
JID:BDR AID:22 /FLA [m5G; v1.149; Prn:1/04/2015; 11:21] P.1 (1-7)

Big Data Research ••• (••••) •••–•••
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Multi-Tier Resource Allocation for Data-Intensive Computing ✩

Thomas Ryan a, Young Choon Lee b,∗
a School of Information Technologies, The University of Sydney, NSW, 2006, Australia
b Department of Computing, Macquarie University, NSW, 2109, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 December 2014
Received in revised form 9 February 2015
Accepted 2 March 2015
Available online xxxx

Keywords:
Resource allocation
Data-intensive computing
Cloud computing
Big data
Application heterogeneity
MapReduce

As distributed computing systems are used more widely, driven by trends such as ‘big data’ and cloud
computing, they are being used for an increasingly wide range of applications. With this massive increase
in application heterogeneity, the ability to have a general purpose resource management technique that
performs well in heterogeneous environments is becoming increasingly important.
In this paper, we present Multi-Tier Resource Allocation (MTRA) as a novel fine-grained resource man-
agement technique for distributed systems. The core idea is based on allocating resources to individual
tasks in a tiered or layered approach. To account for heterogeneity, we propose a dynamic resource allo-
cation method that adjusts resource allocations to individual tasks on a cluster node based on resource
utilisation levels. We demonstrate the efficacy of this technique in a data-intensive computing environ-
ment, MapReduce data processing framework in Hadoop YARN. Our results demonstrate that MTRA is an
effective general purpose resource management technique particularly for data-intensive computing en-
vironments. On a range of MapReduce benchmarks in a Hadoop YARN environment, our MTRA technique
improves performance by up to 18%. In a Facebook workload model it improves job execution times by
10% on average, and up to 56% for individual jobs.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

As the scale and size of applications continues to increase with
the explosive growth in data volume (dubbed ‘Big Data’), dis-
tributed processing/computing has become rather essential. The
availability of virtually unlimited resource capacity with cloud
computing has greatly enabled such distributed computing. As a
result, a wide range of distributed systems has been developed.
Some popular examples are MapReduce data processing frame-
work [1], Pregel graph processing system [2] and Montage as-
tronomical image mosaic engine [3,4]. Applications in these dis-
tributed systems exhibit much heterogeneity in terms particularly
of resource usage characteristics, e.g., CPU-intensive applications
and data-intensive applications.

Within distributed systems, resource allocation and manage-
ment is an ongoing research concern; it is well known that im-
proving resource allocation mechanisms can result in considerable
real-world improvements in performance and efficiency. However,
different applications have different resource requirements, mean-

✩ This article belongs to BDA-HPC.

* Corresponding author.
E-mail addresses: trya3473@uni.sydney.edu.au (T. Ryan), young.lee@mq.edu.au

(Y.C. Lee).
http://dx.doi.org/10.1016/j.bdr.2015.03.001
2214-5796/© 2015 Elsevier Inc. All rights reserved.
ing that effective resource management in heterogeneous envi-
ronments is much more difficult. While there has been a large
amount of research into resource allocation, most resource allo-
cation strategies do not account for application heterogeneity. In
particular, the majority of classic optimisation techniques for re-
source management assume homogeneity in either application or
resource, or both. And thus, they often do not perform optimally
in heterogeneous environments.

In this paper, we address the problem of fine-grained resource
allocation to distributed systems where jobs are composed of many
small tasks taking into account application heterogeneity. The tra-
ditional approach to resource management in these systems has
been to divide resources into logical partitions (called ‘slots’ or
‘containers’), and allocate tasks to partitions [1,5]. However, since
different jobs have different resource usage characteristics, this ap-
proach can lead to both resource under-utilisation and resource
contention, resulting in decreased performance. A general purpose,
scheduler-independent solution to this problem is highly desirable,
especially as we see increasing heterogeneity of both applications
and execution environments.

To this end, we develop Multi-Tier Resource Allocation (MTRA)
as a novel resource management technique that dynamically ad-
justs resource allocations to heterogeneous, individual tasks in
distributed systems. The dynamic adjustments are based on the

http://dx.doi.org/10.1016/j.bdr.2015.03.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:trya3473@uni.sydney.edu.au
mailto:young.lee@mq.edu.au
http://dx.doi.org/10.1016/j.bdr.2015.03.001

JID:BDR AID:22 /FLA [m5G; v1.149; Prn:1/04/2015; 11:21] P.2 (1-7)

2 T. Ryan, Y.C. Lee / Big Data Research ••• (••••) •••–•••
resource requirements of each task as well as current levels of
resource utilisation and resource contention on each node in a
given distributed computing system, or simply cluster. The idea is
that a common set of resources can be dynamically multiplexed
in several fine-grained resource allocation tiers to enable multiple
tasks with different resource usage characteristics to “harmonious-
ly” share the resource set. Rather than relying on a centralised
scheduler, resource allocations are adjusted locally on each node,
allowing for very fine-grain control. This distributed resource man-
agement approach can be combined with any existing scheduler.
It also decreases scheduler complexity, allowing for greater scal-
ability. Note that our MTRA is a resource management technique
underneath any schedulers that deal with the globalisation of the
resource allocation. The current implementation of MTRA primar-
ily deals with CPU and IO resources although it potentially capable
of dealing with other resources, such as network resources.

