
JID:BDR AID:14 /FLA [m5G; v1.148; Prn:19/02/2015; 11:16] P.1 (1-10)

Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Hierarchical Collective I/O Scheduling for High-Performance

Computing ✩

Jialin Liu, Yu Zhuang, Yong Chen

Department of Computer Science, Texas Tech University, Lubbock, TX, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 December 2014
Accepted 15 January 2015
Available online xxxx

Keywords:
Collective I/O
Scheduling
High-performance computing
Big data
Data intensive computing

The non-contiguous access pattern of many scientific applications results in a large number of I/O
requests, which can seriously limit the data-access performance. Collective I/O has been widely used to
address this issue. However, the performance of collective I/O could be dramatically degraded in today’s
high-performance computing systems due to the increasing shuffle cost caused by highly concurrent
data accesses. This situation tends to be even worse as many applications become more and more
data intensive. Previous research has primarily focused on optimizing I/O access cost in collective I/O
but largely ignored the shuffle cost involved. Previous works assume that the lowest average response
time leads to the best QoS and performance, while that is not always true for collective requests when
considering the additional shuffle cost. In this study, we propose a new hierarchical I/O scheduling (HIO)
algorithm to address the increasing shuffle cost in collective I/O. The fundamental idea is to schedule
applications’ I/O requests based on a shuffle cost analysis to achieve the optimal overall performance,
instead of achieving optimal I/O accesses only. The algorithm is currently evaluated with the MPICH3
and PVFS2. Both theoretical analysis and experimental tests show that the proposed hierarchical I/O
scheduling has a potential in addressing the degraded performance issue of collective I/O with highly
concurrent accesses.

© 2015 Elsevier Inc. All rights reserved.
106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129
1. Introduction

The volume of data collected from instruments and simulations
for scientific discovery and innovations keeps increasing rapidly.
For example, the Global Cloud Resolving Model (GCRM) project
[1], part of DOE’s Scientific Discovery through Advanced Comput-
ing (SciDAC) program, is built on a geodesic grid that consists of
more than 100 million hexagonal columns with 128 levels per
column. These 128 levels will cover a layer of 50 kilometers of
atmosphere up from the surface of the earth. For each of these
grid cells, scientists need to store, analyze, and predict parame-
ters like the wind speed, temperature, pressure, etc. Most of these
global atmospheric models process data in a 100-kilometer scale
(the distance on the ground); however, scientists desire higher res-
olution and finer granularity, which can lead to significant larger
sizes of datasets. Table 1 shows the data requirements of represen-
tative scientific applications run at Argonne Leadership Computing
Facility (ALCF) through the DOE’s INCITE program [34]. The data

✩ This article belongs to BDA-HPC.
E-mail addresses: jaln.liu@ttu.edu (J. Liu), yu.zhuang@ttu.edu (Y. Zhuang),

yong.chen@ttu.edu (Y. Chen).
http://dx.doi.org/10.1016/j.bdr.2015.01.007
2214-5796/© 2015 Elsevier Inc. All rights reserved.
Table 1
Data requirements of representative INCITE applications at ALCF [34].

Project On-line data Off-line data

FLASH: Buoyancy-Driven Turbulent Nuclear
Burning

75 TB 300 TB

Reactor Core Hydrodynamics 2 TB 5 TB
Computational Nuclear Structure 4 TB 40 TB
Computational Protein Structure 1 TB 2 TB
Performance Evaluation and Analysis 1 TB 1 TB
Climate Science 10 TB 345 TB
Parkinson’s Disease 2.5 TB 50 TB
Plasma Microturbulence 2 TB 10 TB
Lattice QCD 1 TB 44 TB
Thermal Striping in Sodium Cooled

Reactors
4 TB 8 TB

volume processed online by many applications has exceeded TBs
or even tens of TBs; the off-line data is near PBs of scale.

During the retrieval and analysis of the large volume of datasets
on high-performance computing (HPC) systems, scientific applica-
tions generate huge amounts of non-contiguous requests [27,38],
e.g., accessing the 2-D planes in a 4-D climate dataset. Those non-
contiguous requests can be considerably optimized by performing
a two-phase collective I/O [11]. However, the performance of the
130

131

132

http://dx.doi.org/10.1016/j.bdr.2015.01.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:jaln.liu@ttu.edu
mailto:yu.zhuang@ttu.edu
mailto:yong.chen@ttu.edu
http://dx.doi.org/10.1016/j.bdr.2015.01.007

JID:BDR AID:14 /FLA [m5G; v1.148; Prn:19/02/2015; 11:16] P.2 (1-10)

2 J. Liu et al. / Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
collective I/O could be dramatically degraded when solving big
data problems on a highly-concurrent HPC system [12,30]. A criti-
cal reason is that the increasing shuffle cost of collective requests
can dominate the performance. This increasing shuffle cost is due
to the high concurrency caused by intensive data movement and
concurrent applications in today’s HPC system. The shuffle phase
is the second phase of a two-phase collective I/O. A collective I/O
will not finish until the shuffle phase is done. Previous research
has primarily focused on the optimization of the other phase, the
I/O phase, of a collective I/O for data-intensive applications. In this
study, instead of only considering the service time during the I/O
phase, we argue that a better scheduling algorithm in collective
I/O should also consider the requests’ shuffle costs on compute
nodes. An aggregator who has the longest shuffle time can dom-
inate an application’s overall performance, due to the reason that
the slowest aggregator actually determines the overall performance
of a collective I/O. In this research, we propose a new hierarchi-
cal I/O (HIO) scheduling to address this issue. The basic idea is, by
saturating the aggregators’ ‘acceptable delay’, the algorithm sched-
ules each application’s slowest aggregator earlier. The proposed
algorithm is named as hierarchical I/O scheduling, because the pre-
dicted shuffle cost is considered at the MPI-IO layer on compute
nodes and the server-side file system layer. Both layers leverage
the shuffle cost analysis to perform an improved scheduling for
collective I/O. The current analyses and experimental tests have
confirmed the improvements over existing approaches. The pro-
posed hierarchical I/O scheduling has a potential in addressing the
degraded performance issue of collective I/O with highly concur-
rent accesses.

The contribution of this research is three-fold. First, we pro-
pose an idea of scheduling collective I/O requests with considering
the shuffle cost. Second, we have derived functions to calculate and
predict the shuffle cost. Third, we have carried out theoretical anal-
yses and experimental tests to verify the efficiency of the proposed
hierarchical I/O (HIO) scheduling. The results have confirmed that
the HIO approach is promising in improving data accesses for high-
performance computing. This work is an extension of our previous
work [25]. The major difference is we generalize the HIO idea to a
broader view, in which not only collective read but also write oper-
ation scheduling is designed, analyzed, and evaluated. The second
difference is we add more evaluation results to demonstrate the
potential of HIO. The third improvement is the Time Window con-
cept. In the previous work, we only discussed how to use HIO to
perform the scheduling on the queuing I/O requests, but we did
not consider the starvation and interruption of aggregators within
the same application, in other words, the aggregators from same
application’s different instance could also mess up with each other.
We address the problem in this paper by applying a flexible time
window concept. Besides, the shuffle cost prediction and HIO im-
plementation are also extended a lot.

