory array.
We also create two computation models, one for batch processing
and one for the real-time streaming processing. The batch pro-
cessing model is implemented in epiC as a bulk synchronization
model where a job is processed in multiple steps and we perform
a global synchronization for compute nodes at the end of each
step. The real-time streaming model is implemented as an asyn-
chronous model where the compute node will immediately start
the computation of next step without communicating with others.
In the following discussion, we briefly introduce our design and
implementation details.

5.1. epiC engine

epiC is based on the actor model where each compute node is
considered as an individual actor, communicating with others via
messages. Each actor performs its own processing specified by a
user-defined function which accepts messages as its parameters. In
epiC, actors do not transfer data between each other. Instead, they
only use messages to indicate the location of a specific partition
in the DFS. All actors will directly fetch their data from the DFS
for processing. This strategy allows users to link actors dynami-
cally as a DAG (Directed Acyclic Graph). Note that different from
previous systems, such as S4 and Dryad [27], epiC does not main-
tain the DAG explicitly which is dynamically set up based on the

JID:BDR AID:9 /EDI [m5G; v1.150; Prn:10/04/2015; 10:31] P.7 (1-9)

G. Chen et al. / Big Data Research ••• (••••) •••–••• 7
message flow. The structure of the DAG can even change during
the processing. This is one of the most important features of epiC,
the flexibility.

epiC’s flexibility is also reflected on its programming model.
It provides a simple unit interface, where users can write their
customized functions. We can implement MapReduce or Pregel
model on top of epiC. So previous programs written for Hadoop
can be run on epiC with a few modifications. We can also de-
velop a streaming system on top of epiC by using the asynchronous
model. Currently, the streaming based spam detection system is
re-implemented using epiC. Besides Naive Bayes model, it now
supports other complex classification models.

epiC also supports customized optimizations, so that we can
extend it to support in-memory processing to further improve the
performance.

5.2. In-memory processing

Users are no longer satisfied with the performance of offline
analysis. For example, Netease game designers want to have a real-
time interactive tool to analyze the game log. They may start from
a very general query, such as retrieving all gamers who have not
logged in for three days. After examining the list, they can submit a
more specific query, e.g., grouping gamers who have not logged in
for three days by their characters’ levels. They expect every query
to be processed in real-time, so they can adjust their queries adap-
tively.

To build a system that can provide near real-time analytic ser-
vices, we have to apply the in-memory techniques due to slow I/O
performances of existing hardware. In particular, we are focusing
on the following points:

• We are implementing a distributed memory array which fol-
lows the same design philosophy of RDD [28] to support scal-
able and fault tolerant data storage in memory. The memory
array provides an interface for epiC’s units to access its data.
In this way, we extend epiC to an in-memory processing en-
gine.

• Simply storing the data in memory cannot fully exploit the
benefit of new architecture. We need some specific optimiza-
tions. For example, new index structures should be designed
to maximize the hit ratio of L2 cache, instead of reducing I/O
costs. Radix sort works better than quick sort and merge sort.
Column-oriented storage model can adopt the late materializa-
tion approach more aggressively.

• Even the price of DRAM continuously drops, it is still too ex-
pensive to create a pure memory cluster to support Petabyte
scale data. Therefore, a large portion of data are still main-
tained in hard disks. The data partitioning strategy (which part
of data are maintained in memory) is crucial for the perfor-
mance. Our initial solution is to design a fast loading approach
which can efficiently parse disk data into memory. The dataset
for analyzing will be loaded into memory on the fly. How-
ever, this approach incurs high overheads if data are frequently
swapped in or out from memory.