Our main focus is on MapReduce applications within a Hadoop
YARN environment. Resource management strategies in Hadoop
are based on the idea of logical partitions of resources. Tradition-
ally, these have been statically configured, a process which is itself
an ongoing research issue. Since different tasks require different
amounts and kinds of resources, configuration in heterogeneous
environments is even more problematic. Our preliminary solution
to this problem is Local Resource Shaper (LRS) [6] that enables
local resources (CPU core and disks) to be shared primarily by
two tiers allowing dynamic movement of tasks between resource
allocation tiers. While this model is shown to improve resource
utilisation while minimising resource contention in Classic Hadoop,
we show that it does not account well for task heterogeneity. With
regard to both application and environment heterogeneity, MTRA
enables optimal performance by adjusting allocations to maximise
resource utilisation and minimise resource contention for the re-
source requirements of each task.

Our evaluation shows that by accounting for heterogeneity, our
MTRA technique improves system performance. MTRA is compara-
ble or better than the previous best resource management alterna-
tive for a range of MapReduce benchmarks with different resource
usage characteristics, including outperforming the two-tier alloca-
tion model [6]. For individual MapReduce benchmarks, we observe
performance improvements of up to 18% compared to Hadoop
YARN. We show that for a workload model based on a Facebook
production workload, MTRA reduces individual job execution times
by 10% on average and up to 56% for individual jobs in the work-
load. These results prove that MTRA improves performance by a
significant margin in real-world, heterogeneous environments.

The rest of this paper is organised as follows. Section 2 gives
background. Section 3 presents our multi-tier resource allocation
technique and describes the application of MTRA to MapReduce in
Hadoop YARN. Section 4 presents our evaluation on the efficacy
of MTRA. Section 5 discusses the related work. Finally, Section 6
concludes the paper.

2. Background

In this section, we begin by some background on big data and
cloud computing, and then provide essential works and application
used in this paper.

2.1. Big data and cloud computing

The recent trend of so-called ‘Big Data’ is expected to be rather
norm as the volume of data exponentially increases literally in
every area—business, science, and daily life to name a few. To-
day, some claim that data (more specifically, data-intensive sci-
ence/computing) are the fourth paradigm in scientific research
after experimentation/observation, theory, and computational sim-
ulation [7]. Efficient data storage and timely data processing is
of great practical importance. Clearly, this requires both massive
storage and processing capacity. While some data processing deals
with simple retrieval or search (IO-intensive), other case involves
much computation on data (mixture usage of IO and CPU re-
sources); hence, application heterogeneity.

Cloud computing has emerged as a new computing paradigm
with its strengths in elasticity and pay-as-you-go pricing, and it is
a viable solution to many ICT services including big data process-
ing. Cloud computing in this context refers to the Infrastructure-
as-a-Service model, such as that provided by Amazon Elastic Com-
pute Cloud (EC2) [8] or Google Compute Engine [9]. This model
has many advantages, including elasticity, scalability, and using a
pay-as-you-go pricing system [10]. All of these properties have im-
plications for cluster environments, in terms of economics (only
paying for what you need) and performance (such as the shared-
tenant hardware and unpredictable datacentre loads). The use of
public cloud providers is associated with performance overheads
due to a range of factors. Individual nodes, or ‘instances’, are based
in virtual machines (VMs) which do not necessarily correspond
to physical machines. This representation of instances provides a
lot of control, however information such as the network topology
within the datacentre is unavailable; this has means we cannot
guarantee our nodes will be provisioned on the same server or
rack, leading to inconsistent communication times between nodes.
Additionally, it is likely that instances will “statically” share a phys-
ical machine with other cloud users, with potential performance
impacts if an instance is co-located with a resource-greedy neigh-
bour.

2.2. MapReduce and Hadoop

The MapReduce framework is a widely used programming
paradigm for distributed environments [1]. MapReduce provides an
abstraction away from the details of parallelising computation; the
framework automatically divides a job into individual tasks, han-
dles scheduling of individual tasks, distributes data and deals with
machine failures. The basic MapReduce model expresses computa-
tions as a ‘Map’ and a ‘Reduce’ function. Hadoop is a framework
for the execution of MapReduce jobs. Classic Hadoop has been
widely used and studied since its release, but we focus on the
more recently developed Hadoop YARN [5]. Both Classic Hadoop
and Hadoop YARN use the idea of dividing resources into logical
partitions (called ‘slots’ and ‘containers’ respectively) which are as-
signed to executing tasks.

