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The problem of collective classification (CC) for large-scale network data has received considerable 
attention in the last decade. Enabling CC usually increases accuracy when given a fully-labeled network 
with a large amount of labeled data. However, such labels can be difficult to obtain and learning 
a CC model with only a few such labels in large-scale sparsely labeled networks can lead to poor 
performance. In this paper, we show that leveraging the unlabeled portion of the data through semi-
supervised collective classification (SSCC) is essential to achieving high performance. First, we describe a 
novel data-generating algorithm, called generative model with network regularization (GMNR), to exploit 
both labeled and unlabeled data in large-scale sparsely labeled networks. In GMNR, a network regularizer 
is constructed to encode the network structure information, and we apply the network regularizer to 
smooth the probability density functions of the generative model. Second, we extend our proposed 
GMNR algorithm to handle network data consisting of multi-label instances. This approach, called the 
multi-label regularized generative model (MRGM), includes an additional label regularizer to encode the 
label correlation, and we show how these smoothing regularizers can be incorporated into the objective 
function of the model to improve the performance of CC in multi-label setting. We then develop 
an optimization scheme to solve the objective function based on EM algorithm. Empirical results on 
several real-world network data classification tasks show that our proposed methods are better than the 
compared collective classification algorithms especially when labeled data is scarce.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Networks have become ubiquitous in many application do-
mains such as Internet, social, economical and scientific fields. 
Researchers in these fields have shown that systems of different 
nature can be represented as network data for which instances 
are interrelated. For example, web pages are connected to each 
other by hyperlinks, and telephone accounts are linked by calls. 
Generally, network data contain nodes (instances) interconnected 
with each other by edges reflects the relation or dependence be-
tween the nodes. Information on the nodes is provided as a set 
of attribute features (e.g., words present in the web page). Such 
network data are obviously not independent and identically dis-
tributed, and the class membership of an instance may influence 
the class membership of a related instance. Furthermore, many 
network data are large-scale and often involve the scenario where 
each node can be assigned a set of multiple labels simultaneously.
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The problem of learning from large-scale network data is a 
challenging issue that has attracted growing attention from both 
academia and industry [1–3] due to its importance of related ap-
plications, ranging from web page classification to spatial data 
analysis and social network analysis. The collective classification (CC) 
is a task to jointly classifying interrelated instances in the network 
[4]. Enabling CC usually improves the performance of predictive 
models on network data as inference outcome for one instance 
can be used to improve inferences on related instances. However, 
such a performance improvement usually requires a fully-labeled 
network which contains a sufficiently large amount of labeled in-
stances. For many large-scale network data, it is extremely expen-
sive and time-consuming to obtain such labels especially when 
each instance has multiple class labels. In particular, the number 
of possible label assignments for an instance is exponential to the 
number of possible labels in a multi-label setting, which is ex-
tremely large even with a small number of possible labels. On the 
other hand, there are often large amount of unlabeled data avail-
able in the networks. Hence, it is of interest to develop learning 
algorithms that are able to utilize the large amount of unlabeled 
data together with the limited amount of labeled data in the large-
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scale sparsely labeled network data to avoid the expensive date-
labeling effort and to enhance the learning performance.

In this paper, we study the problem of semi-supervised collective 
classification (SSCC) when one is given only with limited number of 
labeled data, which is common case in large-scale networks. Re-
cently, various researchers have considered to examine the SSCC 
task using some forms of semi-supervised learning to improve 
the performance of CC [5,6]. It has been shown that leveraging 
the unlabeled portion of the data is essential to achieving high 
performance. The main aim of this paper is to find a generative 
representation for network data classification by exploiting infor-
mation from both labeled and unlabeled data. To achieve this, we 
propose a new data generative algorithm, called generative model 
with network regularization (GMNR), based on the probabilistic la-
tent semantic analysis (PLSA) method, and incorporate the network 
structure into it. In GMNR, a network regularizer is constructed to 
encode the network structure, and we apply the network regular-
izer to smooth the label probability distributions of the generative 
model. We find that the GMNR method is able to achieve a robust 
classification performance even in the paucity of labeled data.

Furthermore, we extend the GMNR method to the multi-label 
learning setting such that instances of the network data have mul-
tiple class labels. The new algorithm, called multi-label regularized 
generative model (MRGM) utilizes an additional label regularizer to 
explicitly encode the label correlation. This approach is able to cap-
ture the knowledge of the underlying network structure and the 
label correlation observed in the data to smooth the label prob-
ability density functions when learning the generative model. As 
a result, the predictions ensure consistency among interlinked in-
stances and related labels. Intuitively, an instance connected to 
neighbors with high probabilities of related class labels also has 
a high chance for these class labels. In summary, the main contri-
butions of this paper are as follows.

• A framework that utilizes the generative model that takes 
into account the network structure and label correlation for 
the collective classification problem in a semi-supervised and 
multi-label learning setting;

• An effective expectation–maximization (EM) algorithm to solve 
the maximum likelihood estimation problem in the proposed 
methods, and to compute the label probability distributions of 
the instances for classification;

• A theoretical discussion on the convergence of the proposed 
algorithm using an auxiliary function similar to that used 
in [7].

• An extensive statistical evaluation of the effectiveness of the 
proposed approach using various real-world network datasets.

This paper extends our preliminary work [8] which considers 
single-label learning problem in CC. In this paper, we focus on the 
multi-label learning problem in semi-supervised CC. We propose a 
novel data generative model which is able to exploit the network 
information and label correlation simultaneously for handling net-
work data consisting of multi-label instances. Both of this work 
and the preliminary work are based on the PLSA data generative 
model, however, this paper significantly extends and upgrades the 
work presented there. The extensions and differences of this work 
and the preliminary work are summarized as follows:

1. Motivation of multi-label collective classification problem 
and collective inference techniques from the semi-supervised 
learning perspective is given.

2. An extensive discussion of the related work, including collec-
tive classification, semi-supervised learning, multi-label learn-
ing, as well as the PLSA model, is given.
3. We consider the CC task in a multi-label formulation, and ex-
tend the PLSA model for multi-label learning via incorporating 
a novel label regularizer into the model for smoothing the re-
sulting label probability.

4. A new thresholding method for separating the relevant and 
irrelevant labels for a given multi-label instance is presented.

5. Additional experiments using new multi-label data networks 
are conducted. Experimental results with the Friedman and 
Nemenyi tests to assess the statistical significance of the dif-
ferences in performance are reported.

6. A theoretical discussion on the convergence properties of the 
proposed method is given.

The rest of the paper is organized as follows. Section 2 de-
scribes the background and the related work. Section 3 presents 
the proposed methodology and its derivation in detail. Section 4
discusses the datasets, the experimental setup and experimental 
results. Finally, conclusions are drawn in Section 5.

2. Related work

2.1. Mining network data

Numerous approaches have been designed for learning from 
network data and label predicting for the unlabeled nodes. These 
approaches have been mainly studied in the research fields of col-
lective inference, active inference, semi-supervised learning and 
multi-label learning. Details on these related works are described 
below.

Macskassy and Provost [9] provide a brief review of the pre-
vious work of collective classification in network data. Generally, 
the collective classification methods can be categorized into three 
groups: local classifier-based methods, global formulation-based 
methods, and relational-only methods. i) A local classifier-based 
method is based on an iterative process. The local classifier is 
trained for prediction using the attribute features derived from 
the content and additional relational features by aggregating the 
labels of neighbors. One example is the iterative classification al-
gorithm (ICA) [4] which has been reported to be a fairly accurate 
method with robust performance to different network datasets. 
Gibbs sampling [1] is further used in the ICA framework to en-
rich the statistical properties of the algorithm. In recent years, 
there is a lot of work proposed to use a similar schema as ICA 
but with different local classifiers or different scenarios [1,10]. ii) 
A global method trains a classifier to optimize a global objective 
function for prediction. It is often based on a graphical model 
such as the loopy belief propagation of the relaxation labeling [10]. 
iii) A relational-only method uses only relational information for 
classification. Typically, the algorithm computes a new label dis-
tribution for an instance by averaging the current distributions of 
its neighbors. Weighted-vote relational neighbor with relaxation 
labeling (wvRN+RL) [9] is one such method. Recently, Macskassy 
and Provost [9] show that wvRN+RL performed very well in some 
cases. In fact, it should be considered as a baseline for CC eval-
uations. Sen et al. [2] provide an empirical study to analyze the 
strengths and weaknesses of different CC methods. One of the ma-
jor disadvantages of these CC methods is that they are mainly 
studied in the scenario where there are a large amounts of labeled 
data in the network. However, it is difficult and time-consuming to 
acquiring such labels in many practical applications. On the other 
hand, there are usually large amount of unlabeled data available. 
As pointed out in [5], when the labeled data are limited, the per-
formance of collective classification may be degraded due to the 
insufficient number of labeled neighbors [11].

