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Maximum Satisfiability (MaxSAT) is the optimization version of the Satisfiability (SAT)
problem. Partial Maximum Satisfiability (PMS) is a generalization of MaxSAT which involves
hard and soft clauses and has important real world applications. Local search is a popular
approach to solving SAT and MaxSAT and has witnessed great success in these two
problems. However, unfortunately, local search algorithms for PMS do not benefit much
from local search techniques for SAT and MaxSAT, mainly due to the fact that it contains
both hard and soft clauses. This feature makes it more challenging to design efficient local
search algorithms for PMS, which is likely the reason of the stagnation of this direction in
more than one decade.
In this paper, we propose a number of new ideas for local search for PMS, which mainly
rely on the distinction between hard and soft clauses. The first three ideas, including
weighting for hard clauses, separating hard and soft score, and a variable selection heuristic
based on hard and soft score, are used to develop a local search algorithm for PMS called
Dist. The fourth idea, which uses unit propagation with priority on hard unit clauses to
generate the initial assignment, is used to improve Dist on industrial instances, leading to
the DistUP algorithm.
The effectiveness of our solvers and ideas is illustrated through experimental evaluations
on all PMS benchmarks from the MaxSAT Evaluation 2014. According to our experimental
results, Dist shows a significant improvement over previous local search solvers on all
benchmarks. We also compare our solvers with state-of-the-art complete PMS solvers
and a state-of-the-art portfolio solver, and the results show that our solvers have better
performance in random and crafted instances but worse in industrial instances. The good
performance of Dist has also been confirmed by the fact that Dist won all random and
crafted categories of PMS and Weighted PMS in the incomplete solvers track of the MaxSAT
Evaluation 2014.
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1. Introduction

1.1. The problem

The Maximum Satisfiability problem (MaxSAT) is the optimization version of the Satisfiability problem (SAT). Given a 
propositional formula in the conjunctive normal form (CNF), i.e., F = ∧

i ∨jlij , the task in MaxSAT is to find an assignment to 
the variables that maximizes the number of satisfied clauses. A significant generalization of MaxSAT is the Partial MaxSAT 
(PMS) problem, in which clauses are divided into hard and soft clauses and the goal is to find an assignment that satisfies all 
hard clauses and maximizes the number of satisfied soft clauses. PMS is particularly interesting from an algorithmic point 
of view because the algorithms can exploit the distinction between hard and soft constraints. Such a structural feature has 
a great impact on the performance of algorithms.

Combinatorial optimization problems containing hard and soft constraints are very common in real world situations. 
PMS allows to encode such problems in a more natural and compact way than SAT and MaxSAT. PMS solvers has been 
successfully used in many fields, including network routing [31], scheduling problems [50] and timetabling problems [15]. 
More recent applications of PMS include FPGA routing [19], the haplotype inference by pure parsimony (HIPP) problem 
seeking to explain the genetic makeup of a population [20], as well as various planning problems, all of which are reviewed 
in a PhD thesis [18]. Some application problems, such as the optimal protein alignment problem and the HIPP problem,
have been encoded into PMS and used in the MaxSAT evaluations [7].

1.2. Related work

PMS (as a generalization of MaxSAT) is an NP-hard problem. Most existing practical algorithms for PMS are complete 
search algorithms, which prove the optimality of the solutions they find when they terminate (before reaching a time limit). 
There are numerous complete algorithms for solving PMS. A large family of complete algorithms for PMS employ a branch 
and bound algorithm strategy; they usually incorporate lower bound computation methods and utilize inference rules [35,
37,23,36,17].

In the last decade, the use of SAT solvers for solving MaxSAT problems has emerged as another paradigm. This approach 
is usually referred to as the SAT-based approach, and it is based on iteratively calling a SAT solver. SAT-based MaxSAT 
solvers can be divided into two categories: core-guided and model-guided. Core-guided algorithms refine the lower bound 
and guide the search with unsatisfiable subproblems (cores), while model-guided algorithms refine the upper bound and 
guide the search with satisfying assignments (models). Since Fu and Malik described their core-guided PMS algorithm PM1 
[19], there has been much interest in this direction, and many core-guided solvers have been developed [9,16,33,5,43,41,
40,44,45]. Core-guided PMS solvers are especially well known for their good performance on industrial instances. Some 
other approaches reduce PMS into a well-known optimization problem and use an off-the-shelf solver for such a problem. 
A successful example of such approaches is to reduce PMS into integer linear programs (ILP) and solve the instance by a 
Mixed Integer Programming (MIP) solver [3,48].

Although complete algorithms have shown great success in PMS solving, they may fail to find a good solution within 
reasonable time for large instances, as essentially they are systemic search approaches that explore the whole search space. 
An alternative approach to tackling the PMS problem is local search. As a popular approach to solving NP-hard combinatorial 
problems, local search is well known for its ability to quickly find a good-quality approximate (sometimes even optimal) 
solution. For combinatorial optimization problems, local search algorithms typically maintain a complete assignment for the 
problem, and iteratively modify the assignment (in the case of MaxSAT and PMS, this means flipping the value of a variable). 
An important feature of local search algorithms is that they keep track of the best assignment that was found throughout 
the search. This makes them anytime algorithms [55], i.e., they are expected to find better and better solutions the more 
time it keeps running. Therefore, efficient local search algorithms are particularly useful in real world applications where 
approximate solutions are acceptable while time limit is short or time resource is very important.

Local search has been shown to be effective for solving SAT, and is among the best known methods currently available 
for solving certain types of SAT instances, particularly since recent progress due to several algorithms [8,34,10,13]. Local 
search techniques for SAT can be directly applied or easily adapted to MaxSAT. Most early successful local search algorithms 
for SAT have been extended for approximating MaxSAT in the UBCSAT system [53], and a survey can be found in [25]. There 
have been also efforts devoted to specialized local search algorithms for MaxSAT, e.g., [49,1,54,21]. In particular, a recent 
local search algorithm for weighted MaxSAT called CCLS [38] won four categories in the incomplete track of the MaxSAT 
Evaluation 2013, thanks to the configuration checking strategy, which was initially proposed in [11] and has shown success 
in SAT solving [10]. Local search algorithms for weighted MaxSAT can be used to solve PMS, as PMS can be encoded into 
weighted MaxSAT, by setting the weight of each soft clause as 1 and that of each hard clause as the number of soft 
clauses plus 1. However, local search MaxSAT solvers cannot achieve comparable performance with complete PMS solvers 
on structured PMS instances, as witnessed by recent MaxSAT Evaluations.

Compared to the great success of local search for SAT and MaxSAT, there are only few studies on local search for PMS [31,
15,50,51], which were proposed since more than a decade. Although many local search techniques for SAT are also effective 
for solving MaxSAT, local search algorithms for PMS do not benefit that much from the techniques for SAT, mainly due to 
the fact that it contains both hard and soft clauses. To develop effective local search algorithms for PMS, it is necessary to 
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exploit the distinction between hard and soft clauses. One of the earliest works in this line is a weighted version of WalkSAT
[31], which also tackles PMS as weighted MaxSAT, but prefers to flip variables in falsified hard clauses. Afterwards, Cha et 
al. observed that the larger the weight differential between hard clauses and soft clauses, the slower the search is [15]. This 
insight has led to an algorithm in which the hard clause weight is set to a hand-tuned optimal level (rather than simply 
set to the number of soft clauses plus 1) [15]. This was further improved by Thornton et al. by maintaining a dynamic 
weight differential between hard and soft clauses [50,51], resulting in the TWO-LEVEL algorithm. Experimental results in 
[50] showed the superiority of dynamic weighting strategies over the fixed weighting strategy in [15].

1.3. Main contributions

In this paper, we propose a number of new ideas for local search for PMS, which mainly rely on the distinction between 
hard and soft clauses. Based on these ideas, we develop two local search algorithms for PMS called Dist and DistUP, the 
latter of which is an improved version of the former for industrial PMS instances.

The first idea we propose is a clause weighting scheme that only works on hard clauses. Indeed, the hard clauses of 
a PMS instance are tackled as a SAT formula for which weighted local search algorithms are efficient [52,46,10]. With the 
diversification achieved by this weighting scheme, the algorithm tends to visit different satisfying assignments for hard 
clauses, and thus different groups of feasible assignments. In this way, the algorithm can better explore the space of feasible 
assignments, and thus is more likely to come across better feasible assignments.

The second and more important idea is to separate hard score and soft score. Here the hard score of a variable is the 
change on the number (or total weight) of satisfied hard clauses caused by flipping the variable, and the soft score of a 
variable is the change on the number (or total weight) of satisfied soft clauses caused by flipping the variable. By separating 
hard score and soft score, the algorithm becomes more flexible, in the sense that it can pick the flipping variable according 
to either hard score or soft score, or both, according to different situations.

