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a b s t r a c t 

Despite the significant experimental effort made in the last decades, the origin of the ultra-high energy 

cosmic rays is still largely unknown. Key astrophysical information to identify where these energetic par- 

ticles come from is provided by their chemical composition. It is well known that a very sensitive tracer 

of the primary particle type is the muon content of the showers generated by the interaction of the 

cosmic rays with air molecules. We introduce a likelihood function to reconstruct particle densities us- 

ing segmented detectors with time resolution. As an example of this general method, we fit the muon 

distribution at ground level using an array of counters like AMIGA, one of the Pierre Auger Observatory 

detectors. For this particular case we compare the reconstruction performance against a previous method. 

With the new technique, more events can be reconstructed than before. In addition the statistical uncer- 

tainty of the measured number of muons is reduced, allowing for a better discrimination of the cosmic 

ray primary mass. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Although the origin of the ultra-high energy cosmic rays is still

unknown, significant progress has been recently achieved from

data collected by setups like the Pierre Auger Observatory [1] and

the Telescope Array [2] . The three main observables used to

study the nature of cosmic rays are their energy spectrum, arrival

directions, and chemical composition. Certainly, composition is a

crucial ingredient to understand the origin of these very energetic

particles [3] , to find the spectral region where the transition

between the galactic and extragalactic cosmic rays takes place [4] ,

and to elucidate the origin of the flux suppression at the highest

energies [5] . 

For energies larger than 10 15 eV, cosmic rays are studied by

observing the atmospheric showers produced when they interact

with the air molecules. Therefore composition has to be inferred

indirectly from parameters measured in air shower observations.

The observables most sensitive to the primary mass are the depth

of the shower maximum and the number of muons generated

during the cascade process. While the maximum depth is ob-

served with fluorescence telescopes, the muons are measured at

ground level and underground with surface and buried detectors
∗ Corresponding author. Tel.: +54 1167727528. 
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espectively. Besides composition, hadronic interactions can also

e studied with muons. At the highest cosmic ray energies the

adronic interactions are unknown, so models that extrapolate ac-

elerator data at lower centre-of-mass energy are used in shower

imulations. As the number of muons predicted by simulations

trongly depends on the assumed interaction model, the muon

ata can be used to discriminate among different scenarios [6–10] .

In Auger, using the water-Cherenkov detectors of its surface

rray, muons have been measured by disentangling them from

ther shower particles. However this technique can only be ap-

lied when muons produce a large fraction of the total signal.

hose special cases include inclined showers with zenith angle

etween 62 ° and 80 ° [8] , and also showers close to 60 °. However,

n this second case, only detectors more than 10 0 0 m away from

he shower core are used [7] . To include the more abundant

ertical showers and to extend the reach to lower energies, ded-

cated muon counters are called for. Currently Auger is building a

riangular array of muon counters spaced every 750 m as part of

he AMIGA project [11] . Once finished the AMIGA array will cover

3.5 km 

2 in a small region of the surface detector. The detector is

esigned to measure showers between 3 × 10 17 eV and 10 19 eV,

he upper limit determined by the number of events that can

e collected given the detector size. Each grid location will have

hree 10 m 

2 counters made out of plastic scintillator, buried 2.5 m

nderground, and divided into 64 scintillator strips of equal size.

he three counters installed at each array site are equivalent to a

http://dx.doi.org/10.1016/j.astropartphys.2016.06.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/astropartphys
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ingle 30 m 

2 detector divided into 192 bars. Muons are counted in

ime windows of 25 ns, the duration corresponding to the detector

ead time given by the width of the muon pulse. 

Close to the shower core the muons are accompanied by en-

rgetic electrons and gammas. However the soil shielding sig-

ificantly reduces the contamination of the detector signals by

hese electromagnetic particles. The soil density at the AMIGA site,

.4 g cm 

−3 , entails a shielding of 22 radiation lengths at 2.5 m un-

erground. Using these parameters, shower simulations including

he propagation of particles underground show that the electro-

agnetic contamination is negligible in AMIGA but very close to

he shower core [12] . 

AMIGA measures the fall of the muon density with the dis-

ance to the shower axis, i.e. the so-called lateral distribution func-

ion (LDF). The LDF evaluation at a reference distance is a long-

stablished method to characterise the size of an air shower [13] .

n the surface arrays of the cosmic ray observatories, the LDF is fit-

ed to the detector data by either minimising a χ2 or by maximis-

ng a likelihood function [14,15] . The used likelihood, modelling the

etector response to incoming particles, is specific to each detector

ype. In this paper we present a likelihood suitable for a particular

etector, namely a segmented particle counter with time resolu-

ion like that used in AMIGA. 

We fit the LDF to the detector data by maximising a likelihood

hat links a muon density to the observed signals. We previously

sed two likelihood models. In the first method we adopted an

pproximation valid for few muons in a detector [16] . Using this

pproach we showed in [17] that detectors saturate if there are

ore than 174 muons in a time window. As consequence events

ith a core falling less than 100 m from a detector cannot be re-

onstructed. To enlarge the statistics we later proposed another

ikelihood model valid for higher signals, thus covering an interval

here the detector response departs from linearity. In this second

ase, to obtain an analytic expression, the time resolution of the

etector had to be neglected. This method just considered whether

 scintillator bar has a signal during the whole duration of the

vent. 

