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The non-contiguous access pattern of many scientific applications results in a large number of I/O 
requests, which can seriously limit the data-access performance. Collective I/O has been widely used to 
address this issue. However, the performance of collective I/O could be dramatically degraded in today’s 
high-performance computing systems due to the increasing shuffle cost caused by highly concurrent 
data accesses. This situation tends to be even worse as many applications become more and more 
data intensive. Previous research has primarily focused on optimizing I/O access cost in collective I/O 
but largely ignored the shuffle cost involved. Previous works assume that the lowest average response 
time leads to the best QoS and performance, while that is not always true for collective requests when 
considering the additional shuffle cost. In this study, we propose a new hierarchical I/O scheduling (HIO) 
algorithm to address the increasing shuffle cost in collective I/O. The fundamental idea is to schedule 
applications’ I/O requests based on a shuffle cost analysis to achieve the optimal overall performance, 
instead of achieving optimal I/O accesses only. The algorithm is currently evaluated with the MPICH3 
and PVFS2. Both theoretical analysis and experimental tests show that the proposed hierarchical I/O 
scheduling has a potential in addressing the degraded performance issue of collective I/O with highly 
concurrent accesses.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The volume of data collected from instruments and simulations 
for scientific discovery and innovations keeps increasing rapidly. 
For example, the Global Cloud Resolving Model (GCRM) project 
[1], part of DOE’s Scientific Discovery through Advanced Comput-
ing (SciDAC) program, is built on a geodesic grid that consists of 
more than 100 million hexagonal columns with 128 levels per 
column. These 128 levels will cover a layer of 50 kilometers of 
atmosphere up from the surface of the earth. For each of these 
grid cells, scientists need to store, analyze, and predict parame-
ters like the wind speed, temperature, pressure, etc. Most of these 
global atmospheric models process data in a 100-kilometer scale 
(the distance on the ground); however, scientists desire higher res-
olution and finer granularity, which can lead to significant larger 
sizes of datasets. Table 1 shows the data requirements of represen-
tative scientific applications run at Argonne Leadership Computing 
Facility (ALCF) through the DOE’s INCITE program [34]. The data 
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Table 1
Data requirements of representative INCITE applications at ALCF [34].

Project On-line data Off-line data

FLASH: Buoyancy-Driven Turbulent Nuclear 
Burning

75 TB 300 TB

Reactor Core Hydrodynamics 2 TB 5 TB
Computational Nuclear Structure 4 TB 40 TB
Computational Protein Structure 1 TB 2 TB
Performance Evaluation and Analysis 1 TB 1 TB
Climate Science 10 TB 345 TB
Parkinson’s Disease 2.5 TB 50 TB
Plasma Microturbulence 2 TB 10 TB
Lattice QCD 1 TB 44 TB
Thermal Striping in Sodium Cooled 

Reactors
4 TB 8 TB

volume processed online by many applications has exceeded TBs 
or even tens of TBs; the off-line data is near PBs of scale.

During the retrieval and analysis of the large volume of datasets 
on high-performance computing (HPC) systems, scientific applica-
tions generate huge amounts of non-contiguous requests [27,38], 
e.g., accessing the 2-D planes in a 4-D climate dataset. Those non-
contiguous requests can be considerably optimized by performing 
a two-phase collective I/O [11]. However, the performance of the 
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collective I/O could be dramatically degraded when solving big 
data problems on a highly-concurrent HPC system [12,30]. A criti-
cal reason is that the increasing shuffle cost of collective requests 
can dominate the performance. This increasing shuffle cost is due 
to the high concurrency caused by intensive data movement and 
concurrent applications in today’s HPC system. The shuffle phase 
is the second phase of a two-phase collective I/O. A collective I/O 
will not finish until the shuffle phase is done. Previous research 
has primarily focused on the optimization of the other phase, the 
I/O phase, of a collective I/O for data-intensive applications. In this 
study, instead of only considering the service time during the I/O 
phase, we argue that a better scheduling algorithm in collective 
I/O should also consider the requests’ shuffle costs on compute 
nodes. An aggregator who has the longest shuffle time can dom-
inate an application’s overall performance, due to the reason that 
the slowest aggregator actually determines the overall performance 
of a collective I/O. In this research, we propose a new hierarchi-
cal I/O (HIO) scheduling to address this issue. The basic idea is, by 
saturating the aggregators’ ‘acceptable delay’, the algorithm sched-
ules each application’s slowest aggregator earlier. The proposed 
algorithm is named as hierarchical I/O scheduling, because the pre-
dicted shuffle cost is considered at the MPI-IO layer on compute 
nodes and the server-side file system layer. Both layers leverage 
the shuffle cost analysis to perform an improved scheduling for 
collective I/O. The current analyses and experimental tests have 
confirmed the improvements over existing approaches. The pro-
posed hierarchical I/O scheduling has a potential in addressing the 
degraded performance issue of collective I/O with highly concur-
rent accesses.

