
Artificial Intelligence 240 (2016) 1–18
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

New local search methods for partial MaxSAT

Shaowei Cai a,∗, Chuan Luo b,c, Jinkun Lin c, Kaile Su d

a State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
b Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
c School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
d Institute for Integrated and Intelligent Systems, Griffith University, Brisbane 4111, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 June 2015
Received in revised form 29 April 2016
Accepted 28 July 2016
Available online 3 August 2016

Keywords:
Partial MaxSAT
Local search
Hard and soft score
Initialization

Maximum Satisfiability (MaxSAT) is the optimization version of the Satisfiability (SAT)
problem. Partial Maximum Satisfiability (PMS) is a generalization of MaxSAT which involves
hard and soft clauses and has important real world applications. Local search is a popular
approach to solving SAT and MaxSAT and has witnessed great success in these two
problems. However, unfortunately, local search algorithms for PMS do not benefit much
from local search techniques for SAT and MaxSAT, mainly due to the fact that it contains
both hard and soft clauses. This feature makes it more challenging to design efficient local
search algorithms for PMS, which is likely the reason of the stagnation of this direction in
more than one decade.
In this paper, we propose a number of new ideas for local search for PMS, which mainly
rely on the distinction between hard and soft clauses. The first three ideas, including
weighting for hard clauses, separating hard and soft score, and a variable selection heuristic
based on hard and soft score, are used to develop a local search algorithm for PMS called
Dist. The fourth idea, which uses unit propagation with priority on hard unit clauses to
generate the initial assignment, is used to improve Dist on industrial instances, leading to
the DistUP algorithm.
The effectiveness of our solvers and ideas is illustrated through experimental evaluations
on all PMS benchmarks from the MaxSAT Evaluation 2014. According to our experimental
results, Dist shows a significant improvement over previous local search solvers on all
benchmarks. We also compare our solvers with state-of-the-art complete PMS solvers
and a state-of-the-art portfolio solver, and the results show that our solvers have better
performance in random and crafted instances but worse in industrial instances. The good
performance of Dist has also been confirmed by the fact that Dist won all random and
crafted categories of PMS and Weighted PMS in the incomplete solvers track of the MaxSAT
Evaluation 2014.

© 2016 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail address: shaoweicai.cs@gmail.com (S. Cai).
http://dx.doi.org/10.1016/j.artint.2016.07.006
0004-3702/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2016.07.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:shaoweicai.cs@gmail.com
http://dx.doi.org/10.1016/j.artint.2016.07.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2016.07.006&domain=pdf

2 S. Cai et al. / Artificial Intelligence 240 (2016) 1–18
1. Introduction

1.1. The problem

The Maximum Satisfiability problem (MaxSAT) is the optimization version of the Satisfiability problem (SAT). Given a
propositional formula in the conjunctive normal form (CNF), i.e., F = ∧

i ∨jlij , the task in MaxSAT is to find an assignment to
the variables that maximizes the number of satisfied clauses. A significant generalization of MaxSAT is the Partial MaxSAT
(PMS) problem, in which clauses are divided into hard and soft clauses and the goal is to find an assignment that satisfies all
hard clauses and maximizes the number of satisfied soft clauses. PMS is particularly interesting from an algorithmic point
of view because the algorithms can exploit the distinction between hard and soft constraints. Such a structural feature has
a great impact on the performance of algorithms.

Combinatorial optimization problems containing hard and soft constraints are very common in real world situations.
PMS allows to encode such problems in a more natural and compact way than SAT and MaxSAT. PMS solvers has been
successfully used in many fields, including network routing [31], scheduling problems [50] and timetabling problems [15].
More recent applications of PMS include FPGA routing [19], the haplotype inference by pure parsimony (HIPP) problem
seeking to explain the genetic makeup of a population [20], as well as various planning problems, all of which are reviewed
in a PhD thesis [18]. Some application problems, such as the optimal protein alignment problem and the HIPP problem,
have been encoded into PMS and used in the MaxSAT evaluations [7].

1.2. Related work

PMS (as a generalization of MaxSAT) is an NP-hard problem. Most existing practical algorithms for PMS are complete
search algorithms, which prove the optimality of the solutions they find when they terminate (before reaching a time limit).
There are numerous complete algorithms for solving PMS. A large family of complete algorithms for PMS employ a branch
and bound algorithm strategy; they usually incorporate lower bound computation methods and utilize inference rules [35,
37,23,36,17].

In the last decade, the use of SAT solvers for solving MaxSAT problems has emerged as another paradigm. This approach
is usually referred to as the SAT-based approach, and it is based on iteratively calling a SAT solver. SAT-based MaxSAT
solvers can be divided into two categories: core-guided and model-guided. Core-guided algorithms refine the lower bound
and guide the search with unsatisfiable subproblems (cores), while model-guided algorithms refine the upper bound and
guide the search with satisfying assignments (models). Since Fu and Malik described their core-guided PMS algorithm PM1
[19], there has been much interest in this direction, and many core-guided solvers have been developed [9,16,33,5,43,41,
40,44,45]. Core-guided PMS solvers are especially well known for their good performance on industrial instances. Some
other approaches reduce PMS into a well-known optimization problem and use an off-the-shelf solver for such a problem.
A successful example of such approaches is to reduce PMS into integer linear programs (ILP) and solve the instance by a
Mixed Integer Programming (MIP) solver [3,48].

Although complete algorithms have shown great success in PMS solving, they may fail to find a good solution within
reasonable time for large instances, as essentially they are systemic search approaches that explore the whole search space.
An alternative approach to tackling the PMS problem is local search. As a popular approach to solving NP-hard combinatorial
problems, local search is well known for its ability to quickly find a good-quality approximate (sometimes even optimal)
solution. For combinatorial optimization problems, local search algorithms typically maintain a complete assignment for the
problem, and iteratively modify the assignment (in the case of MaxSAT and PMS, this means flipping the value of a variable).
An important feature of local search algorithms is that they keep track of the best assignment that was found throughout
the search. This makes them anytime algorithms [55], i.e., they are expected to find better and better solutions the more
time it keeps running. Therefore, efficient local search algorithms are particularly useful in real world applications where
approximate solutions are acceptable while time limit is short or time resource is very important.

Local search has been shown to be effective for solving SAT, and is among the best known methods currently available
for solving certain types of SAT instances, particularly since recent progress due to several algorithms [8,34,10,13]. Local
search techniques for SAT can be directly applied or easily adapted to MaxSAT. Most early successful local search algorithms
for SAT have been extended for approximating MaxSAT in the UBCSAT system [53], and a survey can be found in [25]. There
have been also efforts devoted to specialized local search algorithms for MaxSAT, e.g., [49,1,54,21]. In particular, a recent
local search algorithm for weighted MaxSAT called CCLS [38] won four categories in the incomplete track of the MaxSAT
Evaluation 2013, thanks to the configuration checking strategy, which was initially proposed in [11] and has shown success
in SAT solving [10]. Local search algorithms for weighted MaxSAT can be used to solve PMS, as PMS can be encoded into
weighted MaxSAT, by setting the weight of each soft clause as 1 and that of each hard clause as the number of soft
clauses plus 1. However, local search MaxSAT solvers cannot achieve comparable performance with complete PMS solvers
on structured PMS instances, as witnessed by recent MaxSAT Evaluations.