Although the second likelihood improved the original one,

rouping muons into a single time window is a drawback since

hower particles arrive at the ground spread in time. For both the

lectromagnetic and muonic shower components, the Kascade-

rande array has measured signal widths of 70 ns beyond 400 m

rom the core [18] . At larger core distances, common in larger

bservatories, the particles arrive even more widespread and,

onsequently, the air shower signals extend over many 25 ns time

indows. To make the best use of the detector capabilities, we

mproved the likelihood by including the signal timing. We started

y considering the complete likelihood of a segmented detector

ith time resolution. To get rid of nuisance parameters present in

he full likelihood, we applied two different approximations: the

rofile [19] and the integrated likelihoods [20] . The first technique,

ell established in the field of high-energy physics, was used in

he discovery of the Higgs boson [21] . 

The following section describes the profile and the inte-

rated likelihoods, and Section 3 illustrates them with examples.

ection 4 presents the simulations used to evaluate the likelihoods.

e compare the performance of the new and old methods in

ection 5 , and conclude in Section 6 . 

. Likelihood of a segmented detector 

.1. Likelihood of a single time bin 

We built the profile and integrated likelihoods as extensions of

he single-window likelihood developed in [17] . For completeness

ome of the material developed in that work is summarised below.
e must recall that the main goal of the counters used in a cosmic

ay observatory is to estimate a particle density ( ρ). The density

ultiplied by the detector area ( a ) and the zenith angle cosine of

he shower direction is the average number of particles expected

n the counter ( μ), 

= ρ a cos θ . (1) 

n turn, μ is the parameter of a Poisson distribution that describes

he actual number of particles impinging on the detector. Cor-

espondingly, for a detector divided into n parts, the number of

uons in each segment fluctuates according to a Poissonian with

arameter μ/ n . 

The arriving particles produce a signal in some of the detector

egments. Occasionally two or more muons pile up in the same

egment. Depending on the number of particles, each segment can

ake two distinct states: on if hit by one or more muons, and off

therwise. According to Poisson, the probability of a segment off

s q = e −μ/n , and the odds of an on state is p = 1 − q . Since the

egment states are independent from each other, the probability of

 segments on out of a total of n segments follows the binomial

istribution, 

 (k ;μ) = L (μ; k ) = 

(
n 

k 

)
p k q n −k = 

(
n 

k 

)
e −μ

(
e μ/n − 1 

)k 
. (2)

n addition to a probability, Eq. (2) is the likelihood of μ expected

uons when k strips out of n are on . If k < n , the corresponding

aximum likelihood estimator ( ̂  μ) is, 

ˆ = −n ln 

(
1 − k 

n 

)
. (3) 

f k = n the likelihood tends to unity when μ increases, and the

aximum likelihood estimator of μ tends to infinity. In this case,

he likelihood sets a lower bound to the number of muons allowed

n the LDF fit [17] . Based on this behaviour we labelled these de-

ectors as saturated . 

The proposed likelihood only considers the detector size and

egmentation. This function excludes any signal contamination

roduced either in the detector electronics or in the photomulti-

liers. This simplified model of the likelihood is realistic because

he AMIGA detector filters out the detector noise. The electronic

oise is filtered by tuning the discrimination level applied to the

nalogue signals produced by the photomultipliers. In turn any ca-

ual photomultiplier after pulse is removed by requiring the digital

ignals to be compatible with at least two photoelectrons [22] . 

.2. Profile likelihood 

To extend the likelihood to many time bins, one has to con-

ider the time spread of the muon signal d μ( t )/ dt . The number of

xpected muons ( μ) is the integral of this signal over the event du-

ation, μ = 

∫ dμ(t) 
dt 

dt . Correspondingly, within a time bin, the num-

er of muons ( μi ) is the integral restricted to the window limits.

he sum of the μi ’s is μ. 

The AMIGA segmented detector counts particles in windows of

5 ns. For each of these time bins, the number of strips on ( k i ) is

omputed. Considering that the k i ’s of different time windows are

ndependent from each other, the likelihood of μi particles in the

 th bin is given by Eq. (2) . The likelihood of all time bins ( L ( μ)) is

he product of the single-window likelihoods, 

 ( μ) = 

∏ 

i =1 

L i (μi ) , (4)

here i runs over the time bins and μ = (μ1 , μ2 , . . . ) . 

In the LDF fit, the parameter of interest is the total number of

uons μ. However the value of μ alone is not enough to calcu-

ate the likelihood because this function also depends on each of
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Fig. 1. Contour levels of the function −2 ln L ( μ) /L max for a signal spread over two 

time bins. The parameters μ1 and μ2 are the numbers of muons in each bin. In 

this example the detector is divided into n = 192 segments, the first time bin has 

k 1 = 96 bars on , and the second one k 2 = 48 . The red cross indicates the global 

maximum ˆ μ of the likelihood L ( μ) and the dotted red line the corresponding lo- 

cal maxima at constant μ = μ1 + μ2 . Two contour levels defining the σ standard- 

deviation regions of μ [19] are displayed. The continuous blue line corresponds to 

a cut at a sample μ = μ1 + μ2 = 165 . Inset : Function −2 ln L ( μ) /L max along the cut 

μ = 165 . The local minimum is reached at μ∗
1 = 116 . (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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the μi ’s. An obstacle arises at this point, the lack of knowledge of

the signal time distribution d μ( t )/ dt prevents us from deriving the

μi ’s from μ. We overcame this issue by using a profile likelihood

( L P ( μ)). Following this approximated method we searched, for each

μ, the likelihood maximum under the restriction 

∑ 

μi = μ, 

L P (μ) = max ∑ 

μi = μ
L ( μ) . (5)

In this treatment of the likelihood, the μi ’s are nuisance pa-

rameters which are fixed by applying the profiling technique.