2.3. Local resource shaper for MapReduce

The Local Resource Shaper (LRS) for MapReduce [6] modi-
fies the slot-based resource allocation approach used in Classic
Hadoop. Rather than statically configured Map and Reduce slots,
LRS introduces the idea of a dual purpose task slot. LRS ‘shapes’
task resource usage by allocating resources to tasks in a tier-based
model. Tasks are split into Active and Passive tiers, with resources
allocated such that the Active task uses as much resources as pos-
sible to maintain its original usage, while the Passive task uses
resources unused by the Active task. In Classic Hadoop, resources
are allocated based on a slot model, with each slot representing
a partition of resources. LRS pairs slots such that for each Active
task (i.e., slot), there is an associated Passive task. This means that
within each pair, the two tasks have complementary resource us-
age; for example, while the Active task waits on I/O operations
to complete, the Passive task is able to use the otherwise wasted
CPU resources. This approach is shown to significantly increase re-
source utilisation while minimising resource contention, resulting

JID:BDR AID:22 /FLA [m5G; v1.149; Prn:1/04/2015; 11:21] P.3 (1-7)

T. Ryan, Y.C. Lee / Big Data Research ••• (••••) •••–••• 3
in improved performance. We will demonstrate in Section 3 that
this technique improves performance less in Hadoop YARN than
in Classic Hadoop since Hadoop YARN already uses multi-purpose
resource containers, allowing for significantly higher baseline re-
source utilisation [5].

3. Multi-tier resource allocation

In this section, we present our Multi-Tier Resource Allocation
(MTRA) technique and detail its implementation in Hadoop YARN.
Unlike previous concrete approaches that focus on the exclusive-
ness and isolation of resource use between co-located applications
by explicitly controlling resource usage [11–13], MTRA strives for
the “organification” of resource sharing by interlacing resource us-
age providing non-intrusive resource sharing. Unless the resource
usage of co-located applications perfectly complement each other,
when using previous solutions, resource contention and perfor-
mance variability is inevitable. An overview of the architecture is
given in Fig. 1.

3.1. Design of MTRA

While the capacity of computing resources becomes increas-
ingly large, many applications are unable to fully/effectively use
these powerful resources. Specifically, a particular application run-
ning on a set of dedicated resources mostly not use these re-
sources all the time; and, the co-location of this application with
one or more applications may result in performance interference
due to their heterogeneity in resource usage patterns. Our multi-
tier resource allocation (MTRA) technique essentially exploits this
application heterogeneity, more precisely heterogeneity in their re-
source usage characteristics. MTRA extends the preliminary two-
tier design of LRS with an additional ‘Frozen’ tier and a more
streamlined dynamic resource allocation mechanism. The design
of three MTRA tiers is shown in the Resource Containers part of
Fig. 1.

In LRS’s two-tier system, resource allocation groups consisted
of one Active and one Passive task; we add one Frozen task to
each group, although other configurations are possible. The num-
ber of tiers can largely be determined based on types of appli-
cation (more precisely, resource usage patterns) of interest. As
MapReduce tasks typically consume more than 50% of a CPU re-
source [14], our original design of LRS adopted two tiers. However,
we have observed that there are still some resource capacity fre-
quently idle; hence, we introduce the addition of Frozen tier to
MTRA. As in LRS, we use Linux cgroups for fine-grained re-
source allocation and performance isolation. MTRA allocates CPU
and I/O resources to Active and Passive tasks in the ratio 100:1
for the maximum usage (100% usage) of 101 (the summation of
ratio values). This ratio dictates the relative resource usage be-
tween Active/Passive slots and it can be interpreted as 99% and 1%
of resource usage for Active and Passive, respectively; and, Frozen
tasks receive no resources by default using the cgroups Frozen
group. This means execution of tasks on the Frozen tier is effec-
tively paused.

When the monitoring process detects resource under-utilisation,
a Frozen task is dynamically allocated resources to allow it to ex-
ecute on the Passive tier. Conversely, if resource contention passes
a certain threshold, resource allocations are again dynamically ad-
justed to pause the execution of a Passive task, or to ‘freeze’ it. This
technique allows us to respond to changes in resource utilisation
in a much finer-grained manner than a centralised scheduler-based
system. Its most significant advantages are in accounting for het-
erogeneity. Dynamic resource allocation allows for allocations to
change based on the resource requirements of the individual tasks
on individual nodes, resulting in maximising resource utilisation
Fig. 1. Architecture of the MTRA implementation in Hadoop YARN. The arrow shows
task movement between Frozen and Passive tiers.

and minimising resource contention in heterogeneous environ-
ments.

3.2. MTRA implementation for MapReduce

It is a known problem in MapReduce and similar systems that
the best slot or container configuration is dependent on job char-
acteristics, with no single best static solution to this problem [6,1,
5]. To solve this, MTRA dynamically adjusts container resource al-
location to resource requirements of executing tasks by monitoring
resource utilisation.

As MTRA is a general resource management technique, it can be
scheduler obliviously incorporated. Our Hadoop integration mainly
concerns with the Hadoop YARN Container Manager interface
(Fig. 1). In particular, the Hadoop YARN Container Manager inter-
face to Linux cgroups has been extended to handle MTRA with
the additional Frozen tier. The Hadoop YARN Container Manager
thread has also been extended to monitor system resource usage
and dynamically adjust the number of Passive tasks in response to
resource under-utilisation or resource contention, i.e., most MapRe-
duce tasks consume 50% or more of a CPU resource [14]. The
formula for calculating the number of Passive tasks (Eq. (1)) is
the same as that proposed by [6]. As the dynamic adjustment
of the number of Passive tasks per core often makes a marginal
improvement—due to a fractional amount of resource capacity that
can be exploited by adding more Passive tasks, we adopt this for-
mula without further refinement on it.

