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As distributed computing systems are used more widely, driven by trends such as ‘big data’ and cloud 
computing, they are being used for an increasingly wide range of applications. With this massive increase 
in application heterogeneity, the ability to have a general purpose resource management technique that 
performs well in heterogeneous environments is becoming increasingly important.
In this paper, we present Multi-Tier Resource Allocation (MTRA) as a novel fine-grained resource man-
agement technique for distributed systems. The core idea is based on allocating resources to individual 
tasks in a tiered or layered approach. To account for heterogeneity, we propose a dynamic resource allo-
cation method that adjusts resource allocations to individual tasks on a cluster node based on resource 
utilisation levels. We demonstrate the efficacy of this technique in a data-intensive computing environ-
ment, MapReduce data processing framework in Hadoop YARN. Our results demonstrate that MTRA is an 
effective general purpose resource management technique particularly for data-intensive computing en-
vironments. On a range of MapReduce benchmarks in a Hadoop YARN environment, our MTRA technique 
improves performance by up to 18%. In a Facebook workload model it improves job execution times by 
10% on average, and up to 56% for individual jobs.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

As the scale and size of applications continues to increase with 
the explosive growth in data volume (dubbed ‘Big Data’), dis-
tributed processing/computing has become rather essential. The 
availability of virtually unlimited resource capacity with cloud 
computing has greatly enabled such distributed computing. As a 
result, a wide range of distributed systems has been developed. 
Some popular examples are MapReduce data processing frame-
work [1], Pregel graph processing system [2] and Montage as-
tronomical image mosaic engine [3,4]. Applications in these dis-
tributed systems exhibit much heterogeneity in terms particularly 
of resource usage characteristics, e.g., CPU-intensive applications 
and data-intensive applications.

Within distributed systems, resource allocation and manage-
ment is an ongoing research concern; it is well known that im-
proving resource allocation mechanisms can result in considerable 
real-world improvements in performance and efficiency. However, 
different applications have different resource requirements, mean-
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ing that effective resource management in heterogeneous envi-
ronments is much more difficult. While there has been a large 
amount of research into resource allocation, most resource allo-
cation strategies do not account for application heterogeneity. In 
particular, the majority of classic optimisation techniques for re-
source management assume homogeneity in either application or 
resource, or both. And thus, they often do not perform optimally 
in heterogeneous environments.

In this paper, we address the problem of fine-grained resource 
allocation to distributed systems where jobs are composed of many 
small tasks taking into account application heterogeneity. The tra-
ditional approach to resource management in these systems has 
been to divide resources into logical partitions (called ‘slots’ or 
‘containers’), and allocate tasks to partitions [1,5]. However, since 
different jobs have different resource usage characteristics, this ap-
proach can lead to both resource under-utilisation and resource 
contention, resulting in decreased performance. A general purpose, 
scheduler-independent solution to this problem is highly desirable, 
especially as we see increasing heterogeneity of both applications 
and execution environments.

To this end, we develop Multi-Tier Resource Allocation (MTRA) 
as a novel resource management technique that dynamically ad-
justs resource allocations to heterogeneous, individual tasks in 
distributed systems. The dynamic adjustments are based on the 
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resource requirements of each task as well as current levels of 
resource utilisation and resource contention on each node in a 
given distributed computing system, or simply cluster. The idea is 
that a common set of resources can be dynamically multiplexed 
in several fine-grained resource allocation tiers to enable multiple 
tasks with different resource usage characteristics to “harmonious-
ly” share the resource set. Rather than relying on a centralised 
scheduler, resource allocations are adjusted locally on each node, 
allowing for very fine-grain control. This distributed resource man-
agement approach can be combined with any existing scheduler. 
It also decreases scheduler complexity, allowing for greater scal-
ability. Note that our MTRA is a resource management technique 
underneath any schedulers that deal with the globalisation of the 
resource allocation. The current implementation of MTRA primar-
ily deals with CPU and IO resources although it potentially capable 
of dealing with other resources, such as network resources.

