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Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the
electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have re-
cently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate
(OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity
(Kd ~ 10−8 M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant,
but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to
OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2 ± 6.0% and 56.4 ±
5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during
isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation.
In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex
II during isolation. In brain the OAA-depleting systemdid not significantly change the amount of free enzyme, in-
dicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term
ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II.
Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the
activity of the enzyme.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Mitochondrial complex II (EC 1.3.5.1, succinate:quinone reductase
(SQR), succinate dehydrogenase (SDH)) catalyzes oxidation of matrix
succinate to fumarate bymembrane boundubiquinone, thereby feeding
electrons to the cytochrome bc1 complex. Complex II is composed of
four nuclear encoded subunits. The structure of complex II resolved at
2.4 Å resolution [1] revealed that the hydrophobic subunits SDHC and
SDHD are anchored to the inner mitochondrial membrane with a
short segment extended into the intermembrane space, while the
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catalytic subunits SDHA and SDHB project into the matrix. Electrons
are transferred from succinate to ubiquinone through the covalently
bound flavin-adenine dinucleotide (FAD) and three iron-sulphur clus-
ters [2]. SDHA is the largest subunit and contains a covalently attached
flavin in the dicarboxylate-binding site, where succinate is oxidized to
fumarate. The regulation of complex II activity is not well understood,
which is surprising since this enzyme integrates the tricarboxylic acid
(TCA) cycle metabolism with the mitochondrial respiratory chain.

As found in pioneering work of Singer [3], preparations of the en-
zyme isolated from tissues show a spontaneous increase in the rate of
catalytic reaction. It was found that preparations of isolated SDH or en-
zyme in the membrane of submitochondrial particles (SMP) could be
significantly activated by succinate and its analogues [4–7]. This activa-
tion was attributed to a slow dissociation of the competitive inhibitor
oxaloacetate (OAA) from the active centre of the enzyme. However,
whether the observed inhibition of SDH by OAA is significant for phys-
iological regulation of the enzyme in vivo, or just an artefact caused by
the isolation procedure is still a matter of controversy [6,8,9]. Matrix
OAAmight be a potent physiological effector of SDHwith a very high af-
finity to the dicarboxylate binding site of the enzyme (Kd ~ 10−8 M) [7]
or, itmaybind to SDHduring the isolation procedure due to the very fast
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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rate of binding, and stay in a bound state even after repetitive washing
or gel filtration [5,10].

Studies of mitochondrial complex II are clinically important [11],
since this enzyme has recently emerged as focal point of investigation
in cell signalling [12–15], cancer biology [16–19], immunology [20],
neurodegeneration [21] and cardiovascular conditions [22,23]. Acute
tissue ischemia is known to be associated with blockade of respiration,
accumulation of reduced equivalents in the matrix (NAD(P)H), deple-
tion of cellular ATP/phosphocreatine pool, and, eventually, impairment
of mitochondrial function [24]. Hypoxia-dependent inhibition of com-
plex I and II would have a strong effect on TCA cycle reactions [25]. In
turn, this would result in significant alterations in the concentration of
intermediates of the TCA cycle [22,26,27], including OAA and succinate.
Therefore, it is crucial to knowwhether binding of OAA to SDH is a phys-
iologically relevant process.

The aim of the present study was to investigate OAA inhibition of
SDH in heart and brain and the effect of short-term global ischemia. Mi-
tochondrial membranes were rapidly isolated from tissue samples, SDH
activity was assessed and degree of OAA inhibition determined. We
found that a significant fraction of SDH isolated from heart and brain
cortex (30.2 ± 6.0% and 56.4 ± 5.6%, respectively) is in inactive form.
Using an OAA-depleting system during isolation, we confirmed that
OAA inhibition of the enzyme physiologically takes place in situ in the
brain, but not in the heart. We also determined that short-term ische-
mia did not significantly change the fraction of free enzyme in both
tissues.

2. Materials and methods

2.1. Experimental animals

Male C57BL/6J mice (10–12 weeks) were used for all studies. Mice
were housed under constant climatic conditions with free access to
food andwater, except that theywere fasted for 18 h prior to tissue har-
vesting. All experiments were performed in accordance with the Guid-
ance on the Operation of the Animals (Scientific Procedures) Act, 1986
(UK).