N =
{

� 1−CPUused

CPUused∗ numCores
maxContainers

� if CPUeff < 0.9 ∧ IOwait ≤ T

1 if IOwait > T
(1)

where SlotMAX is the maximum number of allocated slots, T is a
threshold configured by the user to determine the characteristic
of running tasks, CPUeff and CPUused are the summation of user
mode and system mode usage of CPU and the actual usage of CPU,
respectively, and IOwait is the average I/O wait.

We enforce a minimum of one Passive task per resource allo-
cation group for this work, although for some applications it may
be desirable to allow a minimum of zero Passive tasks (i.e., one
Active and two Frozen tasks in a resource allocation group). We
suggest that exact amount of resources to allocate to each group
of tasks, determined in Hadoop YARN by the amount of resources
allocated to each container, will be able to be profitably tuned on a
per-cluster basis. This is due to environment specific concerns such
as the processing or disk capabilities of the physical nodes used in
the cluster. This requires no additional configuration of the Hadoop
YARN cluster than what was previously necessary. With one Frozen

JID:BDR AID:22 /FLA [m5G; v1.149; Prn:1/04/2015; 11:21] P.4 (1-7)

4 T. Ryan, Y.C. Lee / Big Data Research ••• (••••) •••–•••
task per resource allocation group, the maximum number of Pas-
sive tasks per group is obviously limited to two; in practice we
observe that this is sufficient to achieve high resource utilisation.
Based on initial testing we configure Hadoop YARN with two CPU
cores per resource group. Each resource group consists of three
tasks, which are allocated to container tiers such that we have one
Active, one Passive, and one Frozen per two CPU cores by default.

4. Evaluation

In this section, we show the efficacy of MTRA with experimen-
tal results using both typical MapReduce benchmarks and Face-
book workload on an Amazon EC2 cluster. We also include the
performance of the implementation of the two-tier resource al-
location model [6] in Hadoop YARN (denoted YARN-LRS in the
following discussion) in our results to demonstrate the effect of
adding the third resource allocation tier on performance.

4.1. Experimental setup

We use the Amazon Elastic Compute Cloud (EC2) as the clus-
ter environment. Our test cluster is made up of 11 m3.2xlarge EC2
instances. m3.2xlarge instances each have 8 vCPUs on Intel Xeon
E5-2670 v2 processors, 30 GB of RAM, and SSD based storage.
While further information on the underlying physical machines in
the EC2 is not available to the public, we follow previous works in
choosing the largest instance size in the m3 family as it is likely
that these instances each correspond to a physical machine. This
is advantageous since it means we are less likely to share a ma-
chine with other EC2 users, thereby giving us less interference and
more reliable results. Based on the ‘rule of thumb’ for configur-
ing Hadoop YARN with two containers per CPU core [15], we use
YARN configurations with both one and two containers per CPU
core as a baseline for comparisons (denoted YARN-1 and YARN-2
respectively).

4.2. MapReduce benchmarks

We first evaluated performance across the canonical MapRe-
duce benchmarks taken from the MR literature [6,16–19]. These
benchmarks represent a range of different MapReduce resource us-
age profiles. A summary of each of the benchmarks is provided in
Table 1. Input datasets of 30 GB were used for each benchmark,
with the exception of PiEst and TeraSort. PiEst uses 1500 maps
with 1 000 000 samples per map and TeraSort uses 10 GB of input
data. These input sizes were chosen so as to be sufficiently large to
utilise the whole test cluster. To evaluate performance using differ-
ent schedulers we run experiments using both the Hadoop YARN
Capacity Scheduler and FIFO Scheduler. Results are shown in Fig. 2.
Table 1
Overview of MapReduce benchmarks.

Benchmark Bounding resource Comments

PiEst CPU Estimate Pi using the Quasi-Monte Carlo
method

Grep CPU Search text data for matches to a regular
expression

Word Count Mixed Count the number of words in a text data
file

Sort I/O Sort random input data
TeraSort I/O Sort random input data

First discussing the results for the Capacity Scheduler, we see
that when using the MTRA approach in YARN (denoted YARN-
MTRA), performance is equivalent to or better than the previous
best performing configuration for all benchmarks. YARN-MTRA has
reduced execution times by 5% on average compared to the best
previous YARN configuration, including a performance increase of
18% for the I/O-bound Sort benchmark. YARN-MTRA improves per-
formance by 2% on average compared to YARN-LRS, showing that
the three-tier dynamic resource allocation approach is an improve-
ment on the two-tier model. Importantly, YARN-MTRA significantly
outperforms YARN-LRS on the Word Count benchmark, which was
the worst-performing benchmark for YARN-LRS using the Capacity
Scheduler. Performance on the Word Count benchmark is an im-
portant indicator of performance for jobs bounded by long-running
individual tasks. Next looking at the FIFO Scheduler, we see that
when using the MTRA approach in YARN, performance is improved
by 4% on average compared to all the configurations, and by up to
13% compared to YARN-2 on several benchmarks.