Our main focus is on MapReduce applications within a Hadoop 
YARN environment. Resource management strategies in Hadoop 
are based on the idea of logical partitions of resources. Tradition-
ally, these have been statically configured, a process which is itself 
an ongoing research issue. Since different tasks require different 
amounts and kinds of resources, configuration in heterogeneous 
environments is even more problematic. Our preliminary solution 
to this problem is Local Resource Shaper (LRS) [6] that enables 
local resources (CPU core and disks) to be shared primarily by 
two tiers allowing dynamic movement of tasks between resource 
allocation tiers. While this model is shown to improve resource 
utilisation while minimising resource contention in Classic Hadoop, 
we show that it does not account well for task heterogeneity. With 
regard to both application and environment heterogeneity, MTRA 
enables optimal performance by adjusting allocations to maximise 
resource utilisation and minimise resource contention for the re-
source requirements of each task.

Our evaluation shows that by accounting for heterogeneity, our 
MTRA technique improves system performance. MTRA is compara-
ble or better than the previous best resource management alterna-
tive for a range of MapReduce benchmarks with different resource 
usage characteristics, including outperforming the two-tier alloca-
tion model [6]. For individual MapReduce benchmarks, we observe 
performance improvements of up to 18% compared to Hadoop 
YARN. We show that for a workload model based on a Facebook 
production workload, MTRA reduces individual job execution times 
by 10% on average and up to 56% for individual jobs in the work-
load. These results prove that MTRA improves performance by a 
significant margin in real-world, heterogeneous environments.

The rest of this paper is organised as follows. Section 2 gives 
background. Section 3 presents our multi-tier resource allocation 
technique and describes the application of MTRA to MapReduce in 
Hadoop YARN. Section 4 presents our evaluation on the efficacy 
of MTRA. Section 5 discusses the related work. Finally, Section 6
concludes the paper.

2. Background

In this section, we begin by some background on big data and 
cloud computing, and then provide essential works and application 
used in this paper.

2.1. Big data and cloud computing

The recent trend of so-called ‘Big Data’ is expected to be rather 
norm as the volume of data exponentially increases literally in 
every area—business, science, and daily life to name a few. To-
day, some claim that data (more specifically, data-intensive sci-
ence/computing) are the fourth paradigm in scientific research 
after experimentation/observation, theory, and computational sim-
ulation [7]. Efficient data storage and timely data processing is 
of great practical importance. Clearly, this requires both massive 
storage and processing capacity. While some data processing deals 
with simple retrieval or search (IO-intensive), other case involves 
much computation on data (mixture usage of IO and CPU re-
sources); hence, application heterogeneity.

Cloud computing has emerged as a new computing paradigm 
with its strengths in elasticity and pay-as-you-go pricing, and it is 
a viable solution to many ICT services including big data process-
ing. Cloud computing in this context refers to the Infrastructure-
as-a-Service model, such as that provided by Amazon Elastic Com-
pute Cloud (EC2) [8] or Google Compute Engine [9]. This model 
has many advantages, including elasticity, scalability, and using a 
pay-as-you-go pricing system [10]. All of these properties have im-
plications for cluster environments, in terms of economics (only 
paying for what you need) and performance (such as the shared-
tenant hardware and unpredictable datacentre loads). The use of 
public cloud providers is associated with performance overheads 
due to a range of factors. Individual nodes, or ‘instances’, are based 
in virtual machines (VMs) which do not necessarily correspond 
to physical machines. This representation of instances provides a 
lot of control, however information such as the network topology 
within the datacentre is unavailable; this has means we cannot 
guarantee our nodes will be provisioned on the same server or 
rack, leading to inconsistent communication times between nodes. 
Additionally, it is likely that instances will “statically” share a phys-
ical machine with other cloud users, with potential performance 
impacts if an instance is co-located with a resource-greedy neigh-
bour.