The third idea is a variable selection heuristic based on hard score and soft score. The heuristic distinguishes three 
different situations during the search, and uses hard score and soft score in different ways under each situation.

The three ideas mentioned above are used in developing a local search algorithm for PMS dubbed Dist, as it makes ef-
fective use of Distinctions between hard and soft clauses. Results of the MaxSAT Evaluation 2014 as well as our experiments 
show that Dist significantly outperforms previous local search solvers on all benchmarks from the MaxSAT Evaluation 2014, 
with a remarkable improvement in terms of the number of “winning” instances on structured PMS benchmarks. We also 
compare Dist with latest state-of-the-art complete solvers and a state-of-the-art portfolio solver on PMS benchmarks from 
the MaxSAT Evaluation 2014. Experimental results show that Dist outperforms the complete solvers on random and crafted 
benchmarks, while its performance on industrial instances is still considerably worse than complete solvers.

The aforementioned ideas and the Dist algorithm have been presented in [12], but in this article we add more exper-
iments and replace the complete solvers in our experiments with latest state-of-the-art ones. The following contributions 
are new in this article.

In order to improve the performance of Dist on industrial PMS instances, we propose an initialization procedure called 
PrioUP, which utilizes unit propagation and puts priority on hard unit clauses. The procedure produces a complete assign-
ment, which is then used as the initial assignment for the Dist solver. The resulting solver is called DistUP, and it significantly 
improves Dist on industrial instances, although it still cannot rival complete solvers.

We also perform experimental analysis and additional investigations on the ideas in this work. In detail, we compare Dist
with its four alternative versions, and the experimental results illustrate the effectiveness of the ideas; more interestingly, all 
alternatives based on separation of hard and soft score have better performance than previous local search algorithms, indi-
cating separation of hard and soft score is an essential technique and opens up a new direction for local search algorithms 
for PMS (and also weighted PMS). We also study the effectiveness of the PrioUP procedure on Weighted PMS industrial 
instances, and provide a discussion on the initialization procedure.

1.4. Structure of the paper

The remainder of this paper is organized as follows: some preliminary concepts are given in next section. We present 
in detail three new local search ideas for PMS in Section 3, and present the Dist algorithm in Section 4. Then we present 
the experimental study on Dist in Section 5. After that, we propose the PrioUP procedure, and apply it to improve Dist
in Section 6, where we also present experiments on the improved algorithm DistUP and a discussion on the initialization 
procedure. Finally, we give some concluding remarks and directions for future research.

2. Preliminaries

Given a set of n Boolean variables {x1, x2, ..., xn}, a literal is either a variable xi (which is called a positive literal) or its 
negation ¬xi (which is called a negative literal). A clause is a disjunction of literals (i.e., Ci = �i1 ∨�i2 ∨ ... ∨�i j ). A conjunctive 
normal form (CNF) formula F = C1 ∧ C2 ∧ ... ∧ Cm is a conjunction of clauses. Alternatively, clauses can be represented as 
sets of literals and a formula as a multiset of clauses.
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The variable to which a literal l refers is denoted by var(l). For a literal l, its polarity, denoted by polarity(l), is 1 if l
is positive and 0 if l is negative. For a literal l, we denote by ¬l the literal of opposite polarity, and ¬¬xi = xi . A complete 
truth assignment is a mapping that assigns to each variable either 0 or 1. Given an assignment, a clause is satisfied if it has 
at least one true literal, and falsified otherwise.

Given a CNF formula, the Partial MaxSAT (PMS) problem, in which some clauses are declared to be hard and the rest 
are declared to be soft, is the problem of finding an assignment such that all hard clauses are satisfied and the number of 
falsified (satisfied) clauses is minimized (maximized). The MaxSAT problem is a special case of PMS in which there are no 
hard clauses. We can also view the SAT problem as a special case of PMS in which there are no soft clauses.

For a PMS instance F , we say a truth assignment α is feasible iff it satisfies all hard clauses in F , and the cost of a feasible 
assignment α, denoted by cost(α), is defined to be the number of falsified soft clauses under α. An optimal assignment 
is a feasible assignment with minimum cost. The basic schema for local search algorithms for PMS (as with MaxSAT) is 
as follows. Starting with a complete assignment, the algorithm chooses a variable and flips it (i.e., changes its truth value) 
in each subsequent step, trying to find a feasible assignment with a lower cost. PMS can be encoded as weighted MaxSAT 
where hard clauses are associated with a weight larger than the total weight of soft clauses. A common variable property 
used in local search algorithms for weighted MaxSAT is the score property, which is defined as the change on the total 
weight of satisfied clauses caused by flipping the variable. However, in this work, a hard (resp. soft) score is calculated only 
on the hard (resp. soft) clauses.

A clause containing only one literal is a unit clause. For convenience, we use polarity(p) to denote the polarity of the 
literal in the unit clause p. The process of conditioning a CNF formula F on a literal l amounts to replacing every occurrence 
of literal l by the constant true, replacing ¬l by the constant false, and simplifying accordingly. Based on the multi-set 
notation of a CNF formula, the result of conditioning a CNF formula F on a literal l is denoted by F |l , which is defined as 
follows: F |l = {c\{¬l}|c ∈ F , l /∈ c, ¬l ∈ c} ∪{c|c ∈ F , l /∈ c, ¬l /∈ c}, and can be described succinctly as F |l = {c\{¬l}|c ∈ F , l /∈ c}. 
Note that F |l does not contain any literal l or ¬l.

The unit propagation technique is quite simple: For a given CNF formula, we collect all unit clauses in it, and then 
assume that variables are set to satisfy these unit clauses. That is, if the unit clause {xi} appears in the formula, we set xi
to true; and if the unit clause {¬xi} appears in the formula, we set xi to false. We then condition the formula on these 
settings. The iterative application of this rule until no more unit clause remains is called unit propagation (UP).

3. Exploiting the distinction between hard and soft clauses

In this section, we present three new ideas for local search for PMS, which heavily rely on the distinction between hard 
and soft clauses. These three new ideas are 1) weighting for hard clause, 2) separating hard score and soft score, and 3) a 
variable selection heuristic based on hard and soft score. These ideas form the major components of the Dist algorithm.

3.1. Weighting for hard clauses

In this subsection, we propose a clause weighting scheme that works only on hard clauses. This is essentially different 
from previous local search algorithms for PMS which also utilize clause weighting schemes, as they increase weights of all 
falsified clauses, including both hard and soft ones [15,50,51].

We now describe the weighting scheme. For each hard clause, we associate an integer number as its weight, which is 
initialized to 1 at the start of the algorithm.1 Whenever a “stuck” situation w.r.t. hard clauses is observed, that is, we cannot 
decrease the total weight of falsified hard clauses by flipping any variable, then hard clause weights are updated as follows:

with probability sp (smoothing probability), for each satisfied hard clause whose weight is larger than one, the clause weight is 
decreased by one; otherwise, the clause weights of all falsified hard clauses are increased by one.

The way that hard clause weights are updated is similar to the PAWS scheme [52], and thus we refer to this new 
weighting scheme as HPAWS (the hard clause version of PAWS). The only difference between PAWS and HPAWS is the 
condition to decrease clause weights. PAWS increases weights for falsified clauses by one in each step, and all clause weights 
are decreased by one after a fixed number of increases; while HPAWS employs a probability parameter to decide whether 
to increase weights or decrease weights in the step.

Our weighting scheme is the first one working only on hard clauses. Some intuitive explanations behind the idea of 
weighting only for hard clauses are presented below.

Why to use weighting for hard clauses: (1) Clause weighting for hard clauses helps to obtain feasible solutions. It iden-
tifies those hard clauses that are usually falsified in local optima, so that the algorithm can prefer to satisfy such hard 
clauses. In this way, we can avoid the situation that some hard clauses are always falsified in local optima. (2) Moreover, 
with the diversification achieved by the weighting scheme, the algorithm tends to visit different satisfying assignments for 
hard clauses, and thus different groups of feasible assignments. In this way, the algorithm can better explore the space of 
feasible assignments, and thus is more likely to come across better feasible assignments. In summary, using weighting for 
hard clauses is inspired by the success of weighting techniques for SAT [27,52,46,10].

1 When PMS is encoded as weighted MaxSAT (as in MaxSAT evaluations), hard clauses have weights due to the encoding. We note that the weights used 
in our algorithm are independent of the original weights of hard clauses. Actually, we only use the original weights to recognize hard clauses.
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Why not to use weighting for soft clauses: Some soft clauses might be usually falsified in local optima, due to the high 
cost of satisfying them, i.e., making more clauses falsified. Indeed, as is usually the case, there are some soft clauses falsified 
under optimal assignments. However, the object of PMS is to satisfy as many soft clauses as possible rather than all of them, 
under the constraint that all hard clauses are satisfied. Therefore, our opinion is that compelling the algorithm to satisfy 
“difficult” soft clauses at the price of falsifying more soft clauses has no clear benefits, and would mislead the algorithm 
towards feasible solutions with more falsified soft clauses.