We performed the likelihood maximisation with the Minuit li-

brary [23] implemented in the ROOT data analysis framework [24] .

For some desirable mathematical properties mentioned below, we

used the profile likelihood ratio defined as, 

λ(μ) = 

L P (μ) 

L max 
. (6)

where L max is the global maximum of the likelihood calculated

without any restriction on μ. The likelihood reaches this maximum

when ˆ μ = ( ̂  μ1 , ˆ μ2 , . . . ) , all given by Eq. (3) . From Eq. (6) one can

see that λ varies between 0 and 1, the maximum value attained at,

ˆ μ = 

∑ 

ˆ μi . (7)

A λ close to unity means a likely value of μ given the observed

data, i.e. a μ close to ˆ μ. On the other hand, a low λ implies an

unlikely μ. 

Providing certain conditions are met, the distribution of f (μ) =
−2 ln λ(μ) approaches a χ2 distribution, independently from the

nuisance parameter values [25] . For a segmented particle counter,

these requirements translate to having many muons. However the

number of particles must not be so high as to saturate the detec-

tor. An upper limit to the number of muons is approximately three

times the number of detector strips. This bound corresponds to the

probability of a segment on to be 0.95. In most formal terms, this

condition is equivalent to asking that the binomial distribution of

the window with more muons can be approximated by a Gaus-

sian. Considering the values taken by λ, f ( μ) is always positive and

drops to zero at ˆ μ. If the quoted asymptotic conditions are met,

f ( μ) is approximately quadratic in a wide region around ˆ μ. Corre-

spondingly, in the LDF fit, the detector f ( μ) is equivalent to a χ2 

with a σ given by the width of the likelihood. The procedure to

obtain the profile likelihood is illustrated in Fig. 1 with a signal

spread over two time windows. 

2.3. Integrated likelihood 

Besides the profile likelihood, another useful technique to get

rid of nuisance parameters is the integrated likelihood. While in

the profile technique the nuisance parameters that maximise the

likelihood are searched for, in this second method the likelihood is

integrated over these parameters. To introduce the integrated like-

lihood, let us first rewrite the nuisance parameters as p i = μi /μ.

Consequently the condition 

∑ 

μi = μ is now given by 
∑ 

p i = 1 .

Considering this restriction and the single bin likelihood of Eq. (2) ,

the integrated likelihood can be written as, 

L I (μ) ∝ 

∫ 1 

0 

d p 1 · · ·
∫ 1 

0 

d p N 

N ∏ 

i =1 

exp (−μ p i ) 

× ( exp (μ p i /n ) − 1 ) 
k i δ

( 

N ∑ 

i =1 

p i − 1 

) 

, 

(8)

where N is the number of time bins and δ( x ) is the Dirac delta

function. 

In most cases, the integral in Eq. (8) has to be calculated nu-

merically, however for the case of two time intervals an analytic
xpression can be obtained (see Section 3.2 ). The integrated likeli-

ood requires the calculation of multidimensional integrals which

e computed using the VEGAS algorithm [26] implemented in

OOT. The computation of many time bins takes a long time; so

e reduced the number of involved integrals by calculating all the

ntervals having the same k i with a single integral. Applying this

ptimisation (see Appendix A for details), we arrived to the fol-

owing approximated expression of the integrated likelihood, 

L I (μ) ∝ 

∫ 1 /m 1 

0 

d p 1 · · ·
∫ 1 /m ˜ N 

0 

d p ˜ N 

˜ N ∏ 

i =1 

exp (−μ p i m i ) 

× ( exp (μ p i /n ) − 1 ) 
k i m i p m i −1 

i 
δ

( 

˜ N ∑ 

i =1 

p i m i − 1 

) 

, 

(9)

here m i is the multiplicity of the k i value and 

˜ N is the number of

 i values that are different among them. 

. Likelihood examples 

.1. The few muons limit 

So far we presented the complete likelihood of a segmented de-

ector and two different approximations applied to get rid of nui-

ance parameters. It is a desirable mathematical property that, in

ome limiting case, the approximations and the full method con-

erge to the same function. This condition is met by the three in-

roduced likelihoods if the number of muons is small compared to

he number of detector segments; in this case all of them tend to a

oisson distribution. Below we calculate this limit for each method.

The demonstration for the full likelihood starts with the single-

indow likelihood of Eq. (2) . If μi � n , the binomial distribution

f k i can be approximated by a Poisson distribution with parameter

i . Then the distribution of the variable k = 

∑ 

k i follows a Poisso-

ian with parameter μ = 

∑ 

μi . The corresponding likelihood is, 

 (μ) = e −μ μk 

. (10)
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Fig. 2. Single-window, profile and integrated likelihoods for a detector divided into 

192 segments. The parameter μ is the number of muons in the detector. Top: 