Cardiac and respiratory arrest was initiated by cervical dislocation
and carcasses for ischemic group were placed in a 37 °C incubator to
maintain physiological body temperature. Either immediately (control
group) or 15min after cardiac arrest (ischemic group) animals were de-
capitated directly into liquid nitrogen. Hearts were rapidly extracted
(within 30 s) and snap-frozen in liquid nitrogen immediately or
15 min after cardiac arrest.

2.2. Mitochondrial fraction isolation

The isolation of heart mitochondrial membranes was carried out es-
sentially as described [28]. Particular care was taken to cool down all
media, glassware, and centrifuge rotors (2–3 °C). Pieces of frozen
heart of around 150 mg were placed into 2.5 ml of isolation medium
(200 mM Tris-HCl, pH 8.5, 0.5 mM EDTA) and homogenized in an IKA
tissue disruptor (Tissue Tearor, 985,370, 2min, 6000 rpm). Tissue debris
wasdiscarded after brief centrifugation for 4min at 1500g. The superna-
tant was centrifuged for 15 min at 20,000g and the membrane pellet
was rinsed twice with SET medium (50 mM Tris-HCl (pH 7.5), 0.25 M
sucrose, and 0.2 mM EDTA). Resulting brown mitochondria pellet was
resuspended in 100 μl of the same buffer, aliquoted, frozen in liquid ni-
trogen and stored at−80 °C until use.

Isolation of the brain mitochondrial membranes was performed as
follows. Pieces of frozen forebrain (200 mg of tissue) were homoge-
nized in 1 ml of MSE buffer (225 mMmannitol, 75 mM sucrose, 5 mM
HEPES, 0.1% BSA, 1mMEGTA, 0.1mMEDTApH8.0) using 2mlKontes™
Dounce homogenizer, tight pestle, with 60–75 strokes. The next steps of
isolation procedure were the same as described above for heart
samples. Themembrane pellet was rinsed with SETmedium containing
0.1% BSA.

For isolation in the presence of anOAA-depleting system, homogeni-
zation buffers used for disruption of tissues were supplemented with
5 mM glutamate and glutamic/oxaloacetate transaminase Type 1
(GOT1) from porcine heart (Sigma G2751, 317 U/mg protein), 90 and
30 μg/ml for brain and heart, respectively.

2.3. Western blot

12 μg of protein were loaded on a 12% SDS-PAGE gel. Next, proteins
were transferred electrophoretically to a PVDF membrane (EMD
Millipore) in transfer buffer. After blotting, the membrane was blocked
for 30minwith Odyssey blocking buffer (Li-Cor, diluted 1:1 in PBS). The
blot was then incubated for 2 h at room temperaturewith either prima-
ry antibody against CII 70 kDa subunit (a11142,Molecular Probes, dilut-
ed 1:1000 in PBS + 0.01% Tween 20) or with total OXPHOS rodent
primary western blot antibody cocktail (ab110413, Abcam, diluted
1:1000 in PBS + 0.01% Tween 20) containing 5 different antibodies
against the 5 OXPHOS complexes: CI subunit NDUFB8, CII-30 kDa, CIII-
Core protein 2, CIV subunit I and CV alpha subunit. The membrane
was then washed 3 times for 10 min with PBS-Tween and incubated
with secondary antibodies (IRDye680 conjugated goat anti-mouse IgG,
Highly Cross Adsorbed (Li-Cor)), diluted 1:10,000 in Odyssey buffer
and PBS-Tween. After 3 final washing steps of 10min each,fluorescence
scanningwas performed using anOdyssey Imaging system (Li-Cor) and
fluorograms were inverted for visualization purposes. In order to nor-
malize the protein content, the blot was subsequently incubated over-
night first with a primary antibody against TIM23 (BD Biosciences
1:1000) and then with a secondary antibody (IRDye680 conjugated
goat anti-mouse IgG). Quantification of the bands was performed
using the Image Studio software (Li-Cor).