3.2. Separating hard score and soft score

Most local search algorithms for SAT and MaxSAT problems utilize the variable property score, which measures the 
increase of the number (or total weight) of satisfied clauses caused by flipping a variable x. Previous local search algorithms 
for PMS also utilize the score property to pick variables. In this work, however, we propose to separate hard score and 
soft score, which allows us to make better use of the special structure of PMS and thus design more efficient local search 
algorithms for PMS.

The concepts of hard score and soft score are formally defined as follows:

Definition 1. (hard score) The hard score of a variable x, denoted by hscore(x), is the increase of the number (or total 
weight) of satisfied hard clauses caused by flipping x.

For convenience, we say a variable x is a 0-hscore variable if and only if hscore(x) = 0.

Definition 2. (soft score) The soft score of a variable x, denoted by sscore(x), is the increase of the number (or total weight) 
of satisfied soft clauses by flipping x.

Dist adopts the weighted version of hard score, as it employs a clause weighting scheme for hard clauses. Dist adopts 
the unweighted version of soft score for PMS instances, and the weighted version of soft score for Weighted PMS instances.

To facilitate our discussions about Dist afterwards, we give more definitions here. In local search algorithms for SAT and 
MaxSAT, a variable is said to be decreasing (which means its flip would decrease the cost of the assignment) if its score is 
positive, and increasing if its score is negative. Now, we extend the notion of decreasing variables to hard score and soft 
score.

Definition 3. For a variable x, x is hard-decreasing iff hscore(x) > 0, and is soft-decreasing iff sscore(x) > 0.

Previous local search algorithms for PMS utilize the score property, which can be seen as a weighted sum of hard score 
and soft score in the form of A · hscore(x) + sscore(x), where A is a positive integer number. Intuitively, because hard 
clauses are compelled to be satisfied, the factor A should be set very large (as an extreme case, A is set to the number of 
soft clauses plus one). On the other hand, the search would be quite restricted if A is too large. Hence, the main concern in 
previous local search algorithms for PMS is how to control the value of A to make the search more effective [15,50,51].

However, no matter what strategies they use, these algorithms set A to be a relatively large number so that hard clauses 
are more important than soft ones. Therefore, when using a heuristic preferring variables with greater scores, it is likely 
that those variables with greater hscores are actually picked. This is, in our opinion, a drawback of previous local search 
algorithms for PMS. We provide an informal explanation for this drawback as follows. Generally speaking, such local search 
algorithms focus on finding feasible solutions. It is difficult for them to leave an area of a cluster of feasible solutions, as 
there are infeasible solutions between two clusters of feasible solutions. Thus, the search space they explore would be quite 
limited.

In contrast to previous local search algorithms, we propose to separate hard score and soft score. This makes the algo-
rithm more flexible, in the sense that it can pick the flipping variable according to either hard score or soft score, or both, 
according to different situations.

3.3. Variable selection based on hard and soft scores

Based on the separation of hard and soft scores, we propose a variable selection heuristic for PMS that works in three 
levels. The scenario that the search faces varies considerably, and we divide them into three situations. The variable to be 
flipped is picked according to different scoring functions under each situation as follows:

1. There exist hard-decreasing variables. Flipping such variables will decrease the total weight of falsified hard clauses, and 
hence lead the search to feasible solutions. As the preliminary goal of PMS is to find a feasible solution, such variables 
are given the highest priority of being flipped.
However, there is still one question that needs to be answered: when there is more than one hard-decreasing variables, 
which one should be selected? Two natural answers are to pick the best one or to pick one uniformly at random. It 
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is difficult to decide which variable is the best, unless there is some variable whose hscore and sscore are both the 
greatest, which rarely happens. On the other hand, picking a variable at random uniformly is too diversifying in most 
cases. In our algorithm, we employ a balanced strategy called Best from Multiple Selections (BMS) [14], which chooses 
t variables (t is an integer parameter) randomly with replacement from the set of hard-decreasing variables and returns 
the one with the greatest hscore, breaking ties by preferring the one with the greatest sscore.

2. There are no hard-decreasing variables, yet there are variables with hscore of 0. In this case, we further consider those 
0-hscore variables with positive sscore, as flipping such variables would decrease falsified soft clauses without breaking 
more hard clauses. Therefore, flipping such variables is of clear benefit, especially when no hard-decreasing variables 
exist. Specifically, a variable with the best positive sscore is selected uniformly at random, which seems a fastest way 
towards the goal of PMS under this situation.

3. There are neither hard-decreasing variables nor 0-hscore soft-decreasing variables. This means the search gets stuck, as 
no improving flip is available. In this case, the weights of hard clauses are updated, and then a variable is picked from 
a falsified clause. Since hard clauses are compelled to be satisfied, we select a random falsified hard clause if any, and 
otherwise a random falsified soft clause is selected (this strategy has been used in [31]).
A question is then which variable should be chosen from the selected clause. Since before the stuck situation occurs we 
mainly focus on satisfying hard clauses or at least protecting them, here we need to diversify the search w.r.t. variables’ 
hscores. A good heuristic is to pick the variable with the greatest sscore, which is independent of the variables’ hscores, 
while at the same time helps to satisfy as many soft clauses as possible.

Note that, the early version of Dist [12] did not use the BMS strategy. In MaxSAT Evaluation 2014, we adopted the 
version described in this paper, except small modification for random benchmarks (the performance is similar).

4. The Dist algorithm

Based on the ideas from the preceding section, we develop an efficient local search algorithm for solving PMS, which is 
called Dist, as it makes effective use of the Distinctions between hard and soft clauses.

4.1. Description of Dist

The Dist algorithm is outlined in Algorithm 1:

Algorithm 1: Dist.
Input: PMS instance F , cutoff, parameters wp, t and sp
Output: A feasible assignment α∗ of F , or “no feasible assignment found”

1 α := randomly generated truth assignment;
2 cost∗ := +∞;
3 while elapsed time < cutoff do
4 if � falsified hard clauses & cost(α) < cost∗ then
5 α∗ := α; cost∗ := cost(α);

6 if H := {x|hscore(x) > 0} �= ∅ then
7 H ′ := {variables chosen from H via t samples with replacement};
8 v := the variable with the greatest hscore in H ′ , breaking ties by preferring the one with the greatest sscore;

9 else if S := {x|hscore(x)=0 & sscore(x)> 0} �= ∅ then
10 v := a variable in S with the greatest sscore, breaking ties randomly;

11 else
12 update weights of hard clauses according to HPAWS;
13 if ∃ falsified hard clauses then c := a random falsified hard clause;
14 else c := a random falsified soft clause;
15 if with probability w p then v := a random variable in c;
16 else v := a variable in c with the greatest sscore;

17 α := α with v flipped;

18 if cost∗ ≤ #(soft clauses) then return (cost∗, α∗);
19 else return “no feasible assignment found”;

In the beginning, Dist generates a complete assignment α randomly, and the cost of the best feasible solution, denoted by 
cost∗ , is initialized to +∞. After the initialization, a loop (lines 3–17) is executed to modify α until a given time limit 
is reached. During the search, whenever a better feasible solution is found, the best feasible solution α∗ , and cost∗ , are 
updated accordingly (lines 4–5).

In each iteration, Dist flips a variable, which is selected according to the variable selection heuristic mentioned in the 
previous section. First, if the set of hard-decreasing variables H is not empty, Dist picks a hard-decreasing variable with 
the greatest hscore from t samples with replacement from H , breaking ties by preferring the one with the greatest sscore
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(lines 6–8). If no hard-decreasing variable exists, then Dist picks a best variable (w.r.t. sscore) from the set S of variables 
with 0-hscore and positive sscore, breaking ties randomly (lines 9–10). If both H and S sets are empty, which means the 
algorithm gets stuck, then Dist updates hard clause weights according to the HPAWS weighting scheme described in the 
preceding section (line 12), and picks a variable from a falsified clause. Specifically, it chooses a clause randomly from 
falsified hard clauses if any, and from falsified soft clauses otherwise (lines 13–14). In order to make the algorithm more 
robust, we employ a random walk with a small probability in each random step (line 15), as suggested in [26]; Otherwise, 
the variable with the greatest sscore from the chosen falsified clause is selected (line 16).

Finally, when the loop terminates upon reaching the time limit, Dist reports cost∗ and the best feasible solution α∗ that 
has been found, if cost∗ is not greater than the number of soft clauses (this means a feasible solution is found, since cost∗
is initialized as +∞ and is updated only when a better feasible solution is found). Otherwise, Dist reports “no feasible 
assignment found”.