Compared to the great success of local search for SAT and MaxSAT, there are only few studies on local search for PMS [31,
15,50,51], which were proposed since more than a decade. Although many local search techniques for SAT are also effective
for solving MaxSAT, local search algorithms for PMS do not benefit that much from the techniques for SAT, mainly due to
the fact that it contains both hard and soft clauses. To develop effective local search algorithms for PMS, it is necessary to

S. Cai et al. / Artificial Intelligence 240 (2016) 1–18 3
exploit the distinction between hard and soft clauses. One of the earliest works in this line is a weighted version of WalkSAT
[31], which also tackles PMS as weighted MaxSAT, but prefers to flip variables in falsified hard clauses. Afterwards, Cha et
al. observed that the larger the weight differential between hard clauses and soft clauses, the slower the search is [15]. This
insight has led to an algorithm in which the hard clause weight is set to a hand-tuned optimal level (rather than simply
set to the number of soft clauses plus 1) [15]. This was further improved by Thornton et al. by maintaining a dynamic
weight differential between hard and soft clauses [50,51], resulting in the TWO-LEVEL algorithm. Experimental results in
[50] showed the superiority of dynamic weighting strategies over the fixed weighting strategy in [15].

1.3. Main contributions

In this paper, we propose a number of new ideas for local search for PMS, which mainly rely on the distinction between
hard and soft clauses. Based on these ideas, we develop two local search algorithms for PMS called Dist and DistUP, the
latter of which is an improved version of the former for industrial PMS instances.

The first idea we propose is a clause weighting scheme that only works on hard clauses. Indeed, the hard clauses of
a PMS instance are tackled as a SAT formula for which weighted local search algorithms are efficient [52,46,10]. With the
diversification achieved by this weighting scheme, the algorithm tends to visit different satisfying assignments for hard
clauses, and thus different groups of feasible assignments. In this way, the algorithm can better explore the space of feasible
assignments, and thus is more likely to come across better feasible assignments.

The second and more important idea is to separate hard score and soft score. Here the hard score of a variable is the
change on the number (or total weight) of satisfied hard clauses caused by flipping the variable, and the soft score of a
variable is the change on the number (or total weight) of satisfied soft clauses caused by flipping the variable. By separating
hard score and soft score, the algorithm becomes more flexible, in the sense that it can pick the flipping variable according
to either hard score or soft score, or both, according to different situations.

The third idea is a variable selection heuristic based on hard score and soft score. The heuristic distinguishes three
different situations during the search, and uses hard score and soft score in different ways under each situation.

The three ideas mentioned above are used in developing a local search algorithm for PMS dubbed Dist, as it makes ef-
fective use of Distinctions between hard and soft clauses. Results of the MaxSAT Evaluation 2014 as well as our experiments
show that Dist significantly outperforms previous local search solvers on all benchmarks from the MaxSAT Evaluation 2014,
with a remarkable improvement in terms of the number of “winning” instances on structured PMS benchmarks. We also
compare Dist with latest state-of-the-art complete solvers and a state-of-the-art portfolio solver on PMS benchmarks from
the MaxSAT Evaluation 2014. Experimental results show that Dist outperforms the complete solvers on random and crafted
benchmarks, while its performance on industrial instances is still considerably worse than complete solvers.

The aforementioned ideas and the Dist algorithm have been presented in [12], but in this article we add more exper-
iments and replace the complete solvers in our experiments with latest state-of-the-art ones. The following contributions
are new in this article.

In order to improve the performance of Dist on industrial PMS instances, we propose an initialization procedure called
PrioUP, which utilizes unit propagation and puts priority on hard unit clauses. The procedure produces a complete assign-
ment, which is then used as the initial assignment for the Dist solver. The resulting solver is called DistUP, and it significantly
improves Dist on industrial instances, although it still cannot rival complete solvers.

We also perform experimental analysis and additional investigations on the ideas in this work. In detail, we compare Dist
with its four alternative versions, and the experimental results illustrate the effectiveness of the ideas; more interestingly, all
alternatives based on separation of hard and soft score have better performance than previous local search algorithms, indi-
cating separation of hard and soft score is an essential technique and opens up a new direction for local search algorithms
for PMS (and also weighted PMS). We also study the effectiveness of the PrioUP procedure on Weighted PMS industrial
instances, and provide a discussion on the initialization procedure.

1.4. Structure of the paper

The remainder of this paper is organized as follows: some preliminary concepts are given in next section. We present
in detail three new local search ideas for PMS in Section 3, and present the Dist algorithm in Section 4. Then we present
the experimental study on Dist in Section 5. After that, we propose the PrioUP procedure, and apply it to improve Dist
in Section 6, where we also present experiments on the improved algorithm DistUP and a discussion on the initialization
procedure. Finally, we give some concluding remarks and directions for future research.

2. Preliminaries

Given a set of n Boolean variables {x1, x2, ..., xn}, a literal is either a variable xi (which is called a positive literal) or its
negation ¬xi (which is called a negative literal). A clause is a disjunction of literals (i.e., Ci = �i1 ∨�i2 ∨ ... ∨�i j). A conjunctive
normal form (CNF) formula F = C1 ∧ C2 ∧ ... ∧ Cm is a conjunction of clauses. Alternatively, clauses can be represented as
sets of literals and a formula as a multiset of clauses.

4 S. Cai et al. / Artificial Intelligence 240 (2016) 1–18
The variable to which a literal l refers is denoted by var(l). For a literal l, its polarity, denoted by polarity(l), is 1 if l
is positive and 0 if l is negative. For a literal l, we denote by ¬l the literal of opposite polarity, and ¬¬xi = xi . A complete
truth assignment is a mapping that assigns to each variable either 0 or 1. Given an assignment, a clause is satisfied if it has
at least one true literal, and falsified otherwise.

Given a CNF formula, the Partial MaxSAT (PMS) problem, in which some clauses are declared to be hard and the rest
are declared to be soft, is the problem of finding an assignment such that all hard clauses are satisfied and the number of
falsified (satisfied) clauses is minimized (maximized). The MaxSAT problem is a special case of PMS in which there are no
hard clauses. We can also view the SAT problem as a special case of PMS in which there are no soft clauses.

For a PMS instance F , we say a truth assignment α is feasible iff it satisfies all hard clauses in F , and the cost of a feasible
assignment α, denoted by cost(α), is defined to be the number of falsified soft clauses under α. An optimal assignment
is a feasible assignment with minimum cost. The basic schema for local search algorithms for PMS (as with MaxSAT) is
as follows. Starting with a complete assignment, the algorithm chooses a variable and flips it (i.e., changes its truth value)
in each subsequent step, trying to find a feasible assignment with a lower cost. PMS can be encoded as weighted MaxSAT
where hard clauses are associated with a weight larger than the total weight of soft clauses. A common variable property
used in local search algorithms for weighted MaxSAT is the score property, which is defined as the change on the total
weight of satisfied clauses caused by flipping the variable. However, in this work, a hard (resp. soft) score is calculated only
on the hard (resp. soft) clauses.

A clause containing only one literal is a unit clause. For convenience, we use polarity(p) to denote the polarity of the
literal in the unit clause p. The process of conditioning a CNF formula F on a literal l amounts to replacing every occurrence
of literal l by the constant true, replacing ¬l by the constant false, and simplifying accordingly. Based on the multi-set
notation of a CNF formula, the result of conditioning a CNF formula F on a literal l is denoted by F |l , which is defined as
follows: F |l = {c\{¬l}|c ∈ F , l /∈ c, ¬l ∈ c} ∪{c|c ∈ F , l /∈ c, ¬l /∈ c}, and can be described succinctly as F |l = {c\{¬l}|c ∈ F , l /∈ c}.
Note that F |l does not contain any literal l or ¬l.