2.2. MapReduce and Hadoop

The MapReduce framework is a widely used programming 
paradigm for distributed environments [1]. MapReduce provides an 
abstraction away from the details of parallelising computation; the 
framework automatically divides a job into individual tasks, han-
dles scheduling of individual tasks, distributes data and deals with 
machine failures. The basic MapReduce model expresses computa-
tions as a ‘Map’ and a ‘Reduce’ function. Hadoop is a framework 
for the execution of MapReduce jobs. Classic Hadoop has been 
widely used and studied since its release, but we focus on the 
more recently developed Hadoop YARN [5]. Both Classic Hadoop 
and Hadoop YARN use the idea of dividing resources into logical 
partitions (called ‘slots’ and ‘containers’ respectively) which are as-
signed to executing tasks.

2.3. Local resource shaper for MapReduce

The Local Resource Shaper (LRS) for MapReduce [6] modi-
fies the slot-based resource allocation approach used in Classic 
Hadoop. Rather than statically configured Map and Reduce slots, 
LRS introduces the idea of a dual purpose task slot. LRS ‘shapes’ 
task resource usage by allocating resources to tasks in a tier-based 
model. Tasks are split into Active and Passive tiers, with resources 
allocated such that the Active task uses as much resources as pos-
sible to maintain its original usage, while the Passive task uses 
resources unused by the Active task. In Classic Hadoop, resources 
are allocated based on a slot model, with each slot representing 
a partition of resources. LRS pairs slots such that for each Active 
task (i.e., slot), there is an associated Passive task. This means that 
within each pair, the two tasks have complementary resource us-
age; for example, while the Active task waits on I/O operations 
to complete, the Passive task is able to use the otherwise wasted 
CPU resources. This approach is shown to significantly increase re-
source utilisation while minimising resource contention, resulting 
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in improved performance. We will demonstrate in Section 3 that 
this technique improves performance less in Hadoop YARN than 
in Classic Hadoop since Hadoop YARN already uses multi-purpose 
resource containers, allowing for significantly higher baseline re-
source utilisation [5].

3. Multi-tier resource allocation

In this section, we present our Multi-Tier Resource Allocation 
(MTRA) technique and detail its implementation in Hadoop YARN. 
Unlike previous concrete approaches that focus on the exclusive-
ness and isolation of resource use between co-located applications 
by explicitly controlling resource usage [11–13], MTRA strives for 
the “organification” of resource sharing by interlacing resource us-
age providing non-intrusive resource sharing. Unless the resource 
usage of co-located applications perfectly complement each other, 
when using previous solutions, resource contention and perfor-
mance variability is inevitable. An overview of the architecture is 
given in Fig. 1.

3.1. Design of MTRA

While the capacity of computing resources becomes increas-
ingly large, many applications are unable to fully/effectively use 
these powerful resources. Specifically, a particular application run-
ning on a set of dedicated resources mostly not use these re-
sources all the time; and, the co-location of this application with 
one or more applications may result in performance interference 
due to their heterogeneity in resource usage patterns. Our multi-
tier resource allocation (MTRA) technique essentially exploits this 
application heterogeneity, more precisely heterogeneity in their re-
source usage characteristics. MTRA extends the preliminary two-
tier design of LRS with an additional ‘Frozen’ tier and a more 
streamlined dynamic resource allocation mechanism. The design 
of three MTRA tiers is shown in the Resource Containers part of 
Fig. 1.

In LRS’s two-tier system, resource allocation groups consisted 
of one Active and one Passive task; we add one Frozen task to 
each group, although other configurations are possible. The num-
ber of tiers can largely be determined based on types of appli-
cation (more precisely, resource usage patterns) of interest. As 
MapReduce tasks typically consume more than 50% of a CPU re-
source [14], our original design of LRS adopted two tiers. However, 
we have observed that there are still some resource capacity fre-
quently idle; hence, we introduce the addition of Frozen tier to 
MTRA. As in LRS, we use Linux cgroups for fine-grained re-
source allocation and performance isolation. MTRA allocates CPU 
and I/O resources to Active and Passive tasks in the ratio 100:1 
for the maximum usage (100% usage) of 101 (the summation of 
ratio values). This ratio dictates the relative resource usage be-
tween Active/Passive slots and it can be interpreted as 99% and 1% 
of resource usage for Active and Passive, respectively; and, Frozen 
tasks receive no resources by default using the cgroups Frozen 
group. This means execution of tasks on the Frozen tier is effec-
tively paused.