Counter with k 1 = 96 and k 2 = 48 segments on in the first and second time bins re- 

spectively (same example of Fig. 1 ). For the single-window likelihood we assumed 

k = 120 segments on . Bottom: Saturated detector with 192 and 96 bars on in the 

first and second time bins, respectively. 
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The function of Eq. (10) does not depend on the individual nui-

ance parameters μi but on their sum, i.e. the likelihood is pro-

led. For the integrated likelihood, the independence of the distri-

ution on the nuisance parameters p i allows the extraction of the

ntegrand in Eq. (8) to arrive to, 

 I (μ) ∼= 

exp (−μ) μk 

∫ 1 

0 

d p 1 · · ·
∫ 1 

0 

d p N 

N ∏ 

i =1 

(
p i 
n 

)k i 

× δ

( 

N ∑ 

i =1 

p i − 1 

) 

, 

∝ exp (−μ) μk , (11) 

hich corresponds to a Poisson likelihood. One has to consider

hat the Poisson approximation is only valid in the limited range of

mall μ. In the fit, the approximation must hold for likely values

f μ, i.e. the region around the likelihood maximum ˆ μ. In terms of

he data, this condition is equivalent to asking that, via Eq. (3) , k i 
μi � n . Therefore, if the number of segments on is small com-

ared to the detector segmentation, the exact, the profile, and the

ntegrated likelihoods are well approximated by the same Poisson

unction. 

.2. Example for two time bins 

The evaluation of f (μ) = −2 ln λ(μ) requires a numerical min-

misation to calculate the profile likelihood. However, in the special

ase of only two time windows, f ( μ) has the analytic expression, 

f (μ) = 2 μ − 2 

∑ 

i =1 , 2 

δ̄[ k i ] 

(
k i ln (k i /n ) 

+ (n − k i ) ln (1 − k i /n ) − k i ln 

(
e μ

∗
i 
/n − 1 

))
, 

(12) 

here μ∗
1 and μ∗

2 are the number of muons in each time window.

hese values correspond to the local maximum of the likelihood at

onstant μ1 + μ2 = μ. The function δ̄[ k i ] , used to include the case

f k i = 0 , is zero at k i = 0 and one otherwise. The value of μ∗
1 is, 

∗
1 (μ) = 

⎧ ⎨ 

⎩ 

−n ln 

(
− k 1 −k 2 

2 k 2 
+ 

√ (
k 1 −k 2 

2 k 2 

)2 + 

k 1 
k 2 

e −μ/n 

)
if k 1 > 0 

0 if k 1 = 0 . 

(13) 

orrespondingly μ∗
2 

is μ − μ∗
1 
. The function f ( μ) depends on μ

xplicitly as per Eq. (12) and also indirectly through the μ∗
i 
’s. If

 1 = k 2 , it can be seen from Eq. (13) that μ∗
1 = μ∗

2 = μ/ 2 . We ex-

loited this degeneracy, also present in the general case of more

han two time bins, to reduce the number of nuisance parameters.

y using fewer free parameters, we optimised the numerical min-

misation run to evaluate the profile likelihood. 

Also for the integrated likelihood technique it is possible to find

n analytic expression of the likelihood as a function of μ which

s given by, 

L I (μ) = exp (−μ) 

k 1 ∑ 

i =1 

k 2 ∑ 

j=1 

(
k 1 
i 

) (
k 2 
j 

)
(−1) k 1 + k 2 −i − j 

× ξ (μ, i, j, n ) , 

(14) 

here, 

(μ, i, j, n ) = 

⎧ ⎨ 

⎩ 

exp (μ j/n ) i = j 

n 

exp (μ i/n ) − exp (μ j/n ) 

μ (i − j) 
i � = j 

. (15)

We show next a comparison of the likelihoods corresponding

o the two-window example of Section 2.2 . The dotted red line
n Fig. 1 shows the local maxima of the likelihood L ( μ) at dif-

erent values of μ. The likelihood is evaluated along this curve

o calculate f (μ) = −2 ln λ(μ) via the profile likelihood. The f ( μ)

orresponding to the single-window, profile, and integrated likeli-

oods are shown in the top panel of Fig. 2 . The maximum likeli-

ood estimator of the number of muons is ˆ μ = ˆ μ1 + ˆ μ2 = 188 . 3

or both the profile and the integrated likelihoods. The number

f strips on required in single-window likelihood to produce the

ame ˆ μ as the other two binned methods, derived from Eq. (3) ,

s k = k 1 + k 2 − k 1 k 2 /n . For the particular example of k 1 = 96 and

 2 = 48 , the equivalent number of bars on in the single-window

ikelihood is k = 120 . Fig. 2 displays the 1 σ and 2 σ confidence in-

ervals defined by the conditions f (μ) = 1 and f (μ) = 4 respec-

ively. The f ( μ) of the profile and integrated likelihoods are very

imilar and have smaller confidence intervals than the exact like-

ihood. The resolution is enhanced with the two approximated

ethods because they consider the detector timing. 

The single-window likelihood saturates earlier than the profile

ne. While in the first case the variable k of Eq. (2) corresponds to

he bars that have a signal over the whole event duration, the k i ’s

f the profile likelihood refer to a single time bin. Since this second

ethod spreads the signal over many time bins, k is greater than

 i . Therefore the saturation condition, i.e. all bars on , is reached in

he single-window likelihood with fewer muons than in the profile

ethod. Because the integrated and the profile likelihoods rely on

he same signal binning, both techniques saturate identically. 
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Fig. 3. Average muon lateral distribution function fitted to the simulated detector 

data (continuous blue line). The fitted data correspond to the average number of 

muons in the AMIGA detectors calculated with simulations of iron primaries with 

energy E = 1 EeV and zenith angle θ = 30 ◦ . An example of the AMIGA response to 

a single shower of the same type is also shown for comparison, together with the 

corresponding fit of a Kascade-Grande–like muon LDF (dotted red line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Average time histograms at three different distances to the shower axis 

measured at the shower plane. The bin size of 25 ns corresponds to the detector 

time resolution. The histograms show the fraction of muons in each time bin. 
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The likelihoods corresponding to an event with two time bins,

of which the first one is saturated, are displayed in the bottom

panel of Fig. 2 . In this example the profile likelihood imposes a

more stringent limit than the single-window method to the num-

ber of muons. Although the integrated likelihood f ( μ) has a min-

imum, in practice it only works as a lower bound by imposing a

large penalty to small μ’s. 