5. Experimental evaluation of Dist

We empirically evaluate Dist on PMS benchmarks from the MaxSAT Evaluation 2014, including all the three categories 
namely random, crafted and industrial. We compare Dist with state-of-the-art local search solvers and the best complete 
solvers for each benchmark, as well as a state-of-the-art portfolio solver. Finally, we empirically analyze the effectiveness of 
the underlying ideas in Dist.

5.1. Parameter setting and experiment setup

Dist is implemented in C++ and complied using g++ with the ‘-O3’ option. There are three parameters in Dist, namely 
the t parameter for the “Best from Multiple Selections” strategy, wp for random walk, and sp for the weighting scheme. 
Parameter settings have important impact on the performance of heuristic algorithms. To tune parameters automatically, 
some automatic configuration tools [29,30] have been developed and have shown their power on solving SAT and mixed 
integer programming. In this work, we utilized a powerful automatic configuration tool called SMAC (Sequential Model-based 
Algorithm Configuration) [30] to tune the parameter settings for our Dist algorithm. The parameter settings suggested by 
SMAC are as follows:

• For random benchmark: t = 3, wp = 0.1, sp = 0.01;
• For crafted benchmark: t = 17, wp = 0.105, sp = 0.013;
• For industrial benchmark: t = 42, wp = 0.091, sp = 0.00003.

As for the optimal setting of parameters, we observed that there were two outlier instance families namely “max-
clique/structured” and “reversi”, both from the crafted benchmark. We found that, the optimal value of t for “max-
clique/structured” and the optimal value of sp for “reversi” instances tend to be much smaller than the optimal values 
for the rest of the crafted benchmark. And for these two families, we use SMAC to find a different setting: (2, 0.1, 0.01) for 
the “maxclique/structured” family, and (15, 0.1, 0.0001) for the “reversi” family.

Our experiments were conducted on a workstation using an Intel(R) Core(TM) i7-2640M CPU with 2.8 GHz, 4 MB L3 
cache and 16 GB RAM, running Ubuntu 12.04 Linux operation system. We follow the evaluation methodology adopted in the 
incomplete solver track of the MaxSAT evaluations: Each solver is executed once on each instance within a time limit which 
is set to 300 seconds (the same as in the incomplete solver track of the MaxSAT evaluations). In each run, the solver prints 
successively the best solution it has found so far. For each solver on each instance family, we report within parentheses the 
number of instances where the solver finds the best solution, and the mean time of doing so over such “winning” instances 
(not including the proving time for complete solvers). The number of instances of each family is specified in the column 
“#ins.”. The rules at the MaxSAT Evaluations establish that the winner is the solver which finds the best solution for the 
most instances and ties are broken by selecting the solver with the minimum mean time. In bold we present the best 
results for each family.

5.2. Comparing Dist with local search solvers

We first compare Dist with state-of-the-art local search solvers, including those participating in the PMS categories of the 
incomplete track of the MaxSAT Evaluation 2014, as well as the TWO-LEVEL solver [51], which is the best specialized local 
search solver for PMS we can find, although it did not participate in the MaxSAT Evaluations. Most solvers participating 
in the PMS categories of the incomplete track are slightly modified from complete solvers, and there are only three local 
search solvers that participated in the PMS categories, namely Dist, CCLS and CCMPA. This is not surprising, as before Dist, 
there has been little progress in local search solvers for PMS.

Results on Random PMS Benchmark: Table 1 shows the comparative results of local search solvers on the random PMS 
benchmark in the MaxSAT Evaluation 2014. As is clear from the table, Dist gives the best performance on all instance 
families. We observe that Dist is more robust and more efficient than its competitors. Dist finds the best solution for all 
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Table 1
Comparative results for Dist and other local search solvers for PMS on random PMS benchmark. One instance from the “pmax2sat/hi” family 
(file_rpms_wcnf_L2_V150_C4000_H150_ 1.wcnf) has been proved (by most complete solvers in MaxSAT Evaluation 2014) that the hard clauses compose 
an unsatisfiable formula and thus no feasible assignment exists for the instance.

Instance set #ins. Dist CCLS CCMPA TWO-LEVEL

min2sat/v160c800l2 30 4.20(30) 6.62(30) 33.66(30) 0(0)
min2sat/v260c1040l2 30 2.86(30) 3.63(30) 28.98(30) 56.25(2)
min3sat/c70v350l3 30 1.03(30) 7.92(29) 10.62(30) 15.94(30)
min3sat/c80v400l3 30 0.96(30) 1.84(30) 23.07(30) 46.57(17)
pmax2sat/hi 30 0.01(29) 9.82(29) 4.14(28) 0.15(28)
pmax2sat/me 30 0.04(30) 3.34(29) 0.21(28) 0.41(30)
pmax3sat/hi 30 0.00(30) 0.01(30) 0.04(30) 0.01(30)

Total 210 209 207 206 137

Table 2
Comparative results for Dist and other local search solvers for PMS on crafted PMS benchmark.

Instance set #ins. Dist CCLS CCMPA TWO-LEVEL

frb 25 24.35(17) 16.04(24) 101.00(24) 31.79(5)
job-shop 3 4.38(3) 0(0) 0(0) 0(0)
maxclicque/random 96 0.28(96) 0.00(96) 1.36(95) 0.06(96)
maxclicque/structured 62 11.02(60) 13.76(49) 29.10(47) 16.20(40)
maxone/3sat 80 1.85(80) 4.77(78) 9.34(73) 0.00(69)
maxone/structured 60 18.97(51) 107.34(2) 66.40(9) 24.40(37)
min-enc/kbtree 42 1.87(42) 6.47(39) 119.26(21) 7.79(33)
pseudo/miplib 4 0.02(4) 0.01(4) 0.17(4) 0.00(3)
reversi 44 68.98(20) 135.76(1) 61.43(9) 1.39(4)
scheduling 5 148.67(5) 0(0) 0(0) 0(0)

Total 421 378 293 282 287

instances very quickly (one instance has no feasible solution), while the other local search solvers fail to find the best 
solution for some instances. Also, the averaged run time of Dist is usually much less than that of its competitors.

Results on Crafted PMS Benchmark: The experimental results of local search solvers on the crafted PMS benchmark are 
presented in Table 2. Among the 421 instances, Dist finds the best solution for 378 of them, while this number is 293, 282 
and 287 for CCLS, CCMPA and TWO-LEVEL respectively. Dist gives the best performance for 7 out of 10 instance families, 
which clearly shows its superiority over its competitors on crafted PMS instances. In fact, for the other 3 families, Dist
and the best solver for these 3 families namely CCLS have the same number of winning instances for 2 of the families 
(“maxclique/random” and “pseudo/miplib”). Overall, on the crafted PMS benchmark, Dist obviously has better performance 
than the other local search solvers, while the three competitor local search solvers (CCLS, CCMPA and TWO-LEVEL) have 
similar performance.

Results on Industrial PMS Benchmark: Table 3 summarizes the experimental results of local search solvers on the in-
dustrial PMS benchmark. Dist shows dramatic improvement over the other local search solvers. We observe significant 
performance gap between Dist and its competitors when comparing the solution quality they find. Dist finds the best solu-
tion for 384 out of 568 instances, while this figure is only 63, 112 and 38 for CCLS, CCMPA and TWO-LEVEL respectively. This 
indicates a significant improvement in the solving ability of local search solvers for industrial PMS instances.

5.3. Performance variability of local search solvers

To study the performance variability between independent runs and the robustness of the local search solvers, we con-
duct additional experiments to execute the local search solvers 10 times with different random seeds for some selected 
instances from each benchmark. For each benchmark, we select five instances from different families. The results are re-
ported in Table 4.

Seen from the results, the performance of Dist is quite robust on these instances, and is better than that of other local 
search solvers, except for the frb instance where CCLS and CCMPA find better solutions. For the random instances, these 
local search solvers usually find the best solution steadily, and Dist does so with less run time. For crafted and industrial 
instances, the solutions found by Dist are always significantly better than those found by other solvers with only one 
exception (i.e., the frb instance).

5.4. Comparing Dist with complete solvers

In this subsection, we compare Dist and state-of-the-art complete PMS solvers. In the following, we first introduce the 
complete solvers in our experiments, and then present the experiment results of comparing Dist and complete solvers on 
each benchmark respectively.



S. Cai et al. / Artificial Intelligence 240 (2016) 1–18 9
Table 3
Comparative results for Dist and other local search solvers for PMS on industrial PMS benchmark.