The unit propagation technique is quite simple: For a given CNF formula, we collect all unit clauses in it, and then
assume that variables are set to satisfy these unit clauses. That is, if the unit clause {xi} appears in the formula, we set xi
to true; and if the unit clause {¬xi} appears in the formula, we set xi to false. We then condition the formula on these
settings. The iterative application of this rule until no more unit clause remains is called unit propagation (UP).

3. Exploiting the distinction between hard and soft clauses

In this section, we present three new ideas for local search for PMS, which heavily rely on the distinction between hard
and soft clauses. These three new ideas are 1) weighting for hard clause, 2) separating hard score and soft score, and 3) a
variable selection heuristic based on hard and soft score. These ideas form the major components of the Dist algorithm.

3.1. Weighting for hard clauses

In this subsection, we propose a clause weighting scheme that works only on hard clauses. This is essentially different
from previous local search algorithms for PMS which also utilize clause weighting schemes, as they increase weights of all
falsified clauses, including both hard and soft ones [15,50,51].

We now describe the weighting scheme. For each hard clause, we associate an integer number as its weight, which is
initialized to 1 at the start of the algorithm.1 Whenever a “stuck” situation w.r.t. hard clauses is observed, that is, we cannot
decrease the total weight of falsified hard clauses by flipping any variable, then hard clause weights are updated as follows:

with probability sp (smoothing probability), for each satisfied hard clause whose weight is larger than one, the clause weight is
decreased by one; otherwise, the clause weights of all falsified hard clauses are increased by one.

The way that hard clause weights are updated is similar to the PAWS scheme [52], and thus we refer to this new
weighting scheme as HPAWS (the hard clause version of PAWS). The only difference between PAWS and HPAWS is the
condition to decrease clause weights. PAWS increases weights for falsified clauses by one in each step, and all clause weights
are decreased by one after a fixed number of increases; while HPAWS employs a probability parameter to decide whether
to increase weights or decrease weights in the step.

Our weighting scheme is the first one working only on hard clauses. Some intuitive explanations behind the idea of
weighting only for hard clauses are presented below.

Why to use weighting for hard clauses: (1) Clause weighting for hard clauses helps to obtain feasible solutions. It iden-
tifies those hard clauses that are usually falsified in local optima, so that the algorithm can prefer to satisfy such hard
clauses. In this way, we can avoid the situation that some hard clauses are always falsified in local optima. (2) Moreover,
with the diversification achieved by the weighting scheme, the algorithm tends to visit different satisfying assignments for
hard clauses, and thus different groups of feasible assignments. In this way, the algorithm can better explore the space of
feasible assignments, and thus is more likely to come across better feasible assignments. In summary, using weighting for
hard clauses is inspired by the success of weighting techniques for SAT [27,52,46,10].

1 When PMS is encoded as weighted MaxSAT (as in MaxSAT evaluations), hard clauses have weights due to the encoding. We note that the weights used
in our algorithm are independent of the original weights of hard clauses. Actually, we only use the original weights to recognize hard clauses.

S. Cai et al. / Artificial Intelligence 240 (2016) 1–18 5
Why not to use weighting for soft clauses: Some soft clauses might be usually falsified in local optima, due to the high
cost of satisfying them, i.e., making more clauses falsified. Indeed, as is usually the case, there are some soft clauses falsified
under optimal assignments. However, the object of PMS is to satisfy as many soft clauses as possible rather than all of them,
under the constraint that all hard clauses are satisfied. Therefore, our opinion is that compelling the algorithm to satisfy
“difficult” soft clauses at the price of falsifying more soft clauses has no clear benefits, and would mislead the algorithm
towards feasible solutions with more falsified soft clauses.

3.2. Separating hard score and soft score

Most local search algorithms for SAT and MaxSAT problems utilize the variable property score, which measures the
increase of the number (or total weight) of satisfied clauses caused by flipping a variable x. Previous local search algorithms
for PMS also utilize the score property to pick variables. In this work, however, we propose to separate hard score and
soft score, which allows us to make better use of the special structure of PMS and thus design more efficient local search
algorithms for PMS.

The concepts of hard score and soft score are formally defined as follows:

Definition 1. (hard score) The hard score of a variable x, denoted by hscore(x), is the increase of the number (or total
weight) of satisfied hard clauses caused by flipping x.

For convenience, we say a variable x is a 0-hscore variable if and only if hscore(x) = 0.

Definition 2. (soft score) The soft score of a variable x, denoted by sscore(x), is the increase of the number (or total weight)
of satisfied soft clauses by flipping x.

Dist adopts the weighted version of hard score, as it employs a clause weighting scheme for hard clauses. Dist adopts
the unweighted version of soft score for PMS instances, and the weighted version of soft score for Weighted PMS instances.

To facilitate our discussions about Dist afterwards, we give more definitions here. In local search algorithms for SAT and
MaxSAT, a variable is said to be decreasing (which means its flip would decrease the cost of the assignment) if its score is
positive, and increasing if its score is negative. Now, we extend the notion of decreasing variables to hard score and soft
score.

Definition 3. For a variable x, x is hard-decreasing iff hscore(x) > 0, and is soft-decreasing iff sscore(x) > 0.

Previous local search algorithms for PMS utilize the score property, which can be seen as a weighted sum of hard score
and soft score in the form of A · hscore(x) + sscore(x), where A is a positive integer number. Intuitively, because hard
clauses are compelled to be satisfied, the factor A should be set very large (as an extreme case, A is set to the number of
soft clauses plus one). On the other hand, the search would be quite restricted if A is too large. Hence, the main concern in
previous local search algorithms for PMS is how to control the value of A to make the search more effective [15,50,51].

However, no matter what strategies they use, these algorithms set A to be a relatively large number so that hard clauses
are more important than soft ones. Therefore, when using a heuristic preferring variables with greater scores, it is likely
that those variables with greater hscores are actually picked. This is, in our opinion, a drawback of previous local search
algorithms for PMS. We provide an informal explanation for this drawback as follows. Generally speaking, such local search
algorithms focus on finding feasible solutions. It is difficult for them to leave an area of a cluster of feasible solutions, as
there are infeasible solutions between two clusters of feasible solutions. Thus, the search space they explore would be quite
limited.

In contrast to previous local search algorithms, we propose to separate hard score and soft score. This makes the algo-
rithm more flexible, in the sense that it can pick the flipping variable according to either hard score or soft score, or both,
according to different situations.

3.3. Variable selection based on hard and soft scores

Based on the separation of hard and soft scores, we propose a variable selection heuristic for PMS that works in three
levels. The scenario that the search faces varies considerably, and we divide them into three situations. The variable to be
flipped is picked according to different scoring functions under each situation as follows:

1. There exist hard-decreasing variables. Flipping such variables will decrease the total weight of falsified hard clauses, and
hence lead the search to feasible solutions. As the preliminary goal of PMS is to find a feasible solution, such variables
are given the highest priority of being flipped.
However, there is still one question that needs to be answered: when there is more than one hard-decreasing variables,
which one should be selected? Two natural answers are to pick the best one or to pick one uniformly at random. It

6 S. Cai et al. / Artificial Intelligence 240 (2016) 1–18
is difficult to decide which variable is the best, unless there is some variable whose hscore and sscore are both the
greatest, which rarely happens. On the other hand, picking a variable at random uniformly is too diversifying in most
cases. In our algorithm, we employ a balanced strategy called Best from Multiple Selections (BMS) [14], which chooses
t variables (t is an integer parameter) randomly with replacement from the set of hard-decreasing variables and returns
the one with the greatest hscore, breaking ties by preferring the one with the greatest sscore.