When the monitoring process detects resource under-utilisation, 
a Frozen task is dynamically allocated resources to allow it to ex-
ecute on the Passive tier. Conversely, if resource contention passes 
a certain threshold, resource allocations are again dynamically ad-
justed to pause the execution of a Passive task, or to ‘freeze’ it. This 
technique allows us to respond to changes in resource utilisation 
in a much finer-grained manner than a centralised scheduler-based 
system. Its most significant advantages are in accounting for het-
erogeneity. Dynamic resource allocation allows for allocations to 
change based on the resource requirements of the individual tasks 
on individual nodes, resulting in maximising resource utilisation 
Fig. 1. Architecture of the MTRA implementation in Hadoop YARN. The arrow shows 
task movement between Frozen and Passive tiers.

and minimising resource contention in heterogeneous environ-
ments.

3.2. MTRA implementation for MapReduce

It is a known problem in MapReduce and similar systems that 
the best slot or container configuration is dependent on job char-
acteristics, with no single best static solution to this problem [6,1,
5]. To solve this, MTRA dynamically adjusts container resource al-
location to resource requirements of executing tasks by monitoring 
resource utilisation.

As MTRA is a general resource management technique, it can be 
scheduler obliviously incorporated. Our Hadoop integration mainly 
concerns with the Hadoop YARN Container Manager interface 
(Fig. 1). In particular, the Hadoop YARN Container Manager inter-
face to Linux cgroups has been extended to handle MTRA with 
the additional Frozen tier. The Hadoop YARN Container Manager 
thread has also been extended to monitor system resource usage 
and dynamically adjust the number of Passive tasks in response to 
resource under-utilisation or resource contention, i.e., most MapRe-
duce tasks consume 50% or more of a CPU resource [14]. The 
formula for calculating the number of Passive tasks (Eq. (1)) is 
the same as that proposed by [6]. As the dynamic adjustment 
of the number of Passive tasks per core often makes a marginal 
improvement—due to a fractional amount of resource capacity that 
can be exploited by adding more Passive tasks, we adopt this for-
mula without further refinement on it.

N =
{

� 1−CPUused

CPUused∗ numCores
maxContainers

� if CPUeff < 0.9 ∧ IOwait ≤ T

1 if IOwait > T
(1)

where SlotMAX is the maximum number of allocated slots, T is a 
threshold configured by the user to determine the characteristic 
of running tasks, CPUeff and CPUused are the summation of user 
mode and system mode usage of CPU and the actual usage of CPU, 
respectively, and IOwait is the average I/O wait.

We enforce a minimum of one Passive task per resource allo-
cation group for this work, although for some applications it may 
be desirable to allow a minimum of zero Passive tasks (i.e., one 
Active and two Frozen tasks in a resource allocation group). We 
suggest that exact amount of resources to allocate to each group 
of tasks, determined in Hadoop YARN by the amount of resources 
allocated to each container, will be able to be profitably tuned on a 
per-cluster basis. This is due to environment specific concerns such 
as the processing or disk capabilities of the physical nodes used in 
the cluster. This requires no additional configuration of the Hadoop 
YARN cluster than what was previously necessary. With one Frozen 
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task per resource allocation group, the maximum number of Pas-
sive tasks per group is obviously limited to two; in practice we 
observe that this is sufficient to achieve high resource utilisation. 
Based on initial testing we configure Hadoop YARN with two CPU 
cores per resource group. Each resource group consists of three 
tasks, which are allocated to container tiers such that we have one 
Active, one Passive, and one Frozen per two CPU cores by default.

4. Evaluation

In this section, we show the efficacy of MTRA with experimen-
tal results using both typical MapReduce benchmarks and Face-
book workload on an Amazon EC2 cluster. We also include the 
performance of the implementation of the two-tier resource al-
location model [6] in Hadoop YARN (denoted YARN-LRS in the 
following discussion) in our results to demonstrate the effect of 
adding the third resource allocation tier on performance.