Instance set #ins. Dist CCLS CCMPA TWO-LEVEL

aes 7 129.25(2) 6.12(5) 102.05(6) 0.00(1)
atcoss/mesat 18 0(0) 0(0) 0(0) 0(0)
atcoss/sugar 19 38.05(7) 0(0) 21.22(1) 0(0)
bcp/fir 32 41.58(17) 69.02(17) 89.90(26) 0(0)
bcp/hipp-yRa1/simp 10 79.02(10) 0(0) 300.00(1) 0(0)
bcp/hipp-yRa1/su 38 68.17(38) 0(0) 0(0) 0(0)
bcp/msp 40 12.67(29) 0(0) 97.95(8) 22.04(9)
bcp/mtg 30 38.87(27) 0(0) 0(0) 66.28(2)
bcp/syn 38 18.89(14) 29.74(18) 96.14(36) 16.35(3)
circuit-trace-compaction 4 0(0) 0(0) 53.44(1) 0(0)
close_solutions 50 59.97(33) 40.80(11) 110.86(9) 34.73(6)
des 50 105.14(13) 0(0) 91.87(5) 0(0)
haplotype-assembly 6 38.80(6) 0(0) 0(0) 0(0)
hs-timetabling 2 10.13(1) 0(0) 0(0) 0(0)
mbd 46 118.85(46) 0(0) 0(0) 0(0)
packup-pms 40 85.35(40) 0(0) 0(0) 0(0)
pbo/mqc/nencdr 25 87.06(5) 0(0) 57.45(11) 0(0)
pbo/mqc/nlogencdr 25 104.57(24) 0(0) 0(0) 194.30(1)
pbo/routing 15 7.14(11) 121.34(1) 0(0) 5.38(15)
protein_ins 12 2.19(12) 7.34(11) 65.83(8) 0.01(1)
tpr/Multiple_path 36 93.47(24) 0(0) 0(0) 0(0)
tpr/One_path 25 123.37(25) 0(0) 0(0) 0(0)

Total 568 384 63 112 38

Table 4
Experimental results of Dist, CCLS, CCMPA and TWO-LEVEL with 10 runs on selected PMS instances. Each cell reports the result of a solver on an instance, 
where the first row reports the solution quality in the form “avg(min, max)”, and the second row reports the averaged run time. If a solver fails in all runs 
to find a feasible solution for an instance, then the corresponding results are marked with “N/A”.

Instance
Dist solution

avg. time
CCLS solution

avg. time
CCMPA solution

avg. time
TWO-LEVEL solution

avg. time

clq1-c2mv80c400l3g1.wcnf 56.0(56, 56) 56.0(56, 56) 56.0(56, 56) 56.0(56, 56)
0.11 4.75 13.54 10.89

clq1-cv260c1040l2g1.wcnf 67.0(67, 67) 67.0(67, 67) 67.0(67, 67) 70.7(68, 71)
0.09 0.81 17.08 174.11

file_rpms_wcnf_L2_V150_C3500_ 
H150_1.wcnf

679.0(679, 679) 679.0(679, 679) 679.0(679, 679) 679.0(679, 679)
0.00 0.60 6.65 0.00

file_rpms_wcnf_ 
L2_V150_C5000_H150_1.wcnf

1015.0(1015, 1015) 1015.0(1015, 1015) 1015.0(1015, 1015) 1015.0(1015, 1015)
0.00 0.00 0.26 0.01

file_rpms_wcnf_ 
L3_V100_C800_H100_1.wcnf

21.0(21, 21) 21.0(21, 21) 21.0(21, 21) 21.0(21, 21)
0.00 0.00 0.06 0.00

brock400_1.clq.wcnf 373.6(373, 375) 375.0(375, 375) 375.0(375, 375) 375.5(373, 376)
83.11 0.03 3.64 62.26

cnf_small.wcnf 49.5(31, 84) N/A 52841.8(40225, 67053) N/A
211.25 N/A 30.36 N/A

dp02s02.shuffled.cnf.wcnf 100.0(100, 100) N/A 1101.0(1101, 1101) 100.6(100, 101)
0.00 N/A 41.82 0.36

frb40-19-1.partial.wcnf 721.5(721, 722) 720.0(720, 720) 720.0(720, 720) 724.6(724, 725)
40.03 9.29 63.34 0.05

rev44-24.wcnf 9.4(0, 26) N/A 16.7(0, 66) N/A
180.50 N/A 128.14 N/A

6ebx_.1era_.g.wcnf.t.wcnf 30.0(30, 30) 35.4(30, 36) 34.8(30, 36) N/A
10.41 5.81 35.12 N/A

c1355_F1gat@0.wcnf 27.5(22, 33) N/A 133.8(84, 167) N/A
0.19 N/A 63.36 N/A

cnf.8.p.9.wcnf 11.4(10, 13) N/A N/A N/A
137.89 N/A N/A N/A

normalized-ii16a1.wcnf 1178.9(1132, 1279) N/A 50088.0(50088, 50088) N/A
0.09 N/A 0.36 N/A

SAT02_industrial_biere_dinphil_
dp10s10.shuffled.cnf.wcnf.8.wcnf

326.8(240, 609) N/A 7760.0(7760, 7760) N/A
29.20 N/A 1.22 N/A
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Table 5
Comparative results of Dist and complete solvers on random PMS benchmark. One instance from the 
“pmax2sat/hi” family (file_rpms_wcnf_L2_V150_C4000_H150_1.wcnf) does not have feasible solution.

Instance set #ins. Dist ahmaxsat

min2sat/v160c800l2 30 4.20(30) 20.20(29)
min2sat/v260c1040l2 30 2.86(30) 28.39(28)
min3sat/c70v350l3 30 1.03(30) 55.07(30)
min3sat/c80v400l3 30 0.96(30) 98.48(24)
pmax2sat/hi 30 0.01(29) 4.64(30)
pmax2sat/me 30 0.04(30) 1.21(30)
pmax3sat/hi 30 0.00(30) 29.03(30)

Total 210 209 201

Table 6
Comparative results of Dist and complete solvers on crafted PMS benchmark.

Instance set #ins. Dist Open-WBO-In scip-maxsat WPM-2014-in

frb 25 45.56(22) 48.29(17) 109.52(9) 56.18(20)
job-shop 3 0(0) 42.05(3) 0(0) 66.31(3)
maxclicque/random 96 0.28(96) 33.22(58) 82.01(94) 60.07(81)
maxclicque/structured 62 6.26(59) 4.13(18) 54.45(31) 70.93(24)
maxone/3sat 80 1.85(80) 23.65(78) 5.91(80) 42.71(61)
maxone/structured 60 18.97(51) 11.49(58) 68.25(56) 12.57(60)
min-enc/kbtree 42 1.87(42) 41.80(6) 75.07(42) 128.02(5)
pseudo/miplib 4 0.02(4) 7.48(4) 2.86(4) 60.82(4)
reversi 44 50.11(14) 13.41(38) 51.33(8) 49.80(38)
scheduling 5 0(0) 0(0) 0(0) 254.85(5)

Total 421 368 280 324 301

• For the random PMS benchmark, we compare Dist with ahmaxsat [2], which won the random PMS category of the 
complete solvers track in the MaxSAT Evaluation 2014.

• For the crafted and industrial PMS benchmarks, we compare Dist with three complete solvers, namely scip-maxsat [48], 
Open-WBO-In [41,40] and WPM-2014-in [5,4]. The first two solvers are the best non-portfolio solvers in the crafted and 
industrial PMS category of the MaxSAT Evaluation 2014 respectively.2 WPM-2014-in participated in the incomplete track 
and won both industrial categories of PMS and Weighted PMS, and its early versions also won several categories of the 
complete track in the past few evaluations [5].

• For the industrial benchmarks, we also include the complete solver Eva500 in our experiments. As Eva500 performs a 
lower bound based core-guided search, it only reports one feasible solution, when it proves optimality. Thus, it is unfair 
to directly compare Eva with other solvers which print the better-quality solution (‘o’ line) immediately once the solver 
finds one. As a reference, we report the number of solved instances for Eva500 just to indicate the performance of the 
current state-of-the-art complete solver Eva500 on industrial PMS benchmarks.

We note that, to make a fair comparison, the running time of complete solvers for solving a “winning” instance only 
includes the time to get the best found solution and does not include the time to prove it (if it is optimal). To this end, we 
executed the complete solvers with the runsolver software [47] to get the CPU time for each ‘o’ line, and the time for the 
last ‘o’ line was recorded.

Results on Random PMS Benchmark: The results comparing Dist and ahmaxsat on random PMS instances are presented 
in Table 5, which clearly show that Dist performs better than the complete solver ahmaxsat on random PMS instances, in 
terms of the solution quality and the run time. For the instances where ahmaxsat finds the optimal solution, Dist finds 
the optimal solutions with much less averaged time. For the other instances (except one instance which has no feasible 
solution), Dist finds better solutions than ahmaxsat, and we tend to believe those solutions are optimal. Overall, the number 
of “winning” instance of Dist is 8 more than that of ahmaxsat.