2.4. TCA cycle intermediates determination

300μl of ice-cold 10% perchloric acid (PCA) was added to frozen
brain or heart mouse tissue (20–30 mg) and briefly sonicated for 6–
10 s on ice. The resulting homogenate was kept on ice for an additional
10 min. The precipitate was removed by a 10 min centrifugation at
14,000g in a pre-cooled centrifuge (4 °C), and the obtained supernatant
was transferred into a new 1.5ml tube for a second centrifugation in the
same conditions. After the second centrifugation, the supernatant was
used for direct injection into a HPLC system. The HPLC system included:
2489 Waters HPLC-UV/VIS detector set at 210 nm, Waters 1525 binary
pump with an established flow rate of 0.45 ml/min, and Waters 2707
autosampler with pre-cooled platform. Organic acid separation was
performed on a C18 reverse-phase analytical column (YMC, Triart,
250 × 3.0 mm I.D. particle size 3 μm, 12 nm), equipped with
Phenomenex Security guard column (cartridge C18, 4 × 2 mm, PN#
AJ0-4286). Both columns were maintained at room temperature. Or-
ganic acids were eluted with 20 mM KH2PO4 (pH 2.9) mobile phase.
The chromatogram collection, storage and metabolite quantitation
was performed using Breeze 2 software. All TCA cycle intermediates
were identified and quantified per mg of wet tissue using the known
standards. The peaks were routinely spiked with the standards to con-
firm their identities. Six to eight samples per each group were analysed.
The analytical variability for OAA standard solution was established
somewhere within 3–5% (n = 5). Analytical variability for OAA level
in biological samples was slightly higher (somewhere within 10–15%).

2.5. Activity measurements

Oxidation of NADH was determined spectrophotometrically as a de-
crease in absorption at 340 nm (Perkin Elmer – Lambda 35, ε340 nm =
6.22mM−1×cm−1) with 150 μMNADH in 1ml of standard SETmedium
(pH= 7.5) supplemented with 10 μM cytochrome c and containing 10–
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25 μg protein/ml mitochondrial membranes. NADH:HAR oxidoreductase
reductase [29] were assayed in the same medium supplemented with
1mM cyanide and 1mMHAR. NADH-oxidasewas fully sensitive to com-
plex I inhibitor rotenone.

For the determination of the ratio of the active and deactive form of
mitochondrial complex I (A/D ratio) [30,31] an alkaline buffer and1mM
ferricyanide were used to allow rapid oxidation of reduced matrix pyr-
idine nucleotides to prevent turnover-dependent complex I activation.
This treatment is known to preserve the A/D ratio when membranes
are isolated from tissues [28,32]. Relative content of the A-form in a
given preparation was measured as described previously [28,31] using
initial rates of NADH-oxidase reaction in alkaline (pH= 8.8) SET medi-
um supplemented with 2 mMMgCl2 before and after activation with a
pulse of 15 μM NADH.

Complex IV activity was measured spectrophotometrically as
oxidation of 50 μM ferrocytochrome c at 550 nm (ε550 nm =
21.0 mM−1×cm−1) in the same medium supplemented with
0.025% DDM. Ferrocytochrome c oxidase activity was fully sensitive
to cyanide.

After specific treatment of the membranes succinate-dependent ac-
tivities were determined using two methods. First, succinate oxidase ac-
tivity was measured using an Oroboros high-resolution respirometer in
2 ml of SET buffer containing 10 μM cytochrome c and 10 mM succinate.
Second, succinate:ubiquinone reductase activity of SDH was determined
spectrophotometrically at 275 nm (ε275 nm = 13.0 mM−1×cm−1, [33])
in SET medium with 15 μM Q1 as electron acceptor and 1 mM cyanide.
The reaction was started by addition of 10 mM succinate. Both activities
were fully sensitive to specific inhibitors such as malonate, OAA or
thenoyltrifluoroacetone. Enzymatic activity with Q2 was somewhat
higher, but due to the significant optical disturbance after addition of sub-
strate to membranes in the activity assay, more hydrophilic Q1 was used
in the final experiments.

For estimation of the fraction of OAA-free enzyme, initial rate of
succinate-dependent activities were determined for membranes with-
out any pretreatment. The total amount of enzyme was determined
after malonate-activation of the preparation by preincubation with
1 mM malonate at 30 °C for 30 min, as already reported [34]. In such
treatment malonate replaces OAA in the active centre of the enzyme.
After dilution of the preparation in the activity buffer, the fast rate of
malonate dissociation ensures rapid release of the inhibitor from the ac-
tive centre of SDH, so that the full activity can be assessed. To account
for any possible effect of temperature, membranes were incubated at
30 °C for 30 min. This treatment did not result in activation of the
enzyme.