2. There are no hard-decreasing variables, yet there are variables with hscore of 0. In this case, we further consider those
0-hscore variables with positive sscore, as flipping such variables would decrease falsified soft clauses without breaking
more hard clauses. Therefore, flipping such variables is of clear benefit, especially when no hard-decreasing variables
exist. Specifically, a variable with the best positive sscore is selected uniformly at random, which seems a fastest way
towards the goal of PMS under this situation.

3. There are neither hard-decreasing variables nor 0-hscore soft-decreasing variables. This means the search gets stuck, as
no improving flip is available. In this case, the weights of hard clauses are updated, and then a variable is picked from
a falsified clause. Since hard clauses are compelled to be satisfied, we select a random falsified hard clause if any, and
otherwise a random falsified soft clause is selected (this strategy has been used in [31]).
A question is then which variable should be chosen from the selected clause. Since before the stuck situation occurs we
mainly focus on satisfying hard clauses or at least protecting them, here we need to diversify the search w.r.t. variables’
hscores. A good heuristic is to pick the variable with the greatest sscore, which is independent of the variables’ hscores,
while at the same time helps to satisfy as many soft clauses as possible.

Note that, the early version of Dist [12] did not use the BMS strategy. In MaxSAT Evaluation 2014, we adopted the
version described in this paper, except small modification for random benchmarks (the performance is similar).

4. The Dist algorithm

Based on the ideas from the preceding section, we develop an efficient local search algorithm for solving PMS, which is
called Dist, as it makes effective use of the Distinctions between hard and soft clauses.

4.1. Description of Dist

The Dist algorithm is outlined in Algorithm 1:

Algorithm 1: Dist.
Input: PMS instance F , cutoff, parameters wp, t and sp
Output: A feasible assignment α∗ of F , or “no feasible assignment found”

1 α := randomly generated truth assignment;
2 cost∗ := +∞;
3 while elapsed time < cutoff do
4 if � falsified hard clauses & cost(α) < cost∗ then
5 α∗ := α; cost∗ := cost(α);

6 if H := {x|hscore(x) > 0} �= ∅ then
7 H ′ := {variables chosen from H via t samples with replacement};
8 v := the variable with the greatest hscore in H ′ , breaking ties by preferring the one with the greatest sscore;

9 else if S := {x|hscore(x)=0 & sscore(x)> 0} �= ∅ then
10 v := a variable in S with the greatest sscore, breaking ties randomly;

11 else
12 update weights of hard clauses according to HPAWS;
13 if ∃ falsified hard clauses then c := a random falsified hard clause;
14 else c := a random falsified soft clause;
15 if with probability w p then v := a random variable in c;
16 else v := a variable in c with the greatest sscore;

17 α := α with v flipped;

18 if cost∗ ≤ #(soft clauses) then return (cost∗, α∗);
19 else return “no feasible assignment found”;

In the beginning, Dist generates a complete assignment α randomly, and the cost of the best feasible solution, denoted by
cost∗ , is initialized to +∞. After the initialization, a loop (lines 3–17) is executed to modify α until a given time limit
is reached. During the search, whenever a better feasible solution is found, the best feasible solution α∗ , and cost∗ , are
updated accordingly (lines 4–5).

In each iteration, Dist flips a variable, which is selected according to the variable selection heuristic mentioned in the
previous section. First, if the set of hard-decreasing variables H is not empty, Dist picks a hard-decreasing variable with
the greatest hscore from t samples with replacement from H , breaking ties by preferring the one with the greatest sscore

S. Cai et al. / Artificial Intelligence 240 (2016) 1–18 7
(lines 6–8). If no hard-decreasing variable exists, then Dist picks a best variable (w.r.t. sscore) from the set S of variables
with 0-hscore and positive sscore, breaking ties randomly (lines 9–10). If both H and S sets are empty, which means the
algorithm gets stuck, then Dist updates hard clause weights according to the HPAWS weighting scheme described in the
preceding section (line 12), and picks a variable from a falsified clause. Specifically, it chooses a clause randomly from
falsified hard clauses if any, and from falsified soft clauses otherwise (lines 13–14). In order to make the algorithm more
robust, we employ a random walk with a small probability in each random step (line 15), as suggested in [26]; Otherwise,
the variable with the greatest sscore from the chosen falsified clause is selected (line 16).

Finally, when the loop terminates upon reaching the time limit, Dist reports cost∗ and the best feasible solution α∗ that
has been found, if cost∗ is not greater than the number of soft clauses (this means a feasible solution is found, since cost∗
is initialized as +∞ and is updated only when a better feasible solution is found). Otherwise, Dist reports “no feasible
assignment found”.

5. Experimental evaluation of Dist

We empirically evaluate Dist on PMS benchmarks from the MaxSAT Evaluation 2014, including all the three categories
namely random, crafted and industrial. We compare Dist with state-of-the-art local search solvers and the best complete
solvers for each benchmark, as well as a state-of-the-art portfolio solver. Finally, we empirically analyze the effectiveness of
the underlying ideas in Dist.

5.1. Parameter setting and experiment setup

Dist is implemented in C++ and complied using g++ with the ‘-O3’ option. There are three parameters in Dist, namely
the t parameter for the “Best from Multiple Selections” strategy, wp for random walk, and sp for the weighting scheme.
Parameter settings have important impact on the performance of heuristic algorithms. To tune parameters automatically,
some automatic configuration tools [29,30] have been developed and have shown their power on solving SAT and mixed
integer programming. In this work, we utilized a powerful automatic configuration tool called SMAC (Sequential Model-based
Algorithm Configuration) [30] to tune the parameter settings for our Dist algorithm. The parameter settings suggested by
SMAC are as follows:

• For random benchmark: t = 3, wp = 0.1, sp = 0.01;
• For crafted benchmark: t = 17, wp = 0.105, sp = 0.013;
• For industrial benchmark: t = 42, wp = 0.091, sp = 0.00003.

As for the optimal setting of parameters, we observed that there were two outlier instance families namely “max-
clique/structured” and “reversi”, both from the crafted benchmark. We found that, the optimal value of t for “max-
clique/structured” and the optimal value of sp for “reversi” instances tend to be much smaller than the optimal values
for the rest of the crafted benchmark. And for these two families, we use SMAC to find a different setting: (2, 0.1, 0.01) for
the “maxclique/structured” family, and (15, 0.1, 0.0001) for the “reversi” family.

Our experiments were conducted on a workstation using an Intel(R) Core(TM) i7-2640M CPU with 2.8 GHz, 4 MB L3
cache and 16 GB RAM, running Ubuntu 12.04 Linux operation system. We follow the evaluation methodology adopted in the
incomplete solver track of the MaxSAT evaluations: Each solver is executed once on each instance within a time limit which
is set to 300 seconds (the same as in the incomplete solver track of the MaxSAT evaluations). In each run, the solver prints
successively the best solution it has found so far. For each solver on each instance family, we report within parentheses the
number of instances where the solver finds the best solution, and the mean time of doing so over such “winning” instances
(not including the proving time for complete solvers). The number of instances of each family is specified in the column
“#ins.”. The rules at the MaxSAT Evaluations establish that the winner is the solver which finds the best solution for the
most instances and ties are broken by selecting the solver with the minimum mean time. In bold we present the best
results for each family.