Fig. 2 shows that when using the FIFO Scheduler, performance
using YARN-MTRA is worse than YARN-1 for Word Count, Sort
and TeraSort benchmarks. Overall, YARN-MTRA is 2% worse than
YARN-1 on average, and up to 6% worse for the Sort benchmark.
This is due to the behaviour of the FIFO Scheduler when a job has
a small number of concurrent tasks relative to the cluster size. In
this situation, the FIFO Scheduler tends to allocate many tasks to
the same node. Load imbalance across the cluster is problematic
using YARN-MTRA since on the heavily used nodes, some tasks
will be allocated to the Passive and Frozen tiers, while they would
be allocated to the Active tier if they were located on other nodes.
Since Word Count, Sort and TeraSort have a small number of paral-
lel tasks for most of their execution, YARN-1 performs better than
YARN-MTRA. However, we suggest that this is not expected to be
a problem in real-world systems for two reasons. Firstly, MapRe-
duce applications can be easily modified to request task container
locations through the Hadoop YARN API. If it is known that a
multi-tier resource management strategy is in use, resources can
be requested on different nodes, solving the problem completely.
Secondly, in a real-world, multi-user, multiple job environment,
Fig. 2. Performance comparison for MapReduce benchmarks. Results are normalised against YARN-MTRA.

JID:BDR AID:22 /FLA [m5G; v1.149; Prn:1/04/2015; 11:21] P.5 (1-7)

T. Ryan, Y.C. Lee / Big Data Research ••• (••••) •••–••• 5
there are much less likely to be wasted containers since multiple
jobs request resources. This means that even though we see de-
creased performance for some individual jobs, cluster throughput
in real-world scenarios will be unaffected.

The fact that for all the benchmarks where the cluster is satu-
rated with tasks YARN-MTRA is within a few percentage points of
the otherwise best performing resource allocation technique, and
on average improves performance for these benchmarks, shows
that the technique is working as intended to optimally adjust
resource allocations to individual resource requirements. We do
not expect a larger performance gain here since the advantage of
MTRA lies mainly in equalling the best static configuration. The
results show that MTRA has achieved this, as we are not signif-
icantly worse than any other resource management approach on
any benchmark, even for cases where MTRA is at a disadvantage
due to the behaviour of the scheduler or application.

4.3. Facebook workload

Typical workloads on real-world production clusters have a
range of jobs with multiple resource usage profiles running con-
currently. As such, the individual benchmarks themselves are only
of limited value in assessing the performance of a system in a
real-world environment. To evaluate the performance in a multi-
job, mixed-workload environment, a workload model was devel-
oped based on reported workloads in a Facebook production clus-
ter [20,6]. The model uses the reported distribution of job input
sizes, job resource usage characteristics, and the amount of time
between job submissions to simulate the Facebook production en-
vironment. Based on the previously reported figures, 25 jobs were
used in the workload model. These were submitted at intervals of
14 seconds, for a submission schedule of 350 seconds in length.
The input sizes used were in the same ratio as those used in the
Facebook workload, scaled down relative to the size of our test
cluster. We used 64 MB of input data per Map task for each job.
Table 2 shows a breakdown of the individual jobs and input sizes
for the workload model.

For our analysis we focus on the execution times of individual
jobs, as this is the most meaningful metric to end users. As shown
in Fig. 3, YARN-MTRA improves job execution time by 9% compared
to both YARN-2 and YARN-LRS, and 13% compared to YARN-1, re-
sulting in a 10% performance improvement on average. Analysis of
individual job execution time shows that this improvement is not
dependant on job duration, with the same relative performance
Table 2
Facebook workload model application breakdown. Percentage of total jobs (% Total
jobs) is based on the original trace.

Tasks/job % Total jobs # Benchmarks Total input data size
for each job (MB)

1–2 54% 8 Word Count 64
6 TeraSort 128

3–20 16% 2 Sort 512
2 Word Count 1024

21–150 12% 1 PiEst 5120
2 TeraSort 7680

151–300 6% 1 Word Count 15 360

301–500 4% 1 PiEst 25 600

500+ 7% 1 Sort 33 280
1 Grep 40 960

across jobs with both long and short execution times. For individ-
ual jobs we observe reduction in execution time of up to 56% in
I/O bound benchmarks.

These results show two significant things. Firstly, they demon-
strate the importance of the ability of the resource management
strategy to deal with heterogeneous application resource require-
ments; while YARN-LRS performed better than both YARN-1 and
YARN-2 on average in the individual benchmarks, it performed
worse on the Word Count application. Analysis of individual job
execution times in the workload shows that YARN-LRS performed
worse for the several Word Count jobs in the workload, resulting
in the overall decreased performance we observe. Secondly, these
results confirm our earlier hypothesis that the instances where
YARN-MTRA performed worse (due to slot under-saturation when
jobs only launch a small amount of parallel tasks) are not a signif-
icant problem in a multi-job environment.