The contribution of this research is three-fold. First, we pro-
pose an idea of scheduling collective I/O requests with considering 
the shuffle cost. Second, we have derived functions to calculate and 
predict the shuffle cost. Third, we have carried out theoretical anal-
yses and experimental tests to verify the efficiency of the proposed 
hierarchical I/O (HIO) scheduling. The results have confirmed that 
the HIO approach is promising in improving data accesses for high-
performance computing. This work is an extension of our previous 
work [25]. The major difference is we generalize the HIO idea to a 
broader view, in which not only collective read but also write oper-
ation scheduling is designed, analyzed, and evaluated. The second 
difference is we add more evaluation results to demonstrate the 
potential of HIO. The third improvement is the Time Window con-
cept. In the previous work, we only discussed how to use HIO to 
perform the scheduling on the queuing I/O requests, but we did 
not consider the starvation and interruption of aggregators within 
the same application, in other words, the aggregators from same 
application’s different instance could also mess up with each other. 
We address the problem in this paper by applying a flexible time 
window concept. Besides, the shuffle cost prediction and HIO im-
plementation are also extended a lot.

The rest of this paper is organized as follows. Section 2 reviews 
collective I/O and motivates this study by analyzing a typical ex-
ample of interrupted collective read. Section 3 introduces the HIO 
scheduling algorithm. Section 4 presents the theoretical analysis of 
the HIO scheduling. Section 5 discusses the implementation. The 
experimental results are discussed in Section 6. Section 7 discusses 
related work and compares them with this study. Section 8 sum-
marizes this study and discusses future work.

2. Background

2.1. Collective I/O

MPI is the dominant parallel programming model on all large-
scale parallel machines, such as Cray XT5/XK6/XK7, IBM Blue 
Gene/P, IBM Blue Gene/Q supercomputers. We briefly review its 
Fig. 1. Two phase collective I/O.

I/O interface, MPI-IO, in this subsection. We will also discuss the 
MPI-IO’s common implementation, the most important optimiza-
tion, collective I/O, and its nonblocking version.

MPI-IO is a subset of the MPI-2/MPI-3 specification [13]. It 
defines an I/O access interface for parallel I/O. The primary mo-
tivation for MPI-IO specification came from the observation that 
parallel I/O optimizations require two basic abstractions: the abil-
ity to define a set of processes, i.e., MPI communicators, and the 
ability to define complex data access patterns, i.e., MPI data types. 
By equipping the two abilities, the MPI-IO is designed as an inter-
face that supports many parallel I/O operations and optimizations. 
The implementation of MPI-IO is usually a middleware connecting 
parallel applications and underlying various parallel file systems, 
providing the code-level portability across many different machine 
architectures and operating systems. ROMIO is a popular MPI-IO 
implementation [37]. It provides an abstract-device interface called 
ADIO for implementing the portable parallel I/O API. It performs 
various optimizations, including collective I/O and data sieving, for 
common access pattern of parallel applications.

Collective I/O is one of the most important I/O access opti-
mizations. In collective I/O, multiple processes cooperate with each 
other to carry out large aggregated I/O requests, instead of per-
forming many non-contiguous and small I/Os independently. The 
motivation of collective I/O is several-fold. First, collective I/O can 
filter overlapping and redundant requests from multiple processes. 
Second, for many parallel applications, even though each process 
may access several noncontiguous portions of a file, the requests 
of multiple processes are often interleaved and may instead result 
in the access of one large contiguous portion of a file. Third, the 
collective I/O can reduce the number of system calls by combin-
ing small and noncontiguous requests into large and contiguous 
ones.

A widely-used implementation of collective I/O is the two-
phase I/O protocol [37]. This strategy serves the I/O requests using 
an I/O phase and a data exchange phase. As shown in Fig. 1, in 
the case of two phase collective read, the first phase consists of a 
certain number of processes that are assigned as aggregators to ac-
cess large contiguous data. In the second phase, those aggregators 
shuffle the data among all processes to the desired destination.

Collective I/O is a technique to optimize one application’s I/O, 
such optimization does not consider the interruption from other 
application, or other processes. While in current and future ex-
treme scale HPC system, the highly concurrency is not neglectable. 
As the interruption increasing, the service order of the aggrega-
tor is random and one application’s aggregators can have different 
waiting time (they are supposed to be served at the same time). To 
improve the average execution time and improve the performance, 
there should be an optimized scheduling methods.

Our scheduling idea for addressing the interruption issue orig-
inates from the nature of the two phase collective I/O itself. By 
scheduling the aggregators from multiple concurrent applications, 
we achieved lower average execution time.
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Fig. 2. Interrupted collective read. (px is from other applications.)

Fig. 3. Two different service orders.

3. Motivation

Collective I/O plays a critical role in cooperating processes 
to generate aggregated I/O requests, instead of performing non-
contiguous small I/Os independently [9,37]. As we discussed in 
the background section, a widely-used implementation of collec-
tive I/O is the two-phase I/O protocol [37]. For collective reads, 
in the first phase, a certain number of processes are assigned as 
aggregators to access large contiguous data; in the second phase, 
those aggregators shuffle the data among all processes to the de-
sired destination. There is no synchronization during the shuffle 
phase, which means, as long as one aggregator gets its data, it will 
redistribute the data among processes immediately without wait-
ing for other aggregators.