Activity of glutamic/oxaloacetate transaminase (GOT1) was mea-
sured spectrophotometrically, in 1 ml cuvette with constant stirring,
as oxidation of 500 μM OAA (ε256 nm = 0.356 mM−1×cm−1, [35]) in
Fig. 1. Effect of global ischemia on mitochondrial respiratory chain complexes activity in hear
NADH-oxidase (grey), NADH:HAR reductase (white) and cytochrome c oxidase (black) activitie
the presence of 5 mM glutamate at 2–4 °C. No significant difference in
activity was observed for both mediums used for heart or brain mito-
chondria membranes isolation.

All chemicals were purchased from Sigma. Protein content was de-
termined by BCA assay (Sigma). All activities, except for GOT1, were
measured at 25 °C. Data are presented as the arithmetic means ± S.D.
and two-sample t-test was used to calculate p values. At least five ani-
mals were used per each group. The experimental details are described
in the figure legends.
3. Results

3.1. Characterization of the preparations and effect of ischemia on respiratory
chain enzymes

Our isolation protocol was initially developedwith the aim of fast iso-
lation ofmitochondrialmembranes fromheart and brain tissues. Catalytic
properties of membrane preparations are summarized in Fig. 1. Oxidase
activities were sensitive to classical inhibitors of respiration, such as cya-
nide. NADH-oxidase was 98% sensitive to rotenone. Neither the total
NADH-oxidase (complexes I + III + IV) nor cytochrome c oxidase (com-
plex IV) activities of mitochondrial membranes were significantly altered
after ischemia, in heart and brain tissue (Fig. 1A and B). The relative con-
tent of complex I as measured by NADH:HAR reductase activity, which is
proportional to the amount of enzyme in themembrane [36,37], was also
not affected by ischemia. It should be noted that, as expected, 15 min is-
chemia induced a significant shift in so-called reversible A/D transition
of complex I [31] (around 18 and 6 fold increase in the content of the
D-form in brain and heart, respectively (n = 4)).

To exclude that ischemia had induced changes in the amount of mi-
tochondrial membrane complexes we quantified their abundance by
western blot. A representative western blot for subunits of the respira-
tory chain complexes using the Abcam OXPHOS antibody cocktail is
shown in Fig. 2A. Ischemia did not significantly affect the abundance
of mitochondrial complexes I–V subunits (Fig. 2B).
3.2. Global ischemia affects TCA cycle metabolites

Ischemia results in accumulation of reducing equivalents
(NAD(P)H) in the mitochondrial matrix and in a dramatic change in
the concentration of TCA metabolites, possibly affecting the interaction
of OAA with SDH. Therefore we assessed concentration of OAA, succi-
nate, and fumarate in control and ischemic tissues (Fig. 3). A drastic
drop of OAA content was observed in both heart and brain, with con-
comitant decrease of fumarate and rise of succinate.
t (A) and brain (B) membranes isolated from a control (cont) and ischemic (isch) tissue.
s were determined spectrophotometrically as described inMaterials and methods. n = 5.



Fig. 2. Effect of global ischemia on mitochondrial respiratory chain complexes content.
(A) Representative Western blots of subunits of mitochondrial respiratory chain
obtained from heart (left) and brain (right) mitochondrial membranes from control
(cont) and ischemic (isch) tissues. Quantification of respiratory subunits abundance for
heart (B) and brain (C) mitochondria. The intensity of all bands was normalized to the
mitochondrial membrane protein Tim23, which showed no change in abundance in any
group (white and grey bars show control and ischemic tissue, respectively). NDUFB8,
complex I; SDHB succinate dehydrogenase subunits B; UQCRC2, bc1 complex; MTCO1,
complex IV subunit 1; ATP5A, Complex V α-subunit. n = 3.

Fig. 4. Time-course of succinate-dependent activities of heart mitochondrial membranes.
Succinate oxidase and succinate:Q1 oxidoreductase were measured (A and B, respectively).
Succinate oxidase reaction was started by addition of 20 mM succinate to a respirometer
cell containing 12.5 μg/ml membranes in SET buffer supplemented with 10 μM cytochrome
c. Succinate:Q1 reaction was started by the addition of 10 mM succinate to the
spectrophotometer cuvette with assay mixture containing 5 μg/ml membranes and 15 μM
Q1 in SET buffer in the presence of 1 mM cyanide. In A and B, traces 1 are from untreated
membranes, while traces 2 are frommalonate-pretreated membranes.
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3.3. Assessment of succinate-dependent activities of SDH