5.2. Comparing Dist with local search solvers

We first compare Dist with state-of-the-art local search solvers, including those participating in the PMS categories of the
incomplete track of the MaxSAT Evaluation 2014, as well as the TWO-LEVEL solver [51], which is the best specialized local
search solver for PMS we can find, although it did not participate in the MaxSAT Evaluations. Most solvers participating
in the PMS categories of the incomplete track are slightly modified from complete solvers, and there are only three local
search solvers that participated in the PMS categories, namely Dist, CCLS and CCMPA. This is not surprising, as before Dist,
there has been little progress in local search solvers for PMS.

Results on Random PMS Benchmark: Table 1 shows the comparative results of local search solvers on the random PMS
benchmark in the MaxSAT Evaluation 2014. As is clear from the table, Dist gives the best performance on all instance
families. We observe that Dist is more robust and more efficient than its competitors. Dist finds the best solution for all

8 S. Cai et al. / Artificial Intelligence 240 (2016) 1–18
Table 1
Comparative results for Dist and other local search solvers for PMS on random PMS benchmark. One instance from the “pmax2sat/hi” family
(file_rpms_wcnf_L2_V150_C4000_H150_ 1.wcnf) has been proved (by most complete solvers in MaxSAT Evaluation 2014) that the hard clauses compose
an unsatisfiable formula and thus no feasible assignment exists for the instance.

Instance set #ins. Dist CCLS CCMPA TWO-LEVEL

min2sat/v160c800l2 30 4.20(30) 6.62(30) 33.66(30) 0(0)
min2sat/v260c1040l2 30 2.86(30) 3.63(30) 28.98(30) 56.25(2)
min3sat/c70v350l3 30 1.03(30) 7.92(29) 10.62(30) 15.94(30)
min3sat/c80v400l3 30 0.96(30) 1.84(30) 23.07(30) 46.57(17)
pmax2sat/hi 30 0.01(29) 9.82(29) 4.14(28) 0.15(28)
pmax2sat/me 30 0.04(30) 3.34(29) 0.21(28) 0.41(30)
pmax3sat/hi 30 0.00(30) 0.01(30) 0.04(30) 0.01(30)

Total 210 209 207 206 137

Table 2
Comparative results for Dist and other local search solvers for PMS on crafted PMS benchmark.

Instance set #ins. Dist CCLS CCMPA TWO-LEVEL

frb 25 24.35(17) 16.04(24) 101.00(24) 31.79(5)
job-shop 3 4.38(3) 0(0) 0(0) 0(0)
maxclicque/random 96 0.28(96) 0.00(96) 1.36(95) 0.06(96)
maxclicque/structured 62 11.02(60) 13.76(49) 29.10(47) 16.20(40)
maxone/3sat 80 1.85(80) 4.77(78) 9.34(73) 0.00(69)
maxone/structured 60 18.97(51) 107.34(2) 66.40(9) 24.40(37)
min-enc/kbtree 42 1.87(42) 6.47(39) 119.26(21) 7.79(33)
pseudo/miplib 4 0.02(4) 0.01(4) 0.17(4) 0.00(3)
reversi 44 68.98(20) 135.76(1) 61.43(9) 1.39(4)
scheduling 5 148.67(5) 0(0) 0(0) 0(0)

Total 421 378 293 282 287

instances very quickly (one instance has no feasible solution), while the other local search solvers fail to find the best
solution for some instances. Also, the averaged run time of Dist is usually much less than that of its competitors.

Results on Crafted PMS Benchmark: The experimental results of local search solvers on the crafted PMS benchmark are
presented in Table 2. Among the 421 instances, Dist finds the best solution for 378 of them, while this number is 293, 282
and 287 for CCLS, CCMPA and TWO-LEVEL respectively. Dist gives the best performance for 7 out of 10 instance families,
which clearly shows its superiority over its competitors on crafted PMS instances. In fact, for the other 3 families, Dist
and the best solver for these 3 families namely CCLS have the same number of winning instances for 2 of the families
(“maxclique/random” and “pseudo/miplib”). Overall, on the crafted PMS benchmark, Dist obviously has better performance
than the other local search solvers, while the three competitor local search solvers (CCLS, CCMPA and TWO-LEVEL) have
similar performance.

Results on Industrial PMS Benchmark: Table 3 summarizes the experimental results of local search solvers on the in-
dustrial PMS benchmark. Dist shows dramatic improvement over the other local search solvers. We observe significant
performance gap between Dist and its competitors when comparing the solution quality they find. Dist finds the best solu-
tion for 384 out of 568 instances, while this figure is only 63, 112 and 38 for CCLS, CCMPA and TWO-LEVEL respectively. This
indicates a significant improvement in the solving ability of local search solvers for industrial PMS instances.

5.3. Performance variability of local search solvers

To study the performance variability between independent runs and the robustness of the local search solvers, we con-
duct additional experiments to execute the local search solvers 10 times with different random seeds for some selected
instances from each benchmark. For each benchmark, we select five instances from different families. The results are re-
ported in Table 4.

Seen from the results, the performance of Dist is quite robust on these instances, and is better than that of other local
search solvers, except for the frb instance where CCLS and CCMPA find better solutions. For the random instances, these
local search solvers usually find the best solution steadily, and Dist does so with less run time. For crafted and industrial
instances, the solutions found by Dist are always significantly better than those found by other solvers with only one
exception (i.e., the frb instance).

5.4. Comparing Dist with complete solvers

In this subsection, we compare Dist and state-of-the-art complete PMS solvers. In the following, we first introduce the
complete solvers in our experiments, and then present the experiment results of comparing Dist and complete solvers on
each benchmark respectively.

S. Cai et al. / Artificial Intelligence 240 (2016) 1–18 9
Table 3
Comparative results for Dist and other local search solvers for PMS on industrial PMS benchmark.

Instance set #ins. Dist CCLS CCMPA TWO-LEVEL

aes 7 129.25(2) 6.12(5) 102.05(6) 0.00(1)
atcoss/mesat 18 0(0) 0(0) 0(0) 0(0)
atcoss/sugar 19 38.05(7) 0(0) 21.22(1) 0(0)
bcp/fir 32 41.58(17) 69.02(17) 89.90(26) 0(0)
bcp/hipp-yRa1/simp 10 79.02(10) 0(0) 300.00(1) 0(0)
bcp/hipp-yRa1/su 38 68.17(38) 0(0) 0(0) 0(0)
bcp/msp 40 12.67(29) 0(0) 97.95(8) 22.04(9)
bcp/mtg 30 38.87(27) 0(0) 0(0) 66.28(2)
bcp/syn 38 18.89(14) 29.74(18) 96.14(36) 16.35(3)
circuit-trace-compaction 4 0(0) 0(0) 53.44(1) 0(0)
close_solutions 50 59.97(33) 40.80(11) 110.86(9) 34.73(6)
des 50 105.14(13) 0(0) 91.87(5) 0(0)
haplotype-assembly 6 38.80(6) 0(0) 0(0) 0(0)
hs-timetabling 2 10.13(1) 0(0) 0(0) 0(0)
mbd 46 118.85(46) 0(0) 0(0) 0(0)
packup-pms 40 85.35(40) 0(0) 0(0) 0(0)
pbo/mqc/nencdr 25 87.06(5) 0(0) 57.45(11) 0(0)
pbo/mqc/nlogencdr 25 104.57(24) 0(0) 0(0) 194.30(1)
pbo/routing 15 7.14(11) 121.34(1) 0(0) 5.38(15)
protein_ins 12 2.19(12) 7.34(11) 65.83(8) 0.01(1)
tpr/Multiple_path 36 93.47(24) 0(0) 0(0) 0(0)
tpr/One_path 25 123.37(25) 0(0) 0(0) 0(0)

Total 568 384 63 112 38

Table 4
Experimental results of Dist, CCLS, CCMPA and TWO-LEVEL with 10 runs on selected PMS instances. Each cell reports the result of a solver on an instance,
where the first row reports the solution quality in the form “avg(min, max)”, and the second row reports the averaged run time. If a solver fails in all runs
to find a feasible solution for an instance, then the corresponding results are marked with “N/A”.