The rest of this paper is organized as follows. Section 2 reviews
collective I/O and motivates this study by analyzing a typical ex-
ample of interrupted collective read. Section 3 introduces the HIO
scheduling algorithm. Section 4 presents the theoretical analysis of
the HIO scheduling. Section 5 discusses the implementation. The
experimental results are discussed in Section 6. Section 7 discusses
related work and compares them with this study. Section 8 sum-
marizes this study and discusses future work.

2. Background

2.1. Collective I/O

MPI is the dominant parallel programming model on all large-
scale parallel machines, such as Cray XT5/XK6/XK7, IBM Blue
Gene/P, IBM Blue Gene/Q supercomputers. We briefly review its
Fig. 1. Two phase collective I/O.

I/O interface, MPI-IO, in this subsection. We will also discuss the
MPI-IO’s common implementation, the most important optimiza-
tion, collective I/O, and its nonblocking version.

MPI-IO is a subset of the MPI-2/MPI-3 specification [13]. It
defines an I/O access interface for parallel I/O. The primary mo-
tivation for MPI-IO specification came from the observation that
parallel I/O optimizations require two basic abstractions: the abil-
ity to define a set of processes, i.e., MPI communicators, and the
ability to define complex data access patterns, i.e., MPI data types.
By equipping the two abilities, the MPI-IO is designed as an inter-
face that supports many parallel I/O operations and optimizations.
The implementation of MPI-IO is usually a middleware connecting
parallel applications and underlying various parallel file systems,
providing the code-level portability across many different machine
architectures and operating systems. ROMIO is a popular MPI-IO
implementation [37]. It provides an abstract-device interface called
ADIO for implementing the portable parallel I/O API. It performs
various optimizations, including collective I/O and data sieving, for
common access pattern of parallel applications.

Collective I/O is one of the most important I/O access opti-
mizations. In collective I/O, multiple processes cooperate with each
other to carry out large aggregated I/O requests, instead of per-
forming many non-contiguous and small I/Os independently. The
motivation of collective I/O is several-fold. First, collective I/O can
filter overlapping and redundant requests from multiple processes.
Second, for many parallel applications, even though each process
may access several noncontiguous portions of a file, the requests
of multiple processes are often interleaved and may instead result
in the access of one large contiguous portion of a file. Third, the
collective I/O can reduce the number of system calls by combin-
ing small and noncontiguous requests into large and contiguous
ones.

A widely-used implementation of collective I/O is the two-
phase I/O protocol [37]. This strategy serves the I/O requests using
an I/O phase and a data exchange phase. As shown in Fig. 1, in
the case of two phase collective read, the first phase consists of a
certain number of processes that are assigned as aggregators to ac-
cess large contiguous data. In the second phase, those aggregators
shuffle the data among all processes to the desired destination.

Collective I/O is a technique to optimize one application’s I/O,
such optimization does not consider the interruption from other
application, or other processes. While in current and future ex-
treme scale HPC system, the highly concurrency is not neglectable.
As the interruption increasing, the service order of the aggrega-
tor is random and one application’s aggregators can have different
waiting time (they are supposed to be served at the same time). To
improve the average execution time and improve the performance,
there should be an optimized scheduling methods.

Our scheduling idea for addressing the interruption issue orig-
inates from the nature of the two phase collective I/O itself. By
scheduling the aggregators from multiple concurrent applications,
we achieved lower average execution time.

JID:BDR AID:14 /FLA [m5G; v1.148; Prn:19/02/2015; 11:16] P.3 (1-10)

J. Liu et al. / Big Data Research ••• (••••) •••–••• 3

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
Fig. 2. Interrupted collective read. (px is from other applications.)

Fig. 3. Two different service orders.

3. Motivation

Collective I/O plays a critical role in cooperating processes
to generate aggregated I/O requests, instead of performing non-
contiguous small I/Os independently [9,37]. As we discussed in
the background section, a widely-used implementation of collec-
tive I/O is the two-phase I/O protocol [37]. For collective reads,
in the first phase, a certain number of processes are assigned as
aggregators to access large contiguous data; in the second phase,
those aggregators shuffle the data among all processes to the de-
sired destination. There is no synchronization during the shuffle
phase, which means, as long as one aggregator gets its data, it will
redistribute the data among processes immediately without wait-
ing for other aggregators.

An observation is that, on today’s HPC system with highly con-
current accesses, the service order of the aggregators on storage
nodes can have an impact on the application’s overall performance.
The example in Fig. 2 shows a two-phase collective read oper-
ation, which is interrupted by processes from other concurrent
applications due to highly concurrent accesses. In Fig. 2, five pro-
cesses (p0–p4) (on the same compute node for simplicity) from
one MPI application are accessing the data striped across three
storage nodes. During the first phase, the I/O aggregators, p0, p2
and p4, are assigned with evenly partitioned file domains. In this
case, we can predict that only two aggregators (i.e., p0 and p2)
will have to redistribute the data among other processes (i.e., p1
and p3) in the shuffle phase. The reason why p4 does not need to
participate in the shuffle phase is that p4’s requests are only ac-
cessed by p4 itself. From Fig. 2, we can also find that the service
order of each aggregator is different on the storage nodes, which
means three aggregators of the same application are not serviced
at the same time. For example, assuming other processes have the
same service time, then a possible service order for these three I/O
aggregators is p4, p0 and p2. Such a service order can have variants
and can have an impact. We compare two of them in Fig. 3.

In Fig. 3, we analyze the cost for two different service orders.
We assume that the service time and the shuffle cost is equal for
the same amount of data movement and each process has service
time 6t , while the total cost is calculated as the sum of the read
cost and the shuffle cost. In Fig. 3(a), the aggregator p4 is ser-
viced first. After 6t , p0 receives the service, and then p2. During
the shuffle phase, only p0 and p2 need to redistribute the data
Fig. 4. Example of process assignment in three node multi-core system. The arrows
show the inter- and intra-communication in the shuffle phase.

with other processes. Therefore, this application’s total execution
time is 3 × 6t + 6t = 24t . In Fig. 3(b), p0 is serviced first. We find
that the execution time is reduced to 18t . The performance gain
comes from scheduling the ‘slowest aggregator’ first. The ‘slow-
est aggregator’ in this study refers the aggregator who takes the
longest time to redistribute the data in the shuffle phase. Another
observation from Fig. 3(b) is that the service order of p4 will not
have impact on the total cost, which means even if p4 comes first
on node 2 in some case, we can still service it later. In other
words, we can delay p4 at most 12t , this delay time is accept-
able (no performance degradation will be caused). This example
only shows that scheduling aggregators properly can improve the
performance for one application, whereas for multiple concurrent
applications, how to achieve the average lowest execution time is
a challenge. Besides, the shuffle cost of different aggregators varies.
How to predict the shuffle cost and pass it to the server is a chal-
lenge too. In the following sections, we introduce a hierarchical I/O
scheduling (HIO) algorithm to address these issues. To the best of
our knowledge, the hierarchical I/O scheduling is the first method
that considers the increasing shuffle cost in collective I/O due to
highly concurrency accesses.