5.3. Processing updates

As a real-time system, we cannot apply the batch update
scheme which is widely adopted in the MapReduce systems. Up-
dates and queries must be processed concurrently. To guarantee
the consistence of analytic results, two typical strategies are em-
ployed, locking and multi-versions. In Google’s Spanner [8], the
conventional two-phase locking is used. Although locking affects
the system’s throughput, Google argues that the programmers and
users should be responsible for that. If they want a better perfor-
mance, they should avoid using the locks. In our system, we run
analytic queries and updates together. Because some queries need
to scan a large portion of data, they may lock the entire database
blocking all the updates. So in our solution, we adopt the multi-
version approach as in Hyper [15]. We still apply the two-phase
locking to resolve the conflictions between updates. For each ana-
lytic query, we create a specific version V of data for it. Originally,
V equals to current dataset. After a few updates, current dataset
is newer than V . To handle such cases, we replicate a tuple t be-
fore applying any update to it. Let T be the tuples that have not
been updated during the query processing. We use T ′ to denote
the set of replicated tuples. V is then materialized as T ∪ T ′ . In
other words, by using replication, we avoid locking tables for the
analytic query. Note that if there are multiple analytic queries, we
may create multiple versions of data. The storage overhead, how-
ever, is low, because we will discard the old versions of data after
those queries have been processed.

5.4. Deployment on multiple data centers

Designing a system that be deployed on multiple data centers
is much more challenging. There are a few issues affecting the per-
formance or even correctness of the data processing.

First, the network latency between data centers is much higher
and unstable. When partitioning data, we should always store the
data that are frequently accessed together in the same data center.
An efficient analytic algorithm is partition-aware which intention-
ally avoids shuffling data between nodes in different data centers.
This violates our design rule, namely, providing a transparent pro-
gramming model for up-layer users. Hence, we are trying to de-
veloping a module for epiC that can automatically optimize the
performance by considering the network partitions.

Second, the clocks of different data centers are not synchro-
nized. This makes timestamp based approach does not work any
more. Two consecutive messages may be handled in different or-
ders at each data center. To address the problem, we select some
nodes as time servers from each center and synchronize their
clocks. Other nodes will ask the time servers to get the correct
clock.

Finally, it is difficult to keep the CAP property. If one data center
fails or disconnects from the network, all its data are not acces-
sible. If we keep a replica for data in that center, we will have
the consistent issue. It is too costly to keep the replica (normally
in other data centers) consistent with the master copy. Besides, if
we use the replica to process updates and failures, when the data
center recovers, we need to start a synchronization process. To re-
duce the complexity of failure recovery, when a data center fails,
updates to its data will be rejected. We only use the replica to
answer the analytic queries. Updates to other data centers are still
allowed. This simple solution works well when we only have a few
data centers. A more sophisticated approach is being developed to
support more complex multi-center architecture.

6. Conclusions and open problems

In this paper, we use the information security system in
Netease as an example to illustrate how big data system evolves
when users’ requirements keep changing. We start from an of-
fline Hadoop system to an online streaming system. Finally, we
want to design a generic system that can provide near real-time
analytic services for many Netease applications, such as spam de-
tection, game log analysis and social community mining. Based on
our experiences, no solution can address all big data problems, es-
pecially when 1) data size keeps increasing; 2) more complex user

JID:BDR AID:9 /EDI [m5G; v1.150; Prn:10/04/2015; 10:31] P.8 (1-9)

8 G. Chen et al. / Big Data Research ••• (••••) •••–•••
requirements need to be handled; 3) the emergence of new hard-
ware violates the old design; and 4) the old system becomes too
complicated for maintenance.

In our developing system, we face a series of technical chal-
lenges that have not been well addressed by both academic com-
munity and industry. Currently, we compromise our solution by
adopting some conventional techniques which may not be the best
choices for the new real-time analytic system. In summary, we list
them as below:

1. Performance problem: As mentioned previously, we use in-
memory techniques to speed up our processing. When most
data can be maintained in memory, the system gives us a real-
time performance. However, there are many cases that only a
small portion of data can be buffered in memory. For example,
a one-year game log can be a few hundreds terabytes, while
our distributed memory is less than 100 TB. When memory
is the bottleneck, the system degrades as a MapReduce-like
system. Many data are scanned from disks, incurring high I/O
overheads. The analytic jobs may take hours to complete. Such
cases definitely cannot be called as real-time analysis. We still
do not have a solution for this problem. We try to use com-
pression to reduce the data size, but the compression ratio
varies a lot and the decompression is also costly.