An observation is that, on today’s HPC system with highly con-
current accesses, the service order of the aggregators on storage 
nodes can have an impact on the application’s overall performance. 
The example in Fig. 2 shows a two-phase collective read oper-
ation, which is interrupted by processes from other concurrent 
applications due to highly concurrent accesses. In Fig. 2, five pro-
cesses (p0–p4) (on the same compute node for simplicity) from 
one MPI application are accessing the data striped across three 
storage nodes. During the first phase, the I/O aggregators, p0, p2
and p4, are assigned with evenly partitioned file domains. In this 
case, we can predict that only two aggregators (i.e., p0 and p2) 
will have to redistribute the data among other processes (i.e., p1
and p3) in the shuffle phase. The reason why p4 does not need to 
participate in the shuffle phase is that p4’s requests are only ac-
cessed by p4 itself. From Fig. 2, we can also find that the service 
order of each aggregator is different on the storage nodes, which 
means three aggregators of the same application are not serviced 
at the same time. For example, assuming other processes have the 
same service time, then a possible service order for these three I/O 
aggregators is p4, p0 and p2. Such a service order can have variants 
and can have an impact. We compare two of them in Fig. 3.

In Fig. 3, we analyze the cost for two different service orders. 
We assume that the service time and the shuffle cost is equal for 
the same amount of data movement and each process has service 
time 6t , while the total cost is calculated as the sum of the read 
cost and the shuffle cost. In Fig. 3(a), the aggregator p4 is ser-
viced first. After 6t , p0 receives the service, and then p2. During 
the shuffle phase, only p0 and p2 need to redistribute the data 
Fig. 4. Example of process assignment in three node multi-core system. The arrows 
show the inter- and intra-communication in the shuffle phase.

with other processes. Therefore, this application’s total execution 
time is 3 × 6t + 6t = 24t . In Fig. 3(b), p0 is serviced first. We find 
that the execution time is reduced to 18t . The performance gain 
comes from scheduling the ‘slowest aggregator’ first. The ‘slow-
est aggregator’ in this study refers the aggregator who takes the 
longest time to redistribute the data in the shuffle phase. Another 
observation from Fig. 3(b) is that the service order of p4 will not 
have impact on the total cost, which means even if p4 comes first 
on node 2 in some case, we can still service it later. In other 
words, we can delay p4 at most 12t , this delay time is accept-
able (no performance degradation will be caused). This example 
only shows that scheduling aggregators properly can improve the 
performance for one application, whereas for multiple concurrent 
applications, how to achieve the average lowest execution time is 
a challenge. Besides, the shuffle cost of different aggregators varies. 
How to predict the shuffle cost and pass it to the server is a chal-
lenge too. In the following sections, we introduce a hierarchical I/O 
scheduling (HIO) algorithm to address these issues. To the best of 
our knowledge, the hierarchical I/O scheduling is the first method 
that considers the increasing shuffle cost in collective I/O due to 
highly concurrency accesses.

4. Hierarchical I/O scheduling

From the previous analysis, we can see that by scheduling 
slower aggregators earlier, the execution time (access cost and 
shuffle cost) can be reduced. In the case of with concurrent ap-
plications, however, the goal of the optimal scheduling should be 
achieving the lowest ‘average’ execution time. From the observa-
tion in Fig. 3(b), we know that application’s aggregators may have 
‘acceptable delay’ time. If such time is well utilized to service other 
applications, we can potentially achieve a win–win situation. In the 
following subsections, we first discuss how to predict the shuffle 
cost, and then formally introduce the concept of ‘acceptable delay’. 
We also apply the time window concept [36] to divide the long 
I/O queue on each node into sub-sequences. Finally, we present 
the proposed hierarchical I/O scheduling algorithm.

4.1. Analysis and prediction of shuffle cost

In order to analyze the shuffle cost, we need to know how ag-
gregators are assigned and how will they communicate with other 
desired processes. Most previous works assumed that only one 
aggregator is assigned in one node [4], which is also a default con-
figuration in MPICH. The communication cost thus includes inter-
node and intra-node cost, as shown in Fig. 4. The amount of data 
redistributed impacts the cost too. Therefore, the shuffle costs are 
mainly determined by exchanging data and the number and posi-
tion of desired processes.

In Fig. 4, we illustrate an example of different communication 
patterns in the shuffle phase. In this example, there are totally 
three compute nodes, where each node is assigned with different 
number of processes, with only one process acting as the aggrega-
tor. During the shuffle phase, the aggregator either sends the data 
to processes on other nodes, which results in inter-node commu-
nication, or redistributes the data within the same node, which 
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Fig. 5. Timing aggregator and non-aggregator’s cost in the shuffle phase.

results in intra-node communication. As a consequence, each ag-
gregator will have different shuffle cost.

To predict the shuffle cost of each aggregator, we then con-
ducted an initial experiment by timing one aggregator and its 
corresponding processes, as shown in Fig. 5. This initial test is per-
formed in two nodes, each node has 12 cores. We did a collective 
I/O using 16 processes, in which 12 processes including one ag-
gregator are from the same node, while the other four processes 
are from the second node (this does not need to manually specify, 
just by simply launching 16 processes). The data amount that the 
aggregator will send to each non-aggregator is same. We modify 
the MPI-IO to timing the sending/receiving and other steps. The 
first bar in Fig. 5 shows the aggregator’s sending time, which is 
the time this aggregator takes to send the data to the collective 
buffer. The lower dashed portion in other bars (2–16) shows the 
waiting time of non-aggregators and the higher portion refers to 
their receiving time. We can see that the data exchange time be-
tween aggregator and non-aggregators is various, due to which, 
we can argue that the shuffle cost is determined by the maximum 
data exchange time (in this case, i.e., 2.3 ms). Based on the above 
theoretical analysis and the initial experiment, we can derive the 
following equation to predict the shuffle cost:

T = max(max(
mai

Ba
),max(

mej

Be
)) + γ

= max(
mai

Ba
,

mej

Be
) + γ (1)

where T is the total shuffle cost of one aggregator; mai is 
the ith intra-message size (MByte) and 0 < i < A, where A is 
the total number of intra-communication; mej is the jth inter-
communication message size (MByte), 0 < j < E , where E is the 
total number of inter-node communication; Ba is the saturated 
throughput of intra-node communication (MB/s); Be is the satu-
rated throughput of inter-node communication of a given cluster 
system (MB/s); and γ is the latency. The difference with ours is 
that their approach calculates the shuffle cost of each node, while 
ours calculates the cost in terms of each aggregator.

In order to distinguish the intra-communication and inter-
communication at the runtime, we need to know the Hydra’s 
process-core binding strategy. Hydra is a process management sys-
tem compiled into the MPICH2 as a default process manager. With-
out any user-defined mapping, we assume the basic default alloca-
tion strategy is used, i.e., round-robin mechanism, using the OS 
specified processor IDs. Whether the communication will be intra 
or inter can be determined with the following equation:

Comm is

{
intra if a_id%n_c = p_id%n_c
inter else

(2)
Fig. 6. Divided requests queues with time window.

where Comm is short for communication, a_id is the rank of the 
aggregator, p_id is the rank of non-aggregator processes, and n_c
is the number of cores per node.

4.2. Acceptable delay

As we have analyzed in the previous section, aggregators with 
lower shuffle costs can be scheduled later, whereas slow aggrega-
tors who have higher shuffle costs are better to be serviced first. 
We introduce the Acceptable Delay (AD) in this study to support 
the hierarchical I/O scheduling. An aggregator’s AD refers to the 
maximum acceptable time it can be delayed. The AD is defined as 
follows:

ADi = max{T0, T1, T2, . . . , Tn} − Ti (3)

where ADi is ith aggregator’s acceptable delay, and Ti is ith aggre-
gator’s shuffle cost. Usually, I/O requests from the same application 
are better to be serviced at the same time in order to achieve 
lower average response time. However, due to aggregators’ various 
ADs, it is not necessary to do that, which means we can utilize 
every aggregator’s AD to better schedule I/O requests, by saturat-
ing one aggregator’s AD and servicing other applications first. We 
also define a Relative Acceptable Delay (RAD) as the rank in the 
ascending order of AD.

4.3. Time window

In previous work, a time window is used to avoid starvation 
and to maintain fairness [36]. With the time window concept, all 
I/O requests waiting in a queue are divided equally by a prede-
fined time interval. Each divided window consists of a sequence of 
I/O requests. In the same window, I/O requests are ordered by the 
value of ‘Application ID’; whereas in different windows, requests in 
an earlier ‘Time Window’ will be serviced prior to those in a later 
one, to avoid starvation.

As shown in Fig. 6, we utilize the time window to organize the 
I/O queue too but applied for the new hierarchical I/O scheduling 
algorithm. The motivation here is different compared to the exist-
ing work. In our design, we argue that the earlier request from 
one application should always be serviced earlier than the later 
one from the same application. The earlier I/O is from an aggre-
gator of the earlier collective access. After this earlier collective 
access finishes, the application needs a synchronization before is-
suing another collective read/write. Scheduling the later aggregator 
earlier will cause delay. Therefore, instead of a fixed-width time 
window, we set a flexible time window on each server. On each 
storage node, the original queue will be divided into several win-
dows. In each window, there are no more than two aggregators 
from the same application. In other words, the aggregators within 
a window are all from different applications.
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4.4. HIO algorithm

The main idea of the hierarchical I/O scheduling algorithm is to 
utilize the aggregator’s ‘acceptable delay’ to minimize the shuffle 
cost. Because aggregators from different applications have various 
ADs, we cannot directly compare the AD from different applica-
tions. The algorithm first generates an initial order, and then tunes 
the order by comparing the aggregator’s AD and read cost. If one 
aggregator’s AD is larger than its successor’s read cost, then the 
order of the two requests can be exchanged. The algorithm is de-
scribed in Algorithm 1 – HIO scheduling algorithm. Before the HIO 
scheduling algorithm performed, the I/O queue is divided into fixed 
windows (e.g., 10) on each node. If there are more than one aggre-
gator from the same application, the window width is reduced as 
discussed in the previous subsection. The outer loop (i to n − 1) 
in the algorithm is carried out in parallel because the schedul-
ing is performed on each node separately. The actual scheduling 
starts from the second loop ( j to m − 2). Each request’s AD is 
compared with its successor’s read cost. If agg j .ad > agg j+1.read, 
then exchange the order of agg j and agg j+1. At the same time, 
the AD is updated as: agg j .ad = agg j .ad − agg j+1.read, agg j+1.ad =
agg j+1.ad + agg j .read.