4. Hierarchical I/O scheduling

From the previous analysis, we can see that by scheduling
slower aggregators earlier, the execution time (access cost and
shuffle cost) can be reduced. In the case of with concurrent ap-
plications, however, the goal of the optimal scheduling should be
achieving the lowest ‘average’ execution time. From the observa-
tion in Fig. 3(b), we know that application’s aggregators may have
‘acceptable delay’ time. If such time is well utilized to service other
applications, we can potentially achieve a win–win situation. In the
following subsections, we first discuss how to predict the shuffle
cost, and then formally introduce the concept of ‘acceptable delay’.
We also apply the time window concept [36] to divide the long
I/O queue on each node into sub-sequences. Finally, we present
the proposed hierarchical I/O scheduling algorithm.

4.1. Analysis and prediction of shuffle cost

In order to analyze the shuffle cost, we need to know how ag-
gregators are assigned and how will they communicate with other
desired processes. Most previous works assumed that only one
aggregator is assigned in one node [4], which is also a default con-
figuration in MPICH. The communication cost thus includes inter-
node and intra-node cost, as shown in Fig. 4. The amount of data
redistributed impacts the cost too. Therefore, the shuffle costs are
mainly determined by exchanging data and the number and posi-
tion of desired processes.

In Fig. 4, we illustrate an example of different communication
patterns in the shuffle phase. In this example, there are totally
three compute nodes, where each node is assigned with different
number of processes, with only one process acting as the aggrega-
tor. During the shuffle phase, the aggregator either sends the data
to processes on other nodes, which results in inter-node commu-
nication, or redistributes the data within the same node, which

JID:BDR AID:14 /FLA [m5G; v1.148; Prn:19/02/2015; 11:16] P.4 (1-10)

4 J. Liu et al. / Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
Fig. 5. Timing aggregator and non-aggregator’s cost in the shuffle phase.

results in intra-node communication. As a consequence, each ag-
gregator will have different shuffle cost.

To predict the shuffle cost of each aggregator, we then con-
ducted an initial experiment by timing one aggregator and its
corresponding processes, as shown in Fig. 5. This initial test is per-
formed in two nodes, each node has 12 cores. We did a collective
I/O using 16 processes, in which 12 processes including one ag-
gregator are from the same node, while the other four processes
are from the second node (this does not need to manually specify,
just by simply launching 16 processes). The data amount that the
aggregator will send to each non-aggregator is same. We modify
the MPI-IO to timing the sending/receiving and other steps. The
first bar in Fig. 5 shows the aggregator’s sending time, which is
the time this aggregator takes to send the data to the collective
buffer. The lower dashed portion in other bars (2–16) shows the
waiting time of non-aggregators and the higher portion refers to
their receiving time. We can see that the data exchange time be-
tween aggregator and non-aggregators is various, due to which,
we can argue that the shuffle cost is determined by the maximum
data exchange time (in this case, i.e., 2.3 ms). Based on the above
theoretical analysis and the initial experiment, we can derive the
following equation to predict the shuffle cost:

T = max(max(
mai

Ba
),max(

mej

Be
)) + γ

= max(
mai

Ba
,

mej

Be
) + γ (1)

where T is the total shuffle cost of one aggregator; mai is
the ith intra-message size (MByte) and 0 < i < A, where A is
the total number of intra-communication; mej is the jth inter-
communication message size (MByte), 0 < j < E , where E is the
total number of inter-node communication; Ba is the saturated
throughput of intra-node communication (MB/s); Be is the satu-
rated throughput of inter-node communication of a given cluster
system (MB/s); and γ is the latency. The difference with ours is
that their approach calculates the shuffle cost of each node, while
ours calculates the cost in terms of each aggregator.

In order to distinguish the intra-communication and inter-
communication at the runtime, we need to know the Hydra’s
process-core binding strategy. Hydra is a process management sys-
tem compiled into the MPICH2 as a default process manager. With-
out any user-defined mapping, we assume the basic default alloca-
tion strategy is used, i.e., round-robin mechanism, using the OS
specified processor IDs. Whether the communication will be intra
or inter can be determined with the following equation:

Comm is

{
intra if a_id%n_c = p_id%n_c
inter else

(2)
Fig. 6. Divided requests queues with time window.

where Comm is short for communication, a_id is the rank of the
aggregator, p_id is the rank of non-aggregator processes, and n_c
is the number of cores per node.

4.2. Acceptable delay

As we have analyzed in the previous section, aggregators with
lower shuffle costs can be scheduled later, whereas slow aggrega-
tors who have higher shuffle costs are better to be serviced first.
We introduce the Acceptable Delay (AD) in this study to support
the hierarchical I/O scheduling. An aggregator’s AD refers to the
maximum acceptable time it can be delayed. The AD is defined as
follows:

ADi = max{T0, T1, T2, . . . , Tn} − Ti (3)

where ADi is ith aggregator’s acceptable delay, and Ti is ith aggre-
gator’s shuffle cost. Usually, I/O requests from the same application
are better to be serviced at the same time in order to achieve
lower average response time. However, due to aggregators’ various
ADs, it is not necessary to do that, which means we can utilize
every aggregator’s AD to better schedule I/O requests, by saturat-
ing one aggregator’s AD and servicing other applications first. We
also define a Relative Acceptable Delay (RAD) as the rank in the
ascending order of AD.

4.3. Time window

In previous work, a time window is used to avoid starvation
and to maintain fairness [36]. With the time window concept, all
I/O requests waiting in a queue are divided equally by a prede-
fined time interval. Each divided window consists of a sequence of
I/O requests. In the same window, I/O requests are ordered by the
value of ‘Application ID’; whereas in different windows, requests in
an earlier ‘Time Window’ will be serviced prior to those in a later
one, to avoid starvation.

As shown in Fig. 6, we utilize the time window to organize the
I/O queue too but applied for the new hierarchical I/O scheduling
algorithm. The motivation here is different compared to the exist-
ing work. In our design, we argue that the earlier request from
one application should always be serviced earlier than the later
one from the same application. The earlier I/O is from an aggre-
gator of the earlier collective access. After this earlier collective
access finishes, the application needs a synchronization before is-
suing another collective read/write. Scheduling the later aggregator
earlier will cause delay. Therefore, instead of a fixed-width time
window, we set a flexible time window on each server. On each
storage node, the original queue will be divided into several win-
dows. In each window, there are no more than two aggregators
from the same application. In other words, the aggregators within
a window are all from different applications.