For the assessment of the state of SDH we measured succinate-
oxidase activity (complexes II + III + IV) and reduction of the artificial
acceptor ubiquinone-1 (Q1) by SDH in mitochondrial membranes. Rep-
resentative traces for heartmitochondria are shown in Fig. 4. Both activ-
ities were fully sensitive to malonate (10 mM) or OAA (1 mM).
Untreated heart mitochondrial membranes showed considerable lag
phase during continuous assay of succinate oxidase reaction (Fig. 4A,
trace 1), confirming previous observations with purified enzyme or
SMP [4,6,7,38]. This phenomenon indicated slow (half-time of around
20 min) dissociation of OAA from the active centre of SDH during the
time of the assay. This lag-phase was completely eliminated by incuba-
tion of membranes with 1 mM malonate for 30 min at 30 °C prior to
measurements. After this “activation” treatment the reaction rate be-
came linear (Fig. 4A, trace 2). Contrary to succinate-oxidase, no lag
was seen in our conditions, when reduction of Q1 was catalyzed by
malonate-untreated preparation, due to the short time of the reductase
assay (1–2 min). Activation with malonate significantly (N50%) in-
creased both succinate oxidase and quinone reductase activity in con-
trol samples, suggesting the displacement of tightly bound OAA from
the active centre of the enzyme after incubation at 30 °C [7]. After dilu-
tion of the preparation in themixture for activity measurement the fast
rate of malonate dissociation ensures rapid release of the inhibitor from
the active centre of SDH, so that the full activity can be assessed.
Fig. 3. Effect of global ischemia on concentration of some TCA cycle metabolites in heart
(A) and brain (B) tissue. White and grey bars correspond to control and ischemic
samples, respectively. Determination was performed as described in Materials and
methods. n = 6–8, *p b 0.04; **p b 0.01.
3.4. Inhibition of SDH by OAA

Due to the reported tissue specific heterogeneity of SDH [39–41], we
compared the sensitivity of the enzyme toOAA in heart and brain. Titra-
tion of succinate:Q1 reductase activity by OAA using mitochondrial
membranes from brain and heart showed similar affinity of the inhibi-
tor to the enzyme in both tissues (Fig. 5).
3.5. Effect of global ischemia on malonate activation of mitochondrial SDH

To determine the effect of global ischaemia on OAA inhibition of
SDH, mitochondrial membranes were isolated from brain and heart im-
mediately (control) or 15 min after induction of global ischemia. Before
activity measurements, the enzyme was activated by malonate and the
activities of succinate oxidase (Fig. 6, A and B) or Q1-reductase (Fig. 6, C
andD)weremeasured.Malonate incubation resulted in a significant ac-
tivation of both activities of heart mitochondrial membranes (around
50%). Brain membranes were activated to the lesser extent (around
40%) indicating, that the fraction of free enzyme in brain was higher.
We found that the degree of malonate activation in heart or brain was
not different in the membranes obtained immediately or after 15 min
ischemia.
Fig. 5. Inhibition of the succinate:Q1 reductase activity of heart and brain membranes by
OAA (close and open circles, respectively). Before titration, membranes were resuspended
to 5 mg/ml in SET buffer with 1 mM malonate for 30 min at 30 °C and briefly washed
twice at 0 °C. Pellets were resuspended in the same buffer at concentration 1 mg/ml and
OAA was added. After incubation for 1 h at room temperature succinate:Q1 activity was
measured in SET buffer as described in Materials and methods. The activity without added
OAA was 0.83 and 0.11 μmol Q1×min−1×mg protein−1 for heart (closed) and brain
(open circles) membranes respectively.