input :
n: number of storage nodes;
m: number of applications;
threshold: 0.2;
agg[i][j].ad:the acceptable delay of jth

aggregator on ith node;
agg[i][j].read:the read cost of jth

aggregator on ith node
agg[i][j].rad:the relative ad of jth

aggregator on ith node
output: Optimal service order on each node

for i ← 0 to n − 1 do
ratio=sum(agg[i].shuffle)/sum(agg[i].read);
if ratio > threshold then

qsort agg[i] by rad;
end
else

qsort agg[i] by app_id;
end
for j ← 0 to m − 2 do

for k ← j + 1 to m − 1 do
if agg[i][ j].ad > agg[i][k].read then

temp=ag[i][j];
agg[i][j]=agg[i][k];
agg[i][k]=temp;
agg[i][j].ad+=agg[i][k].read;
agg[i][k].ad-=agg[i][j].read;

end
else

j++;
break;

end
end

end
end

Algorithm 1: HIO scheduling algorithm.

The initial order is generated by sorting the RAD (if shuffle/
read > threshold), through which each application’ slowest aggre-
gator is scheduled earlier. The reason why a threshold is set that 
if the shuffle cost is too small compare to the read cost, the al-
gorithm just sorts I/Os by application ID. The detailed reason is 
discussed in Section 4. The algorithm then tunes the initial or-
der by saturating each aggregator’s AD. These two steps make sure 
that the slower aggregator moves ahead, and the faster aggregator 
moves back. The tuning counts the read cost in order to balance 
the service order among all applications.
5. Theoretical analysis

The HIO scheduling can reduce the service time and shuffle 
cost. In this section, we analyze the cost reduction through an 
analytical model for collective I/O and compare against one latest 
Server I/O scheduling [36].

Assuming the number of concurrent applications is m, and the 
number of storage nodes is n. On each node, assuming every ap-
plication has a request, then there will be m aggregators on each 
node. Suppose each request needs time t to finish the service on 
the server side and si j to finish the shuffle phase (si j is the jth 
aggregator’s shuffle cost of the ith application). The longest finish 
time of requests on all nodes determines the application’s comple-
tion time on the server side, which could be {t, 2t, 3t, . . . , mt}. The 
application’s total cost is the sum of the completion time on the 
server side and the maximum shuffle cost on the client side. With-
out any scheduling optimization, applications’ server-side comple-
tion time has the same distribution, i.e., the density is g(x), while 
the probability distribution function is G(x) = (x/m)n . Therefore, 
the completion time of each application can be derided as shown 
in Eq. (4):

Ti = Service time + Shuffle cost

= E(max(Tci)) + max(si j)

= (

m∑
x=1

xg(x))t + max(si j)

= (

m∑
x=1

x(G(x) − G(x − 1)))t + max(si j)

= (

m∑
x=1

x((
x

m
)n − (

x − 1

m
)n))t + max(si j)

= mt + max(si j) − t

mn

m−1∑
x=1

xn (4)

in which Tci is the ith application’s completion time on one node.
With the Server I/O scheduling, in which the same applications’ 

requests are serviced at the same time on all nodes, the service 
time for those applications are fixed: t, 2t, 3t, . . . , mt . The average 
execution time is:

Ti = 1

m
(

m∑
x=1

xt + m(max(si j)))

= m + 1

2
t + max(si j) (5)

For the potential of the HIO scheduling, we analyze the best 
case and the worst case separately. The best case requires two 
conditions: first, each application’s slowest aggregator comes to 
different node; second, the slowest aggregator dominates the ap-
plication’s execution time, which can be described as max(si j) −
min(si j) > (m − 1)t . With the HIO scheduling, the slowest aggrega-
tor is serviced first on each node and determines each application’s 
execution time. Therefore, we have the average execution time:

Ti = 1

m
(mt + m(max(si j)))

= t + max(si j) (6)

For the worst case, either the first condition or the second 
condition is not satisfied. If the first condition is not met, it in-
dicates that applications’ slowest aggregators arrive at the same 
node. Thus, the average execution time is:
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Ti = 1

m
((t + 2t + 3t + . . . + mt) + m(max(si j)))

= m + 1

2
t + max(si j) (7)

If the second condition is not met, the slowest aggregator’s 
shuffle cost is close to zero. With the HIO scheduling, the initial 
order will be sorted by application id, which means that the same 
application will be serviced at the same time. Then we have the 
average execution time same as Eq. (5). In another word, the worst 
case of the HIO scheduling at least has the same performance as 
that of the Server I/O scheduling.

Comparing Eq. (4) and Eq. (5), the Server I/O scheduling can 
achieve an average execution time reduction as the following:

Treduction = mt + max(si j) − t

mn

m−1∑
x=1

xn

− m + 1

2
t − max(si j)

= m − 1

2
t − t

mn

m−1∑
x=1

xn

= m − 1

2
t (n → ∞) (8)

The best case of the HIO scheduling can further reduce the ex-
ecution time of Eq. (5) by:

T b
reduction = m + 1

2
t + max(si j)

− t − max(si j)

= m − 1

2
t (9)

The theoretical analysis and this comparison show that the 
HIO scheduling achieves better scheduling performance, especially 
when the shuffle cost keeps increasing due to highly concurrent 
accesses from large-scale HPC systems and/or big data retrieval 
and analysis problems.