Overall performance improvements for individual job execution
times are slightly larger than they were for the individual MapRe-
duce benchmarks due to the potential for greater performance
improvement if tasks with complementary resource usage profiles
are co-located. For example, if an I/O bound Active task and a CPU
bound Passive task are placed together, we see much greater per-
formance improvements since the CPU bound task receives more
CPU resources than it would if the Active task was also CPU bound.
There is very little opportunity for this complementary co-location
to occur in a single MapReduce job since individual tasks within
MapReduce applications tend to have very similar, if not identical,
Fig. 3. Average execution time of jobs in the workload. Results are normalised against YARN-MTRA.

JID:BDR AID:22 /FLA [m5G; v1.149; Prn:1/04/2015; 11:21] P.6 (1-7)

6 T. Ryan, Y.C. Lee / Big Data Research ••• (••••) •••–•••
resource usage profiles [6]. These results show that MTRA can sig-
nificantly improve performance in a real-world MapReduce cluster
by accounting for heterogeneity of resource requirements.

5. Related work

While there are many resource management strategies that fo-
cus on efficient resource management at the task level in dis-
tributed systems, nearly all of this work implements resource
management strategies at the level of the cluster scheduler. Ad-
ditionally, most schedulers are optimised for performance in spe-
cific environments and use-cases; the MTRA resource management
strategy is scheduler-independent, and able to be applied to any
distributed environment where applications are made up of many
small tasks. We have stressed the usefulness of MTRA in mixed
workload environments due to task resource requirement hetero-
geneity. This also applies to environments such as Mesos and
Omega, which are likely to have much greater heterogeneity due
to diversity of not only jobs but of frameworks and schedulers [21,
22]. Several approaches which attempt to increase resource utili-
sation do this by virtual machine (VM) manipulation [23]; while
there are parallels with MTRA, we focus on finer-grain resource
allocation. Additionally, the generality of the MTRA technique sug-
gests that it could be useful at levels other than just the task level.

Resource management approaches based on co-location of tasks
with certain task resource usage profiles is complementary to our
work [24]. Typically these strategies attempt to co-locate tasks
which require different resources in order to reduce contention;
however, these approaches require accurate profiling of jobs’ usage
requirements. This is not a trivial task, and adds significant com-
plexity to the resource management process. Most of these systems
are based on comparing incoming tasks to those that have pre-
viously been seen, limiting the usefulness of the system for new
applications [18,17,25]. Despite these concerns, we have observed
when running the workload model that co-location of tasks with
complementary resource usage profiles in MTRA can result in very
large performance increases. With this in mind, the application of
MTRA to a system which co-locates complimentary tasks could be
highly advantageous.

There also have been some works (e.g., [26,27]) taking into ac-
count multiple dimensions of resource allocation in clouds. The
work in [26] addresses the problem of allocating resources to
multi-tier cloud applications for the maximisation of profit. Al-
though it considers three dimensions of resource allocation, pro-
cessing, memory requirement and communication resources, its
granularity of resource allocation is coarser than that in MTRA. In
the meantime, the multi-dimensionality in resource allocation re-
ferred by Jrad et al. in [27] is higher level than that in MTRA in
that the work in [27] considers cost and data locality as multiple
objectives for running scientific workflows (e.g., Montage astro-
nomical mosaic engine [3,4]) across multiple clouds.

6. Conclusion

In this paper, we have presented a novel resource allocation
technique (MTRA) that dynamically adjusts resource allocations to
individual tasks. By introducing a third resource allocation tier,
MTRA adjusts resource allocations in a fine-grained manner based
on resource usage levels on each cluster node. It is scheduler-
independent, resulting in increased scalability, and also allows
finer-grained control than would be possible with a scheduler
based solution. In our evaluation, we have implemented MTRA in
Hadoop YARN. We have observed performance improvements of
up to 18% compared to Hadoop YARN for individual MapReduce
benchmarks. For a multi-job workload model based on a Facebook
production cluster workload, we have shown that MTRA reduces
individual job execution times by 10% on average and up to 56%
for individual applications. We conclude that our novel dynamic
resource allocation technique succeeds in meeting the need for a
general-purpose scheduling technique which can account for ap-
plication heterogeneity.

Acknowledgement

The authors would like to thank Peng Lu for his initial con-
tribution and helpful discussions on the actual implementation in
Classic Hadoop. Dr. Young Choon Lee would like to acknowledge
the support of the Australian Research Council Discovery Early Ca-
reer Researcher Award Grant DE140101628.

References

[1] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters,
in: Proceedings of the 6th Conference on Symposium on Operating Systems
Design and Implementation, OSDI ’04, USENIX Association, 2004, pp. 137–150.

[2] G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Cza-
jkowski, Pregel: a system for large-scale graph processing, in: Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’10, ACM, New York, NY, USA, 2010, pp. 135–146.

[3] J.C. Jacob, D.S. Katz, Montage: a grid portal and software toolkit for science-
grade astronomical image mosaicking, Int. J. Comput. Sci. Eng. 4 (2) (2009)
73–87.