In response, recent studies have examined semi-supervised col-
lective classification methods on sparsely-labeled networks, using 
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some semi-supervised learning techniques to leverage the unla-
beled data. For instance, McDowell and Aha [5] propose a semi-
supervised ICA (semiICA) algorithm using a hybrid regularization 
to boost the performance of the ICA algorithm. McDowell and Aha
[6] show that utilizing neighbor attributes are often more useful 
than collective classification based on neighbor labels when the 
network is sparsely labeled. They introduce a new method that en-
ables discriminative classifiers to be used with neighbor attributes. 
Shi et al. [12] proposed a label propagation method with latent 
graph (LNP) constructed from the original network by adding var-
ious types of latent links including k-step links, label links, struc-
ture similarity links and attribute similarity links. Gallagher et al. 
[13] also propose a method adding edges to a sparsely-labeled 
network to improve classification performance. Bilgic et al. [14]
provide an alternative solution to overcome the label sparsity is-
sue using active learning approaches to take advantage of network 
structure. Kong et al. [15] recently propose the iterative classifica-
tion of multiple labels (ICML) algorithm using the ICA scheme to 
handle multi-label network data. The main different is that label 
co-occurrences are considered as additional features in the model 
for multi-label learning. Specifically, each instance is represented 
as a feature vector in addition to the attribute features, label fre-
quency of the neighbors, and label correlation features.

2.2. Probabilistic latent semantic analysis

Probabilistic latent semantic analysis (PLSA) [16] is one of the 
most popular statistical topic modeling approaches for the anal-
ysis of co-occurrence data, which has many applications, such as 
information retrieval and natural language processing. PLSA was 
originally developed for text data analysis where a document is 
represented as term frequencies. Therefore, we use text analysis to 
explain the model. Given a collection of co-occurrences (w, d) of 
document d ∈ D = {d1, · · · , dN} and word w ∈ W = {w1, · · · , w M}. 
The key idea of PLSA is to introduce an unobserved topic variable 
z ∈ Z = {z1, · · · , zK } associated with each observation so that doc-
uments and words are rendered conditionally independent on the 
state of the associated topic variable. One may define a generative 
model for word/document co-occurrences in the following way:

1. Select a document di with probability P (di),
2. Pick a latent topic zk with probability P (zk|di),
3. Generate a word w j with probability P (w j |zk).

A joint probability model over D ×W is defined as follows

P (di, w j) = P (di)P (w j|di)

P (w j|di) =
K∑

k=1

P (w j|zk)P (zk|di).

A maximum likelihood formulation of the PLSA data generative 
model can be defined as

L =
N∑

i=1

M∑
j=1

n(di, w j) log P (di, w j)

∝
N∑

i=1

M∑
j=1

n(di, w j) log
K∑

k=1

P (w j|zk)P (zk|di) (1)

where N and M are the number of documents and words respec-
tively, and n(xi, w j) indicates the frequency of term w j occurring 
in document di .

There are N K + M K parameters {P (z j |dk), P (wk|zi)} which 
need to be estimated in the PLSA generative model. The expec-
tation maximization (EM) algorithm [17] is used for maximum 
likelihood estimation in the model. EM performs the following two 
steps alternatively until a termination condition is met: (i) Ex-
pectation step computes posterior probabilities for latent vari-
ables based on current estimates of the parameters. (ii) Maxi-
mization step updates the parameters estimation by maximizing 
the expected complete data log-likelihood derived in E-step. New 
parameter-estimates are then used in the next E-step.

3. Methodology

In the SSCC problem, we consider the given network data as 
a graph G = (V, E, X , Y). V is a set of nodes {v1, . . . , v N}. E is 
the set of edges. X = {x1, x2, · · · , xN} ⊂R

M consists of N instances 
where xi = [wi1, . . . , wiM ] is the M-dimensional attribute feature 
vector for a node vi ∈ V . Y contains the set of label set Yi cor-
responding to instance xi . {c1, c2, · · · , cK } is the set of K possible 
class labels. Each Yi = [Yi1, . . . , YiK ]T ∈ {0, 1}K such that Yik = 1
means that xi is associated with cl , otherwise Yik = 0. Given a 
set of labeled nodes, the task is to predict the class labels of 
the remaining unlabeled nodes. We assume the label information 
of the first n′ instances {(xi, Yi)}n′

i=1 is available, the rest n′′ in-

stances {xi}n′+n′′
i=n′+1 are unlabeled data, and we have N = n′ + n′′ . 

In a sparsely-labeled network, which is the primary interest in 
this study, there are only a limited number of labeled nodes, i.e. 
n′ � n′′ , which makes the task challenging.

3.1. Generative model with network regularization (GMNR)

To tackle the label deficiency problem, we propose to use both 
the labeled and unlabeled portion of the data, and judiciously in-
tegrate them to learn a generative model. We model the learning 
problem as a data generating process utilizing PLSA to compute 
the probabilities of the classes to the instances. Generally, PLSA 
is an unsupervised learning algorithm, if the label information is 
provided, we can use such supervised knowledge to guide the 
learning process. In this subsection, we introduce our generative 
model with network regularization (GMNR) algorithm that generates 
a label probability distribution for a given instance such that its 
relevant labels receive higher probabilities than the irrelevant la-
bels.

Given a collection of co-occurrences (w, x) of node instances 
x ∈ X = {x1, · · · , xN } and data features w ∈ W = {w1, · · · , w M}. 
We specify that the class label corresponds to the latent topics in 
PLSA. That is, each latent topic zk represents a class of interest ck
(1 ≤ k ≤ K ). With the given label information, the PLSA generative 
model can be written in the following way.

L =
N∑

i=1

M∑
j=1

n(xi, w j) log
K∑

k=1

P (w j|ck)P (ck|xi)

=
n′∑

i=1

M∑
j=1

n(xi, w j) log
K∑

k=1

P (w j|ck)P (ck|xi)

+
n′+n′′∑

i=n′+1

M∑
j=1

n(xi, w j) log
K∑

k=1

P (w j|ck)P (ck|xi) (2)

The above objective function is divided into two terms depend-
ing on the availability of labels for the data. The label information 
is encoded in the first term of Eq. (2) and applied to the label 
probability distribution P (c|x) as follows.

P (ck|xi) =
{

1/lx if xi is labeled with ck (3)

0 otherwise
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where lx is the number of classes assigned to the labeled instance 
xi . P (ck|xi) is filled with either 1/lx or 0, depending on whether xi
belongs to class ck or not.

The second term corresponds to the unlabeled data. Our ob-
jective is to seek a good estimation of the label probability dis-
tribution P (c|x) for classification prediction. By using the above 
constraints to learn the PLSA generative model, the supervised 
knowledge of labeled data can be effectively encoded in the model. 
However, PLSA assumes that instances are independent and iden-
tical distributed. Hence, it fails to capture the intrinsic autocorre-
lation between instances in the network and discriminating power 
of network topology which is essential to the collective classifi-
cation tasks in which the data instances are connected with de-
pendency. Towards this end, we take the network structure into 
account when we compute the label probability distribution P (c|x)
by adding a network regularizer into the objective function. Our 
goal is to find a better estimation of P (c|x) for classification of in-
stances under the assumption that the distributions of P (c|x) for 
two data instances are close to each other if they are connected 
in the network. In particular, the network regularizer performs 
smoothing to the label probability distribution.

A network dataset with N instances can be represented by an
N-by-N adjacency matrix E = [Eis] with entries Eis = 1 if there is 
an edge connecting two instances xi and xs , and Eis = 0 otherwise. 
The basic assumption is that if two nodes xi and xs are connected 
in the network, these nearby nodes tend to share similar class la-
bels, i.e., the distance of the conditional distributions P (c|xi) and 
P (c|xs) should be close to each other. In order to measure the dis-
tance between two distributions, we consider the Kullback–Leibler 
divergence (KL-divergence) of two vectors. Suppose the vector rep-
resentation of P (ck|xi) with respect to different class labels is 
zi = [P (c1|xi), · · · , P (cK |xi)]T . Then, the KL-divergence between zi
and zs is defined as

D(zi ||zs) =
K∑

k=1

P (ck|xi) log
P (ck|xi)

P (ck|xs)

However, KL-divergence is not symmetric. Therefore, we use the 
symmetric KL-divergence 1

2

(
D(zi ||zs)

) + D
(

D(zs||zi)
))

to measure 
the pairwise distance of two distributions.

Using the adjacency matrix and the symmetric KL-divergence 
distance measure, we define the network regularizer as

R = 1

2

N∑
i,s=1

(
D(zi ||zs)

) + D
(

D(zs||zi)
))

Eis

= 1

2

N∑
i,s=1

K∑
k=1

(
P (ck|xi) log

P (ck|xi)

P (ck|xs)

+ P (ck|xs) log
P (ck|xs)

P (ck|xi))

)
Eis (4)

to measure the smoothness of label probability distribution P (c|x)
over the instances in the network. The value of R ranges from 
0 to ∞. By minimizing R, we get a label probability distribution 
which satisfies the assumption that connected nodes tend to share 
similar label probability distributions.

Combining this network regularizer R with the objective func-
tion L in Eq. (2), we obtain

O1 = L− λR (5)

where λ ≥ 0 is the regularization parameter controlling the 
smoothness of the prediction model.