6. Discussion of HIO for write operation

The HIO was originally designed for the collective read opera-
tion. Since the read operation’s two phase procedure is different 
with the write operation. Our scheduling only works for the read 
operation, which is I/O phase first and shuffle phase second. The 
reason is that the I/O phase of read on server side is not the last 
step for the application, and the later shuffle phase on client side, 
if well utilized by the HIO, the overall performance can be im-
proved. However, for collective write operation, the data are first 
shuffled on the client side, then after each aggregator getting its 
file view and all the data within that view, the aggregator will be 
sent to the storage nodes to do the I/O. This procedure is totally 
opposite of the read operation. The HIO idea seems to fail in this 
case. Fortunately, by rethinking the HIO idea, we found that it is 
not difficult to apply the HIO for write operations without modi-
fication. Same with collective read, the aggregator’s shuffle phase 
for collective write also has various costs. Such various costs will 
lead to different arriving order on the storage server.

Suppose we have a ‘third’ phase for collective write, which 
means when the aggregators are returned to the compute nodes, 
they will also do the “shuffle” similar to the collective read’s sec-
ond phase. But assuming the cost of the third phase equals to 
zero, then it is not difficult to find that the collective write is just 
one ‘worst’ case of collective read for HIO. In Section 5, we have 
discussed how our HIO addresses the worst cases, in which the 
shuffle cost is close to zero and we have Eq. (5).
Fig. 7. Implementation.

7. Implementation

The aggregators’ shuffle cost and AD are calculated at the MPI-
IO layer. Our evaluation was carried out on the ROMIO that is in-
cluded in MPICH2-1.4. It provides a high-performance and portable 
implementation of MPI-IO including collective I/O. The MPICH2-1.4 
and ROMIO provide a PVFS2 ADIO device. We modified this driver 
to integrate the shuffle cost analysis and pass it to the PVFS server 
side scheduler as a hint. When an application calls the collec-
tive read function ADIOI_Read_and_exch in ad_read_coll.c under 
the src/mpi/romio/adio/common, the shuffle cost is calculated af-
ter the aggregators are allocated, i.e., ADIOI_Calc_file_domains. The 
message size m is calculated with ADIOI_Calc_my_req and ADIOI_ 
Calc_others_req. The calculated shuffle cost is stored into a variable 
of PVFS-hint type. The hint is passed to file servers along with I/O 
requests (Fig. 7).

On the PVFS server side, in the request scheduling function 
PINT_req_ sched_post(), we implemented the HIO algorithm. The 
original function only enqueues the coming requests into the tail 
of the queue, while the HIO algorithm first divides the waiting 
queue into several sequences, and performs the scheduling within 
each sub-queue following the scheduling algorithm discussed in 
Section 3.

8. Experiments and analyses

8.1. Experimental setup

We have conducted tests on a 16-node Linux testbed. This clus-
ter is composed of one PowerEdge R515 rack server node and 15 
PowerEdge R415 nodes, with a total of 32 processors and 128 
cores. Nodes are fully connected via a PowerConnect 2848 net-
work switch. The PowerEdge R515 server node has dual quad-
core 2.6 GHz AMD Opteron 4130 processors, 8 GB memory, and 
a RAID-5 disk array with 3 TB storage capacity composed of 
7200 RPM Near-Line SAS drives. Each PowerEdge R415 node has 
dual quad-core 2.6 GHz AMD Opteron 4130 processors, 4 GB mem-
ory and a 500 GB 7200 RPM Near-Line SAS hard drive. We con-
ducted experiments with the MPI-IO-Test parallel I/O benchmark 
[2]. The proposed hierarchical I/O scheduling algorithm was com-
pared with other scheduling strategies through tests. We have also 
evaluated the HIO scheduling algorithm with a real climate science 
application. The HIO scheduling algorithm is evaluated and com-
pared with two other scheduling algorithms, Server I/O scheduling 
(denoted as SIO) [36] and the normal collective I/O (denoted as 
NIO).

8.2. Results and analyses

In the first test, we run multiple instances of MPI-IO-Test si-
multaneously. We conducted the experiments by specifying the 
number of aggregator as 6 and the number of processes as 50 
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Fig. 8. Average execution time with concurrent applications.

Fig. 9. Speedup of HIO and SIO with different request size.

for each application. The I/O request size was set to a fixed value, 
16 MB. We run with 6, 12, 24, and 48 processes simultaneously. 
Six storage nodes were deployed. The results are plotted in Fig. 8. 
From the figure, we can observe that the HIO scheduling outper-
formed other scheduling. The total execution time was decreased 
by up to 34.1% compared with NIO and by up to 15.2% compared 
with SIO. Furthermore, when the number of concurrent applica-
tions increased, the performance gain was even better.

We have conducted experiments with varying the request size 
too. As reported in Fig. 9, the I/O request size was set as 64 KB, 
1 MB, 5 MB, and 10 MB respectively. The number of concurrent 
applications was set as six, and the number of aggregators was 
configured as six too. During this test, we compared the ratio of 
shuffle cost against the total cost. It was found that the ratio in-
creased from 0.7% to 5.6%, as the request size increased. This fact 
matches with our observation that the shuffle cost considerably in-
creases when applications become more and more data intensive.

When the requests size increased, the performance gain of us-
ing HIO scheduling was increased too, from 6.8% to 18.3% in terms 
of the execution time reduction rate. This result also matches with 
our theoretical analysis discussed in Section 4.