Results on Crafted PMS Benchmark: The experimental results comparing Dist and complete solvers on the crafted PMS 
benchmark are presented in Table 6. Among 421 instances, Dist finds the best solution for 368 of them, more than all the 
complete solvers. In detail, Dist gives the best performance for 6 out of 10 instance families. For the remaining 4 families, 
2 of them are dominated by Open-WBO-In while the other 2 families are dominated by WPM-2014-in. We also note that Dist
is the only local search solver that performs better than all complete solvers on crafted PMS instances, as witnessed by the 
results of the MaxSAT Evaluation 2014.

Results on Industrial PMS Benchmark: Table 7 summarizes the experimental results comparing Dist and complete solvers 
on the industrial PMS benchmark. Overall, for these industrial instances, Dist achieves similar performance with the ILP-

2 http :/ /www.maxsat .udl .cat /14 /results /index .html.

http://www.maxsat.udl.cat/14/results/index.html
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Table 7
Comparative results for Dist and complete solvers on industrial PMS benchmark.

Instance set #ins. #prov. by Eva Dist Open-WBO-In scip-maxsat WPM-2014-in

aes 7 1 178.31(3) 24.43(1) 131.44(5) 0(0)
atcoss/mesat 18 8 0(0) 150.12(9) 0(0) 160.92(10)
atcoss/sugar 19 11 0(0) 43.16(15) 0(0) 118.80(13)
bcp/fir 32 29 46.36(15) 7.50(32) 45.29(28) 15.96(29)
bcp/hipp-yRa1/simp 10 8 98.10(7) 30.95(9) 0(0) 46.29(10)
bcp/hipp-yRa1/su 38 31 79.92(28) 6.00(31) 0(0) 43.01(30)
bcp/msp 40 16 13.12(28) 98.86(9) 87.32(15) 90.36(13)
bcp/mtg 30 30 32.56(12) 0.09(30) 126.45(14) 0.16(30)
bcp/syn 38 17 25.36(14) 32.03(13) 20.56(35) 49.11(6)
circuit-trace-compaction 4 3 0(0) 27.47(4) 114.91(1) 46.29(4)
close_solutions 50 29 56.78(27) 32.47(46) 67.27(6) 64.02(42)
des 50 29 0(0) 51.78(30) 0(0) 181.24(42)
haplotype-assembly 6 5 0(0) 1.35(5) 195.07(1) 0.32(5)
hs-timetabling 2 1 10.13(1) 56.44(1) 0(0) 18.21(1)
mbd 46 42 0(0) 12.33(46) 281.01(2) 50.54(34)
packup-pms 40 40 47.25(6) 38.62(40) 15.00(38) 6.26(40)
pbo/mqc/nencdr 25 25 0(0) 61.57(21) 0(0) 65.63(21)
pbo/mqc/nlogencdr 25 25 289.02(1) 35.18(25) 286.42(1) 11.69(25)
pbo/routing 15 15 7.14(11) 0.36(15) 86.17(11) 0.77(15)
protein_ins 12 4 2.19(12) 111.73(10) 8.05(1) 164.11(5)
tpr/Multiple_path 36 30 17.50(2) 73.06(28) 0(0) 129.46(22)
tpr/One_path 25 25 0(0) 38.27(24) 278.13(3) 140.41(24)

Total 568 424 167 444 161 421

Table 8
Experimental results comparing Dist with the portfolios solver ISAC+−pms 2014. The ‘VBS’ column reports the results for Virtual Best Solver, which hypo-
thetically calls Dist for the instances where Dist has better performance and calls ISAC+−pms for the instances where ISAC+−pms has better performance.

Benchmark #ins. Dist ISAC+−pms VBS

Random PMS 210 1.31(209) 50.23(166) 1.34(210)
Crafted PMS 421 8.37(366) 25.71(403) 13.92(421)
Industrial PMS 568 43.46(161) 53.57(540) 50.55(556)

based solver scip-maxsat, but still cannot compete with the core-based complete solvers. Nevertheless, Dist gives the best 
performance for 3 instance families, namely “bcp/hipp-yRa1/simp”, “bcp/msp” and “protein_ins”.

To sum up, when compared with complete solvers, Dist performs better on random and crafted PMS instances. But the 
performance of Dist is worse than core-based complete solvers on industrial instances, although it represents a significant 
improvement over previous local search solvers.

5.5. Comparing Dist with portfolio solver

In this subsection, we compare Dist with a state-of-the-art portfolio solver for PMS, namely ISAC+−pms [6], which 
showed better performance than all non-portfolio solvers and won the crafted and industrial categories of the complete 
solvers track in the MaxSAT Evaluation 2014.

As with complete solvers, the running time of ISAC+−pms for solving a “winning” instance only includes the time to get 
the best found solution and does not include the time to prove it (if it is optimal). To this end, we executed ISAC+−pms
with the runsolver software. Originally, ISAC+−pms outputs all ‘o’ lines just before its termination. For our experiments, we 
modified the python script of ISAC+−pms to let ISAC+−pms output the ‘o’ line in a successive way so that we could record 
the correct run time for getting the best found solution (the last ‘o’ line). We also report the results for a Virtual Best Solver 
(that is, for each instance it hypothetically calls the best solver for the instance to solve it), to see how the performance 
of Dist can contribute to an expanded portfolio, under the slightly idealizing assumption that Dist could be called for all 
instances on which it performs better than the existing portfolio.

The results comparing Dist with the portfolio solver ISAC+−pms are presented in Table 8. It is clear that Dist has better 
performance than ISAC+−pms on the random PMS benchmark, while ISAC+−pms has stronger performance on the crafted 
and industrial benchmarks. The results of Virtual Best Solver are better than ISAC+−pms on all the benchmarks. This indi-
cates that including Dist into the portfolio solver would make a stronger portfolio solver on all the benchmarks.

5.6. Effectiveness of the underlying ideas in Dist

In this section, we conduct further empirical analyses to study effectiveness of the key components in Dist, including the 
clause weighting scheme that works only for hard clauses, as well as strategies in the variable selection. We compare Dist
with its four alternatives, which are modified from Dist as follows:
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Table 9
Experimental results comparing Dist with its variants. For each benchmark, each cell reports for each solver the number of “winning” instances in the 
benchmark and the averaged run time over these “winning” instances.

Benchmark #ins. Dist Dist_alt1 Dist_alt2 Dist_alt3 Dist_alt4

Random PMS 210 1.31(209) 32.06(49) 0.01(60) 20.41(163) 3.57 (207)
Crafted PMS 421 9.39(375) 15.11(341) 10.32(352) 13.53(353) 10.84(330)
Industrial PMS 568 68.81(277) 70.58(200) 56.52(182) 74.58(213) 54.01(149)

• Dist_alt1: update clause weights for all clauses (replace line 12 in Algorithm 1). This variant is tested in order to study 
the effectiveness of clause weighting scheme that works only for hard clauses.

• Dist_alt2: when hard-decreasing variables exist, pick the one with the best hscore, breaking ties in favor of the one with 
the greatest sscore (replace lines 7–8 in Algorithm 1).

• Dist_alt3: when hard-decreasing variables exist, pick one of them uniformly at random. (replace lines 7–8 in Algo-
rithm 1). Both Dist_alt2 and Dist_alt3 are tested in order to study the effectiveness of the BMS heuristic in choosing a 
hard-decreasing variable to be flipped.

• Dist_alt4: always pick a random variable from the selected falsified clause (replace lines 15–16 in Algorithm 1). This 
variant is tested in order to study the effectiveness of the idea of combining random walk with a greedy strategy that 
chooses a variable with the greatest soft score from the selected falsified clause.

The experimental results (Table 9) demonstrate the superiority of Dist over these variants, which indicates the effective-
ness of the algorithmic components. Specifically, the comparison between Dist and Dist_alt1 indicates the effectiveness of 
the clause weighting scheme that works only for hard clauses; the superiority of Dist over Dist_alt2 and Dist_alt3 demon-
strate the effectiveness of the BMS (Best from Multiple Selections) heuristic in choosing the hard-decreasing variable for 
flipping; finally, the comparison between Dist and Dist_alt4 indicates the effectiveness of the idea of combining random 
walk with a greedy strategy for choosing the flipping variable from the selected falsified clause.

We also note that these degraded alternatives of Dist still exhibit significantly better performance than previous local 
search solvers on crafted and industrial benchmarks. This indicates that heuristics based on separated hard score and soft 
score are more promising for solving structured PMS instances than previous local search methods.

6. Improving Dist on industrial PMS instances

The preceding section has shown the excellent performance of Dist on random and crafted PMS instances, which is better 
than that of state-of-the-art solvers, including both complete and incomplete (i.e. local search) solvers. However, for indus-
trial PMS instances, although Dist significantly outperforms other local search solvers, its performance is still unsatisfactory, 
and there is an obvious gap between the performance of Dist and state-of-the-art complete solvers.

In this section, we aim to improve Dist on industrial PMS instances. To this end, we propose a procedure for generating 
a good initial assignment for local search algorithms for PMS and utilize it to improve Dist, resulting in a new local search 
PMS solver called DistUP.