By maximizing the above objective function, GMNR can output 
a label probability distribution [P (c1|xi), · · · , P (cK |xi)]T indicating 
the relevance of each label to a given instance xi . For single-label 
classification prediction, the instance xi is then assigned with a 
class label with the largest probability value, i.e., Yik = 1 if k =
arg maxk′ P (ck′ |xi) and Yik = 0 otherwise.

Remark 1. Note that topic modeling methods has been exploited in 
a number of real-world big data research problems [18]. From the 
geometric perspective, the learning data are usually reside on or 
close to an underlying sub-manifold embedded in a high dimen-
sional ambient space. In recent work, Cai et al. [19–21] propose 
topic modeling methods with manifold regularization for docu-
ment clustering. The topic modeling methods explicitly take the 
underlying manifold structure into account by constructing a near-
est neighbor graph on a scatter of data points. Although previous 
works do take manifold local consistency into consideration to 
smooth the topic distribution estimation, most of these methods 
mainly focus on unsupervised learning and thus cannot be directly 
applied to collective classification tasks.

3.2. Regularized generative model for multi-label SSCC

For many network data applications, an instance may be as-
sociated with multiple class labels. As a consequence, we further 
generalized the GMNR algorithm to support SSCC under this gen-
eral setting.

Recall that GMNR obtains a smoothed label probability distri-
bution over the intrinsic network structure. One further hopes that 
the resulting label probability distribution respects the label cor-
relations. A natural assumption here could be that if two class 
labels ck and cl are related, then the label probability distributions 
P (ck|xi) and P (cl|xi) with respect to the instances are also close to 
each other. In this subsection, we describe how the label correla-
tion knowledge is incorporated into GMNR to train the generative 
model for SSCC. At the same time, it also solves the multi-label 
SSCC problem. We call the generalized approach multi-label regu-
larized generative model (MRGM) algorithm.

First, a label-to-label affinity graph is constructed to encode the 
label correlation information. There are many choices to define the 
weight matrix F = [Fkl] on the affinity graph. Specifically, we use 
the commonly used dot-product weighting to measure the similar-
ity between two labels on the graph. We define

Fkl = Y T
k Yl,

where Yk = [Y1k, · · · , Y Nk]T such that Yi,k is nonzero if xi belongs 
to class ck and the remaining elements are zero. Here, Yk and Yl
are normalized to unit length, thus the dot product of the two 
vectors is equivalent to their cosine similarity.

Similar to Section 3.1, we use the KL-divergence to mea-
sure the distance of distributions. Given the vector representa-
tion of P (ck|xi) with respect to different data instances as rk =
[P (ck|x1), · · · , P (ck|xN )]T , the KL-divergence between rk and rl is 
defined as

D(rk||rl) =
N∑

i=1

P (ck|xi) log
P (ck|xi)

P (cl|xi)

By using the weighting matrix F and the symmetric KL-
divergence measure, we can define the following label regularizer

H = 1

2

K∑
k,l=1

(
D(rk||rl)

) + D(rl||rk)
)

Fkl

= 1

2

N∑
i=1

K∑
k,l=1

[
P (ck|xi) log

P (ck|xi)

P (cl|xi)
+ P (cl|xi) log

P (cl|xi)

P (ck|xi))

]
Fkl

(6)
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Combining this label regularizer with the objective function in 
Eq. (5), we obtain the new objective function

O2 = L− λ(R+H) (7)

where L, R and H are defined in Eqs. (2), (4) and (6) respectively. 
λ ≥ 0 is the regularization parameter controlling the smoothness 
of the prediction model.

Remark 2. It is worth mentioning that MRGM can be reduced to 
the single label collective classification by considering H = 0, in 
this case the label correlation is not used in learning the genera-
tive model. In addition, MRGM can be reduced to the conventional 
multi-label learning setting by considering R = 0, in this case the 
instance correlation is not used in learning the generative model.

3.3. EM algorithms for GMNR and MRGM

To learn the prediction model, we optimize the objective func-
tions O1 and O2 in Eqs. (5) and (7) for GMNR and MRGM, respec-
tively. In this subsection, we develop an iteration scheme to solve 
these objective functions based on an effective EM algorithm. The 
E-step computes the posterior probabilities P (ck|xi, w j) for the la-
tent variable ck . The M-step updates the N K + M K parameters 
{P (w j |ck), P (ck|xi)}. The EM algorithm performs these two steps 
alternatively until the maximum number of iterations is reached.

For GMNR, we have the following updating rules for P (t)(ck|xi,

w j) in the t-th iteration for the E-step

P (t)(ck|xi, w j) = P (t−1)(w j|ck)P (t−1)(ck|xi)∑K
l=1 P (t−1)(w j|cl)P (t−1)(cl|xi)

(8)

as well as the following equations for the M-step

P (t)(w j|ck) =
∑N

i=1 n(xi, w j)P (t)(ck|xi, w j)∑M
m=1

∑N
i=1 n(xi, wm)P (t)(ck|xi, wm)

(9)

Let y(t)
k = [P (t)(ck|x1), · · · , P (t)(ck|xN)]T be the label probabilities in 

the t-th iteration. We have

y(t)
k = (� + λL)−1

⎡
⎢⎣

∑M
j=1 n(x1, w j) log P (t)(ck|x1, w j)

...∑M
j=1 n(x1, w j) log P (t)(ck|xN , w j)

⎤
⎥⎦ (10)

where � is an N-by-N diagonal matrix, and � denotes an N-by-N
diagonal matrix with (i, i)-th entry as ρi = ∑M

j=1 n(xi, w j), and L
is the graph Laplacian matrix defined as L = C − E. Here, E is the 
adjacency matrix of the network data and C is an N-by-N diagonal 
matrix whose entries are column sums of E, i.e., Ci,i = ∑

s Eis .

Theorem 1. The objective function O1 is non-decreasing under the up-
dating rules in Eqs. (8), (9) and (10).

For MRGM, the updating rules for P (t)(ck|xi, w j) in the E-step 
and P (t)(w j|ck) in the M-step are the same as Eqs. (8) and (9), 
respectively. For the update rule of P (t)(ck|xi) in the M-step, we 
have

y(t) = (� + λ(D − B + U − R))−1Z(t), (11)

where y(t) denotes a K -by-1 block matrix [y(t)
1 , · · · , y(t)

K ]T with 
y(t)

k = [P (t)(ck|x1), · · · , P (t)(ck|xN)]T for update rules in the t-th it-
eration, and �, D, B, U, and R, Z(t) are N K -by-N K sparse matrices 
described as follows.

� = [�i, j] is a K -by-K block matrix where its (i, j)th block 
is an N-by-N diagonal matrix. All the non-diagonal entries of 
� are equal to 0, while the diagonal entries �i,i,s,s = ρi =∑M
j=1 n(xi, w j). D = [Di, j] is a K -by-K block diagonal matrix, 

where the (i, j)th block of D is an N-by-N matrix Di, j =
[di, j,s,t]s,t=1,...,N . All the entries of D are equal to 0 except the 
diagonal entries di,i,s,s = ∑

s Eis . Here E is the adjacency matrix 
of the network data. B = [Bi, j] is another K -by-K block diag-
onal matrix, where its (i, j)th block is also an N-by-N matrix 
Bi, j = [bi, j,s,t]s,t=1,...,N . The entries of B are equal to 0 when i �= j; 
otherwise, if i = j, then we have bi, j,s,t = Est . U = [Ui, j] is an
N-by-N block diagonal matrix, where the (i, j)th block of U is a 
K -by-K matrix Ui,i = [ui,i,s,t]s,t=1,...,K . All non-diagonal entries of 
U are equal to 0 and the diagonal entries ui,i,s,s = ∑

s Fsl . Here F is 
the label affinity matrix. R = [Ri, j] is another N-by-N block matrix 
where its (i, j)-th block is a K -by-K matrix Ri, j = [ri, j,s,t]s,t=1,...,N . 
Indeed, each Ri, j , for i, j = 1, . . . , K , is a diagonal matrix ri, j,s,s =
Fij . Z(t) is a K -by-1 block matrix for update rules in the t-th iter-
ation, where its k-th entry Zt

k is an N dimensional column vector 
defined as follows:

Zt
k =

[ ∑M
j=1 n(x1, w j)P t(ck|x1, w j)

· · ·∑M
j=1 n(xN , w j)P t(ck|xN , w j)

]

In GMNR and MRGM, the values of P (wi |ck) and P (ck|xi) are 
set to the class prior (of the known label data) during initializa-
tion. We assume that each feature w j is conditionally indepen-
dent to each other given the label ck . P (w j|ck) are initialized as 
P (w j |ck) = n(w j ,ck)∑

i n(wi ,ck)
, where n(w j, ck) is the frequency of w j and 

ck co-occurred. The label distribution P (ck|xi) for unlabeled data 
xi are initialized as P (ck|xi) =

∑
i n(ck,xi)∑

l
∑

i n(cl,xi)
, where n(ck, xi) = 1 if xi

is labeled as ck and n(ck, xi) = 0 otherwise.

Theorem 2. The objective function O2 is non-decreasing under the up-
dating rules in Eqs. (8), (9) and (11).