We have also evaluated the impact of the number of storage 
nodes and report the results in Fig. 10. In this test, there are 6 
applications running simultaneously, and the number of aggrega-
tors in each application was set the same as the number of storage 
nodes, in order to have each application access all storage nodes. 
The request size was set as 15 MB, and the aggregator’s request 
size is equal. The number of storage nodes was varied as 2, 4, 6, 8, 
and 16.

We observe that, from Fig. 10, the normal collective I/O did not 
scale well with the increasing size of the system. While both HIO 
and SIO achieved better scalability, we also find that the HIO per-
formed and scaled better than SIO. The advantage of the HIO is 
due to the reduced shuffle cost. As the number of storage nodes 
increased, the inter-communication between aggregators and pro-
Fig. 10. Average execution time with different number of storage nodes.

Fig. 11. Average execution time with different number of aggregators.

cesses on different nodes also increased, which has been confirmed 
in a prior study too [4]. It can be projected that, as the system 
scale keeps increasing in the big data computing era, the shuffle 
cost in the two-phase collective I/O will become a critical issue. 
The proposed HIO scheduling in this study is essentially for ad-
dressing this issue and is likely to be promising at the exascale/ex-
treme scale of HPC system.

We also evaluated the HIO with various numbers of aggrega-
tors. In Fig. 11, we test the HIO, SIO and NIO with 5, 10 and 15 
aggregators separately. As the number of aggregator increasing, the 
interruption and the shuffle cost will also increase. We can find 
that the NIO shows a linear increasing trend. Both the HIO and SIO 
reduce the average execution time. The performance gain of SIO 
comes from the reduction of interruption of aggregators on stor-
age nodes. While the HIO achieves more by reducing the shuffle 
cost.

As we have discussed in Section 6, the HIO was originally de-
signed for collective read. For collective write, since the shuffle 
phase is already done before any scheduling, so the HIO cannot
utilize the various acceptable delays any more, therefore, we can 
see from Fig. 12, the HIO and SIO do not distinguish a lot. Both of 
them achieve an average speedup about 12%.

We have evaluated the HIO scheduling with a real climate sci-
ence application and datasets from the Bjerknes Center for Cli-
mate Research as well [24]. This set of tests was specifically for 
understanding the benefits of the HIO scheduling for a special 
access pattern, accessing 2D planes in scientific datasets. In sci-
entific computing, scientists are interested in understanding the 
phenomenon behind the data by performing subsets queries [24]. 
Those subsets queries usually happen in the 2D planes, e.g., pa-
rameters along time dimension and level dimension in a climate 
science data. The datasets can range between GBs and TBs. Previ-
ous studies have shown the poor scalability of collective I/O due 
to high concurrency and I/O interruption. The proposed HIO al-
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Fig. 12. Collective write with HIO.

Fig. 13. FASM with HIO.

gorithm addresses this issue by better scheduling concurrent I/Os. 
The total dataset size evaluated in this series of tests is more than 
12 GB. We run multiple 2D subsets queries concurrently using the 
FASM system [24] and performed the HIO scheduling. We run 20 
queries for each dataset. A sample query statement is like “select 
temperature from dataset where 10 < temperature < 31”. These 
queries were generated randomly and followed a global normal 
distribution. The performance gain with the HIO scheduling com-
pared to the conventional collective I/O is shown in Fig. 13. It can 
be observed that the HIO scheduling improved the average query 
response time clearly and by up to 59.8%.

All these tests have well confirmed that the proposed hierar-
chical I/O scheduling in this study can improve the performance of 
collective I/O given highly concurrent and interrupted accesses. It 
holds a promise for big data problems and scientific applications 
on large-scale HPC systems.

9. Related work

Nowadays, the big data problem has attracted interests from 
different research areas from industry and academia [3,40]. We 
compare our work with the most related recent works.

9.1. I/O scheduling

Parallel I/O scheduling has been widely studied by many re-
searchers at a hope of obtaining the peak sustained I/O perfor-
mance. Few of them, however, meets the current demand of data-
intensive applications and big data analysis yet. Disk-directed I/O 
[20] and server-directed I/O [35] have been proposed to improve 
the bandwidth of disks and network servers respectively. There are 
also numerous scheduling algorithms targeting the quality of ser-
vice (QoS) [14,15,17,33,41]. The proposed hierarchical I/O schedul-
ing in this study takes one step further to optimize the scheduling 
of collective I/O while considering the highly concurrent I/O re-
quests from data-intensive applications.
In [36], a server-side I/O coordination method is proposed for 
parallel file systems. Their idea is to coordinate file servers to serve 
one application at a time in order to reduce the average comple-
tion time, and in the meantime maintain the server utilization and 
fairness. By re-arranging I/O requests on the file servers, the re-
quests are serviced in the same order in terms of applications on 
all involved nodes. However, without considering the shuffle cost 
in the collective I/O, it is unlikely to achieve the optimal perfor-
mance. In [43], the authors proposed a scheme namely IOrches-
trator to improve the spatial locality and program reuse distance 
by calculating the access distances and grouping the requests with 
small distance together. These two works seem similar but differ in 
the motivation. The first one is based on the observation that the 
requests with synchronization needs will be optimized if they are 
scheduled at the same time, whereas the latter one is motivated 
by exploring the program’s spatial locality.