JID:BDR AID:14 /FLA [m5G; v1.148; Prn:19/02/2015; 11:16] P.5 (1-10)

J. Liu et al. / Big Data Research ••• (••••) •••–••• 5

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
4.4. HIO algorithm

The main idea of the hierarchical I/O scheduling algorithm is to
utilize the aggregator’s ‘acceptable delay’ to minimize the shuffle
cost. Because aggregators from different applications have various
ADs, we cannot directly compare the AD from different applica-
tions. The algorithm first generates an initial order, and then tunes
the order by comparing the aggregator’s AD and read cost. If one
aggregator’s AD is larger than its successor’s read cost, then the
order of the two requests can be exchanged. The algorithm is de-
scribed in Algorithm 1 – HIO scheduling algorithm. Before the HIO
scheduling algorithm performed, the I/O queue is divided into fixed
windows (e.g., 10) on each node. If there are more than one aggre-
gator from the same application, the window width is reduced as
discussed in the previous subsection. The outer loop (i to n − 1)
in the algorithm is carried out in parallel because the schedul-
ing is performed on each node separately. The actual scheduling
starts from the second loop (j to m − 2). Each request’s AD is
compared with its successor’s read cost. If agg j .ad > agg j+1.read,
then exchange the order of agg j and agg j+1. At the same time,
the AD is updated as: agg j .ad = agg j .ad − agg j+1.read, agg j+1.ad =
agg j+1.ad + agg j .read.

input :
n: number of storage nodes;
m: number of applications;
threshold: 0.2;
agg[i][j].ad:the acceptable delay of jth

aggregator on ith node;
agg[i][j].read:the read cost of jth

aggregator on ith node
agg[i][j].rad:the relative ad of jth

aggregator on ith node
output: Optimal service order on each node

for i ← 0 to n − 1 do
ratio=sum(agg[i].shuffle)/sum(agg[i].read);
if ratio > threshold then

qsort agg[i] by rad;
end
else

qsort agg[i] by app_id;
end
for j ← 0 to m − 2 do

for k ← j + 1 to m − 1 do
if agg[i][j].ad > agg[i][k].read then

temp=ag[i][j];
agg[i][j]=agg[i][k];
agg[i][k]=temp;
agg[i][j].ad+=agg[i][k].read;
agg[i][k].ad-=agg[i][j].read;

end
else

j++;
break;

end
end

end
end

Algorithm 1: HIO scheduling algorithm.

The initial order is generated by sorting the RAD (if shuffle/
read > threshold), through which each application’ slowest aggre-
gator is scheduled earlier. The reason why a threshold is set that
if the shuffle cost is too small compare to the read cost, the al-
gorithm just sorts I/Os by application ID. The detailed reason is
discussed in Section 4. The algorithm then tunes the initial or-
der by saturating each aggregator’s AD. These two steps make sure
that the slower aggregator moves ahead, and the faster aggregator
moves back. The tuning counts the read cost in order to balance
the service order among all applications.
5. Theoretical analysis

The HIO scheduling can reduce the service time and shuffle
cost. In this section, we analyze the cost reduction through an
analytical model for collective I/O and compare against one latest
Server I/O scheduling [36].

Assuming the number of concurrent applications is m, and the
number of storage nodes is n. On each node, assuming every ap-
plication has a request, then there will be m aggregators on each
node. Suppose each request needs time t to finish the service on
the server side and si j to finish the shuffle phase (si j is the jth
aggregator’s shuffle cost of the ith application). The longest finish
time of requests on all nodes determines the application’s comple-
tion time on the server side, which could be {t, 2t, 3t, . . . , mt}. The
application’s total cost is the sum of the completion time on the
server side and the maximum shuffle cost on the client side. With-
out any scheduling optimization, applications’ server-side comple-
tion time has the same distribution, i.e., the density is g(x), while
the probability distribution function is G(x) = (x/m)n . Therefore,
the completion time of each application can be derided as shown
in Eq. (4):

Ti = Service time + Shuffle cost

= E(max(Tci)) + max(si j)

= (

m∑
x=1

xg(x))t + max(si j)

= (

m∑
x=1

x(G(x) − G(x − 1)))t + max(si j)

= (

m∑
x=1

x((
x

m
)n − (

x − 1

m
)n))t + max(si j)

= mt + max(si j) − t

mn

m−1∑
x=1

xn (4)

in which Tci is the ith application’s completion time on one node.
With the Server I/O scheduling, in which the same applications’

requests are serviced at the same time on all nodes, the service
time for those applications are fixed: t, 2t, 3t, . . . , mt . The average
execution time is:

Ti = 1

m
(

m∑
x=1

xt + m(max(si j)))

= m + 1

2
t + max(si j) (5)

For the potential of the HIO scheduling, we analyze the best
case and the worst case separately. The best case requires two
conditions: first, each application’s slowest aggregator comes to
different node; second, the slowest aggregator dominates the ap-
plication’s execution time, which can be described as max(si j) −
min(si j) > (m − 1)t . With the HIO scheduling, the slowest aggrega-
tor is serviced first on each node and determines each application’s
execution time. Therefore, we have the average execution time:

Ti = 1

m
(mt + m(max(si j)))

= t + max(si j) (6)

For the worst case, either the first condition or the second
condition is not satisfied. If the first condition is not met, it in-
dicates that applications’ slowest aggregators arrive at the same
node. Thus, the average execution time is:

JID:BDR AID:14 /FLA [m5G; v1.148; Prn:19/02/2015; 11:16] P.6 (1-10)

6 J. Liu et al. / Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
Ti = 1

m
((t + 2t + 3t + . . . + mt) + m(max(si j)))

= m + 1

2
t + max(si j) (7)

If the second condition is not met, the slowest aggregator’s
shuffle cost is close to zero. With the HIO scheduling, the initial
order will be sorted by application id, which means that the same
application will be serviced at the same time. Then we have the
average execution time same as Eq. (5). In another word, the worst
case of the HIO scheduling at least has the same performance as
that of the Server I/O scheduling.

Comparing Eq. (4) and Eq. (5), the Server I/O scheduling can
achieve an average execution time reduction as the following:

Treduction = mt + max(si j) − t

mn

m−1∑
x=1

xn

− m + 1

2
t − max(si j)

= m − 1

2
t − t

mn

m−1∑
x=1

xn

= m − 1

2
t (n → ∞) (8)

The best case of the HIO scheduling can further reduce the ex-
ecution time of Eq. (5) by:

T b
reduction = m + 1

2
t + max(si j)

− t − max(si j)

= m − 1

2
t (9)

The theoretical analysis and this comparison show that the
HIO scheduling achieves better scheduling performance, especially
when the shuffle cost keeps increasing due to highly concurrent
accesses from large-scale HPC systems and/or big data retrieval
and analysis problems.