2. Consistence problem: To guarantee the data consistence when
updates and queries are processed concurrently, we replicate
data for each query. However, we find that when many queries
are running together, the system’s performance slows down
significantly. This shows that our solution is not a scalable
solution which cannot handle many concurrent users. If we
do not maintain multiple replicas, we must use locks which
are more expensive. One possible solution is to use the non-
locking strategy which predefines some orders of the updates
and queries, so that we do not need to maintain multiple
replicas and locks are not required. However, it seems that
existing non-locking approaches cannot be directly applied to
our system. We are still searching for a proper one.

3. Failure recovery problem: The failure recovery becomes dif-
ficult for 1) updates are handled in real-time; and 2) data
are split into many nodes which even belong to different data
centers. Node failure happens almost every day. It is a non-
trivial problem, as we need to search and update the data in
the failed node. In current implementation, we adopt a sim-
ple strategy. When failure happens, we only allow the queries
to run on the replicas, while the updates will be blocked. This
strategy is sometimes complained by our users who must log
their new updates and apply them when the failed node re-
covers. A more elegant approach must be designed to replace
the existing one.

In our opinion, the big data technology will continuously evolve
with a larger data size and more comprehensive user require-
ments. It is difficult to predict a clear future for big data systems.
However, based on our experiences with clients and application
developers, we find that the following technologies are crucial to
improve the big data applications to next level.

First, a new processing model is required to inherit the ad-
vantages of both big data systems and state-of-the-art data man-
agement systems. When people find that MapReduce and Hadoop
cannot provide a satisfied performance, they try to build indexes
[12], data cubes [18] and query optimizer [25] on top of MapRe-
duce, while those techniques are well adopted by modern database
systems. On the other hand, to improve the scalability, parallel
database also embeds MapReduce model into its processing en-
gine.7 The two systems tend to merge into one, and HadoopDB
[1] is the first try. However, to fully exploit the benefit of scala-
bility of big data systems and performance of database systems,
a new parallel processing model should be designed from scratch,
not based on the enhancement of old systems. The new parallel
model is required to support many state-of-the-art technologies in
data management systems transparently, such as indexing, query
optimization, view maintenance and column-oriented storage. It
should also allow the programmers to implement their customized
functions using a flexible interface for both batch processing and
pipeline processing.

Second, big data systems are supposed to handle various types
of data from different sources. For instance, the information secu-
rity system of Netease maintains data from the email system, news
system, microblog system and online e-commerce transaction sys-
tem. The smart city system processes data from sensors, cameras,
mobile phones and many other devices. It is a challenging job to
analyze those data with different formats together. One typical ap-
plication of information security system is to link a user’s records
in the game log, microblog system and transaction data to detect
possible game cheating. This requirement actually joins a relational
table, a social graph and a text-format log file together. There is
no such big data tools that can perform the analytic jobs for hy-
brid data formats. GraphX [26] is recently introduced to handle
relational data and graph data. epiC [14] can also support analyz-
ing multi-format data. Unfortunately, they are limited to specific
types of data in an explicit way (users have to write the codes for
handling different data formats by themselves). To facilitate the
development of big data applications on hybrid data formats, we
should formally define a set of operators to process the hybrid data
and translate them into efficient jobs on top of existing processing
engines such as MapReduce, Spark and epiC.

Third, to exploit the features of new hardware, many existing
distributed algorithms should be redesigned. A future cluster node
may be equipped with hybrid hardware consisting of CPU, GPU,
DRAM, NVM (Non Volatile Memory), SSD and HDD. The big data
algorithm must be optimized for specific hardware configuration.
For example, in the in-memory system, the intuition is to maxi-
mize the utilization of L1 cache, while in the disk-based system,
the main concern is the I/O overhead. So the algorithms of in-
memory system should be designed as cache conscious. One possi-
ble solution is to employ the radix based processing technique. In
particular, the index adopts the radix tree structure [16] which is
an in-memory trie tree with adaptive fanouts. The sort algorithm
is based on the radix sort, a non-comparative sorting algorithm
which turns out to be a better sorting algorithm for modern hard-
ware [3]. Although some algorithms have been proposed for new
hardware and hybrid framework, they are mainly targeted at the
single-node system, while to handle big data applications, we need
the scalable distributed versions.