In [16], the authors proposed three scheduling algorithms, with 
considering the number of processes per file stripe and the num-
ber of accesses per process, to minimize the average response time 
in collective I/O. In servicing one aggregator, instead of scheduling 
one stripe at a time in the increasing file offset order, they propose 
to prioritize the file stripes based on their access degree, the num-
ber of accessing processes. Their work optimized the scheduling 
of stripes within an aggregator, whereas our work focuses on the 
scheduling of aggregators. Besides, their work only considers the 
average I/O response time. The reduced I/O response time, how-
ever, does not always lead to the reduced total cost that includes 
the I/O response time and the shuffle cost.

9.2. Two phase collective I/O optimization

Collective I/O has been proposed about 15 years [26,28,37], op-
timization of collective I/O has never been stopped. We have stud-
ied most of the work related to two phase collective I/O, from our 
classification, the research efforts have been focused on the follow-
ing points:

1) Implementation [8,37,39], in which the collective I/O are de-
signed implemented and advanced feature are supported;

2) File view partition [19,42], which are related to the two phase 
collective I/O’s global file view partition to optimize the aggre-
gator’s I/O access;

3) Aggregator selection [5]. Interesting ideas are about how to 
selection the processes as aggregators and how to define the 
number of aggregators;

4) Cache and buffering [22,29]. Researchers find the traditional 
cache and buffering idea can be utilized to optimize the col-
lective I/O, which is done on the client side;

5) Data compression [10] is another example that other well-
studied ideas are used in collective I/O.

All these works have successfully improved the performance 
of two phase collective I/O, and proved that the collective I/O is 
promising in the parallel computing. But we can also find that the 
new challenges in today’s large scale, big data, and power con-
strained era, drive the further development of collective I/O, and 
our HIO is proposed under this circumstance. Among the previous 
works in collective I/O, there are two which are most related.

The first one is in [4,5], the authors discussed the increasing 
shuffle cost in today’s HEC system too. Their discussions are for 
motivating the importance of node re-ordering for reducing the 
collective I/O’s shuffle cost. Their work provides a method to eval-
uate the shuffle cost and designed algorithms to automatically as-
sign the aggregators at the node level, whereas our work focuses 
on the scheduling of aggregators considering highly concurrent ac-
cesses to achieve the optimal collective I/O performance.
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The second one is the LACIO idea [6], in which the author dis-
cuss the gap between logical access and physical storage. When 
the aggregators are assigned with different file view, the view it-
self is just logical space, therefore, the aggregator may not know 
the physical distribution of data on the parallel storage nodes. In 
other words, the aggregator from the same application will inter-
rupt with each other on the storage nodes and the LACIO idea well 
addressed the issue. Our HIO idea targets the interruption among
concurrent applications, which in another side, to improve the per-
formance (we did our evaluation by first removing the interruption 
from the same application, such that we can tell the HIO really 
reduces the interruption among different applications). Previous 
work, like LACIO, focuses on one application’s collective I/O, while 
our work goes one more step to optimize the performance of con-
current case. Both of the direction, when combined, is indeed a 
trend for extreme scale systems in the future.

9.3. Data organization and file systems

Our work focuses on I/O scheduling, while the data is not mov-
able. In fact, there are bunch of work targeting the data organi-
zation and file systems. We concluded some related work in this 
last subsection. For example, there exist other works that address 
the scientific data retrieval issues by optimizing the data orga-
nization [18,23]. These works provide efficient mechanisms from 
the data level and fit the access pattern of scientific applications. 
Our work also improves the application’s accesses, most of which 
are non-contiguous, but through a hierarchical scheduling. There 
are also works utilizing existing database techniques and compres-
sion algorithms to boost the big data analysis. For example, Fastbit 
implemented bitmap index in the large datasets [7]. ISABELA im-
proved the big data query by compressing the datasets [21]. Our 
work focuses on collective I/O scheduling, which is beneficial and 
critical to big data retrieval and analysis too. In the future, we 
would also apply machine learning algorithms [31,32] to further 
refine the scheduling.

10. Conclusion

Collective I/O has been proven a critical technique in optimizing 
the non-contiguous access pattern in many scientific applications 
run on high-performance computing systems. It can be critical for 
big data retrieval and analysis too as non-contiguous access pat-
tern also commonly exists in big data problems. The performance 
of collective I/O, however, could be dramatically degraded due to 
the increasing shuffle cost caused by highly concurrent accesses 
and interruptions. This problem tends to be more and more critical 
as many applications become highly data intensive. In this study, 
we propose a new hierarchical I/O scheduling for collective I/O to 
address these issues. This approach is the first considering the in-
creasing shuffle cost involved in collective I/O. Through theoretical 
analyses and experiments, it has been confirmed that the hierar-
chical I/O scheduling can improve the performance of collective 
I/O. In the future, we will apply a similar approach for write oper-
ations. We will analyze the feasibility of implementing hierarchical 
I/O scheduling only at the MPI-IO layer as well. More experiments 
will be conducted to analyze how the shuffle cost can affect the 
big data analysis and further refine our algorithm. We will also try 
to apply similar approaches for write operations and develop dif-
ferent scheduling methods for different parallel file systems.
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