Fig. 6. Effect of malonate activation on succinate oxidase (A, B) and succinate:Q1 reductase (C, D) activity of mitochondrial membranes isolated from heart (A, C) and brain (B, D) at 0 and
15 min after cardiac arrest (open and grey circles, respectively). Membranes were kept on ice or incubated with and without 1 mM malonate at 30 °C for 30 min. Activities were then
assayed as described in Materials and methods. Here and in Fig. 7 each open circle represents data from a single mouse and horizontal lines depict the mean, and error bars indicate
SD. *p b 0.005, n = 5.
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3.6. Effect of OAA depletion during isolation on activation of SDH

A clear effect of malonate activation on succinate-dependent activi-
ties of SDH, indicated that in both tissues only a small fraction of the en-
zyme is present in its free form. However the question is whether the
presence ofmalonate-activatable SDH in thepreparation reflects the sit-
uation in situ or if matrix OAA binds to the enzyme during the isolation.
We developed a procedure for isolation of mitochondrial membranes in
the presence of OAA-depleting system, using cytosolic glutamic oxalo-
acetate transaminase (GOT1). In themedium used for tissue homogeni-
sation supplemented with glutamate, this enzyme catalyzed rapid
transamination of OAA to aspartate (45 μmol OAA×min−1×mg−1,
Fig. 7A). At the same time, addition of 1.5% heart homogenate to the
assay was effective in degrading added OAA (left trace), while addition
of 0.5% brain homogenate did not significantly affect transamination of
OAA by GOT1. Thus, the isolation medium was supplemented, during
the initial tissue-disruption stage, with 30 or 90 μg/ml GOT1 for heart
and brain, respectively. In the isolation conditions utilized (homogeni-
zation buffer, 2–3 °C, 5 mM glutamate), this amount of enzyme cata-
lyzes the transaminase reaction with a rate of 25 or 75 μM/s. This was
sufficient to deplete OAA in the homogenate (between 1 and 10 μM
(from data in Fig. 3)) within the first second after tissue disruption.

Malonate activation of succinate oxidase of membranes obtained in
the presence of GOT1 and glutamate during tissue homogenization was
assessed (Fig. 7, B and C). In heart, this treatment significantly increased
the fraction of free enzyme in control and ischemic samples (from
30.2 ± 6.0 to 49.8 ± 6.9%, p b 0.001 and from 27.1 ± 6.0 to 57.0 ±
4.4%, p b 0.001 for control and ischemic samples respectively). This indi-
cated that OAA binds to the enzyme during isolation. On the contrary, in
brain samples the presence of OAA-depleting system did not change the
amount of free enzyme (56.4 ± 5.6 and 62.1 ± 3.4%, p= 0.12, for con-
trol samples). Therefore, we concluded that in brain in situ a significant
fraction of the enzyme is already present in the inactive form and that
OAA does not bind to SDH during isolation.
4. Discussion

Earlier investigations found that in preparations of SDH of various
degree of purity, the enzyme was in a relatively inactivated state. Vari-
ous treatments of the enzyme (ATP, reduced ubiquinone, TCA cycleme-
tabolites and bromide ions) prior to activity measurementwere used to
obtain a higher, constant levels of activity [4–6,42]. It was revealed that
most of these treatments resulted in dissociation of OAA tightly bound
in the active center and consequent activation of the SDH [4–6,42]. If
measured without any attempt to activate the enzyme by removal of
OAA, progressive increase of the rate of succinate-oxidase reaction dur-
ing onset of the assay can be observed. This activation is due to a slow
dissociation of competitive inhibitor OAA from the active centre of the
enzyme during continuous assay. OAA is a classical competitive inhibi-
tor, with an extremely low dissociation rate (0.02 min−1) [7,43]. The
lengths of the lag-phase depend on temperature, concentration of en-
zyme and substrate, as well as isolation protocol. Therefore, initial
rates of the enzymatic reaction without activation do not reflect the
full activity of the enzyme and could lead to underestimation of its
real activity. In addition, alteration in concentration of TCA cycle inter-
mediates in different conditions (i.e. normoxia/ischemia, wild type/mu-
tant, the presence/absence of pharmacological agents) could affect the
ratio between free and OAA-bound complex II in the preparation and
complicate result interpretation.



Fig. 7.Malonate activation of succinate oxidase activity ofmitochondrialmembranes isolated in the presence of an OAA-depleting system. A, in the presence of 5mMglutamate 3.75 μg/ml
GOT1 effectively depletes OAA in tissue homogenisation medium. Addition of 1.5% heart or 0.5% brain homogenate (HH and BH, respectively) or GOT1 is shown by arrows. Heart (B) and
brain (C) controls and 15min after cardiac arrest (open and grey circles, respectively). Membraneswere isolated in the presence of OAA-depleting system. Before kept on ice or incubated
with or without 1 mMmalonate for 30 min at 30 °C. Succinate oxidase activity was then assayed using Oroboros respirometer as described in Materials and methods. *p b 0.001, n = 5.
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The OAA content was lower in heart tissue than in brain confirming
the pioneering studies [26,44–48]. Most likely this is due to differences
between metabolic pathways in neurones and cardiomyocytes, as well
as to the heterogeneity of the brain tissue. It is difficult to determine
whether the OAA level is high in neuronal or glial cells. Higher OAA
may reflect greater levels of the TCA cycle anaplerotic pathways via
combined activity of pyruvate carboxylase and transaminases responsi-
ble for biosynthesis of OAA in oligodendrocytes and astrocytes [49].