Fourth, most end users are still unfamiliar with big data sys-
tems. Even we provide analytic tools for them, they are still un-
aware of what the systems can do for them. So user-friendly vi-
sualization techniques are necessary to narrow the gap between
big data system and its users. The visualization techniques should
display the analytic results in an intuitive way, so that users can
identify the interesting results effectively. Besides, each interac-
tion between users and visualized results will trigger a new query
for the big data system. To enable a fast response, the back-end
system is expected to provide a real-time performance and the vi-
sualization algorithms need to transform the users’ event into a
proper and optimized query. Due to the complexity and diversity

7 https://blogs.oracle.com/datawarehousing/entry/mapreduce_oracle_
tablefunction.

https://blogs.oracle.com/datawarehousing/entry/mapreduce_oracle_tablefunction
https://blogs.oracle.com/datawarehousing/entry/mapreduce_oracle_tablefunction

JID:BDR AID:9 /EDI [m5G; v1.150; Prn:10/04/2015; 10:31] P.9 (1-9)

G. Chen et al. / Big Data Research ••• (••••) •••–••• 9
of analysis jobs, visualization algorithms should support as many
operations as possible, e.g., typical data cube operations like slice,
drill down/up and roll up.

Last but not the least, big data applications are still limited to
specific domains, such as finance, e-commerce and biology. New
applications will emerge when we combine big data technologies
with other conventional industries, while in the combination pro-
cess, those applications will pose new requirements for big data
systems, pushing us to search and propose new solutions. We are
optimistic about the adoption of big data technologies. More users
will update their systems using big data technologies, when they
see more successful stories.

Acknowledgements

The work of Gang Chen was supported by the National Science
Foundation of China under Grant No. 61472348. The work of Sai
Wu was supported by The National Key Technology R&D Program
of the Ministry of Science and Technology of the People’s Republic
of China (Grant No. 2013BAG06B01).

References

[1] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin, Avi
Silberschatz, Hadoopdb: an architectural hybrid of mapreduce and dbms tech-
nologies for analytical workloads, Proc. VLDB Endow. 2 (1) (2009) 922–933.

[2] Nir Ailon, Moses Charikar, Alantha Newman, Aggregating inconsistent informa-
tion: ranking and clustering, J. ACM 55 (5) (2008).

[3] Cagri Balkesen, Gustavo Alonso, Jens Teubner, M. Tamer Özsu, Multi-core, main-
memory joins: sort vs. hash revisited, Proc. VLDB Endow. 7 (1) (2013) 85–96.

[4] Yingyi Bu, Bill Howe, Magdalena Balazinska, Michael D. Ernst, Haloop: efficient
iterative data processing on large clusters, VLDB J. 3 (1–2) (September 2010)
285–296.

[5] Yu Cao, Chun Chen, Fei Guo, Dawei Jiang, Yuting Lin, Beng Chin Ooi, Hoang
Tam Vo, Sai Wu, Quanqing Xu, Es2: a cloud data storage system for supporting
both oltp and olap, in: ICDE, 2011, pp. 291–302.

[6] G. Caruana, Maozhen Li, Man Qi, A mapreduce based parallel svm for large
scale spam filtering, in: Fuzzy Systems and Knowledge Discovery, FSKD, 2011,
pp. 2659–2662.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber,
Bigtable: a distributed storage system for structured data, ACM Trans. Comput.
Syst. 26 (2) (2008).

[8] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J.J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Ra-
jesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, Dale Woodford, Spanner: Google’s globally distributed database,
ACM Trans. Comput. Syst. 31 (3) (2013) 8.
[9] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines,
Cambridge University Press, 2000.

[10] Mayur Datar, Nicole Immorlica, Piotr Indyk, Vahab S. Mirrokni, Locality-
sensitive hashing scheme based on p-stable distributions, in: Proceedings of
the Twentieth Annual Symposium on Computational Geometry, SCG’04, 2004,
pp. 253–262.