Instance
Dist solution

avg. time
CCLS solution

avg. time
CCMPA solution

avg. time
TWO-LEVEL solution

avg. time

clq1-c2mv80c400l3g1.wcnf 56.0(56, 56) 56.0(56, 56) 56.0(56, 56) 56.0(56, 56)
0.11 4.75 13.54 10.89

clq1-cv260c1040l2g1.wcnf 67.0(67, 67) 67.0(67, 67) 67.0(67, 67) 70.7(68, 71)
0.09 0.81 17.08 174.11

file_rpms_wcnf_L2_V150_C3500_
H150_1.wcnf

679.0(679, 679) 679.0(679, 679) 679.0(679, 679) 679.0(679, 679)
0.00 0.60 6.65 0.00

file_rpms_wcnf_
L2_V150_C5000_H150_1.wcnf

1015.0(1015, 1015) 1015.0(1015, 1015) 1015.0(1015, 1015) 1015.0(1015, 1015)
0.00 0.00 0.26 0.01

file_rpms_wcnf_
L3_V100_C800_H100_1.wcnf

21.0(21, 21) 21.0(21, 21) 21.0(21, 21) 21.0(21, 21)
0.00 0.00 0.06 0.00

brock400_1.clq.wcnf 373.6(373, 375) 375.0(375, 375) 375.0(375, 375) 375.5(373, 376)
83.11 0.03 3.64 62.26

cnf_small.wcnf 49.5(31, 84) N/A 52841.8(40225, 67053) N/A
211.25 N/A 30.36 N/A

dp02s02.shuffled.cnf.wcnf 100.0(100, 100) N/A 1101.0(1101, 1101) 100.6(100, 101)
0.00 N/A 41.82 0.36

frb40-19-1.partial.wcnf 721.5(721, 722) 720.0(720, 720) 720.0(720, 720) 724.6(724, 725)
40.03 9.29 63.34 0.05

rev44-24.wcnf 9.4(0, 26) N/A 16.7(0, 66) N/A
180.50 N/A 128.14 N/A

6ebx_.1era_.g.wcnf.t.wcnf 30.0(30, 30) 35.4(30, 36) 34.8(30, 36) N/A
10.41 5.81 35.12 N/A

c1355_F1gat@0.wcnf 27.5(22, 33) N/A 133.8(84, 167) N/A
0.19 N/A 63.36 N/A

cnf.8.p.9.wcnf 11.4(10, 13) N/A N/A N/A
137.89 N/A N/A N/A

normalized-ii16a1.wcnf 1178.9(1132, 1279) N/A 50088.0(50088, 50088) N/A
0.09 N/A 0.36 N/A

SAT02_industrial_biere_dinphil_
dp10s10.shuffled.cnf.wcnf.8.wcnf

326.8(240, 609) N/A 7760.0(7760, 7760) N/A
29.20 N/A 1.22 N/A

10 S. Cai et al. / Artificial Intelligence 240 (2016) 1–18
Table 5
Comparative results of Dist and complete solvers on random PMS benchmark. One instance from the
“pmax2sat/hi” family (file_rpms_wcnf_L2_V150_C4000_H150_1.wcnf) does not have feasible solution.

Instance set #ins. Dist ahmaxsat

min2sat/v160c800l2 30 4.20(30) 20.20(29)
min2sat/v260c1040l2 30 2.86(30) 28.39(28)
min3sat/c70v350l3 30 1.03(30) 55.07(30)
min3sat/c80v400l3 30 0.96(30) 98.48(24)
pmax2sat/hi 30 0.01(29) 4.64(30)
pmax2sat/me 30 0.04(30) 1.21(30)
pmax3sat/hi 30 0.00(30) 29.03(30)

Total 210 209 201

Table 6
Comparative results of Dist and complete solvers on crafted PMS benchmark.

Instance set #ins. Dist Open-WBO-In scip-maxsat WPM-2014-in

frb 25 45.56(22) 48.29(17) 109.52(9) 56.18(20)
job-shop 3 0(0) 42.05(3) 0(0) 66.31(3)
maxclicque/random 96 0.28(96) 33.22(58) 82.01(94) 60.07(81)
maxclicque/structured 62 6.26(59) 4.13(18) 54.45(31) 70.93(24)
maxone/3sat 80 1.85(80) 23.65(78) 5.91(80) 42.71(61)
maxone/structured 60 18.97(51) 11.49(58) 68.25(56) 12.57(60)
min-enc/kbtree 42 1.87(42) 41.80(6) 75.07(42) 128.02(5)
pseudo/miplib 4 0.02(4) 7.48(4) 2.86(4) 60.82(4)
reversi 44 50.11(14) 13.41(38) 51.33(8) 49.80(38)
scheduling 5 0(0) 0(0) 0(0) 254.85(5)

Total 421 368 280 324 301

• For the random PMS benchmark, we compare Dist with ahmaxsat [2], which won the random PMS category of the
complete solvers track in the MaxSAT Evaluation 2014.

• For the crafted and industrial PMS benchmarks, we compare Dist with three complete solvers, namely scip-maxsat [48],
Open-WBO-In [41,40] and WPM-2014-in [5,4]. The first two solvers are the best non-portfolio solvers in the crafted and
industrial PMS category of the MaxSAT Evaluation 2014 respectively.2 WPM-2014-in participated in the incomplete track
and won both industrial categories of PMS and Weighted PMS, and its early versions also won several categories of the
complete track in the past few evaluations [5].

• For the industrial benchmarks, we also include the complete solver Eva500 in our experiments. As Eva500 performs a
lower bound based core-guided search, it only reports one feasible solution, when it proves optimality. Thus, it is unfair
to directly compare Eva with other solvers which print the better-quality solution (‘o’ line) immediately once the solver
finds one. As a reference, we report the number of solved instances for Eva500 just to indicate the performance of the
current state-of-the-art complete solver Eva500 on industrial PMS benchmarks.

We note that, to make a fair comparison, the running time of complete solvers for solving a “winning” instance only
includes the time to get the best found solution and does not include the time to prove it (if it is optimal). To this end, we
executed the complete solvers with the runsolver software [47] to get the CPU time for each ‘o’ line, and the time for the
last ‘o’ line was recorded.