4.1. Experimental setup

We use the Amazon Elastic Compute Cloud (EC2) as the clus-
ter environment. Our test cluster is made up of 11 m3.2xlarge EC2 
instances. m3.2xlarge instances each have 8 vCPUs on Intel Xeon 
E5-2670 v2 processors, 30 GB of RAM, and SSD based storage. 
While further information on the underlying physical machines in 
the EC2 is not available to the public, we follow previous works in 
choosing the largest instance size in the m3 family as it is likely 
that these instances each correspond to a physical machine. This 
is advantageous since it means we are less likely to share a ma-
chine with other EC2 users, thereby giving us less interference and 
more reliable results. Based on the ‘rule of thumb’ for configur-
ing Hadoop YARN with two containers per CPU core [15], we use 
YARN configurations with both one and two containers per CPU 
core as a baseline for comparisons (denoted YARN-1 and YARN-2 
respectively).

4.2. MapReduce benchmarks

We first evaluated performance across the canonical MapRe-
duce benchmarks taken from the MR literature [6,16–19]. These 
benchmarks represent a range of different MapReduce resource us-
age profiles. A summary of each of the benchmarks is provided in 
Table 1. Input datasets of 30 GB were used for each benchmark, 
with the exception of PiEst and TeraSort. PiEst uses 1500 maps 
with 1 000 000 samples per map and TeraSort uses 10 GB of input 
data. These input sizes were chosen so as to be sufficiently large to 
utilise the whole test cluster. To evaluate performance using differ-
ent schedulers we run experiments using both the Hadoop YARN 
Capacity Scheduler and FIFO Scheduler. Results are shown in Fig. 2.
Table 1
Overview of MapReduce benchmarks.

Benchmark Bounding resource Comments

PiEst CPU Estimate Pi using the Quasi-Monte Carlo 
method

Grep CPU Search text data for matches to a regular 
expression

Word Count Mixed Count the number of words in a text data 
file

Sort I/O Sort random input data
TeraSort I/O Sort random input data

First discussing the results for the Capacity Scheduler, we see 
that when using the MTRA approach in YARN (denoted YARN-
MTRA), performance is equivalent to or better than the previous 
best performing configuration for all benchmarks. YARN-MTRA has 
reduced execution times by 5% on average compared to the best 
previous YARN configuration, including a performance increase of 
18% for the I/O-bound Sort benchmark. YARN-MTRA improves per-
formance by 2% on average compared to YARN-LRS, showing that 
the three-tier dynamic resource allocation approach is an improve-
ment on the two-tier model. Importantly, YARN-MTRA significantly 
outperforms YARN-LRS on the Word Count benchmark, which was 
the worst-performing benchmark for YARN-LRS using the Capacity 
Scheduler. Performance on the Word Count benchmark is an im-
portant indicator of performance for jobs bounded by long-running 
individual tasks. Next looking at the FIFO Scheduler, we see that 
when using the MTRA approach in YARN, performance is improved 
by 4% on average compared to all the configurations, and by up to 
13% compared to YARN-2 on several benchmarks.

Fig. 2 shows that when using the FIFO Scheduler, performance 
using YARN-MTRA is worse than YARN-1 for Word Count, Sort 
and TeraSort benchmarks. Overall, YARN-MTRA is 2% worse than 
YARN-1 on average, and up to 6% worse for the Sort benchmark. 
This is due to the behaviour of the FIFO Scheduler when a job has 
a small number of concurrent tasks relative to the cluster size. In 
this situation, the FIFO Scheduler tends to allocate many tasks to 
the same node. Load imbalance across the cluster is problematic 
using YARN-MTRA since on the heavily used nodes, some tasks 
will be allocated to the Passive and Frozen tiers, while they would 
be allocated to the Active tier if they were located on other nodes. 
Since Word Count, Sort and TeraSort have a small number of paral-
lel tasks for most of their execution, YARN-1 performs better than 
YARN-MTRA. However, we suggest that this is not expected to be 
a problem in real-world systems for two reasons. Firstly, MapRe-
duce applications can be easily modified to request task container 
locations through the Hadoop YARN API. If it is known that a 
multi-tier resource management strategy is in use, resources can 
be requested on different nodes, solving the problem completely. 
Secondly, in a real-world, multi-user, multiple job environment, 
Fig. 2. Performance comparison for MapReduce benchmarks. Results are normalised against YARN-MTRA.
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there are much less likely to be wasted containers since multiple 
jobs request resources. This means that even though we see de-
creased performance for some individual jobs, cluster throughput 
in real-world scenarios will be unaffected.