[4] Montage: an astronomical image mosaic engine [online; accessed November 2,
2014], http://montage.ipac.caltech.edu/, 2014.

[5] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.
Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B.
Reed, E. Baldeschwieler, Apache Hadoop YARN: yet another resource negotiator,
in: Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13,
ACM, New York, NY, USA, 2013, pp. 5:1–5:16.

[6] P. Lu, Y.C. Lee, V. Gramoli, L.M. Leslie, A.Y. Zomaya, Local resource shaper for
MapReduce, in: Proceedings of the IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), Singapore, 2014, pp. 483–490.

[7] T. Hey, S. Tansley, K. Tolle (Eds.), The Fourth Paradigm: Data-Intensive Scientific
Discovery, Microsoft, 2009.

[8] Amazon, Amazon elastic compute cloud [online; accessed November 2, 2014],
http://aws.amazon.com/ec2/, 2014.

[9] Google, Google compute engine [online; accessed November 2, 2014], https://
cloud.google.com/compute/, 2014.

[10] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing, Commun.
ACM 53 (4) (2010) 50–58.

[11] R. Nathuji, A. Kansal, A. Ghaffarkhah, Q-clouds: managing performance in-
terference effects for QoS-aware clouds, in: Proceedings of the 5th European
Conference on Computer Systems, EuroSys ’10, ACM, 2010, pp. 237–250.

[12] G. Jung, M.A. Hiltunen, K.R. Joshi, R.D. Schlichting, C. Pu, Mistral: dynamically
managing power, performance, and adaptation cost in cloud infrastructures,
in: Proceedings of the 2010 IEEE 30th International Conference on Distributed
Computing Systems, ICDCS ’10, IEEE Computer Society, 2010, pp. 62–73.

[13] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield,
Live migration of virtual machines, in: Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation, vol. 2, NSDI’05,
USENIX Association, 2005, pp. 273–286.

[14] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica, Dominant
resource fairness: fair allocation of multiple resource types, in: Proceedings of
the 8th USENIX Conference on Networked Systems Design and Implementation,
NSDI’11, USENIX Association, Berkeley, CA, USA, 2011, pp. 323–336.

[15] Hortonworks, How to plan and configure YARN in Hadoop 2.0 [online; accessed
November 2, 2014], http://hortonworks.com/blog/how-to-plan-and-configure-
yarn-in-hdp-2-0/, 2014.

[16] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, E. Har-
ris, Reining in the outliers in map-reduce clusters using Mantri, in: Proceedings
of the 9th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’10, USENIX Association, Berkeley, CA, USA, 2010, pp. 1–16.

[17] P. Lu, Y.C. Lee, C. Wang, B.B. Zhou, J. Chen, A. Zomaya, Workload characteris-
tic oriented scheduler for MapReduce, in: Proceedings of the 2012 IEEE 18th
International Conference on Parallel and Distributed Systems (ICPADS), 2012,
pp. 156–163.

[18] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder, J. Torres,
E. Ayguadé, Resource-aware adaptive scheduling for MapReduce clusters, in:
Proceedings of the 12th ACM/IFIP/USENIX International Conference on Middle-
ware, Middleware ’11, Springer, Berlin, Heidelberg, 2011, pp. 187–207.

[19] A. Verma, L. Cherkasova, R. Campbell, Resource provisioning framework for
MapReduce jobs with performance goals, in: F. Kon, A.-M. Kermarrec (Eds.),

http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4465616E2D6574616C3A32303034s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4465616E2D6574616C3A32303034s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4465616E2D6574616C3A32303034s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib70726567656Cs1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib70726567656Cs1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib70726567656Cs1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib70726567656Cs1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib6D6F6E74616765s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib6D6F6E74616765s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib6D6F6E74616765s1
http://montage.ipac.caltech.edu/
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib566176696C6170616C6C692D6574616C3A32303133s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib566176696C6170616C6C692D6574616C3A32303133s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib566176696C6170616C6C692D6574616C3A32303133s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib566176696C6170616C6C692D6574616C3A32303133s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib566176696C6170616C6C692D6574616C3A32303133s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4C5253s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4C5253s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4C5253s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib666F75727468706172616469676Ds1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib666F75727468706172616469676Ds1
http://aws.amazon.com/ec2/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib41726D62727573742D6574616C3A32303130s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib41726D62727573742D6574616C3A32303130s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib41726D62727573742D6574616C3A32303130s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib71636C6F7564s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib71636C6F7564s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib71636C6F7564s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib6D69737472616Cs1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib6D69737472616Cs1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib6D69737472616Cs1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib6D69737472616Cs1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib436C61726B32303035s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib436C61726B32303035s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib436C61726B32303035s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib436C61726B32303035s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib47686F6473692D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib47686F6473692D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib47686F6473692D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib47686F6473692D6574616C3A32303131s1
http://hortonworks.com/blog/how-to-plan-and-configure-yarn-in-hdp-2-0/
http://hortonworks.com/blog/how-to-plan-and-configure-yarn-in-hdp-2-0/
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib416E616E7468616E61726179616E616E2D6574616C3A32303130s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib416E616E7468616E61726179616E616E2D6574616C3A32303130s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib416E616E7468616E61726179616E616E2D6574616C3A32303130s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib416E616E7468616E61726179616E616E2D6574616C3A32303130s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4C752D6574616C3A32303132s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4C752D6574616C3A32303132s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4C752D6574616C3A32303132s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4C752D6574616C3A32303132s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib506F6C6F2D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib506F6C6F2D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib506F6C6F2D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib506F6C6F2D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib416268697368656B2D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib416268697368656B2D6574616C3A32303131s1