Acute ischemia is known to be associated with a depletion of tissue
high-energy phosphates, increase in NADH/NAD+ ratio and alteration
of TCA cycle intermediates [22,26,48]. We observed a dramatic drop of
OAA and fumarate content with concomitant increase of succinate
after 15 min ischemia in heart and brain tissues. It is in good agreement
with previously published data [22,26,46,48] and reversal of themalate
dehydrogenase reaction due to the increasedNADH/NAD+ ratio is prob-
ably themain cause of OAA decrease [27]. Possible mechanism of ische-
mic accumulation of succinate may involve reverse activity of SDH via
fumarate reduction [22,50,51] as well as the conversion of succinyl-
CoA to succinate [26,27].

We analysed respiratory chain enzymes' activity of mitochondrial
membranes obtained frombrain andheart tissues in control and ischemic
tissues (0 and 15 min after cardiac arrest). As expected, 15 min ischemia
in both tissues did not significantly affect complex I or complex IV activity.
In addition, no change in content of complex I (NADH:HAR reductase)
was found. Activity of SDH was also similar in control and ischemic sam-
ples.We also assessed abundance of the respiratory chain complexes sub-
units,whichwas consistentwith the activitymeasurements. These results
indicate that 15min ischemia does not significantly alter the content and
activity of mitochondrial respiratory chain enzymes in heart and brain.
Our data confirm earlier observations [28,52–54] that lack of oxygen
does not affect enzymes of the mitochondrial respiratory chain in the
short term. At the same time, 15 min ischemia resulted in the conforma-
tional change (A to D transition) of mitochondrial complex I in both tis-
sues, confirming results of our laboratory and others [28,32,55].

Two tissue-specific isoforms of the large subunit SDHA, bearing
succinate-binding site, have been identified [39,41]. In addition, SDHC
transcript is subject to alternative splicing, resulting in three different
isoforms, affecting enzyme activity [41]. Potentially, tissue-specific
SDH isoforms could have different sensitivity to inhibitors and therefore
we examined the effect of OAA on enzyme from brain and heart mem-
branes. No difference in affinity of the brain and heart enzyme to OAA
was observed, which is in close agreement with published data [7].

When succinate-dependent activities of heart and brain SDH were
analysed, we found that the fraction of the free active enzyme was 35–
40% in heart and 60–70% in brain. Short-term (15 min) ischemia did not
change these proportions in either tissue. This finding is intriguing for
two reasons. First, our data indicates that OAA content drops more than
5 and 10 fold during brain or heart ischemia respectively, while succinate
rises,which is in agreementwith published data [22,27,47,48]. Second, af-
finity of OAA to the reduced enzyme is 10 fold lower than to oxidized [7].
Therefore, ischemia resulting in reduction of the respiratory chain should
potentially have a strong effect on OAA binding to the enzyme. However,
no significant difference between the degree of OAA inhibition in control
and 15min ischemia was found, in both tissues. This apparent discrepan-
cy could be explained by the fact that OAA could bind to the enzyme dur-
ing the isolation procedure since the rate constant of inhibitor binding to
bovine enzyme is very high (kon ~ 106 M−1 min−1 [7,43]) Thus, the frac-
tion of the free enzyme in the preparation might not reflect the situation
in situ.

Therefore, we implemented an OAA-depleting system with GOT1/
glutamate at the homogenization step in order to quickly remove OAA
from the homogenate. It should be stressed that this system in the im-
plemented conditions was able to catalyze transaminase reaction with
the rate of 25–75 μM/s, which is enough to process all available OAA
in homogenate within first seconds (OAA content was taken as 0.0075
and 0.05 nmol/mgwet tissue for heart and brain respectively). Elimina-
tion of OAA at this stage did not change the fraction of free enzyme in
brain, but significantly increased free SDH in heart.