The fact that for all the benchmarks where the cluster is satu-
rated with tasks YARN-MTRA is within a few percentage points of 
the otherwise best performing resource allocation technique, and 
on average improves performance for these benchmarks, shows 
that the technique is working as intended to optimally adjust 
resource allocations to individual resource requirements. We do 
not expect a larger performance gain here since the advantage of 
MTRA lies mainly in equalling the best static configuration. The 
results show that MTRA has achieved this, as we are not signif-
icantly worse than any other resource management approach on 
any benchmark, even for cases where MTRA is at a disadvantage 
due to the behaviour of the scheduler or application.

4.3. Facebook workload

Typical workloads on real-world production clusters have a 
range of jobs with multiple resource usage profiles running con-
currently. As such, the individual benchmarks themselves are only 
of limited value in assessing the performance of a system in a 
real-world environment. To evaluate the performance in a multi-
job, mixed-workload environment, a workload model was devel-
oped based on reported workloads in a Facebook production clus-
ter [20,6]. The model uses the reported distribution of job input 
sizes, job resource usage characteristics, and the amount of time 
between job submissions to simulate the Facebook production en-
vironment. Based on the previously reported figures, 25 jobs were 
used in the workload model. These were submitted at intervals of 
14 seconds, for a submission schedule of 350 seconds in length. 
The input sizes used were in the same ratio as those used in the 
Facebook workload, scaled down relative to the size of our test 
cluster. We used 64 MB of input data per Map task for each job. 
Table 2 shows a breakdown of the individual jobs and input sizes 
for the workload model.

For our analysis we focus on the execution times of individual 
jobs, as this is the most meaningful metric to end users. As shown 
in Fig. 3, YARN-MTRA improves job execution time by 9% compared 
to both YARN-2 and YARN-LRS, and 13% compared to YARN-1, re-
sulting in a 10% performance improvement on average. Analysis of 
individual job execution time shows that this improvement is not 
dependant on job duration, with the same relative performance 
Table 2
Facebook workload model application breakdown. Percentage of total jobs (% Total 
jobs) is based on the original trace.

# Tasks/job % Total jobs # Benchmarks Total input data size 
for each job (MB)

1–2 54% 8 Word Count 64
6 TeraSort 128

3–20 16% 2 Sort 512
2 Word Count 1024

21–150 12% 1 PiEst 5120
2 TeraSort 7680

151–300 6% 1 Word Count 15 360

301–500 4% 1 PiEst 25 600

500+ 7% 1 Sort 33 280
1 Grep 40 960

across jobs with both long and short execution times. For individ-
ual jobs we observe reduction in execution time of up to 56% in 
I/O bound benchmarks.

These results show two significant things. Firstly, they demon-
strate the importance of the ability of the resource management 
strategy to deal with heterogeneous application resource require-
ments; while YARN-LRS performed better than both YARN-1 and 
YARN-2 on average in the individual benchmarks, it performed 
worse on the Word Count application. Analysis of individual job 
execution times in the workload shows that YARN-LRS performed 
worse for the several Word Count jobs in the workload, resulting 
in the overall decreased performance we observe. Secondly, these 
results confirm our earlier hypothesis that the instances where 
YARN-MTRA performed worse (due to slot under-saturation when 
jobs only launch a small amount of parallel tasks) are not a signif-
icant problem in a multi-job environment.