6. Discussion of HIO for write operation

The HIO was originally designed for the collective read opera-
tion. Since the read operation’s two phase procedure is different
with the write operation. Our scheduling only works for the read
operation, which is I/O phase first and shuffle phase second. The
reason is that the I/O phase of read on server side is not the last
step for the application, and the later shuffle phase on client side,
if well utilized by the HIO, the overall performance can be im-
proved. However, for collective write operation, the data are first
shuffled on the client side, then after each aggregator getting its
file view and all the data within that view, the aggregator will be
sent to the storage nodes to do the I/O. This procedure is totally
opposite of the read operation. The HIO idea seems to fail in this
case. Fortunately, by rethinking the HIO idea, we found that it is
not difficult to apply the HIO for write operations without modi-
fication. Same with collective read, the aggregator’s shuffle phase
for collective write also has various costs. Such various costs will
lead to different arriving order on the storage server.

Suppose we have a ‘third’ phase for collective write, which
means when the aggregators are returned to the compute nodes,
they will also do the “shuffle” similar to the collective read’s sec-
ond phase. But assuming the cost of the third phase equals to
zero, then it is not difficult to find that the collective write is just
one ‘worst’ case of collective read for HIO. In Section 5, we have
discussed how our HIO addresses the worst cases, in which the
shuffle cost is close to zero and we have Eq. (5).
Fig. 7. Implementation.

7. Implementation

The aggregators’ shuffle cost and AD are calculated at the MPI-
IO layer. Our evaluation was carried out on the ROMIO that is in-
cluded in MPICH2-1.4. It provides a high-performance and portable
implementation of MPI-IO including collective I/O. The MPICH2-1.4
and ROMIO provide a PVFS2 ADIO device. We modified this driver
to integrate the shuffle cost analysis and pass it to the PVFS server
side scheduler as a hint. When an application calls the collec-
tive read function ADIOI_Read_and_exch in ad_read_coll.c under
the src/mpi/romio/adio/common, the shuffle cost is calculated af-
ter the aggregators are allocated, i.e., ADIOI_Calc_file_domains. The
message size m is calculated with ADIOI_Calc_my_req and ADIOI_
Calc_others_req. The calculated shuffle cost is stored into a variable
of PVFS-hint type. The hint is passed to file servers along with I/O
requests (Fig. 7).

On the PVFS server side, in the request scheduling function
PINT_req_ sched_post(), we implemented the HIO algorithm. The
original function only enqueues the coming requests into the tail
of the queue, while the HIO algorithm first divides the waiting
queue into several sequences, and performs the scheduling within
each sub-queue following the scheduling algorithm discussed in
Section 3.

8. Experiments and analyses

8.1. Experimental setup

We have conducted tests on a 16-node Linux testbed. This clus-
ter is composed of one PowerEdge R515 rack server node and 15
PowerEdge R415 nodes, with a total of 32 processors and 128
cores. Nodes are fully connected via a PowerConnect 2848 net-
work switch. The PowerEdge R515 server node has dual quad-
core 2.6 GHz AMD Opteron 4130 processors, 8 GB memory, and
a RAID-5 disk array with 3 TB storage capacity composed of
7200 RPM Near-Line SAS drives. Each PowerEdge R415 node has
dual quad-core 2.6 GHz AMD Opteron 4130 processors, 4 GB mem-
ory and a 500 GB 7200 RPM Near-Line SAS hard drive. We con-
ducted experiments with the MPI-IO-Test parallel I/O benchmark
[2]. The proposed hierarchical I/O scheduling algorithm was com-
pared with other scheduling strategies through tests. We have also
evaluated the HIO scheduling algorithm with a real climate science
application. The HIO scheduling algorithm is evaluated and com-
pared with two other scheduling algorithms, Server I/O scheduling
(denoted as SIO) [36] and the normal collective I/O (denoted as
NIO).

8.2. Results and analyses

In the first test, we run multiple instances of MPI-IO-Test si-
multaneously. We conducted the experiments by specifying the
number of aggregator as 6 and the number of processes as 50

JID:BDR AID:14 /FLA [m5G; v1.148; Prn:19/02/2015; 11:16] P.7 (1-10)

J. Liu et al. / Big Data Research ••• (••••) •••–••• 7

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
Fig. 8. Average execution time with concurrent applications.

Fig. 9. Speedup of HIO and SIO with different request size.

for each application. The I/O request size was set to a fixed value,
16 MB. We run with 6, 12, 24, and 48 processes simultaneously.
Six storage nodes were deployed. The results are plotted in Fig. 8.
From the figure, we can observe that the HIO scheduling outper-
formed other scheduling. The total execution time was decreased
by up to 34.1% compared with NIO and by up to 15.2% compared
with SIO. Furthermore, when the number of concurrent applica-
tions increased, the performance gain was even better.

We have conducted experiments with varying the request size
too. As reported in Fig. 9, the I/O request size was set as 64 KB,
1 MB, 5 MB, and 10 MB respectively. The number of concurrent
applications was set as six, and the number of aggregators was
configured as six too. During this test, we compared the ratio of
shuffle cost against the total cost. It was found that the ratio in-
creased from 0.7% to 5.6%, as the request size increased. This fact
matches with our observation that the shuffle cost considerably in-
creases when applications become more and more data intensive.

When the requests size increased, the performance gain of us-
ing HIO scheduling was increased too, from 6.8% to 18.3% in terms
of the execution time reduction rate. This result also matches with
our theoretical analysis discussed in Section 4.

We have also evaluated the impact of the number of storage
nodes and report the results in Fig. 10. In this test, there are 6
applications running simultaneously, and the number of aggrega-
tors in each application was set the same as the number of storage
nodes, in order to have each application access all storage nodes.
The request size was set as 15 MB, and the aggregator’s request
size is equal. The number of storage nodes was varied as 2, 4, 6, 8,
and 16.

We observe that, from Fig. 10, the normal collective I/O did not
scale well with the increasing size of the system. While both HIO
and SIO achieved better scalability, we also find that the HIO per-
formed and scaled better than SIO. The advantage of the HIO is
due to the reduced shuffle cost. As the number of storage nodes
increased, the inter-communication between aggregators and pro-
Fig. 10. Average execution time with different number of storage nodes.

Fig. 11. Average execution time with different number of aggregators.

cesses on different nodes also increased, which has been confirmed
in a prior study too [4]. It can be projected that, as the system
scale keeps increasing in the big data computing era, the shuffle
cost in the two-phase collective I/O will become a critical issue.
The proposed HIO scheduling in this study is essentially for ad-
dressing this issue and is likely to be promising at the exascale/ex-
treme scale of HPC system.