[11] Jeffrey Dean, Sanjay Ghemawat, Mapreduce: simplified data processing on large
clusters, Commun. ACM 51 (1) (January 2008) 107–113.

[12] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Efficient big data processing in hadoop
mapreduce, Proc. VLDB Endow. 5 (12) (2012) 2014–2015.

[13] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, Carlos Guestrin,
Powergraph: distributed graph-parallel computation on natural graphs, in:
OSDI, 2012, pp. 17–30.

[14] Dawei Jiang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, Sai Wu, epic: an ex-
tensible and scalable system for processing big data, Proc. VLDB Endow. 7 (7)
(2014) 541–552.

[15] Alfons Kemper, Thomas Neumann, Hyper: a hybrid oltp&olap main mem-
ory database system based on virtual memory snapshots, in: ICDE, 2011,
pp. 195–206.

[16] Viktor Leis, Alfons Kemper, Thomas Neumann, The adaptive radix tree: artful
indexing for main-memory databases, in: ICDE, 2013, pp. 38–49.

[17] Feng Li, Beng Chin Ooi, M. Tamer Özsu, Sai Wu, Distributed data management
using mapreduce, ACM Comput. Surv. 46 (3) (2014) 31.

[18] Li Feng, M. Tamer Özsu, Gang Chen, Beng Chin Ooi, R-store: a scalable dis-
tributed system for supporting real-time analytics, in: ICDE, 2014, pp. 40–51.

[19] Zhiqiang Liu, HongYan Li, Gaoshan Miao, Mapreduce-based backpropagation
neural network over large scale mobile data, in: Natural Computation, ICNC,
2010, pp. 1726–1730.

[20] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
Joseph M. Hellerstein, Distributed graphlab: a framework for machine learning
in the cloud, Proc. VLDB Endow. 5 (8) (2012) 716–727.

[21] Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, Grzegorz Czajkowski, Pregel: a system for large-scale graph
processing, in: SIGMOD Conference, 2010, pp. 135–146.

[22] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Dremel: interactive analysis of web-scale
datasets, Proc. VLDB Endow. 3 (1) (2010) 330–339.

[23] Makoto Onizuka, Hiroyuki Kato, Soichiro Hidaka, Keisuke Nakano, Zhenjiang
Hu, Optimization for iterative queries on mapreduce, Proc. VLDB Endow. 7 (4)
(2013) 241–252.

[24] Vangelis Metsis Telecommunications, Vangelis Metsis, Spam filtering with
naive Bayes – which naive Bayes? in: Third Conference on Email and Anti-
Spam (CEAS), 2006.

[25] Sai Wu, Feng Li, Sharad Mehrotra, Beng Chin Ooi, Query optimization for mas-
sively parallel data processing, in: SoCC, 2011, p. 12.

[26] Reynold S. Xin, Daniel Crankshaw, Ankur Dave, Joseph E. Gonzalez, Michael J.
Franklin, Ion Stoica, Graphx: unifying data-parallel and graph-parallel analytics,
CoRR (2014), arXiv:1402.2394.

[27] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, Jon Currey, Dryadlinq: a system for general-purpose
distributed data-parallel computing using a high-level language, in: OSDI, 2008,
pp. 1–14.

[28] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica, Resilient dis-
tributed datasets: a fault-tolerant abstraction for in-memory cluster computing,
in: NSDI, 2012, pp. 15–28.