4. Simulations 

We tested the performance of the different likelihoods with air

showers simulated with CORSIKA v7.3700 [27] using the high en-

ergy hadronic model EPOS-LHC [28] . We simulated proton and iron

primaries in the energy interval log 10 ( E /eV) ∈ [17.5, 19] in steps

of 	 log 10 (E/ eV ) = 0 . 25 for the zenith angles θ = 0 ◦, 30 °, and 45 °.
In the simulations, we applied an algorithm with an optimal sta-

tistical thinning of 10 −6 that reduced the number of tracked par-

ticles. We produced twenty proton and fifteen iron showers for

each energy and zenith angle combination. For each simulation

we recorded the number of muons crossing a 30 m 

2 area placed

2.5 m underground as in the AMIGA detectors. We considered the

shielding of the soil by selecting muons with energy greater than

1 GeV/cos θ , with θ the zenith angle of the muon. We computed

the average number of muons as function of the distance to the

shower axis, measured at shower plane, over each set of simu-

lated showers and fitted these values with a Kascade-Grande–like

muon LDF [14] . We also produced histograms of the muon arrival

times at different core distances. Fig. 3 shows the average LDF and

Fig. 4 the arrival time histograms at 3 different distances for 1 EeV

iron showers arriving at θ = 30 ◦. The arrival time histograms show

the fraction of particles arriving in 25 ns time bins with respect

to the total number of muons. We only considered muons above

1 GeV/cos θ , the threshold energy required to break through the

soil shielding. The histograms show that muons arrive more spread

in time farther away from the shower core. 

For a given energy and zenith angle we sampled each aver-

age shower many times varying the azimuth angle and the im-

pact position on the ground. We adjusted the simulated show-

ers with the single-window, profile and integrated likelihoods. The

integrated likelihood evaluation, involving multidimensional inte-

grals, requires a much larger computational time than the profile
ikelihood. Therefore we used different numbers of events with

ach method; we sampled each shower 1 0 0 0 times for the in-

egrated likelihood and 10 0 0 0 times for the other two methods.

ince the processing budget also increases with primary energy,

or the integrated likelihood we only reconstructed showers up to

og 10 (E/ eV ) = 18 . 5 . 

For each sampled event we calculated the distance of the coun-

ers to the shower axis. Then we evaluated the average LDF at each

istance to find the number of muons expected in each counter

 μ). Using μ as a parameter, we sampled the actual number of

uons from a Poisson distribution. We considered a detector as

ntriggered if it received two or fewer muons. We obtained the

rrival time of each muon by sampling the time distribution his-

ograms and calculated the number of muons in each 25 ns time

in accordingly. In a second step we randomly distributed the

uons across the detector and calculated how many segments

ere on . The number of strips on per time window is the input

ata to build the likelihood of each detector. We computed the

aximum of this likelihood to obtain an estimator of the muons,

ˆ , in each detector using Eq. (7) . Fig. 3 shows, for a single shower,

he ˆ μ of each triggered detector. The untriggered counters are rep-

esented in this plot with a down arrow. For each simulated event

e adjusted μ as function of the core distance with a second

ascade-Grande–like muon LDF. The energy reconstruction of the

vents is based on the evaluation of the fitted LDF at an optimal

istance ( r 0 ) at which the spread of the LDF is minimal [13] . For

easons that will be explained later, it is convenient to make of

he LDF value at r 0 a parameter of this function ( μ0 ). To isolate

his parameter we factorised the LDF ( μ( r )) into a normalisation

actor μ0 and a second function g ( r ), 

(r) = μ0 
g(r) 

g(r 0 ) 
. (16)

he function g ( r ), containing the distance dependence, is, 

(r) = 

(
r 

r 1 

)−α(
1 + 

r 

r 1 

)−β
(

1 + 

(
r 

10 r 1 

)2 
)−γ

, (17)

here r is the distance to the shower axis in the shower front,

= 0 . 75 , r 1 = 320 m , and γ = 2 . 95 . We adjusted μ0 and the slope

by minimising the function, 

2 ln L f it (μ0 , β) = −2 

∑ 

i 

ln λi (μ(r i , μ0 , β)) , (18)

here the sum runs over the detectors. For the i th counter,

is the function introduced in Section 2.2 , and r is the core
i i 



D. Ravignani et al. / Astroparticle Physics 82 (2016) 108–116 113 

Fig. 5. Fraction of saturated events for iron primaries at θ = 30 ◦ . The integrated 

likelihood has the same saturation as the profile method. The detector saturates 

more with the single-window likelihood than with the other two methods. 
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Fig. 6. Relative standard deviation of the lateral distribution function reconstructed 

using the profile likelihood. The curve corresponds to a global average calculated 

using all simulated showers. A minimum is reached close to 450 m. 
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istance. The input data of the fit are, through the λi functions,

he number of strips on per time window in each counter. For un-

riggered counters we used a Poisson likelihood, setting an upper

imit to the number of muons allowed in the LDF fit as in Ref. [16] .

ig. 3 shows the fit of the detector data simulated for a single

hower using the profile likelihood. 