We also evaluated the HIO with various numbers of aggrega-
tors. In Fig. 11, we test the HIO, SIO and NIO with 5, 10 and 15
aggregators separately. As the number of aggregator increasing, the
interruption and the shuffle cost will also increase. We can find
that the NIO shows a linear increasing trend. Both the HIO and SIO
reduce the average execution time. The performance gain of SIO
comes from the reduction of interruption of aggregators on stor-
age nodes. While the HIO achieves more by reducing the shuffle
cost.

As we have discussed in Section 6, the HIO was originally de-
signed for collective read. For collective write, since the shuffle
phase is already done before any scheduling, so the HIO cannot
utilize the various acceptable delays any more, therefore, we can
see from Fig. 12, the HIO and SIO do not distinguish a lot. Both of
them achieve an average speedup about 12%.

We have evaluated the HIO scheduling with a real climate sci-
ence application and datasets from the Bjerknes Center for Cli-
mate Research as well [24]. This set of tests was specifically for
understanding the benefits of the HIO scheduling for a special
access pattern, accessing 2D planes in scientific datasets. In sci-
entific computing, scientists are interested in understanding the
phenomenon behind the data by performing subsets queries [24].
Those subsets queries usually happen in the 2D planes, e.g., pa-
rameters along time dimension and level dimension in a climate
science data. The datasets can range between GBs and TBs. Previ-
ous studies have shown the poor scalability of collective I/O due
to high concurrency and I/O interruption. The proposed HIO al-

JID:BDR AID:14 /FLA [m5G; v1.148; Prn:19/02/2015; 11:16] P.8 (1-10)

8 J. Liu et al. / Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
Fig. 12. Collective write with HIO.

Fig. 13. FASM with HIO.

gorithm addresses this issue by better scheduling concurrent I/Os.
The total dataset size evaluated in this series of tests is more than
12 GB. We run multiple 2D subsets queries concurrently using the
FASM system [24] and performed the HIO scheduling. We run 20
queries for each dataset. A sample query statement is like “select
temperature from dataset where 10 < temperature < 31”. These
queries were generated randomly and followed a global normal
distribution. The performance gain with the HIO scheduling com-
pared to the conventional collective I/O is shown in Fig. 13. It can
be observed that the HIO scheduling improved the average query
response time clearly and by up to 59.8%.

All these tests have well confirmed that the proposed hierar-
chical I/O scheduling in this study can improve the performance of
collective I/O given highly concurrent and interrupted accesses. It
holds a promise for big data problems and scientific applications
on large-scale HPC systems.

9. Related work

Nowadays, the big data problem has attracted interests from
different research areas from industry and academia [3,40]. We
compare our work with the most related recent works.

9.1. I/O scheduling

Parallel I/O scheduling has been widely studied by many re-
searchers at a hope of obtaining the peak sustained I/O perfor-
mance. Few of them, however, meets the current demand of data-
intensive applications and big data analysis yet. Disk-directed I/O
[20] and server-directed I/O [35] have been proposed to improve
the bandwidth of disks and network servers respectively. There are
also numerous scheduling algorithms targeting the quality of ser-
vice (QoS) [14,15,17,33,41]. The proposed hierarchical I/O schedul-
ing in this study takes one step further to optimize the scheduling
of collective I/O while considering the highly concurrent I/O re-
quests from data-intensive applications.
In [36], a server-side I/O coordination method is proposed for
parallel file systems. Their idea is to coordinate file servers to serve
one application at a time in order to reduce the average comple-
tion time, and in the meantime maintain the server utilization and
fairness. By re-arranging I/O requests on the file servers, the re-
quests are serviced in the same order in terms of applications on
all involved nodes. However, without considering the shuffle cost
in the collective I/O, it is unlikely to achieve the optimal perfor-
mance. In [43], the authors proposed a scheme namely IOrches-
trator to improve the spatial locality and program reuse distance
by calculating the access distances and grouping the requests with
small distance together. These two works seem similar but differ in
the motivation. The first one is based on the observation that the
requests with synchronization needs will be optimized if they are
scheduled at the same time, whereas the latter one is motivated
by exploring the program’s spatial locality.

In [16], the authors proposed three scheduling algorithms, with
considering the number of processes per file stripe and the num-
ber of accesses per process, to minimize the average response time
in collective I/O. In servicing one aggregator, instead of scheduling
one stripe at a time in the increasing file offset order, they propose
to prioritize the file stripes based on their access degree, the num-
ber of accessing processes. Their work optimized the scheduling
of stripes within an aggregator, whereas our work focuses on the
scheduling of aggregators. Besides, their work only considers the
average I/O response time. The reduced I/O response time, how-
ever, does not always lead to the reduced total cost that includes
the I/O response time and the shuffle cost.

9.2. Two phase collective I/O optimization

Collective I/O has been proposed about 15 years [26,28,37], op-
timization of collective I/O has never been stopped. We have stud-
ied most of the work related to two phase collective I/O, from our
classification, the research efforts have been focused on the follow-
ing points:

1) Implementation [8,37,39], in which the collective I/O are de-
signed implemented and advanced feature are supported;

2) File view partition [19,42], which are related to the two phase
collective I/O’s global file view partition to optimize the aggre-
gator’s I/O access;

3) Aggregator selection [5]. Interesting ideas are about how to
selection the processes as aggregators and how to define the
number of aggregators;

4) Cache and buffering [22,29]. Researchers find the traditional
cache and buffering idea can be utilized to optimize the col-
lective I/O, which is done on the client side;

5) Data compression [10] is another example that other well-
studied ideas are used in collective I/O.

All these works have successfully improved the performance
of two phase collective I/O, and proved that the collective I/O is
promising in the parallel computing. But we can also find that the
new challenges in today’s large scale, big data, and power con-
strained era, drive the further development of collective I/O, and
our HIO is proposed under this circumstance. Among the previous
works in collective I/O, there are two which are most related.

The first one is in [4,5], the authors discussed the increasing
shuffle cost in today’s HEC system too. Their discussions are for
motivating the importance of node re-ordering for reducing the
collective I/O’s shuffle cost. Their work provides a method to eval-
uate the shuffle cost and designed algorithms to automatically as-
sign the aggregators at the node level, whereas our work focuses
on the scheduling of aggregators considering highly concurrent ac-
cesses to achieve the optimal collective I/O performance.

JID:BDR AID:14 /FLA [m5G; v1.148; Prn:19/02/2015; 11:16] P.9 (1-10)

J. Liu et al. / Big Data Research ••• (••••) •••–••• 9

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132
The second one is the LACIO idea [6], in which the author dis-
cuss the gap between logical access and physical storage. When
the aggregators are assigned with different file view, the view it-
self is just logical space, therefore, the aggregator may not know
the physical distribution of data on the parallel storage nodes. In
other words, the aggregator from the same application will inter-
rupt with each other on the storage nodes and the LACIO idea well
addressed the issue. Our HIO idea targets the interruption among
concurrent applications, which in another side, to improve the per-
formance (we did our evaluation by first removing the interruption
from the same application, such that we can tell the HIO really
reduces the interruption among different applications). Previous
work, like LACIO, focuses on one application’s collective I/O, while
our work goes one more step to optimize the performance of con-
current case. Both of the direction, when combined, is indeed a
trend for extreme scale systems in the future.