http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F41626F757A656964424152533039s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F41626F757A656964424152533039s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F41626F757A656964424152533039s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib636C7573746572s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib636C7573746572s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F42616C6B6573656E41544F3133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F42616C6B6573656E41544F3133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib42753A323031303A4845493A313932303834312E31393230383831s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib42753A323031303A4845493A313932303834312E31393230383831s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib42753A323031303A4845493A313932303834312E31393230383831s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F696364652F43616F43474A4C4F5657583131s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F696364652F43616F43474A4C4F5657583131s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F696364652F43616F43474A4C4F5657583131s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib6D6D73766Ds1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib6D6D73766Ds1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib6D6D73766Ds1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F746F63732F4368616E6744474857424346473038s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F746F63732F4368616E6744474857424346473038s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F746F63732F4368616E6744474857424346473038s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F746F63732F4368616E6744474857424346473038s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F746F63732F436F7262657474444546464647474848484B4B4C4C4D4D4E51525253535457573133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F746F63732F436F7262657474444546464647474848484B4B4C4C4D4D4E51525253535457573133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F746F63732F436F7262657474444546464647474848484B4B4C4C4D4D4E51525253535457573133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F746F63732F436F7262657474444546464647474848484B4B4C4C4D4D4E51525253535457573133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F746F63732F436F7262657474444546464647474848484B4B4C4C4D4D4E51525253535457573133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F746F63732F436F7262657474444546464647474848484B4B4C4C4D4D4E51525253535457573133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F746F63732F436F7262657474444546464647474848484B4B4C4C4D4D4E51525253535457573133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib73766D31s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib73766D31s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44617461723A323030343A4C48533A3939373831372E393937383537s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44617461723A323030343A4C48533A3939373831372E393937383537s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44617461723A323030343A4C48533A3939373831372E393937383537s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44617461723A323030343A4C48533A3939373831372E393937383537s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib4465616E3A323030383A4D53443A313332373435322E31333237343932s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib4465616E3A323030383A4D53443A313332373435322E31333237343932s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4469747472696368513132s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4469747472696368513132s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A4C4742473132s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A4C4742473132s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A4C4742473132s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4A69616E67304F54573134s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4A69616E67304F54573134s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4A69616E67304F54573134s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F696364652F4B656D7065724E3131s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F696364652F4B656D7065724E3131s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F696364652F4B656D7065724E3131s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F696364652F4C6569734B303133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F696364652F4C6569734B303133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F637375722F4C694F4F573134s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F637375722F4C694F4F573134s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F696364652F4C694F434F3134s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F696364652F4C694F434F3134s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib6D726E6574776F726Bs1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib6D726E6574776F726Bs1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib6D726E6574776F726Bs1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4C6F77474B4247483132s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4C6F77474B4247483132s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4C6F77474B4247483132s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F7369676D6F642F4D616C657769637A414244484C433130s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F7369676D6F642F4D616C657769637A414244484C433130s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F7369676D6F642F4D616C657769637A414244484C433130s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4D656C6E696B474C525354563130s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4D656C6E696B474C525354563130s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4D656C6E696B474C525354563130s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4F6E697A756B614B484E483133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4F6E697A756B614B484E483133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F70766C64622F4F6E697A756B614B484E483133s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib54656C65636F6D6D756E69636174696F6E7330367370616D66696C746572696E67s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib54656C65636F6D6D756E69636174696F6E7330367370616D66696C746572696E67s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib54656C65636F6D6D756E69636174696F6E7330367370616D66696C746572696E67s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F636C6F75642F57754C4D4F3131s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F636C6F75642F57754C4D4F3131s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F636F72722F58696E43444746533134s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F636F72722F58696E43444746533134s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A6A6F75726E616C732F636F72722F58696E43444746533134s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F6F7364692F59754946424547433038s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F6F7364692F59754946424547433038s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F6F7364692F59754946424547433038s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F6F7364692F59754946424547433038s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F6E7364692F5A6168617269614344444D4D4653533132s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F6E7364692F5A6168617269614344444D4D4653533132s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F6E7364692F5A6168617269614344444D4D4653533132s1
http://refhub.elsevier.com/S2214-5796(15)00003-9/bib44424C503A636F6E662F6E7364692F5A6168617269614344444D4D4653533132s1

	The Evolvement of Big Data Systems: From the Perspective of an Information Security Application
	1 Introduction
	2 Information security system
	3 Hadoop-based system
	4 Streaming system
	4.1 Probability node
	4.2 Classiﬁcation node
	4.3 Clustering node
	4.4 Model update
	4.5 Performance test

	5 A generic real-time analytic system
	5.1 epiC engine
	5.2 In-memory processing
	5.3 Processing updates
	5.4 Deployment on multiple data centers

	6 Conclusions and open problems
	Acknowledgements
	References