. Reconstruction performance 

In this section we evaluate the performance of the reconstruc-

ions using the single-window, profile, and integrated likelihoods.

or this assessment we compared the bias and the fluctuations of

he μ0 inferred with each method. In addition to the properties of

his point estimator, we also look at the size of the μ0 confidence

ntervals derived from the LDF reconstructions. For brevity we only

how the results of iron primaries at θ = 30 ◦; the proton showers

nd the other simulated zenith angles have similar outcomes. 

.1. Saturation 

The fraction of saturated events increases with the primary en-

rgy as the signal deposited in the detectors raises. Given that sig-

als are spread in many time bins, detectors saturate less with the

rofile and the integrated likelihoods than with the single-window

ethod. Fig. 5 displays the fraction of saturated events with re-

pect to the total number of simulated events as function of en-

rgy for the profile and single-window reconstructions. The inte-

rated likelihood, using the same time window size, has the same

aturation as the profile method. Since 40% of the events saturate

t log 10 (E/ eV ) = 18 . 75 , we cut the analysis of the single-window

ikelihood at this energy. 

For the comparisons we only selected events which have all de-

ectors free of saturation. We excluded saturated events because

heir shower size parameters are reconstructed with a significant

ias [17] . Given the steepness of the lateral distribution of shower

articles, saturation happens mainly in detectors close to the core.

n these detectors the muon signal may also be contaminated by

lectromagnetic particles and hadrons. Preliminary simulations of

MIGA show that this contamination is below 1% at 100 m from

he shower core (J. M. Figueira, personal communication, 21 April

016). This distance is less than the average distance of the nearest

etector to the shower core, which is 230 m according to Ref. [16] .

ore detailed simulations are currently under way to study the

unch trough of electromagnetic particles. These simulations will

onfirm whether the punch trough can be neglected or not. If the
ontamination effect has to be considered, the current likelihood

odel will have to be updated accordingly. 

.2. Optimal distance 

The statistical fluctuations of the detector data are caused by

he combined contributions of the finite number of muons and the

etector segmentation. These variations propagate during the fit to

he estimated LDF parameters, introducing fluctuations in the re-

onstructed LDF. We evaluated the standard deviation of the fitted

DF as function of the core distance ( σ ( r )) using 

(r) 2 = 

∑ N 
i =1 (μi (r) − μ̄(r)) 2 

N − 1 

, (19) 

here N is the number of simulations, μi corresponds to the i th

econstructed LDF, and μ̄ to the μi ’s average. We calculated the

elative standard deviation of the LDF ( ε( r )) dividing σ ( r ) by μ̄.

he function ε( r ) represents the accuracy with which the array

econstructs the muon number at different distances. We derived

rst an ε( r ) for each simulated primary type, shower energy, and

enith angle, respectively. Afterwards we added these functions in

uadrature to obtain a global resolution ε g ( r ). Fig. 6 shows the

 g ( r ) corresponding to reconstructions with the profile likelihood.

he function ε g ( r ) reaches a minimum close to r 0 = 450 m . This is,

herefore, the optimal distance to measure the number of muons

ith AMIGA. The value of the reconstructed LDF at r 0 is taken as

he shower size estimator ( ̂  μ(450) ). 

The optimal distance of a segmented detector array like AMIGA

epends on the primary type, energy, and zenith angle. However

he ε( r ) value at the optimal distance of each specific shower

ype and the corresponding value at r 0 = 450 m differed in less

han 0.5% in all simulations. Therefore the convenience of adopt-

ng a single optimal distance for all events outweighs any resolu-

ion loss introduced by not using a different optimal distance for

ach shower type. In addition, the optimal distances of the single-

indow and integrated likelihoods are also close to r 0 = 450 m .

o, to ease the comparison between the different methods, we

dopted the same r 0 for all of them. 

Given the fluctuations in the detector signals, the fitted ˆ μ(450)

aries across reconstructions of the same shower. Fig. 7 shows

istograms of the ˆ μ(450) reconstructed with the profile, inte-

rated, and single-window likelihoods for 1 EeV iron showers ar-

iving at θ = 30 ◦. The three histograms coincide within statisti-

al uncertainties. Since ten times less reconstructions were run for

he integrated likelihood, its data have larger error bars than the
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Fig. 7. Distribution of the reconstructed number of muons at 450 m from the 

shower axis using the profile, integrated, and single-window likelihoods. The data 

of this and the following plots correspond to simulations of 1 EeV iron showers at 

θ = 30 ◦ . The histogram mean matches the simulated μ(450). 

Fig. 8. Relative bias of number of muons at 450 m from the shower core. Recon- 

structions with the profile, integrated, and single-window likelihoods together with 

the case of an ideal particle counter are shown. All observed biases are of the order 

of 1% or less. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Relative standard deviation of the muon density at 450 m from the shower 

core. The uncertainties of the four shown methods are similar up to log 10 (E/ eV ) = 

18 ; at higher energies the reconstruction with the single-window likelihood has less 

resolution than the other three cases. 
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other two methods. The plot also displays a Gaussian distribution

parametrised with the mean and the standard deviation of the pro-

file likelihood histogram. The distributions of ˆ μ(450) are well de-

scribed by the Gaussian. In this example the ˆ μ(450) distributions

are unbiased, i.e. the histogram means match the μ(450) of the in-

put LDF. For the three considered likelihoods the relative standard

deviation of ˆ μ(450) is close ε(450) = 6% . In the shown example,

the ˆ μ(450) distributions of the three likelihoods are similar be-

cause the shower μ(450) is much smaller than the 192 segments

of the AMIGA detector. 