9.3. Data organization and file systems

Our work focuses on I/O scheduling, while the data is not mov-
able. In fact, there are bunch of work targeting the data organi-
zation and file systems. We concluded some related work in this
last subsection. For example, there exist other works that address
the scientific data retrieval issues by optimizing the data orga-
nization [18,23]. These works provide efficient mechanisms from
the data level and fit the access pattern of scientific applications.
Our work also improves the application’s accesses, most of which
are non-contiguous, but through a hierarchical scheduling. There
are also works utilizing existing database techniques and compres-
sion algorithms to boost the big data analysis. For example, Fastbit
implemented bitmap index in the large datasets [7]. ISABELA im-
proved the big data query by compressing the datasets [21]. Our
work focuses on collective I/O scheduling, which is beneficial and
critical to big data retrieval and analysis too. In the future, we
would also apply machine learning algorithms [31,32] to further
refine the scheduling.

10. Conclusion

Collective I/O has been proven a critical technique in optimizing
the non-contiguous access pattern in many scientific applications
run on high-performance computing systems. It can be critical for
big data retrieval and analysis too as non-contiguous access pat-
tern also commonly exists in big data problems. The performance
of collective I/O, however, could be dramatically degraded due to
the increasing shuffle cost caused by highly concurrent accesses
and interruptions. This problem tends to be more and more critical
as many applications become highly data intensive. In this study,
we propose a new hierarchical I/O scheduling for collective I/O to
address these issues. This approach is the first considering the in-
creasing shuffle cost involved in collective I/O. Through theoretical
analyses and experiments, it has been confirmed that the hierar-
chical I/O scheduling can improve the performance of collective
I/O. In the future, we will apply a similar approach for write oper-
ations. We will analyze the feasibility of implementing hierarchical
I/O scheduling only at the MPI-IO layer as well. More experiments
will be conducted to analyze how the shuffle cost can affect the
big data analysis and further refine our algorithm. We will also try
to apply similar approaches for write operations and develop dif-
ferent scheduling methods for different parallel file systems.

Acknowledgements

This research is sponsored in part by the National Science Foun-
dation under grant CNS-1162488 and the Texas Tech University
startup grant. The authors are thankful to Yanlong Yin of Illinois
Institute of Technology and Wei-Keng Liao of Northwestern Uni-
versity for their constructive and thoughtful suggestions toward
this study. We also acknowledge the High Performance Comput-
ing Center (HPCC) at Texas Tech University for providing resources
that have contributed to the research results reported within this
paper.

References

[1] The global cloud resolving model (GCRM) project, http://kiwi.atmos.colostate.
edu/gcrm/.

[2] MPI-IO test, http://public.lanl.gov/jnunez/benchmarks/mpiiotest.htm.
[3] C.P. Aibek Musaev, De Wang, Litmus: landslide detection by integrating multi-

ple sources, in: The 11th International Conference on Information Systems for
Crisis Response and Management, 2014.

[4] K. Cha, S. Maeng, Reducing communication costs in collective I/O in multi-core
cluster systems with non-exclusive scheduling, J. Supercomput. 61 (3) (2012)
966–996.

[5] M. Chaarawi, E. Gabriel, Automatically selecting the number of aggregators for
collective I/O operations, in: CLUSTER, IEEE, 2011, pp. 428–437.

[6] Y. Chen, X.-H. Sun, R. Thakur, P.C. Roth, W.D. Gropp, LACIO: a new collective
I/O strategy for parallel I/O systems, in: IPDPS, IEEE, 2011, pp. 794–804.

[7] J. Chou, M. Howison, B. Austin, K. Wu, J. Qiang, E.W. Bethel, A. Shoshani, O. Rü-
bel, Prabhat, R.D. Ryne, Parallel index and query for large scale data analysis,
in: Conference on High Performance Computing Networking, Storage and Anal-
ysis, SC 2011, Seattle, WA, USA, November 12–18, 2011, ACM, 2011.

[8] P. Dickens, R. Thakur, Improving collective I/O performance using threads, in:
Proceedings of the Joint International Parallel Processing Symposium and IEEE
Symposium on Parallel and Distributed Processing, Apr. 1999, pp. 38–45.

[9] P.M. Dickens, R. Thakur, Evaluation of collective I/O implementations on paral-
lel architectures, J. Parallel Distrib. Comput. 61 (8) (Aug. 2001) 1052–1076.

[10] R. Filgueira, D.E. Singh, J.C. Pichel, J. Carretero, Exploiting data compression in
collective I/O techniques, in: Proceedings of the IEEE International Conference
on Cluster Computing, 10th CLUSTER’08, Tsukuba, Japan, Sept.-Oct. 2008, IEEE,
2008, pp. 479–485.

[11] K. Gao, W. Keng Liao, A.N. Choudhary, R.B. Ross, R. Latham, Combining I/O op-
erations for multiple array variables in parallel netCDF, in: CLUSTER, IEEE, 2009,
pp. 1–10.

[12] J. Gray, D.T. Liu, M.A. Nieto-Santisteban, A.S. Szalay, D.J. DeWitt, G. Heber, Sci-
entific data management in the coming decade, SIGMOD Rec. 34 (4) (2005)
34–41.

[13] W. Gropp, E. Lusk, R. Thakur, Using MPI-2: Advanced Features of the Message
Passing Interface, Scientific and Engineering Computation, MIT Press, 2000,
pub-MIT:adr.

[14] A. Gulati, I. Ahmad, C.A. Waldspurger, PARDA: proportional allocation of re-
sources for distributed storage access, in: FAST, USENIX, 2009, pp. 85–98.

[15] L. Huang, G. Peng, T. cker Chiueh, Multi-dimensional storage virtualization,
ACM SIGMETRICS Perform. Eval. Rev. 32 (1) (June 2004) 14–24.

[16] C. Jin, S. Sehrish, W. Keng Liao, A.N. Choudhary, K. Schuchardt, Improving the
average response time in collective I/O, in: EuroMPI, in: Lect. Notes Comput.
Sci., vol. 6960, Springer, 2011, pp. 71–80.

[17] M. Karlsson, C. Karamanolis, X. Zhu, Triage: performance isolation and differ-
entiation for storage systems, Technical Report HPL-2004-40, Hewlett Packard
Laboratories, Sept. 2, 2004.

[18] W. Kendall, M. Glatter, J. Huang, T. Peterka, R. Latham, R.B. Ross, Terascale data
organization for discovering multivariate climatic trends, in: SC, ACM, 2009.

[19] W. Keng Liao, A. Choudhary, Dynamically adapting file domain partitioning
methods for collective I/O based on underlying parallel file system locking pro-
tocols, in: SC’08, ACM/IEEE, Austin, TX, Nov. 2008.