Results on Random PMS Benchmark: The results comparing Dist and ahmaxsat on random PMS instances are presented
in Table 5, which clearly show that Dist performs better than the complete solver ahmaxsat on random PMS instances, in
terms of the solution quality and the run time. For the instances where ahmaxsat finds the optimal solution, Dist finds
the optimal solutions with much less averaged time. For the other instances (except one instance which has no feasible
solution), Dist finds better solutions than ahmaxsat, and we tend to believe those solutions are optimal. Overall, the number
of “winning” instance of Dist is 8 more than that of ahmaxsat.

Results on Crafted PMS Benchmark: The experimental results comparing Dist and complete solvers on the crafted PMS
benchmark are presented in Table 6. Among 421 instances, Dist finds the best solution for 368 of them, more than all the
complete solvers. In detail, Dist gives the best performance for 6 out of 10 instance families. For the remaining 4 families,
2 of them are dominated by Open-WBO-In while the other 2 families are dominated by WPM-2014-in. We also note that Dist
is the only local search solver that performs better than all complete solvers on crafted PMS instances, as witnessed by the
results of the MaxSAT Evaluation 2014.

Results on Industrial PMS Benchmark: Table 7 summarizes the experimental results comparing Dist and complete solvers
on the industrial PMS benchmark. Overall, for these industrial instances, Dist achieves similar performance with the ILP-

2 http :/ /www.maxsat .udl .cat /14 /results /index .html.

http://www.maxsat.udl.cat/14/results/index.html

S. Cai et al. / Artificial Intelligence 240 (2016) 1–18 11
Table 7
Comparative results for Dist and complete solvers on industrial PMS benchmark.

Instance set #ins. #prov. by Eva Dist Open-WBO-In scip-maxsat WPM-2014-in

aes 7 1 178.31(3) 24.43(1) 131.44(5) 0(0)
atcoss/mesat 18 8 0(0) 150.12(9) 0(0) 160.92(10)
atcoss/sugar 19 11 0(0) 43.16(15) 0(0) 118.80(13)
bcp/fir 32 29 46.36(15) 7.50(32) 45.29(28) 15.96(29)
bcp/hipp-yRa1/simp 10 8 98.10(7) 30.95(9) 0(0) 46.29(10)
bcp/hipp-yRa1/su 38 31 79.92(28) 6.00(31) 0(0) 43.01(30)
bcp/msp 40 16 13.12(28) 98.86(9) 87.32(15) 90.36(13)
bcp/mtg 30 30 32.56(12) 0.09(30) 126.45(14) 0.16(30)
bcp/syn 38 17 25.36(14) 32.03(13) 20.56(35) 49.11(6)
circuit-trace-compaction 4 3 0(0) 27.47(4) 114.91(1) 46.29(4)
close_solutions 50 29 56.78(27) 32.47(46) 67.27(6) 64.02(42)
des 50 29 0(0) 51.78(30) 0(0) 181.24(42)
haplotype-assembly 6 5 0(0) 1.35(5) 195.07(1) 0.32(5)
hs-timetabling 2 1 10.13(1) 56.44(1) 0(0) 18.21(1)
mbd 46 42 0(0) 12.33(46) 281.01(2) 50.54(34)
packup-pms 40 40 47.25(6) 38.62(40) 15.00(38) 6.26(40)
pbo/mqc/nencdr 25 25 0(0) 61.57(21) 0(0) 65.63(21)
pbo/mqc/nlogencdr 25 25 289.02(1) 35.18(25) 286.42(1) 11.69(25)
pbo/routing 15 15 7.14(11) 0.36(15) 86.17(11) 0.77(15)
protein_ins 12 4 2.19(12) 111.73(10) 8.05(1) 164.11(5)
tpr/Multiple_path 36 30 17.50(2) 73.06(28) 0(0) 129.46(22)
tpr/One_path 25 25 0(0) 38.27(24) 278.13(3) 140.41(24)

Total 568 424 167 444 161 421

Table 8
Experimental results comparing Dist with the portfolios solver ISAC+−pms 2014. The ‘VBS’ column reports the results for Virtual Best Solver, which hypo-
thetically calls Dist for the instances where Dist has better performance and calls ISAC+−pms for the instances where ISAC+−pms has better performance.

Benchmark #ins. Dist ISAC+−pms VBS

Random PMS 210 1.31(209) 50.23(166) 1.34(210)
Crafted PMS 421 8.37(366) 25.71(403) 13.92(421)
Industrial PMS 568 43.46(161) 53.57(540) 50.55(556)

based solver scip-maxsat, but still cannot compete with the core-based complete solvers. Nevertheless, Dist gives the best
performance for 3 instance families, namely “bcp/hipp-yRa1/simp”, “bcp/msp” and “protein_ins”.

To sum up, when compared with complete solvers, Dist performs better on random and crafted PMS instances. But the
performance of Dist is worse than core-based complete solvers on industrial instances, although it represents a significant
improvement over previous local search solvers.

5.5. Comparing Dist with portfolio solver

In this subsection, we compare Dist with a state-of-the-art portfolio solver for PMS, namely ISAC+−pms [6], which
showed better performance than all non-portfolio solvers and won the crafted and industrial categories of the complete
solvers track in the MaxSAT Evaluation 2014.

As with complete solvers, the running time of ISAC+−pms for solving a “winning” instance only includes the time to get
the best found solution and does not include the time to prove it (if it is optimal). To this end, we executed ISAC+−pms
with the runsolver software. Originally, ISAC+−pms outputs all ‘o’ lines just before its termination. For our experiments, we
modified the python script of ISAC+−pms to let ISAC+−pms output the ‘o’ line in a successive way so that we could record
the correct run time for getting the best found solution (the last ‘o’ line). We also report the results for a Virtual Best Solver
(that is, for each instance it hypothetically calls the best solver for the instance to solve it), to see how the performance
of Dist can contribute to an expanded portfolio, under the slightly idealizing assumption that Dist could be called for all
instances on which it performs better than the existing portfolio.

The results comparing Dist with the portfolio solver ISAC+−pms are presented in Table 8. It is clear that Dist has better
performance than ISAC+−pms on the random PMS benchmark, while ISAC+−pms has stronger performance on the crafted
and industrial benchmarks. The results of Virtual Best Solver are better than ISAC+−pms on all the benchmarks. This indi-
cates that including Dist into the portfolio solver would make a stronger portfolio solver on all the benchmarks.

5.6. Effectiveness of the underlying ideas in Dist

In this section, we conduct further empirical analyses to study effectiveness of the key components in Dist, including the
clause weighting scheme that works only for hard clauses, as well as strategies in the variable selection. We compare Dist
with its four alternatives, which are modified from Dist as follows:

12 S. Cai et al. / Artificial Intelligence 240 (2016) 1–18
Table 9
Experimental results comparing Dist with its variants. For each benchmark, each cell reports for each solver the number of “winning” instances in the
benchmark and the averaged run time over these “winning” instances.

Benchmark #ins. Dist Dist_alt1 Dist_alt2 Dist_alt3 Dist_alt4

Random PMS 210 1.31(209) 32.06(49) 0.01(60) 20.41(163) 3.57 (207)
Crafted PMS 421 9.39(375) 15.11(341) 10.32(352) 13.53(353) 10.84(330)
Industrial PMS 568 68.81(277) 70.58(200) 56.52(182) 74.58(213) 54.01(149)

• Dist_alt1: update clause weights for all clauses (replace line 12 in Algorithm 1). This variant is tested in order to study
the effectiveness of clause weighting scheme that works only for hard clauses.