JID:BDR AID:22 /FLA [m5G; v1.149; Prn:1/04/2015; 11:21] P.7 (1-7)

T. Ryan, Y.C. Lee / Big Data Research ••• (••••) •••–••• 7
Middleware 2011, in: Lect. Notes Comput. Sci., vol. 7049, Springer, Berlin, Hei-
delberg, 2011, pp. 165–186.

[20] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, I. Stoica, De-
lay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling, in: Proceedings of the 5th European Conference on Computer Sys-
tems, EuroSys ’10, ACM, New York, NY, USA, 2010, pp. 265–278.

[21] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R. Katz, S.
Shenker, I. Stoica, Mesos: a platform for fine-grained resource sharing in the
data center, in: Proceedings of the 8th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’11, 2011, pp. 295–308.

[22] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, J. Wilkes, Omega: flexible,
scalable schedulers for large compute clusters, in: Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, ACM, New York, NY,
USA, 2013, pp. 351–364.

[23] J. Park, D. Lee, B. Kim, J. Huh, S. Maeng, Locality-aware dynamic VM reconfigu-
ration on MapReduce clouds, in: Proceedings of the 21st International Sympo-
sium on High-Performance Parallel and Distributed Computing, HPDC ’12, ACM,
New York, NY, USA, 2012, pp. 27–36.

[24] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A.R. Butt, N. Fuller, MRONLINE:
MapReduce online performance tuning, in: Proceedings of the 23rd Interna-
tional Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’14, ACM, New York, NY, USA, 2014, pp. 165–176.

[25] C. Delimitrou, C. Kozyrakis, QoS-aware scheduling in heterogeneous datacenters
with paragon, ACM Trans. Comput. Syst. 31 (4) (2013) 12:1–12:34.

[26] H. Goudarzi, M. Pedram, Multi-dimensional SLA-based resource allocation for
multi-tier cloud computing systems, in: Proceedings of the 2011 IEEE 4th In-
ternational Conference on Cloud Computing, CLOUD ’11, IEEE Computer Society,
2011, pp. 324–331.

[27] F. Jrad, J. Tao, I. Brandic, A. Streit, Multi-dimensional resource allocation for
data-intensive large-scale cloud applications, in: Proceedings of the 4th Inter-
national Conference on Cloud Computing and Services Science, CLOSER ’14,
2014.

http://refhub.elsevier.com/S2214-5796(15)00016-7/bib416268697368656B2D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib416268697368656B2D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5A6168617269612D6574616C3A32303130s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5A6168617269612D6574616C3A32303130s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5A6168617269612D6574616C3A32303130s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5A6168617269612D6574616C3A32303130s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib48696E646D616E2D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib48696E646D616E2D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib48696E646D616E2D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib48696E646D616E2D6574616C3A32303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5363687761727A6B6F70662D6574616C3A32303133s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5363687761727A6B6F70662D6574616C3A32303133s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5363687761727A6B6F70662D6574616C3A32303133s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5363687761727A6B6F70662D6574616C3A32303133s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5061726B2D6574616C3A32303132s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5061726B2D6574616C3A32303132s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5061726B2D6574616C3A32303132s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib5061726B2D6574616C3A32303132s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4C692D6574616C3A32303134s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4C692D6574616C3A32303134s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4C692D6574616C3A32303134s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4C692D6574616C3A32303134s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib44656C696D6974726F752D6574616C3A32303133s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib44656C696D6974726F752D6574616C3A32303133s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib476F756461727A6932303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib476F756461727A6932303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib476F756461727A6932303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib476F756461727A6932303131s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4A72616432303134s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4A72616432303134s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4A72616432303134s1
http://refhub.elsevier.com/S2214-5796(15)00016-7/bib4A72616432303134s1

	Multi-Tier Resource Allocation for Data-Intensive Computing
	1 Introduction
	2 Background
	2.1 Big data and cloud computing
	2.2 MapReduce and Hadoop
	2.3 Local resource shaper for MapReduce

	3 Multi-tier resource allocation
	3.1 Design of MTRA
	3.2 MTRA implementation for MapReduce

	4 Evaluation
	4.1 Experimental setup
	4.2 MapReduce benchmarks
	4.3 Facebook workload

	5 Related work
	6 Conclusion
	Acknowledgement
	References