Proofs for the above two theorems are in Appendix A.

3.4. Thresholding scheme for multi-label classification

Consider a confidence vector wi = [wi(1), · · · , wi(q)] ∈ R
q for a 

given instance xi where each element corresponds to a confidence 
for one class label. Given wi , the task of making a multi-label pre-
diction Yi to xi is to find a bipartition of relevant and irrelevant 
labels based on a threshold function ft(wi), such that

Yi( j) =
{

1, if wi( j) ≥ t,

0, otherwise,
(12)

where t is a predefined threshold in the range of [0, 1], and there 
are many choices to define the threshold t . For instance, t = 0.5
is usually used as the threshold for traditional binary classifica-
tion [22]. This is the simplest method and is very easy to compute. 
This method uses one threshold for different data sets. Here, we 
introduce a new thresholding scheme for threshold selection in 
multi-label classification, i.e., maximum drop thresholding method. 
The proposed thresholding method selects one threshold for each 
instance. For a given multi-label instance xi , we compute a new 
threshold value ti based on the confidence vector values wi of xi . 
Intuitively, one hopes that the confidences of the relevant labels 
should be much larger than the confidences of the remaining ir-
relevant labels. Given the confidences wi of a given instance xi , we 
first sort the labels according to wi , find two sorted classes with 
largest drop in terms of their confidence values, and then use the 
median value of these two classes as a threshold to create a sepa-
ration of relevant and irrelevant labels for x, where relevant labels 
are the ones with confidences larger than the threshold, and irrel-
evant labels are the remaining ones.
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Table 1
An example of multi-label classification procedure, where the number of possible labels is K = 7 and 
the threshold is t = 0.6 for the function ft(w).

P (c1|x) P (c2|x) P (c3|x) P (c4|x) P (c5|x) P (c6|x) P (c7|x)
w = [ 0.95 0.05 0.25 0.15 0.1 0.98 0.01 ]
Y = ft=0.6(w) = [ 1 0 0 0 0 1 0 ]
In MRGM, the algorithm outputs a label probability distribution 
[P (c1|xi), · · · , P (cK |xi)]T for each given multi-label instance where 
P (ck|xi) indicates the confidence of a label ck to an instance xi . For 
a given multi-label instance xi , the obtained label probability dis-
tribution is equivalent to confidence vector wi . We show this with 
an example in Table 1, where the largest drop of the confidences 
for the sorted classes is observed between 0.95 and 0.25, and their 
medial value, say t = 0.6, is used as a threshold to separate rele-
vant labels (i.e., c1 and c6) and irrelevant labels (i.e., c2, c3, c4, c5
and c7).

Remark 3. Various semi-supervised learning strategies have been 
proposed and developed to perform semi-supervised CC. An im-
portant component of semi-supervised learning is to build a mech-
anism to make use of both the labeled and unlabeled data to 
enhance the classification performance. Most approaches [23–25,
5], which all use some variant of ICA [4], first learn an “attribute-
only classifier” M A , then predict labels for the unlabeled nodes 
with M A . The known labels (of labeled data) and predicted labels 
(of unlabeled data) are used together to compute relational fea-
tures and learn one “node classifier” M AR using both attributes 
and relational feature values. These relevant studies are [23–25,5]. 
The variants are different in how they use the attributes and rela-
tional features to build M AR . Other approaches to semi-supervised 
CC have explored how to perform learning without needing to 
learn an explicit classifier for relational features. For example, Shi 
et al. create latent links that enable label propagation to classify 
the nodes. In [26], Tang and Liu use the links to extract latent 
social dimensions that enable node classification. These existing 
relevant studies only deal with single-label semi-supervised CC so 
far. They do not propose for multi-label semi-supervised CC where 
each node is associated with multiple labels.

The main contribution of this paper is to develop a novel PLSA 
generative model for multi-label semi-supervised CC. To the best of 
the authors’ knowledge, no other previous work has been done on 
utilizing PLSA for multi-label SSCC tasks. For our proposed method, 
the supervised knowledge of the labeled data is used to guide the 
procedure of learning the generative model for classification, and 
the network regularizer is used as a smoothing operator on the 
label probability distributions P (c|x) of instances in the network. 
In this way, two connected instances have similar label probability 
distributions. The combination effect of these two aspects results 
in the effectiveness of the proposed GMNR model for SSCC tasks. 
Our proposed method is different from existing ICA variants and 
label propagation methods. In ICA variants, the predicted labels 
of unlabeled nodes are used to build the relational features. Such 
predictions are then iteratively refined by an iteration method. 
However, this iteration method is non-convex. The solution is not 
unique and the performance highly depends on the initial predic-
tions. In label propagation methods, the latent links are evaluated 
by evaluating the loss of predictions using different links. How-
ever, such loss function is difficult to minimize and these methods 
usually have time complexity at least quadratic in the number 
of nodes (N), and thus do not scale to large, realistic graphs. In 
the proposed method, we only need to solve O1 for single-label 
semi-supervised CC and O2 for multi-label semi-supervised CC via 
using a network regularizer and a label regularizer to encode the 
Table 2
The description of the five datasets.

Characteristics Cora Citeseer Genes DBLP-A DBLP-B

#Instances 2708 3312 1243 23 806 16 020
#Features 1433 3703 461 12 588 8595
#Links 5278 4598 1326 86 895 55 526
#Classes 7 6 2 6 6

network structure and the label correlation, respectively. Iterative 
algorithms are formulated for solving the objective functions. The 
algorithms we use are only linear in the number of nodes. The 
solutions are unique and the algorithms always converge to these 
solutions.

4. Empirical evaluation

In this section, we compare the performance of the proposed 
GMNR and MRGM algorithms with other previously proposed algo-
rithms: wvRN+RL, ICA, semiICA, LNP, and ICML on various network 
datasets, and show that the proposed algorithm outperforms these 
algorithms. For the purpose of reproducibility, we provide the code 
and data sets at: https://sites.google.com/site/qysite/.

4.1. Datasets

Before we proceed to presenting empirical results, we provide a 
description of the used datasets and experimental settings. We use 
three network datasets for single-label collective classification and 
two network datasets for multi-label collective classification. The 
characteristics of the datasets are summarized in Table 2. They are 
described below.

4.1.1. Single-label collective classification data
The three benchmark collective classification datasets (Cora, 

Citeseer, and Genes)1 are from different application domains. These 
datasets have been widely used in prior research on collective clas-
sification [27,2,28].

The Cora dataset is a paper publication dataset which is used 
frequently in collective classification studies [2]. It consists of 
2708 machine learning papers classified into one of seven classes: 
“Case Based”, “Genetic Algorithms”, “Neural Networks”, “Proba-
bilistic Methods”, “Reinforcement Learning”, “Rule Learning” and 
“Theory”. Each node on the collective network represents a paper 
document described by a 0/1 valued bag-of-word vector with 1433 
dimensions. The citations in a paper are used to construct links to 
the cited papers.

The Citeseer dataset is a collection of research papers drawn 
from the Citeseer collection [2]. The dataset consists of 3312 in-
stances taken from six classes as follows: “AI”, “Agents”, “DB”, 
“HCI”, “IR” and “ML”. Each instance is described as a 0/1 bag-of-
word vector indicating the absence or presence of particular words 
in the corresponding paper. The links between the instances rep-
resent their citation relations.

The Genes dataset is a protein interaction network dataset re-
leased in KDD cup 2001 for gene localization prediction [29]. The 

1 Available at http://linqs.cs.umd.edu/projects//projects/lbc/index.html.

https://sites.google.com/site/qysite/
http://linqs.cs.umd.edu/projects//projects/lbc/index.html
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task is to predict “nucleus” or “non-nucleus” using features includ-
ing Essential, Class, Complex, Phenotype, Motif and Chromosome. 
Each protein is represented as a 461 dimensional binary vector by 
binarizing these features. The links represent the protein–protein 
interactions.

4.1.2. Multi-label collective classification data
We use two multi-label collective classification datasets (DBLP-

A and DBLP-B) derived from the DBLP computer science bibliogra-
phy website. These datasets have been used in [15] for multi-label 
collective classification.

In the DBLP-A dataset, the nodes represent the research au-
thors. They are described by the attributes of the papers published 
by the authors with respect to different conferences. The DBLP-
A dataset consists of a collection of 23 800 research authors who 
have published papers from 2000 to 2010. Each node (author) is 
represented by a 12,588 dimensional bag-of-word feature vector 
of the paper published by the authors. Two authors who have col-
laborated with each other are linked together. Each author has one 
(or multiple) research topic(s) of interests from 6 research areas 
in terms of different representative conferences. The conferences 
(classes) for DBLP-A are given as follows:

1. Database: ICDE, VLDB, SIGMOD, PODS, EDBT;
2. Data Mining: KDD, ICDM, SDM, PKDD, PAKDD;
3. Artificial Intelligence: IJCAI, AAAI;
4. Information Retrieval: SIGIR, ECIR;
5. Computer Vision: CVPR;
6. Machine Learning: ICML, ECML.