Based on these results we concluded that in heart a fraction of the
enzyme binds OAA during the preparation. This observation is in agree-
ment with earlier publications where no OAA inhibition was found
when heart mitochondrial membranes were isolated in the presence
of malonate [8]. Malonate reversibly binds to SDH and prevents OAA in-
activation of the enzyme in the homogenate, in the same way as the
OAA-depleting system implemented in this study. Importantly, the
data indicate that in brain OAA inhibition takes place in situ, suggesting
that OAA could be an endogenous effector of SDH in brain. This is not
unprecedented in other tissues, since SDH inhibition byOAA in livermi-
tochondria, resulting in reversible suppression of succinate oxidation,
was observed during hibernation of ground squirrels [56]. Based on
the OAA content in tissues, it is still difficult to assess the actual concen-
tration of OAA in the matrix, where it potentially interacts with SDH.
However, one reason for the difference between OAA effect on SDH in
the brain and in the heart could that there is significantly more OAA in
brain than in heart. In addition, greatly increased rate of binding of the
OAA to the enzyme in Leigh syndrome associatedwith a pointmutation
in SDHA was thought to account for the severity of the disease,
supporting idea of OAA regulating complex II [57].

Surprisingly, no effect of short-term ischemia on the content of the
free enzyme was found. On the one hand, it could indicate that despite
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a sharp decrease in OAA tissue concentration, the inhibitor is still bound
to the enzyme because of its very slow rate of dissociation (0.02min−1)
[7,43]. Therefore, 15 min ischemia may not be long enough to induce a
significant increase in free enzyme content. Another possibility is that
the inactivating OAA-induced conformational change in SDH may
occur after the binding of the inhibitor, and the subsequent removal of
OAA does not activate the enzyme [6,58,59]. Therefore, the state of
SDH in situ is determined by the conformational change of the enzyme
rather than OAA concentration in the matrix per se. Activating/
inactivating conformational change phenomena have been observed
in other enzymatic systems including mitochondrial complex I [31,60],
bacterial NiFe hydrogenases [61], methionine synthase [62], D-amino
acid oxidase [63] and conformational change of complex II is currently
being investigated in the authors' laboratory.

What could be a physiological role of OAA inhibition? SDH and com-
plex I together potentially can catalyze so-called reverse electron trans-
fer (RET) reaction, when succinate is used to reduce NAD+ at the
expense of proton-motive force [60]. This process would be dependent
on the catalytic rate of complex II. Inhibition of succinate oxidation by
specific inhibitors (malonate, atpenin or thenoyltrifluoroacetone) was
shown to decrease production of H2O2 by intact mitochondria [64,65].
In intact mitochondria, rates of ROS production during RET are consid-
erably higher than in any other conditions and it was suggested that
this reaction could be responsible for generation of excess of ROS during
ischemia/reperfusion [22]. Differential contribution of TCA cycle inter-
mediates and the conditional removal of endogenous OAA are key fac-
tors that control succinate-dependent ROS generation during RET [11,
59,66,67]. Therefore, maintenance of a SDH fraction in the “inactive”
form in situ may serve as a mechanism to modulate RET-dependent
ROS-production [11].

The emerging role of SDH in cancer, neurological disorders [16–19,
21,57,68], cell signalling [12–15] (including stabilization of transcrip-
tional factor HIF-1α [19]), immune response [20] and cardiovascular
conditions [22,23] highlights the need to determine if OAA has a regula-
tory function. Moreover, the use of a correct method to measure the ac-
tivity of SDH that takes into account potential OAA inhibition is crucial.
When measuring activity without the activation procedure, potential
differences in enzyme state can be obscured or even reversed depend-
ing on the levels of OAA-bound and free enzyme. Therefore, adopting
reliable methods for measuring SDH activity is crucial for biological re-
search in these areas. In isolated mitochondrial membranes, complex
II is only partially active. Thus, to measure total complex II activity it is
essential to ensure that the enzyme is fully activated either by
preincubation with succinate or malonate [7,69].

In summary, the data presented here indicate that OAA inhibition of
SDH occurs in brain, where OAA could be considered as a potential
endogenous effector of SDH activity. Furthermore, relevant to other tis-
sues, where OAA binds to SDH during isolation, such as heart, our
findings are important for the methodology of SDH activity
measurements.
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