5.3. Bias 

The comparison of the input μ(450) and the corresponding

value fitted afterwards to the simulated data is a valuable method

to assess the reconstruction performance. We estimated the bias as

the difference between the average μ̄(450) calculated over the re-

constructions and the input μ(450). As the reconstructed ˆ μ(450)

changes according to the likelihood applied in the LDF fit, the

ˆ μ(450) bias can also vary among the different methods. Fig. 8

shows their relative biases, calculated as the bias over μ(450), ver-

sus energy. The case of an ideal detector, that counts particles

without any pile-up effect, is also included in the comparison. The
ikelihood used for this detector is the Poissonian, 

 (μ) = e −μ μk 

k ! 
. (20)

here k is the number of counted particles. All observed biases are

f the order of 1% or less, the four methods can be considered as

nbiased. 

.4. Standard deviation 

The second quantity used to evaluate the reconstruction per-

ormance is the standard deviation of the ˆ μ(450) reconstructed in

he LDF fit ( σ (450)). The σ (450) measures the fluctuations of the

ˆ (450) fitted for a single event around the mean calculated over

ll events. The combination of a small bias and a low standard de-

iation allows for a good estimation of μ(450). These properties

re particularly important when estimating the shower size with a

ingle event, as usual in cosmic ray experiments. 

For the four evaluated likelihoods, we estimated the σ (450) rel-

tive to μ(450) (i.e ε(450)). Fig. 9 shows the corresponding ε(450)

s function of energy for iron showers at θ = 30 ◦. The ε(450) im-

roves with energy because showers contain more muons; with

ore particles more detectors are triggered and counters have

igher signals. The ε(450) calculated with the four methods is sim-

lar up to 1 EeV. At higher energies the profile reconstruction has

 better resolution than the single-window one. With the single-

indow likelihood the resolution flattens as muons start to pile up

n the counters. The effect is more noticeable at high energy, when

here are more muons and therefore they accumulate more. On the

ther hand, by using the profile and integrated likelihoods muons

istribute over many time windows, so there are fewer muons per

ime bin than in the single-window case. The ε(450) of the inte-

rated and profile likelihoods are close up to log 10 (E/ eV ) = 18 . 5 ,

he highest simulated energy for the integrated likelihood. The

deal counter sets a lower bound to the ε(450) achievable with

n AMIGA like array of 30 m 

2 detectors. In the considered energy

ange, the ε(450) of the profile likelihood is similar to this best

ase scenario. 

.5. Coverage 

The bias and standard deviation are properties of point estima-

ors like, in this case, ˆ μ(450) . On the other hand, coverage is the

ain measure of the confidence interval quality. For each event the
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Fig. 10. Coverage of the 1 σ confidence interval of μ(450). The dotted line shows 

the coverage of a Gaussian distribution. The coverage of the four reconstruction 

methods are approximately similar to each other and to the Gaussian value. 
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 σ errors of the LDF normalisation ˆ μ(450) and the slope parame-

er β are calculated during the reconstruction by setting −2 ln L f it 

n Eq. (18) equal to one. We parametrised the LDF with ˆ μ(450) in

q. (16) to obtain its confidence interval directly from the fit proce-

ure. The coverage of a confidence interval is defined as the prob-

bility it contains the true value of the estimated parameter. For

xample, the coverage of the 1 σ interval of a Gaussian distribution

s 0.68. In the more general case of a distribution approximately

aussian the coverage is expected to be close to this value. If the

ata errors are underestimated, or conversely the likelihood is too

arrow, the coverage of the confidence intervals derived from the

t can be significantly lower than the Gaussian value. This prop-

rty is equivalent to the high χ2 produced in a fit when data er-

ors are underestimated. In this sense, coverage is another way of

easuring the goodness of a fit. But while the χ2 usually refers to

 single fit, coverage quantifies quality over many events. 

We estimated the coverage of the μ(450) confidence intervals

s the fraction of reconstructed events that included, within the

entioned intervals, the input value used in the LDF simulations.

ig. 10 shows the coverage of the reconstructions of an iron pri-

ary at θ = 30 ◦ at different energies. This plot also shows the cov-

rage of the 1 σ interval corresponding to a Gaussian distribution.

he coverage of all reconstructions are close to each other and to

he Gaussian reference. 

. Conclusions 

We introduced two different methods to reconstruct the lateral

istribution function of air shower muons: the profile and the in-

egrated likelihoods. Both likelihoods extend a previous approach

y considering the detector timing. Although we applied the like-

ihoods to a specific cosmic ray detector, they can be used for

ny kind of segmented particle counters with time resolution. We

ound an optimal distance of 450 m to measure the shower size

arameter in a triangular array with 750 m between detectors. The

ew likelihoods improve the reconstruction in two aspects. Firstly,

y raising the number of muons a detector can handle before sat-

rating, more events can be reconstructed. The recovery is more

ignificant close to 10 EeV, the upper limit of the considered en-

rgy range, a region where events are usually scarce. Secondly, we

educed the statistical fluctuations of the parameter that measures

he shower size from 1 EeV upwards. This decrease allows for a

ore powerful discrimination between different primary masses

ased on the number of muons. By comparing to an ideal muon

ounter, we established that the resolutions achieved with the new
ikelihoods are close to the lower bound given the detector size

nd spacing. We also showed that the approximations introduced

or the profile and integrated likelihoods do not bias the recon-

tructed shower size parameter and kept the coverage of its 1 σ
onfidence interval close to the expected Gaussian nominal value. 