Again, the DBLP-B dataset is derived from the DBLP website. It 
contains 16,020 instances (authors) represented by feature vectors 
with 8595 dimensions. There are 55,526 links in the network and 
6 classes in terms of conferences as follows:

1. Algorithms & Theory: STOC, FOCS, SODA, COLT;
2. Natural Language Processing: ACL, ANLP, COLING;
3. Bioinformatics: ISMB, RECOMB;
4. Networking: SIGCOMM, MOBICOM, INFOCOM;
5. Operating Systems: SOSP, OSDI;
6. Parallel Computing: POD, ICS.

4.2. Evaluation metrics

The evaluation is performed on the two collections of datasets 
described above. For the single-label collective classification data-
sets, we evaluate the performance by classification accuracy which 
is measured as follows:

Accuracy = #Test data labeled correctly

#Test data

For the multi-label collective classification datasets, we evalu-
ate the performance in terms of six multi-label learning evalua-
tion measures (Hamming loss, one-error, coverage, average precision
macro-F1 and micro-F1). These measures are defined as follows.

(1) Hamming loss evaluates how many times the class label is mis-
classified, i.e., a label not belonging to the instance is predicted or 
a label belonging to the instance is not included. It is defined as

hamming_loss(h) = 1

N

N∑
i=1

1

K
|h(xi)�Yi |

where h(xi) denotes the predictions for the instance xi , and 
h(xi)�Yi denotes the symmetric difference between the predicted 
labels h(xi) and the ground-truth labels Yi .
(2) One-error evaluates how many times the top-ranked label is 
not in the set of true labels of the instance. Define a classi-
fier that assigns a single label for an instance xi by H(xi) =
arg maxc∈C h(xi, c), then the one-error is

one_error(H) = 1

N

N∑
i=1

� H(xi) /∈ Yi �,

where �π � is 1 if π holds and 0 otherwise. For single label classi-
fication problems, the one-error is identical to classification error.

(3) Coverage evaluates how far we need, on the average, to go 
down the list of labels in order to cover all the true labels of an 
instance

coverage( f ) = 1

N

N∑
i=1

max
c∈Yi

ranks(xi, c) − 1,

where ranks(xi, c) is the rank of the class label c derived from 
the function s(xi, c) which returns a real-value indicating the con-
fidence for the class label c to be a proper label of xi , so that 
ranks(xi, c′) < ranks(xi, c) if s(xi, c′) > s(xi, c).

(4) Average precision evaluates the average fraction of labels ranked 
above a particular label c ∈ Yi which are actually in Yi

avg_prec( f ) = 1

N

N∑
i=1

1

|Yi |
∑
c∈Yi

|Pi|
ranks(xi, c)

,

where Pi = {c′ ∈ Yi |ranks(xi, c′) ≤ ranks(xi, c)}.

(5) Macro-F1 is the harmonic mean between precision and recall, 
where the average is calculated per label and then averaged across 
all labels. It is defined as

macro_F 1 = 1

K

K∑
k=1

2 × pk × rk

pk + rk

where pk = t pk
t pk+ f pk

and rk = t pk
t pk+ f nk

are the precision and recall 
of the k-th label ck , and tpk , f pk and f nk are defined as the num-
ber of true positive, false positive and false negative for the label 
ck (considered in a binary class setting).

(6) Micro-F1 is the harmonic mean between the micro-precision and 
micro-recall.

micro_F 1 = 2 × micro_precision × micro_recall

micro_precision + micro_recall

where micro_precision =
∑K

k=1 t pk∑K
k=1 t pk+

∑K
k=1 f pk

and micro_recall =∑K
k=1 t pk∑K

k=1 t pk+
∑K

k=1 f nk
. Here, micro-precision (micro-recall) is the results 

of precision (recall) averaged over all the instance/label pairs.
One notes that the smaller the values of hamming loss, one-error

and coverage, the better the performance. On the other hand, the 
bigger the values of average precision, macro-F1 and micro-F1, the 
better the performance.

4.3. Comparison methods

We compare our proposed method with the following collective 
classification algorithms:

1. wvRN+RL. This baseline is a relational-only CC method using 
only relational information. This method computes the label of 
an instance by averaging the labels of its neighbors. Macskassy 
and Provost [9] have shown that wvRN+RL preforms quite well 
in some network datasets.



JID:BDR AID:27 /FLA [m5G; v1.152; Prn:14/05/2015; 16:34] P.8 (1-15)

8 Q. Wu et al. / Big Data Research ••• (••••) •••–•••
Table 3
The performance (mean ± standard deviation) of the algorithms with varying percentages of labeled data on Cora dataset, Citeseer dataset and Genes dataset, the best 
performance achieved among different compared algorithms is bolded.

Dataset Percentage wvRN+RL ICA semiICA LNP GMNR

Cora 0.01 0.493 ± 0.08 0.410 ± 0.03 0.503 ± 0.05 0.476 ± 0.09 0.773 ± 0.02
0.02 0.573 ± 0.08 0.442 ± 0.04 0.581 ± 0.06 0.558 ± 0.08 0.785 ± 0.01
0.03 0.698 ± 0.05 0.544 ± 0.07 0.675 ± 0.04 0.701 ± 0.05 0.797 ± 0.02
0.04 0.706 ± 0.03 0.563 ± 0.09 0.710 ± 0.03 0.707 ± 0.03 0.805 ± 0.01
0.05 0.740 ± 0.02 0.553 ± 0.06 0.729 ± 0.01 0.742 ± 0.02 0.824 ± 0.02
0.06 0.757 ± 0.02 0.626 ± 0.04 0.750 ± 0.02 0.766 ± 0.02 0.827 ± 0.01
0.07 0.760 ± 0.02 0.652 ± 0.07 0.766 ± 0.02 0.771 ± 0.02 0.828 ± 0.01
0.08 0.776 ± 0.01 0.661 ± 0.06 0.784 ± 0.01 0.789 ± 0.01 0.832 ± 0.01
0.09 0.775 ± 0.01 0.665 ± 0.06 0.789 ± 0.02 0.788 ± 0.02 0.835 ± 0.01
0.1 0.786 ± 0.01 0.714 ± 0.03 0.789 ± 0.01 0.798 ± 0.01 0.837 ± 0.01
0.2 0.812 ± 0.01 0.809 ± 0.02 0.834 ± 0.01 0.823 ± 0.01 0.851 ± 0.01

Citeseer 0.01 0.358 ± 0.06 0.431 ± 0.05 0.476 ± 0.05 0.324 ± 0.10 0.664 ± 0.03
0.02 0.437 ± 0.04 0.507 ± 0.04 0.584 ± 0.04 0.447 ± 0.09 0.690 ± 0.02
0.03 0.479 ± 0.03 0.566 ± 0.03 0.621 ± 0.03 0.527 ± 0.07 0.707 ± 0.01
0.04 0.499 ± 0.04 0.607 ± 0.03 0.641 ± 0.02 0.579 ± 0.05 0.710 ± 0.01
0.05 0.524 ± 0.04 0.632 ± 0.04 0.665 ± 0.03 0.597 ± 0.05 0.716 ± 0.02
0.06 0.541 ± 0.01 0.649 ± 0.03 0.672 ± 0.01 0.622 ± 0.04 0.719 ± 0.01
0.07 0.549 ± 0.02 0.666 ± 0.02 0.684 ± 0.01 0.648 ± 0.02 0.721 ± 0.01
0.08 0.543 ± 0.03 0.686 ± 0.01 0.698 ± 0.01 0.646 ± 0.02 0.721 ± 0.01
0.09 0.558 ± 0.02 0.679 ± 0.02 0.697 ± 0.01 0.676 ± 0.02 0.724 ± 0.01
0.1 0.560 ± 0.02 0.694 ± 0.02 0.702 ± 0.01 0.676 ± 0.01 0.726 ± 0.01
0.2 0.608 ± 0.02 0.731 ± 0.01 0.720 ± 0.01 0.701 ± 0.01 0.741 ± 0.01

Genes 0.01 0.539 ± 0.074 0.637 ± 0.05 0.653 ± 0.06 0.529 ± 0.06 0.713 ± 0.08
0.02 0.604 ± 0.02 0.699 ± 0.05 0.695 ± 0.04 0.573 ± 0.03 0.770 ± 0.05
0.03 0.581 ± 0.07 0.744 ± 0.06 0.757 ± 0.02 0.583 ± 0.09 0.813 ± 0.03
0.04 0.627 ± 0.07 0.764 ± 0.06 0.777 ± 0.04 0.621 ± 0.09 0.814 ± 0.02
0.05 0.642 ± 0.05 0.780 ± 0.05 0.779 ± 0.03 0.641 ± 0.07 0.822 ± 0.03
0.06 0.643 ± 0.07 0.786 ± 0.05 0.795 ± 0.03 0.639 ± 0.08 0.827 ± 0.03
0.07 0.671 ± 0.02 0.793 ± 0.03 0.809 ± 0.01 0.644 ± 0.03 0.831 ± 0.01
0.08 0.674 ± 0.04 0.818 ± 0.03 0.819 ± 0.02 0.706 ± 0.05 0.839 ± 0.02
0.09 0.683 ± 0.03 0.820 ± 0.03 0.818 ± 0.02 0.708 ± 0.03 0.836 ± 0.01
0.1 0.672 ± 0.03 0.838 ± 0.02 0.830 ± 0.01 0.707 ± 0.04 0.848 ± 0.01
0.2 0.729 ± 0.01 0.866 ± 0.02 0.867 ± 0.01 0.772 ± 0.02 0.849 ± 0.02
2. ICA. The Iterative Collective classification Algorithm (ICA) [4] is 
one of the most popular CC methods that frequently used as a 
baseline for CC evaluation in previous studies. ICA uses a local 
classifier for classification prediction. Prior work has found Lo-
gistic Regression (LR) to be superior to other classifiers, such 
as NB and kNN, for ICA [14]. Therefore, we use LR as the local 
classifier for ICA in our experiments.