6.1. Initialization via priority unit propagation

In this subsection, we propose a procedure of generating an initial assignment for local search algorithms for PMS. The 
procedure employs an unit propagation (UP) technique that puts priority on hard unit clauses, and thus is named PrioUP.

Before we present the details of the PrioUP procedure, we first introduce the key data structures. The array value records 
the assigned value for each variable. For each variable x, value(x) has 4 possible values {−2, −1, 0, 1}, and their meanings 
are explained as below:

• value(x) = −2 means x is forbidden to be assigned. When unit clauses l and ¬l appear in F simultaneously (due to 
previous propagations), the corresponding variable x is forbidden to be assigned, as assigning x would cause a conflict.

• value(x) = −1 means x is unassigned.
• value(x) = 0 means x is assigned with the value 0.
• value(x) = 1 means x is assigned with the value 1.

The queue Q is a priority queue that stores all unit clauses for propagation. In Q , hard unit clauses have higher priority 
than soft ones. All hard unit clauses have the same priority and are managed in an FIFO (First In First Out) manner, and so 
do the soft ones. Since each unit clause has only one literal, Q indeed stores those literals. Note that we avoid duplication 
(i.e., a literal appears more than one time) in Q , and also avoid including opposite literals in Q . This is accomplished via 
an auxiliary array polarity_in_Q .

The auxiliary array polarity_in_Q records the information for each variable with regards to its appearance in Q . For 
each variable x, polarity_in_Q (x) records whether x appears in Q , and the polarity of the literal when x appears in Q . It 
has 3 possible values {−1, 0, 1}, as explained below:
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• polarity_in_Q (x) = −1 means x does not appear in Q (we say a variable x appears in Q , if Q contains either x or ¬x).
• polarity_in_Q (x) = 0 means the literal ¬x is in Q .
• polarity_in_Q (x) = 1 means the literal x is in Q .

The PrioUP procedure is outlined in Algorithm 2,

Algorithm 2: PrioUP (F ).
Input: A CNF formula F
Output: An assignment of variables in F

1 For each variable x, value(x) := −1, polarity_in_Q (x) := −1;
2 Build the priority queue Q by inserting all unit clauses into Q ;
3 while Q �= ∅ do
4 l :=GetFirstLiteral(Q ) and x := var(l);
5 remove l out of Q ;
6 if value(x) = −1 then
7 value(x) := polarity(l);
8 F := F |l ;
9 foreach newly generated unit clause p do

10 y := var(p);
11 if polarity_in_Q (y) = −1 then
12 enqueue p in Q ;
13 polarity_in_Q (y) := polarity(p);

14 else if polarity_in_Q (y) �= polarity(p) then
15 value(y) := −2;

16 foreach x with value(x) = −1 or value(x) = −2 do
17 value(x) := a random number from {0, 1} ;

18 return value;

and explained as follows. In the beginning, each variable is marked as “unassigned”, and all unit clauses in the formula F
are added into the queue Q .

While Q is not empty, the first literal (or say, unit clause) l in Q is extracted from Q and propagated. The variable 
corresponding to literal l is denoted as x. We know that x could not have been propagated (i.e., value(x) could not be 0 
or 1), as otherwise the formula as well as Q would not contain any literal of x. Thus, value(x) is either −1 or −2.

If value(x) = −1, which means x is unassigned, then x is assigned to the value of polarity(l) to satisfy the unit clause l, 
and F is conditioned on the literal l. If this process generates any new unit clause, for each such unit clause p, we do the 
following checking and operations if needed. Let y denote the corresponding variable of p. If neither literal p nor literal ¬p
is in Q (i.e., polarity_in_Q (y) = −1), then p is enqueued into Q , and polarity_in_Q (y) is set to polarity(p). Otherwise, 
if literal p is already in Q , we do nothing (we do not add p into Q for avoiding duplication). If literal ¬p is in Q (i.e., 
polarity_in_Q (y) �= polarity(p)), then variable y is marked as “forbidden” (by setting value(y) to −2), as p and ¬p appear 
in the formula simultaneously and assigning y would cause a conflict.

If value(x) = −2, which means x is forbidden to be propagated, we just ignore it. A principle in our unit propagation 
initialization procedure is to avoid generating conflicts. Thus, for variables marked as “forbidden”, we would rather leave 
them unassigned during the unit propagation procedure, as assigning them would cause empty clauses.

Finally, after Q becomes empty, if there are variables unassigned, including those with value(x) = −1 and also those 
with value(x) = −2, then these variables are assigned 0 or 1 uniformly randomly.

6.2. The DistUP solver

We apply the PrioUP procedure to improve the Dist solver, leading to the DistUP solver. This is done by modifying only a 
few lines of codes of Dist.

In the following, we illustrate how to apply PrioUP to improve a local search PMS solver. To facilitate our discussions, 
we assume that local search algorithms allow to accept a specific assignment as its initialized assignment.3 Let us recall 
the general scheme of local search algorithms for PMS. Starting with a complete assignment α, a local search algorithm 
chooses a variable and flips it in each search step. Whenever finding a feasible assignment with a lower cost, the algorithm 
records it as the best found assignment. To apply the PrioUP procedure to a local search solver, we first generate a complete 
assignment α using PrioUP, and then execute the local search solver on the original PMS instance with α as its initial 
assignment. Note that the instance is modified in the PrioUP procedure, but we use the original instance for local search. 

3 For this, we only need to perform minor modifications to the initialization of the given local search procedure.
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Table 10
Comparative results for DistUP and Dist on the industrial PMS benchmark from the MaxSAT Evaluation 2014.

Instance set #ins. Dist DistUP

aes 7 134.21(6) 166.48(4)
atcoss/mesat 18 0(0) 0(0)
atcoss/sugar 19 131.94(1) 148.08(6)
bcp/fir 32 56.05(26) 35.43(30)
bcp/hipp-yRa1/simp 10 79.02(10) 20.08(7)
bcp/hipp-yRa1/su 38 68.35(35) 45.83(32)
bcp/msp 40 0.28(22) 42.95(30)
bcp/mtg 30 51.35(13) 42.66(27)
bcp/syn 38 63.76(30) 74.19(34)
circuit-trace-compaction 4 0(0) 0(0)
close_solutions 50 52.90(29) 28.64(42)
des 50 89.04(9) 153.50(16)
haplotype-assembly 6 1.26(1) 75.04(5)
hs-timetabling 2 0(0) 232.53(1)
mbd 46 121.29(24) 21.90(25)
packup-pms 40 57.34(9) 65.56(38)
pbo/mqc/nencdr 25 89.97(4) 121.38(8)
pbo/mqc/nlogencdr 25 133.61(14) 100.62(11)
pbo/routing 15 7.14(11) 25.46(15)
protein_ins 12 2.19(12) 3.40(12)
tpr/Multiple_path 36 78.62(15) 71.14(9)
tpr/One_path 25 161.41(16) 87.71(10)

Total 568 287 362

That is, we do not fix the value of any variable and all variables are treated equally during the local search. In this way, 
variables which are assigned incorrectly by PrioUP have a chance to be corrected.

6.3. Empirical evaluations of DistUP

In this subsection, we evaluate the performance of DistUP on industrial PMS instances from the MaxSAT Evaluation 
2014. We observe that almost all these industrial PMS instances have unit clauses. Indeed, as stated in [39], most industrial 
MaxSAT and SAT instances have a non-negligible number of unit clauses, and researchers have pointed out the importance 
of such clauses. The PrioUP procedure can be considered as a step towards exploiting unit clauses in local search solvers for 
PMS.

We first compare DistUP with the Dist solver from Section 4, and then compare DistUP with state-of-the-art complete 
solvers on industrial PMS instances. Additionally, we also compare DistUP with Dist and a state-of-the-art complete solver 
on industrial Weighted PMS instances from the MaxSAT Evaluation 2014. The experimental environment and protocol in 
this section are the same as those used in Section 5. Also note that, the run time for DistUP always includes the time for 
PrioUP. Indeed, PrioUP terminates in one second for all the instances in our experiments.

6.3.1. Experiments of DistUP on industrial PMS instances
The experimental results comparing Dist and DistUP on the industrial PMS benchmark are presented in Table 10, which 

clearly demonstrate the significant improvement of DistUP over Dist. Among the 568 industrial PMS instances, DistUP have 
362 “winning” instances, compared to 287 for Dist. DistUP has better performance than Dist on 13 instance families, and 
has worse performance on 7 families. According to these experimental results, the performance of local search solvers on 
industrial PMS instances can be improved by using the PrioUP procedure to generate the initial assignment.