[20] D. Kotz, Disk-directed I/O for MIMD multiprocessors, Technical Report PCS-
TR94-226, Dartmouth College, July 1994.

[21] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla, S.-H. Ku,
S. Ethier, J. Chen, C.-S. Chang, S. Klasky, R. Latham, R.B. Ross, N.F. Samatova,
ISABELA-QA: query-driven analytics with ISABELA-compressed extreme-scale
scientific data, in: Conference on High Performance Computing Networking,
Storage and Analysis, SC 2011, Seattle, WA, USA, November 12–18, 2011, ACM,
2011.

[22] J. Liu, S. Byna, Y. Chen, Segmented analysis for reducing data movement, in:
2013 IEEE International Conference on Big Data, Oct. 2013, pp. 344–349.

[23] J. Liu, S. Byna, B. Dong, K. Wu, Y. Chen, Model-driven data layout selection for
improving read performance, in: 2014 IEEE International Parallel Distributed
Processing Symposium Workshops (IPDPSW), May 2014, pp. 1708–1716.

[24] J. Liu, Y. Chen, Improving data analysis performance for high-performance com-
puting with integrating statistical metadata in scientific datasets, in: HPCDB,
SC’12, 2012.

[25] J. Liu, Y. Chen, Y. Zhuang, Hierarchical I/O scheduling for collective I/O, in: Proc.
of the 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid’13, 2013.

http://kiwi.atmos.colostate.edu/gcrm/
http://kiwi.atmos.colostate.edu/gcrm/
http://public.lanl.gov/jnunez/benchmarks/mpiiotest.htm

JID:BDR AID:14 /FLA [m5G; v1.148; Prn:19/02/2015; 11:16] P.10 (1-10)

10 J. Liu et al. / Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
[26] J. Liu, B. Crysler, Y. Lu, Y. Chen, Locality-driven high-level i/o aggregation for
processing scientific datasets, in: 2013 IEEE International Conference on Big
Data, Oct. 2013, pp. 103–111.

[27] J.F. Lofstead, M. Polte, G.A. Gibson, S. Klasky, K. Schwan, R. Oldfield, M. Wolf,
Q. Liu, Six degrees of scientific data: reading patterns for extreme scale science
IO, in: HPDC, ACM, 2011, pp. 49–60.

[28] Y. Lu, Y. Chen, Y. Zhuang, J. Liu, R. Thakur, Collective input/output under mem-
ory constraints, Int. J. High Perform. Comput. Appl. (2014).

[29] X. Ma, M. Winslett, J. Lee, S. Yu, Improving MPI IO output performance with
active buffering plus threads, in: Proceedings of the International Parallel and
Distributed Processing Symposium, IEEE Computer Society Press, Apr. 2003.

[30] J. No, R. Thakur, A. Choudhary, Integrating parallel file I/O and database support
for high-performance scientific data management, in: Proceedings of SC2000:
High Performance Networking and Computing, Dallas, TX, Nov. 2000, IEEE
Computer Society Press, 2000.

[31] Y. Pang, F. Xiao, H. Wang, X. Xue, A clustering-based grouping model for en-
hancing collaborative learning, in: 2014 13th International Conference on Ma-
chine Learning and Applications, IEEE, 2014.

[32] Y. Pang, X. Xue, A.S. Namin, Identifying effective test cases through k-means
clustering for enhancing regression testing, in: 2013 12th International Con-
ference on Machine Learning and Applications (ICMLA), vol. 2, IEEE, 2013,
pp. 78–83.

[33] A. Povzner, D. Sawyer, S.A. Brandt, Horizon: efficient deadline-driven disk I/O
management for distributed storage systems, in: HPDC, ACM, 2010, pp. 1–12.

[34] R. Ross, R. Latham, M. Unangst, B. Welch, Parallel I/O in practice, tutorial notes,
in: SC’08, ACM/IEEE, Austin, TX, Nov. 2008.
[35] K.E. Seamons, Y. Chen, P. Jones, J. Jozwiak, M. Winslett, Server-directed col-
lective I/O in Panda, in: Proceedings of SC’95, San Diego, CA, Dec. 1995, IEEE
Computer Society Press, 1995.

[36] H. Song, Y. Yin, X.-H. Sun, R. Thakur, S. Lang, Server-side I/O coordination for
parallel file systems, in: SC, ACM, 2011.

[37] R. Thakur, W. Gropp, E. Lusk, Data sieving and collective I/O in ROMIO, in: Proc.
of the 7th Symposium on the Frontiers of Massively Parallel Computation, IEEE,
Feb. 1999, pp. 182–189.

[38] Y. Tian, S. Klasky, H. Abbasi, J.F. Lofstead, R.W. Grout, N. Podhorszki, Q. Liu,
Y. Wang, W. Yu, EDO: improving read performance for scientific applications
through elastic data organization, in: CLUSTER, IEEE, 2011, pp. 93–102.

[39] V. Venkatesan, M. Chaarawi, E. Gabriel, T. Hoefler, Design and evalua-
tion of nonblocking collective I/O operations, in: 18th European MPI Users’
Group Meeting, EuroMPI 2011, Santorini, Greece, September 18–21, vol. 6960,
Springer, 2011, pp. 90–98.

[40] D. Wang, D. Irani, C. Pu, Evolutionary study of web spam: webb spam corpus
2011 versus webb spam corpus 2006, in: 2012 8th International Conference on
Collaborative Computing: Networking, Applications and Worksharing (Collabo-
ratecom), 2012, pp. 40–49.

[41] Y. Wang, A. Merchant, Proportional service allocation in distributed storage sys-
tems, Technical Report HPL-2006-184, Hewlett Packard Laboratories, Feb. 18,
2007.

[42] W. Yu, J.S. Vetter, Parcoll: partitioned collective I/O on the cray XT, in: ICPP,
IEEE Computer Society, 2008, pp. 562–569.

[43] X. Zhang, K. Davis, S. Jiang, IOrchestrator: improving the performance of multi-
node I/O systems via inter-server coordination, in: SC’10, ACM/IEEE, New Or-
leans, LA, USA, Nov. 2010.
90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

	Hierarchical Collective I/O Scheduling for High-Performance Computing
	1 Introduction
	2 Background
	2.1 Collective I/O

	3 Motivation
	4 Hierarchical I/O scheduling
	4.1 Analysis and prediction of shufﬂe cost
	4.2 Acceptable delay
	4.3 Time window
	4.4 HIO algorithm

	5 Theoretical analysis
	6 Discussion of HIO for write operation
	7 Implementation
	8 Experiments and analyses
	8.1 Experimental setup
	8.2 Results and analyses

	9 Related work
	9.1 I/O scheduling
	9.2 Two phase collective I/O optimization
	9.3 Data organization and ﬁle systems

	10 Conclusion
	Acknowledgements
	References