3. semiICA. This baseline is a semi-supervised collective classifi-
cation method. It uses the idea of label regularization to learn 
hybrid local classifiers, enabling them to leverage the unla-
beled data to bias the learning process of the ICA algorithm.

4. LNP. This baseline is another semi-supervised collective clas-
sification method [12]. It explores latent linkages among the 
nodes to generate a latent graph for label propagation. There 
may exist various latent linkages for latent graph construction. 
Semantic similarity is one of the most commonly used meth-
ods for latent graph generation. In our experiments, we use 
the semantic similarity linkages for the LNP algorithm. Such 
linkages can be obtained by connecting the nearest neighbor 
of the instances based on their attribute similarity.

5. ICML. The Iterative Classification of Multiple Labels (ICML) al-
gorithm [15] is a multi-label collective classification method. 
This method uses an iterative classification algorithm similar 
to ICA. The main difference between ICML and ICA is that ICML 
uses the dependencies among the labels in the learning pro-
cess.

The maximum number of iterations for ICA, semiICA, and ICML 
is set to 10, the default used in [15], while wvRN+RL is set to 
1000. The parameter λ for our proposed methods is set to 5. The 
parameter selection will be discussed in the later section.
4.4. Collective classification results

We first consider using the single-label GMNR model to per-
form the learning tasks on network data. We conduct experiments 
on the Cora, Citeseer, and Genes datasets to evaluate the perfor-
mance of the proposed GMNR method by comparing with the 
learning algorithms: wvRN+RL, ICA, semiICA and LNP. For each 
dataset, a small number of examples are randomly selected for 
each category as labeled data. The remaining ones are used as un-
labeled data for testing the quality of the classification. Specifically, 
we randomly select different percentage of data ranging from 1% to 
20% as labeled data. This is a challenging problem from the classi-
fier training perspective because only a small number of examples 
are used as labeled data. The performance is measured in classifi-
cation accuracy rate by averaging 10 trials (randomly selection of 
labeled/unlabeled data) for each data percentage.

The performance results for each algorithm on the Cora, Cite-
seer and Genes datasets are shown in Table 3 to compare the 
effectiveness of the algorithms as the percentage of labeled data 
varies. These experimental results reveal a number of interesting 
points:

• Regardless of the datasets, our proposed GMNR method con-
sistently outperforms the other algorithms. This illustrates the 
advantages of our method in learning the network data.

• The smaller the number of labeled data is, the larger improve-
ment GMNR can achieve. We see that GMNR outperforms the 
other algorithms by a large margin when the labeled data is 
less than 10%. GMNR obtains the largest improvement when 
learning with only 1% labeled data. This result illustrates the 
advantages of our GMNR approach when there is only small 
number of labeled data available.
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Table 4
Experimental results in terms of Accuracy evaluation measure. The performance of 
the methods are ranked in decreasing order and shown in brackets. The average 
rank is the average of the ranks across all datasets.

Dataset wvRN+RL LNP ICA semiICA GMNR

Cora 1 0.654(3) 0.682(2) 0.526(5) 0.626(4) 0.787(1)
Cora 2 0.695(3) 0.728(2) 0.609(5) 0.688(4) 0.808(1)
Cora 3 0.647(4) 0.684(2) 0.530(5) 0.673(3) 0.772(1)
Cora 4 0.611(4) 0.676(2) 0.577(5) 0.641(3) 0.777(1)
Cora 5 0.662(4) 0.687(2) 0.550(5) 0.681(3) 0.782(1)
Cora 6 0.659(4) 0.682(2) 0.585(5) 0.671(3) 0.798(1)
Cora 7 0.675(3) 0.698(2) 0.543(5) 0.653(4) 0.786(1)
Cora 8 0.657(4) 0.660(3) 0.593(5) 0.666(2) 0.777(1)
Cora 9 0.677(3) 0.716(2) 0.591(5) 0.669(4) 0.785(1)
Cora 10 0.649(4) 0.686(3) 0.580(5) 0.691(2) 0.788(1)

Citeseer 1 0.433(5) 0.560(4) 0.628(3) 0.651(2) 0.691(1)
Citeseer 2 0.393(5) 0.565(4) 0.613(3) 0.644(2) 0.697(1)
Citeseer 3 0.416(5) 0.561(4) 0.631(3) 0.639(2) 0.703(1)
Citeseer 4 0.367(5) 0.543(4) 0.616(3) 0.653(2) 0.710(1)
Citeseer 5 0.447(5) 0.597(4) 0.633(3) 0.642(2) 0.694(1)
Citeseer 6 0.440(5) 0.609(4) 0.618(3) 0.632(2) 0.689(1)
Citeseer 7 0.359(5) 0.591(4) 0.613(3) 0.641(2) 0.690(1)
Citeseer 8 0.415(5) 0.563(4) 0.604(3) 0.630(2) 0.694(1)
Citeseer 9 0.447(5) 0.542(4) 0.634(3) 0.645(2) 0.684(1)
Citeseer 10 0.485(5) 0.596(4) 0.625(3) 0.654(2) 0.706(1)

Genes 1 0.618(5) 0.677(4) 0.727(2) 0.713(3) 0.785(1)
Genes 2 0.615(4) 0.575(5) 0.753(3) 0.786(2) 0.820(1)
Genes 3 0.644(4) 0.630(5) 0.783(2) 0.782(3) 0.825(1)
Genes 4 0.580(5) 0.640(4) 0.723(2) 0.717(3) 0.805(1)
Genes 5 0.620(5) 0.650(4) 0.724(3) 0.738(2) 0.777(1)
Genes 6 0.577(5) 0.651(4) 0.693(3) 0.697(2) 0.749(1)
Genes 7 0.606(5) 0.702(4) 0.779(3) 0.784(2) 0.799(1)
Genes 8 0.632(5) 0.692(4) 0.758(3) 0.787(2) 0.815(1)
Genes 9 0.622(4) 0.621(5) 0.751(3) 0.754(2) 0.807(1)
Genes 10 0.597(5) 0.687(4) 0.756(3) 0.787(2) 0.807(1)

Avg. rank 4.433 3.5 3.567 2.5 1

• Both semiICA, ICA and LNP can achieve good classification per-
formance when there are 30% of labeled data. If there are suf-
ficient informative and labeled data, these methods can work 
very well. However, such labeled data are expensive to obtain 
in real-world applications. In additional, it is usually difficult 
to estimate how many labeled data are needed to get a good 
result. By leveraging the unlabeled data, GMNR can achieve a 
more robust performance across a wide range of label/unla-
beled data splits.

In summary, the experimental results demonstrate the effec-
tiveness of the proposed GMNR method. In particular, it can be 
used for solving collective classification problems even in the 
paucity of labeled data.

Our proposed algorithm performs well when there are only 
a small number of labeled instances. It is effective for SSCC in 
sparsely labeled networks. In order to validate this point further, 
we employed the corrected Friedman test and the post-hoc Ne-
menyi test as recommended by Demsar [30] to assess whether 
the differences in performance across the compared algorithms are 
statistically significant when there is only limited number of la-
beled data available. A Friedman test for the null hypothesis that 
all learners have equal performance is first used. In the case when 
this hypothesis is rejected, a Nemenyi test is used to compare 
the algorithms in a pairwise way. For this procedure, the algo-
rithms are ranked according to their performance for each task, 
so that the best performing algorithm has the rank of 1, the sec-
ond best the rank of 2, etc. The performance of two algorithms is 
significantly different to each other if their average ranks across 
all the learning datasets differ by more than some critical dis-
tance (CD). Such CD depends on the number of algorithms, the 
number of datasets, and the significance level. The experiment is 
Fig. 1. The graphical presentation of results from the Nemenyi post-hoc test at 0.05 
significance level in terms of accuracy.

conducted on 30 classification tasks derived from the Cora, Cite-
seer and Genes datasets. For each dataset D with N instances, we 
use bootstrap sampling method to generate 10 new data subsets 
Di , each of size Ni < N , by sampling from D uniformly and with 
replacement. Then, we compare the performance of GMNR and the 
other methods on all 30 datasets with 5% of labeled data using the 
two-step statistical test procedure for statistical evaluation.