We also compare DistUP with complete solvers on industrial PMS instances, and the experiment results are presented in 
Table 11. Although DistUP usually finds better solutions than Dist on industrial PMS instances, the solution quality returned 
by DistUP is still worse than complete solvers on many instances, and thus DistUP does not show an obvious increase in the 
number of “winning” instances. Nevertheless, DistUP does have 24 more “winning” instances than Dist when compared to 
the same complete solvers. Indeed, like the case for SAT, improving local search solvers on industrial benchmarks of PMS (or 
other MaxSAT variants) remains a big challenge. This has been emphasized in a recent paper [24]. Although DistUP cannot 
yet rival complete solvers on industrial benchmarks, experiments comparing DistUP with Dist and previous local search 
solvers show significant progress in this direction.

6.3.2. Experiments of DistUP on industrial weighted PMS instances
In order to study the effectiveness of the PrioUP procedure on Weighted PMS industrial instances, we also compare Dist

and DistUP on Weighted PMS industrial instances from the MaxSAT Evaluation 2014. We utilize the automatic configuration 
tool SMAC [30] to tune the parameter settings for Dist on the Weighted PMS industrial benchmark from the MaxSAT Evalu-
ation 2014, and the suggested setting is: t = 18, wp = 0.1 and sp = 0.013. We use this parameter setting for both Dist and 
DistUP.
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Table 11
Comparative results for DistUP and complete solvers on the industrial PMS benchmark.

Instance set #ins. #prov. by Eva DistUP Open-WBO-In scip-maxsat WPM-2014-in

aes 7 1 180.83(3) 24.43(1) 131.44(5) 0(0)
atcoss/mesat 18 8 0(0) 150.12(9) 0(0) 160.91(10)
atcoss/sugar 19 11 71.38(1) 45.82(14) 0(0) 118.80(13)
bcp/fir 32 29 26.45(14) 7.50(32) 45.29(28) 15.96(29)
bcp/hipp-yRa1/simp 10 8 21.21(5) 30.95(9) 0(0) 46.29(10)
bcp/hipp-yRa1/su 38 31 45.98(27) 6.00(31) 0(0) 49.86(31)
bcp/msp 40 16 42.95(30) 98.86(9) 87.32(15) 90.36(13)
bcp/mtg 30 30 32.46(19) 0.09(30) 126.45(14) 0.16(30)
bcp/syn 38 17 35.29(15) 32.03(13) 20.56(35) 49.11(6)
circuit-trace-compaction 4 3 0(0) 27.47(4) 114.91(1) 46.29(4)
close_solutions 50 29 30.96(38) 32.47(46) 67.27(6) 64.02(42)
des 50 29 15.39(1) 51.79(30) 0(0) 178.69(41)
haplotype-assembly 6 5 0(0) 1.35(5) 195.07(1) 0.32(5)
hs-timetabling 2 1 232.53(1) 56.44(1) 0(0) 18.21(1)
mbd 46 42 0(0) 12.33(46) 281.01(2) 50.54(34)
packup-pms 40 40 0.82(6) 38.62(40) 15.00(38) 6.26(40)
pbo/mqc/nencdr 25 25 0(0) 61.57(21) 0(0) 65.63(21)
pbo/mqc/nlogencdr 25 25 45.02(2) 35.18(25) 286.42(1) 11.69(25)
pbo/routing 15 15 25.46(15) 0.36(15) 86.17(11) 0.77(15)
protein_ins 12 4 3.40(12) 111.73(10) 8.05(1) 164.11(5)
tpr/Multiple_path 36 30 146.72(2) 73.06(28) 0(0) 129.46(22)
tpr/One_path 25 25 0(0) 38.27(24) 278.13(3) 140.41(24)

Total 568 424 191 443 161 421

Table 12
Comparative results for Dist and DistUP on the industrial Weighted PMS benchmark.

Instance class #ins. Dist DistUP

dustrial/haplotyping-pedigrees 100 62.19(35) 123.76(93)
hs-timetabling 14 190.12(3) 0.00(0)
packup-wpms 99 115.38(20) 81.04(79)
industrial/preference_planning 29 0.00(1) 36.99(25)
timetabling 26 140.47(7) 115.07(1)
ustrial/upgradeability-problem 100 0.23(3) 0.09(97)
wcsp/spot5/dir 21 65.81(14) 45.67(12)
wcsp/spot5/log 21 94.29(16) 61.39(18)

Total 410 99 325

Table 13
Comparative results for DistUP and WPM-2014-in on the industrial Weighted PMS benchmark.

Instance class #ins. #prov. by Eva DistUP WPM-2014-in

dustrial/haplotyping-pedigrees 100 97 12.13(30) 29.55(100)
hs-timetabling 14 0 0.00(0) 241.10(14)
packup-wpms/ 99 99 0.03(2) 17.81(99)
industrial/preference_planning 29 28 13.93(7) 16.41(29)
timetabling 26 10 38.74(2) 134.02(21)
ustrial/upgradeability-problem 100 100 0.00(0) 1.07(100)
wcsp/spot5/dir 21 14 13.16(6) 73.79(21)
wcsp/spot5/log 21 14 78.38(17) 50.51(9)

Total 410 362 64 393

The experimental results are summarized in Table 12, which show that DistUP obtains better solutions than Dist on 
most of the instances. Overall, DistUP finds a better or equal quality solution on 325 instances among the 410 instances. 
Specifically, DistUP performs better on 5 instance families, and worse on the other 3 families. These experimental results 
indicate that the PrioUP procedure is also beneficial for solving Weighted PMS in most cases.

However, the performance of DistUP on industrial instances of Weighted PMS is still much worse than complete solvers. 
For example, we compared DistUP with WPM-2014-in on these Weighted PMS industrial instances, and the results (Table 13) 
show that the number of “winning” instances of WPM-2014-in is much more than that of DistUP. Nevertheless, we would 
like to note that DistUP performs much better than WPM-2014-in on one family namely “wcsp/spot5/log”. In this sense, it 
could be complementary to some extent to complete solvers for solving Weighted PMS industrial instances.
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6.4. Related work and discussions on PrioUP

There is some work on improving local search algorithms by constructing effective initial solutions, most of which are 
studied in the context of the Most Probable Explanation (MPE) in Bayesian networks [32,28,42]. With regard to MaxSAT, 
Hains et al. transformed MaxSAT to Walsh polynomials and compute the hyperplane averages, which are then used to gener-
ate the initial assignment [21]. Their experiments on unweighted industrial MaxSAT benchmark from the MaxSAT Evaluation 
2012 show that, by replacing the randomized initialization with the hyperplane-based initialization, better solutions can be 
obtained.

Unit propagation preserves the satisfiability of the instance but does not preserve the number of falsified clauses for 
every assignment. Due to this fact, the use of UP was mainly restricted to the SAT problem, and UP was not applied to 
local search algorithms for MaxSAT until recently. To the best of our knowledge, there are only two studies using UP in 
local search algorithms for MaxSAT in the literature [22,1], and we are not aware of any work using UP in local search 
algorithms for PMS. Heras and Bañeres [22] proposed several preprocessors for MaxSAT and applied them before local 
search algorithms. One of the preprocessors is the UP preprocessor, which iteratively performs the following operations 
until no more non-propagated unit clause remains: it first executes a simulation of unit propagation (i.e., the consequences 
are not applied to the formula) to find a conflicting clause, and then builds the corresponding refutation tree,4 and finally 
it applies MaxSAT resolution as indicated by the refutation tree to transform the formula. Abramé and Habet [1] integrated 
the UP technique into a local search algorithm, by applying UP after each flip step to dynamically build refutation trees and 
detect conflicts. The processing technique in [1] is similar to the one in [22], but it is used dynamically during the search 
process. Both of these two methods are mainly evaluated on random and crafted unweighted MaxSAT instances.

7. Conclusions and future work

In this work, we proposed a number of novel ideas for local search for Partial MaxSAT, which exploit the distinction 
between hard and soft clauses. Specifically, we proposed a clause weighting scheme that works only for hard clauses, the 
idea of separating hard and soft score, and a variable selection heuristic based on hard score and soft score. We then used 
these ideas to develop a local search algorithm for PMS called Dist. Experimental results show that Dist dramatically outper-
forms previous local search algorithms. Also, Dist outperforms complete algorithms on random and crafted benchmarks, but 
is still worse on industrial instances. Further, we proposed an initialization procedure that makes use of unit propagation 
and puts priority on hard unit clauses, and applied it to improve Dist on industrial instances, resulting in the DistUP solver. 
Experimental results show that DistUP significantly improves Dist on industrial PMS and WPMS instances, yet it cannot rival 
state-of-the-art complete solvers.

This work made a breakthrough in local search for PMS, which was also confirmed by the excellent performance of Dist
in the MaxSAT Evaluation 2014. The strong experimental results suggested that local search based on hard and soft score 
is a promising direction for solving PMS and deserves further research, and we would like to extend these methods to 
weighted Partial MaxSAT. Another interesting direction is to study the initialization methods for MaxSAT problems.
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