The shower size parameters reconstructed with the integrated

nd the profile likelihoods are very similar. Nevertheless the profile

ikelihood is the preferred reconstruction method given the much

horter time it takes to process the data. The correspondence be-

ween the profile and the integrated likelihood results, shows the

obustness of these techniques to reconstruct the muon lateral dis-

ribution with an array of segmented counters. 
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ppendix A. Integrated likelihood multiplicity 

In order to prove Eq. (9) let us write Eq. (8) in the following

ay, 

 I (μ) = 

∫ 1 

0 

d p 1 · · ·
∫ 1 

0 

d p N 

N ∏ 

i =1 

f (p i , k i ) δ

( 

N ∑ 

i =1 

p i − 1 

) 

, (A.1)

here f (p i , k i ) = exp (−μ p i ) ( exp (μ p i /n ) − 1 ) 
k i . Then, if there are

 time intervals that have the same k , it is possible to choose the

rst m values of i such that k 1 = · · · = k m 

= k . Let us consider the

ntegral, 

 1 

0 

dx δ

( 

x −
m ∑ 

i =1 

p i 

) 

= �

( 

1 −
m ∑ 

i =1 

p i 

) 

= 1 , (A.2)

here �(x ) = 1 if x ≥ 0 and �(x ) = 0 if x < 0. Here it is used

hat 
∑ m 

i =1 p i ≤ 1 . If the change of variable x = m ξ is considered,

q. (A.2) is written as, 

 

∫ 1 /m 

0 

dξ δ

( 

m ξ −
m ∑ 

i =1 

p i 

) 

= 1 . (A.3) 

herefore, inserting Eq. (A.3) in Eq. (A.1) and integrating over p m 

he following expression is obtained, 

L I (μ) = 

∫ 1 

0 

d p m +1 · · ·
∫ 1 

0 

d p N 

∫ 1 /m 

0 

d ξ
N ∏ 

i = m +1 

f (p i , k i ) 

δ

( 

m ξ + 

N ∑ 

i = m +1 

p i − 1 

) 

g(ξ , k, m ) , 

(A.4) 

here 

g(ξ , k, m ) = m 

∫ 1 

0 

d p 1 · · ·
∫ 1 

0 

d p m −1 

m −1 ∏ 

i =1 

f (p i , k ) 

f 

( 

m ξ −
m −1 ∑ 

i =1 

p i , k 

) 

�

( 

m ξ −
m −1 ∑ 

i =1 

p i 

) 

, 

(A.5) 

he integral in Eq. (A.5) cannot be analytically solved, then an ap-

roximated expression is obtained. For that purpose, let us con-

ider the function, 
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h (p 1 , . . . , p m −1 ) = ln 

[ 

m −1 ∏ 

i =1 

f (p i , k ) f 

( 

m ξ −
m −1 ∑ 

i =1 

p i , k 

) ] 

, 

= 

m −1 ∑ 

i =1 

ln f (p i , k ) + ln f 

( 

m ξ −
m −1 ∑ 

i =1 

p i , k 

) 

. 

It is easy to see that, 

∂h 

∂ p j 
(p 1 = ξ , . . . , p m −1 = ξ ) = 0 , (A.6)

which means that the vector � p = (ξ , . . . , ξ ) is an extreme of h .

Note that this property does not depend on the specific form of

f . The elements of the Hessian matrix evaluated in this vector are

given by, 

∂ 2 h 

∂ p i ∂ p j 
(p 1 = ξ , . . . , p m −1 = ξ ) = − exp (μ ξ/n ) 

( exp (μ ξ/n ) − 1) 2 

× kμ2 

n 

2 
(1 + δi j ) , 

(A.7)

where δij is the Kronecker delta ( δii = 1 and δi j = 0 for i � = j ).

Note that the diagonal elements of the Hessian matrix are nega-

tive, which means that � p = (ξ , . . . , ξ ) is a maximum. Considering

just the zero order of the Taylor expansion of h at � p = (ξ , . . . , ξ )

the following expression for g is obtained, 

g(ξ , k, m ) ∼= 

m f (ξ , k ) m 

∫ 1 

0 

dp 1 · · ·
∫ 1 

0 

dp m −1 �

( 

m ξ −
m −1 ∑ 

i =1 

p i 

) 

∼= 

m 

m 

(m − 1)! 
ξm −1 f (ξ , k ) m . (A.8)

Then, inserting Eq. (A.8) in Eq. (A.4) we obtain, 

L I (μ) ∼= 

m 

m 

(m − 1)! 

∫ 1 

0 

d p m +1 · · ·
∫ 1 

0 

d p N 

∫ 1 /m 

0 

d ξ
N ∏ 

i = m +1 

f (p i , k i ) 

× f (ξ , k ) m ξm −1 δ

( 

mξ + 

N ∑ 

i = m +1 

p i − 1 

) 

. (A.9)

Therefore, Eq. (9) is straightforwardly obtained from Eq. (A.9) . 
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