Table 4 shows the results for all 30 datasets. The values in each 
row in the table correspond to the accuracy values of different 
methods on one dataset. The methods are ranked in decreasing 
order in terms of their performances. The number in brackets next 
to the accuracy values is the rank of the method on the corre-
sponding dataset. The average of the ranks across all datasets (the 
average rank) is given in the bottom line of the table. Fig. 1 show 
the results from the Nemenyi post-hoc test with average rank di-
agrams as suggested in [30]. In the figure, the top line is the axis 
on which the average ranks of methods are drawn. The algorithms 
are depicted along the axis in such a manner that the best ranking 
ones are at the right-most side of the diagram. The lines for the 
average ranks of the algorithms that do not differ significantly (at 
the 0.05 significant level) are connected with a line.

From Table 4 and Fig. 1, we come to the following conclu-
sions. First, the Friedman test suggests that the proposed GMNR 
performs significantly better against other methods in the situa-
tion where there is only limited number of labeled data (here, we 
present the results when one has only 5% of labeled data due to 
page limitation. The same test has been performed with varying 
number of labeled data from 1% to 20% and similar conclusions 
are obtained). Second, although there are no significant differences 
between the semiICA, LNP, and ICA methods at a significance level 
of 5%, the overall picture taken from the experiments is clearly 
in favor of the semiICA and LNP methods using semi-supervised 
techniques. Third, the relational-only method, wvRN+RL, does not 
perform competitively because it ignores the attribute information 
of the instances. Enabling the methods to use both attribute and 
relational information allows significantly higher accuracies com-
pared to relational-only approach.

4.5. Multi-label collective classification results

We compare the MRGM algorithm with the wvRN+RL, ICA, 
semiICA and ICML methods for the multi-label collective classifi-
cation task. Among the four compared methods, ICA, semiICA, and 
wvRN+RL are the approaches which focus on single-label collec-
tive classification. To enable comparison for these baselines, we 
decompose the multi-label problem into a set of K single-label 
classification problems using the one-against-all strategy, where K
is the total number of possible classes. Then, we train an indepen-
dent classifier for each one-against-all classification problem. This 
approach is known as the binary relevance (BR) method [31]. The 
predictions for all K single-label problems are combined to make 
the final prediction for multi-label classification.
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Fig. 2. The performance of the algorithms with varying percentages of labeled data. (a)–(c) Results with respect to Hamming loss, One-error, and Coverage. In these subfigures, 
the lower value the curve is, the better the performance is. (d)–(f) Results with respect to Average precision, Macro-F1, and Micro-F1. In these subfigures, the larger value the 
curve is, the better the performance is.
Figs. 2 and 3 show the classification results on the DBLP-A and 
DBLP-B datasets, respectively. We conduct the evaluations with 
varying percentage of labeled data ranging from 5% to 50%. For 
each percentage of labeled data, the performance of each algo-
rithm is measured by averaging 10 trials (randomly selection of 
labeled/unlabeled data splits) on each dataset. From Figs. 2 and 3, 
one observes that MRGM outperforms the other algorithms across 
all the datasets and metrics. It is shown in recent study [32] that 
one algorithm rarely outperforms another algorithm on all multi-
label classification evaluation criteria as they measure the learning 
performance from different aspects. In the experiments, we find 
that MRGM is able to consistently produce better results across 
all the evaluation metrics. This provides evidence to demonstrate 
the effectiveness of our MRGM algorithm for multi-label collec-
tive classification. We also find that MRGM is able to consistently 
produce better results across different percentages of labeled data. 
The smaller the number of labeled data, the larger improvement 
MRGM achieves. Compared with the other algorithms, the perfor-
mance of MRGM is more stable and it is able to achieve a good 
classification performance even in the situation of learning with 
extremely small percentage of labeled examples, e.g., 5%.

4.6. Convergence study

We investigate how fast the GMNR and NRGM algorithms con-
verge for the objective functions O1 and O2 in Eqs. (5) and (7). 
Figs. 5(a) and 5(b) show the convergence curves of the GMNR and 
MRGM algorithms on the Cora and DBLP-A dataset (at 5% labeled 
data), respectively. The x-axis is the number of iteration number 
in the process of optimizing the objective value and the y-axis 
is the value of successive computed objective value ||O(t + 1) −
O(t)||/||O(t)||. We can see that both algorithms converge within 
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Fig. 3. Similar to Fig. 2, but for DBLP-B dataset.
10 iterations. The required computational time is about 10 s us-
ing our MATLAB implementation. We also conduct experiment to 
compare the running time of wvRN+RL, ICA, semiICA and GMNR 
algorithms on the Citeseer dataset. The LNP algorithm is not in-
cluded in the comparison because the generation of latent graphs 
involved in LNP is very time consuming. The comparison is per-
formed in a computer with 2.40 GHz CPU and 4.0 GB memory. 
The results of different compared algorithms against different per-
centages of labeled data on the Citeseer dataset is given in Fig. 4. 
We can see from the figure that the running time of GMNR is 
much faster than those of the compared algorithms. Similar fast 
convergence and running time results on the other datasets are 
also observed.

4.7. Parameter selection

Parameter λ is used to weigh the importance of the regularizer 
for the GMNR and MRGM algorithms. To illustrate the sensitivity 
Fig. 4. The running time of different learning algorithms on the Citeseer dataset.
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Fig. 5. (a) Convergence curve of GMNR on the Cora dataset. (b) Convergence curve of MRGM on the DBLP-A dataset.

Fig. 6. (a) The performance trend (accuracy) of GMNR for various λ values on the Cora, Citeseer and Genes datasets; (b) The performance trend (average precision) of MRGM 
for various λ values on the DBLP-A and DBLP-B datasets.
of this parameter, we show the performance of the proposed algo-
rithms with various λ on different datasets in Fig. 6.

The performance of GMNR on Cora, Citeseer, and Genes datasets 
with λ varied from 0 to 60 is shown in Fig. 6(a). We observe from 
Fig. 6(a) that when λ = 0, the accuracy is low. In fact, the proposed 
GMNR algorithm boils down to the original PLSA when λ = 0. No 
network structure or label correlation knowledge is used in this 
case. When λ increases, the accuracy increases. On the other ex-
treme, with a high value of λ (e.g., λ = 60), the objective function 
is dominated by the smoothness on the regularization term. It does 
not use sufficient attribute features of the instances to learn the 
generative model for collective classification, but just the relational 
information. Generally, the plateaus in the accuracy curves indicate 
that the proposed GMNR is quite insensitive to the specific setting 
of λ. GMNR achieves consistently good performance when λ varies 
from 5 to 60 on all the datasets. This implies that the method 
can be used in a robust way across a wide range of parameters. 
From Fig. 6(a), one observes that the best performance is achieved 
at λ = 5. The average precision of MRGM on DBLP-A and DBLP-
B datasets with λ varied from 0 to 50 is shown in Fig. 6(b). The 
performance trend for MRGM shown in Fig. 6(b) is similar to the 
performance trend for GMNR.

5. Conclusions

In this paper, we first present a novel generative model with 
network regularization (GMNR) algorithm for semi-supervised col-
lective classification (SSCC). For GMNR, a network regularizer en-
codes the network structure, and it is incorporated into the PLSA 
generative model to learn from network data. The resulting model 
provides local smoothness of the label probability distributions for 
classification predictions. Then, we extend the GMNR to handle the 
SSCC when the instances have multi-labels. The new generative 
model, called multi-label regularized generative model (MRGM) 
utilizes an additional label regularizer to explicitly encode the label 
correlation. The predictions of MRGM ensure consistency among 
interlinked instances and related labels. We evaluate the proposed 
GMNR and MRGM algorithms on an extensive set of real world 
network datasets. Empirical results show that the proposed meth-
ods perform significantly better than the other baseline collec-
tive classification methods, especially when there are only limited 
number of labeled data available. Future work includes the devel-
opment of automated selection method for λ which controls the 
smoothness of our GMNR model. We will also extend the proposed 
methods to handle the heterogeneous network data classification 
problem.
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Appendix A

To prove Theorems 1 and 2, we need to show that O1 is non-
decreasing under the updating rules in Eqs. (8), (9) and (10), and 
O2 is non-decreasing under the updating rules in Eqs. (8), (9) and 
(11). Since the regularization terms R and H in O1 and O2 are 
only related to P (c|x), we have exactly the same update formula 
for P (c|x, w) and P (w|c) under Eqs. (8) and (9) as in the orig-
inal PLSA model. We only need to prove that O1 and O2 are 
non-decreasing under the updating rules in Eqs. (10) and (11), re-
spectively. We make use of an auxiliary function similar to that 
used in the EM algorithm [17] in our proof.
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Definition 1. Q(θ, θ ′) is an auxiliary function for L(θ) if the fol-
lowing conditions are satisfied

Q(θ, θ ′) ≤ L(θ), Q(θ, θ) = L(θ) (13)

Lemma 1. If Q is an auxiliary function of L, then L is non-decreasing 
under the update

θ(t+1) = arg max
θ

Q(θ, θ(t)) (14)

Proof. L(θ(t+1)) ≥Q(θ(t+1), θ(t)) ≥Q(θ(t), θ(t)) =L(θ(t)). �
Lemma 2. Function

Q (θ, θ(t)) =
∑

c

P (c|x, θ(t)) log
P (x, c|θ)

P (c|x, θ(t))

is an auxiliary function for the likelihood function L(θ) = log P (x|θ), 
where x is the observed data, θ is the parameters, and c is the hidden 
variables in our data generation problem.