Overall performance improvements for individual job execution 
times are slightly larger than they were for the individual MapRe-
duce benchmarks due to the potential for greater performance 
improvement if tasks with complementary resource usage profiles 
are co-located. For example, if an I/O bound Active task and a CPU 
bound Passive task are placed together, we see much greater per-
formance improvements since the CPU bound task receives more 
CPU resources than it would if the Active task was also CPU bound. 
There is very little opportunity for this complementary co-location 
to occur in a single MapReduce job since individual tasks within 
MapReduce applications tend to have very similar, if not identical, 
Fig. 3. Average execution time of jobs in the workload. Results are normalised against YARN-MTRA.



JID:BDR AID:22 /FLA [m5G; v1.149; Prn:1/04/2015; 11:21] P.6 (1-7)

6 T. Ryan, Y.C. Lee / Big Data Research ••• (••••) •••–•••
resource usage profiles [6]. These results show that MTRA can sig-
nificantly improve performance in a real-world MapReduce cluster 
by accounting for heterogeneity of resource requirements.

5. Related work

While there are many resource management strategies that fo-
cus on efficient resource management at the task level in dis-
tributed systems, nearly all of this work implements resource 
management strategies at the level of the cluster scheduler. Ad-
ditionally, most schedulers are optimised for performance in spe-
cific environments and use-cases; the MTRA resource management 
strategy is scheduler-independent, and able to be applied to any 
distributed environment where applications are made up of many 
small tasks. We have stressed the usefulness of MTRA in mixed 
workload environments due to task resource requirement hetero-
geneity. This also applies to environments such as Mesos and 
Omega, which are likely to have much greater heterogeneity due 
to diversity of not only jobs but of frameworks and schedulers [21,
22]. Several approaches which attempt to increase resource utili-
sation do this by virtual machine (VM) manipulation [23]; while 
there are parallels with MTRA, we focus on finer-grain resource 
allocation. Additionally, the generality of the MTRA technique sug-
gests that it could be useful at levels other than just the task level.

Resource management approaches based on co-location of tasks 
with certain task resource usage profiles is complementary to our 
work [24]. Typically these strategies attempt to co-locate tasks 
which require different resources in order to reduce contention; 
however, these approaches require accurate profiling of jobs’ usage 
requirements. This is not a trivial task, and adds significant com-
plexity to the resource management process. Most of these systems 
are based on comparing incoming tasks to those that have pre-
viously been seen, limiting the usefulness of the system for new 
applications [18,17,25]. Despite these concerns, we have observed 
when running the workload model that co-location of tasks with 
complementary resource usage profiles in MTRA can result in very 
large performance increases. With this in mind, the application of 
MTRA to a system which co-locates complimentary tasks could be 
highly advantageous.

There also have been some works (e.g., [26,27]) taking into ac-
count multiple dimensions of resource allocation in clouds. The 
work in [26] addresses the problem of allocating resources to 
multi-tier cloud applications for the maximisation of profit. Al-
though it considers three dimensions of resource allocation, pro-
cessing, memory requirement and communication resources, its 
granularity of resource allocation is coarser than that in MTRA. In 
the meantime, the multi-dimensionality in resource allocation re-
ferred by Jrad et al. in [27] is higher level than that in MTRA in 
that the work in [27] considers cost and data locality as multiple 
objectives for running scientific workflows (e.g., Montage astro-
nomical mosaic engine [3,4]) across multiple clouds.

6. Conclusion

In this paper, we have presented a novel resource allocation 
technique (MTRA) that dynamically adjusts resource allocations to 
individual tasks. By introducing a third resource allocation tier, 
MTRA adjusts resource allocations in a fine-grained manner based 
on resource usage levels on each cluster node. It is scheduler-
independent, resulting in increased scalability, and also allows 
finer-grained control than would be possible with a scheduler 
based solution. In our evaluation, we have implemented MTRA in 
Hadoop YARN. We have observed performance improvements of 
up to 18% compared to Hadoop YARN for individual MapReduce 
benchmarks. For a multi-job workload model based on a Facebook 
production cluster workload, we have shown that MTRA reduces 
individual job execution times by 10% on average and up to 56% 
for individual applications. We conclude that our novel dynamic 
resource allocation technique succeeds in meeting the need for a 
general-purpose scheduling technique which can account for ap-
plication heterogeneity.
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