Proof.

Q (θ, θ(t))

=
∑

c

P (c|x, θ(t)) log
P (x|c, θ)P (c|θ)

P (c|x, θ(t))

=
∑

c

P (c|x, θ(t)) log
P (c|x, θ)P (x|θ)

P (c|x, θ(t))

=
∑

c

P (c|x, θ(t)) log P (x|θ) +
∑

c

P (c|x, θ(t)) log
P (c|x, θ)

P (c|x, θ(t))

= log P (x|θ) −
∑

c

P (c|x, θ(t)) log
P (c|x, θ(t))

P (c|x, θ)︸ ︷︷ ︸
D(P (c|x,θ(t))||P (c|x,θ))

It is straightforward to verify that Q(θ, θ) = L(θ). The last 
KL-divergence term is always non-negative. Therefore, we have 
Q(θ, θ(t)) ≤L(θ). �
Lemma 3. Maximizing the expected complete data log-likelihood

θ(t+1) = arg max
θ

∑
c

P (c|x, θ(t)) log P (x, c|θ) (15)

is equivalent to maximizing the update in Eq. (14).

Proof.

Q (θ, θ(t)) =
∑

c

P (c|x, θ(t)) log
P (x, c|θ)

P (c|x, θ(t))

=
∑

c

P (c|x, θ(t)) log P (x, c|θ)

−
∑

c

P (c|x, θ(t)) log P (c|x, θ(t))

The second term is independent of θ , it can be treated as con-
stant. Thus, maximizing the expected complete data log-likelihood 
function is equivalent to maximizing Q (θ, θ(t)). �
Proof of Theorem 1. With simple derivations [16], one obtains the 
relevant part of the expected complete data log-likelihood function 
for the objective function in Eq. (2) as:
L̄ =
N∑

i=1

M∑
j=1

n(xi, w j)

K∑
k=1

P (ck|xi, w j) log
[
(w j|ck)P (ck|xi)

]

and the relevant part of the expected complete data log-likelihood 
function for the objective function O1 =L − λR in Eq. (5) as:

Q̄1 =
N∑

i=1

M∑
j=1

n(xi, w j)

K∑
k=1

P (ck|xi, w j) log
[
(w j|ck)P (ck|xi)

]

− λ

2

N∑
i,s=1

K∑
k=1

(
Pi(ck) log

Pi(ck)

P s(ck)
+ P s(ck) log

P s(ck)

Pi(ck)

)
Eij

According to Lemma 3, it follows that maximizing the above Q̄1
function results in exactly the update rule in Eq. (14) to the objec-
tive function Q1 in (5) for SSCC. In the following, we show how to 
obtain the update rule in Eq. (10) that maximizes the Q̄1 function.

We determine the re-estimation of {P (ck|xi)} in M-step by max-
imizing the Q̄1 with the constraint: 

∑K
k=1 P (ck|xi) = 1. Therefore, 

we augment Q̄1 by the appropriate Lagrange multipliers ρi to ob-
tain

F = Q̄1 +
N∑

i=1

ρi(1 −
K∑

k=1

P (ck|xi)). (16)

Maximization of F with respect to P (ck|xi) leads to the following 
set of equations:∑M

j=1 n(di, w j)P (ck|xi, w j)

P (ck|xi)
− ρi

− λ

2

N∑
s=1

(
log

P (ck|xi)

P (ck|xs)
+ 1 − P (ck|xs)

P (ck|xi)

)
Eis = 0

1 ≤ i ≤ N, 1 ≤ k ≤ K (17)

We expect that if two instances xi and xs are connected (i.e., 
Eis = 1), then the distributions P (ck|xi) and P (ck|xs) are similar to 
each other, i.e., P (ck|xi) will be close to P (ck|xs). We have( P (ck|xi)

P (ck|xs)

)Eis ≈ 1.

By using the approximation

log(x) ≈ 1 − 1

x
, x → 1, (18)

Eq. (17) is rewritten as

M∑
j=1

n(di, w j)P (ck|xi, w j) − ρi P (ck|xi)

− λ

N∑
s=1

(
P (ck|xi) − P (ck|xs)

)
W is = 0,

1 ≤ i ≤ N,1 ≤ k ≤ K . (19)

By summing the above equations over all k values with respect to 
a given instance xi , we obtain the Lagrange multipliers

ρi =
M∑

j=1

n(xi, w j), 1 ≤ i ≤ N. (20)

Let yk = [P (ck|x1), · · · , P (ck|xN )], � denote the diagonal matrix, 
and L denote the graph Laplacian matrix defined in Section 3.3, 
the system of equations in (19) can be rewritten as
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⎡
⎢⎣

∑M
j=1 n(x1, w j)P (ck|x1, w j)

...∑M
j=1 n(x1, w j)P (ck|xN , w j)

⎤
⎥⎦ − �yk − λLyk = 0.

Thus, we have

yk = (� + λL)−1

⎡
⎢⎣

∑M
j=1 n(x1, w j) log P (ck|x1, w j)

...∑M
j=1 n(x1, w j) log P (ck|xN , w j)

⎤
⎥⎦ .

Setting yk = y(t)
k and P (ck|x1, w j) = P (t)(ck|x1, w j) in the t-th iter-

ation, the update rule takes the form as in Eq. (10).
Since Q̄1 is the expected complete data log-likelihood function 

for Q 1, and the update rule in Eq. (10) is obtained by maximizing 
Q̄ 1, Q 1 is non-decreasing under this update. �
Proof of Theorem 2. Similarly, with simple derivations [16], one 
obtains the relevant part of the expected complete data log-
likelihood function for the objective function O2 in Eq. (7) as 
follows:

Q̄2 =
N∑

i=1

M∑
j=1

n(xi, w j)

K∑
k=1

P (ck|xi, w j) log
[

P (w j|ck)P (ck|xi)
]

− λ

2

N∑
i,s=1

K∑
k,l=1

((
Pi(ck) log

Pi(ck)

P s(ck)
+ P s(ck) log

P s(ck)

Pi(ck)

)
Eis

+
(

Pi(ck) log
Pi(ck)

Pi(cl)
+ Pi(cl) log

Pi(cl)

Pi(ck)

)
Fkl

)
. (21)

Again, we augment Q̄2 by the appropriate Lagrange multipliers 
ρi to obtain

F = Q̄2 +
N∑

i=1

ρi
(
1 −

K∑
k=1

P (ck|xi)
)

(22)

Maximizing F with respect to P (ck|xi) leads to the following set 
of equations:∑M

j=1 n(xi, w j)P (ck|xi, w j)

P (ck|xi)
− ρi

− λ

2

[
N∑

s=1

(
log

P (ck|xi)

P (ck|xs)
+ 1 − P (ck|xs)

P (ck|xi)

)
Eis

+
K∑

l=1

(
log

P (ck|xi)

P (cl|xi)
+ 1 − P (cl|xi)

P (ck|xi)

)
Fkl

]
= 0

1 ≤ i ≤ N, 1 ≤ k ≤ K . (23)

Based on local consistency assumptions, we have the following 
equations( P (ck|xi)

P (ck|xs)

)Eis ≈ 1,
( P (ck|xi)

P (cl|xi)

)Fkl ≈ 1.

Using the approximation in Eq. (18), we rewrite Eq. (23) as∑M
j=1 n(xi, w j)P (ck|xi, w j)

P (ck|xi)
− ρi − λ

P (ck|xi)
A = 0

1 ≤ i ≤ N, 1 ≤ k ≤ K (24)

where A is
N∑
s=1

(
P (ck|xi) − P (ck|xs)

)
Eis +

K∑
l=1

(
P (ck|xi) − P (cl|xi)

)
Fkl

= P (ck|xi)

N∑
s=1

Eis −
N∑

s=1

P (ck|xs)Eis + P (ck|xi)

K∑
l=1

Fkl

−
K∑

l=1

P (cl|xi)Fkl.

Let y denote an N K length label probabilities vector [y1, · · · , yK ]T

with yk = [P (ck|x1), · · · , P (ck|xN )], and �, D, B, U, and R, Z be the 
N K -by-N K sparse matrices defined in Section 3.3.

The system of equations in (22) is solved using the following 
matrix form:

Z − �y − λ(D − B + U − R)y = 0. (25)

Thus, we have

y = (� + λ(D − B + U − R))−1Z. (26)

Setting y = y(t) and Z = Z(t) in the t-th iteration, the update rule 
for P (t)(ck|xi) takes the form as in Eq. (11).

Since Q̄ 2 is the expected complete data log-likelihood function 
for Q 2, and the update rule in Eq. (11) is obtained by maximizing 
Q̄ 2, Q 2 is non-decreasing under this update. �
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