• Dist_alt2: when hard-decreasing variables exist, pick the one with the best hscore, breaking ties in favor of the one with
the greatest sscore (replace lines 7–8 in Algorithm 1).

• Dist_alt3: when hard-decreasing variables exist, pick one of them uniformly at random. (replace lines 7–8 in Algo-
rithm 1). Both Dist_alt2 and Dist_alt3 are tested in order to study the effectiveness of the BMS heuristic in choosing a
hard-decreasing variable to be flipped.

• Dist_alt4: always pick a random variable from the selected falsified clause (replace lines 15–16 in Algorithm 1). This
variant is tested in order to study the effectiveness of the idea of combining random walk with a greedy strategy that
chooses a variable with the greatest soft score from the selected falsified clause.

The experimental results (Table 9) demonstrate the superiority of Dist over these variants, which indicates the effective-
ness of the algorithmic components. Specifically, the comparison between Dist and Dist_alt1 indicates the effectiveness of
the clause weighting scheme that works only for hard clauses; the superiority of Dist over Dist_alt2 and Dist_alt3 demon-
strate the effectiveness of the BMS (Best from Multiple Selections) heuristic in choosing the hard-decreasing variable for
flipping; finally, the comparison between Dist and Dist_alt4 indicates the effectiveness of the idea of combining random
walk with a greedy strategy for choosing the flipping variable from the selected falsified clause.

We also note that these degraded alternatives of Dist still exhibit significantly better performance than previous local
search solvers on crafted and industrial benchmarks. This indicates that heuristics based on separated hard score and soft
score are more promising for solving structured PMS instances than previous local search methods.

6. Improving Dist on industrial PMS instances

The preceding section has shown the excellent performance of Dist on random and crafted PMS instances, which is better
than that of state-of-the-art solvers, including both complete and incomplete (i.e. local search) solvers. However, for indus-
trial PMS instances, although Dist significantly outperforms other local search solvers, its performance is still unsatisfactory,
and there is an obvious gap between the performance of Dist and state-of-the-art complete solvers.

In this section, we aim to improve Dist on industrial PMS instances. To this end, we propose a procedure for generating
a good initial assignment for local search algorithms for PMS and utilize it to improve Dist, resulting in a new local search
PMS solver called DistUP.

6.1. Initialization via priority unit propagation

In this subsection, we propose a procedure of generating an initial assignment for local search algorithms for PMS. The
procedure employs an unit propagation (UP) technique that puts priority on hard unit clauses, and thus is named PrioUP.

Before we present the details of the PrioUP procedure, we first introduce the key data structures. The array value records
the assigned value for each variable. For each variable x, value(x) has 4 possible values {−2, −1, 0, 1}, and their meanings
are explained as below:

• value(x) = −2 means x is forbidden to be assigned. When unit clauses l and ¬l appear in F simultaneously (due to
previous propagations), the corresponding variable x is forbidden to be assigned, as assigning x would cause a conflict.

• value(x) = −1 means x is unassigned.
• value(x) = 0 means x is assigned with the value 0.
• value(x) = 1 means x is assigned with the value 1.

The queue Q is a priority queue that stores all unit clauses for propagation. In Q , hard unit clauses have higher priority
than soft ones. All hard unit clauses have the same priority and are managed in an FIFO (First In First Out) manner, and so
do the soft ones. Since each unit clause has only one literal, Q indeed stores those literals. Note that we avoid duplication
(i.e., a literal appears more than one time) in Q , and also avoid including opposite literals in Q . This is accomplished via
an auxiliary array polarity_in_Q .

The auxiliary array polarity_in_Q records the information for each variable with regards to its appearance in Q . For
each variable x, polarity_in_Q (x) records whether x appears in Q , and the polarity of the literal when x appears in Q . It
has 3 possible values {−1, 0, 1}, as explained below:

S. Cai et al. / Artificial Intelligence 240 (2016) 1–18 13
• polarity_in_Q (x) = −1 means x does not appear in Q (we say a variable x appears in Q , if Q contains either x or ¬x).
• polarity_in_Q (x) = 0 means the literal ¬x is in Q .
• polarity_in_Q (x) = 1 means the literal x is in Q .

The PrioUP procedure is outlined in Algorithm 2,

Algorithm 2: PrioUP (F).
Input: A CNF formula F
Output: An assignment of variables in F

1 For each variable x, value(x) := −1, polarity_in_Q (x) := −1;
2 Build the priority queue Q by inserting all unit clauses into Q ;
3 while Q �= ∅ do
4 l :=GetFirstLiteral(Q) and x := var(l);
5 remove l out of Q ;
6 if value(x) = −1 then
7 value(x) := polarity(l);
8 F := F |l ;
9 foreach newly generated unit clause p do

10 y := var(p);
11 if polarity_in_Q (y) = −1 then
12 enqueue p in Q ;
13 polarity_in_Q (y) := polarity(p);

14 else if polarity_in_Q (y) �= polarity(p) then
15 value(y) := −2;

16 foreach x with value(x) = −1 or value(x) = −2 do
17 value(x) := a random number from {0, 1} ;

18 return value;

and explained as follows. In the beginning, each variable is marked as “unassigned”, and all unit clauses in the formula F
are added into the queue Q .

While Q is not empty, the first literal (or say, unit clause) l in Q is extracted from Q and propagated. The variable
corresponding to literal l is denoted as x. We know that x could not have been propagated (i.e., value(x) could not be 0
or 1), as otherwise the formula as well as Q would not contain any literal of x. Thus, value(x) is either −1 or −2.

If value(x) = −1, which means x is unassigned, then x is assigned to the value of polarity(l) to satisfy the unit clause l,
and F is conditioned on the literal l. If this process generates any new unit clause, for each such unit clause p, we do the
following checking and operations if needed. Let y denote the corresponding variable of p. If neither literal p nor literal ¬p
is in Q (i.e., polarity_in_Q (y) = −1), then p is enqueued into Q , and polarity_in_Q (y) is set to polarity(p). Otherwise,
if literal p is already in Q , we do nothing (we do not add p into Q for avoiding duplication). If literal ¬p is in Q (i.e.,
polarity_in_Q (y) �= polarity(p)), then variable y is marked as “forbidden” (by setting value(y) to −2), as p and ¬p appear
in the formula simultaneously and assigning y would cause a conflict.

If value(x) = −2, which means x is forbidden to be propagated, we just ignore it. A principle in our unit propagation
initialization procedure is to avoid generating conflicts. Thus, for variables marked as “forbidden”, we would rather leave
them unassigned during the unit propagation procedure, as assigning them would cause empty clauses.

Finally, after Q becomes empty, if there are variables unassigned, including those with value(x) = −1 and also those
with value(x) = −2, then these variables are assigned 0 or 1 uniformly randomly.

6.2. The DistUP solver

We apply the PrioUP procedure to improve the Dist solver, leading to the DistUP solver. This is done by modifying only a
few lines of codes of Dist.

In the following, we illustrate how to apply PrioUP to improve a local search PMS solver. To facilitate our discussions,
we assume that local search algorithms allow to accept a specific assignment as its initialized assignment.3 Let us recall
the general scheme of local search algorithms for PMS. Starting with a complete assignment α, a local search algorithm
chooses a variable and flips it in each search step. Whenever finding a feasible assignment with a lower cost, the algorithm
records it as the best found assignment. To apply the PrioUP procedure to a local search solver, we first generate a complete
assignment α using PrioUP, and then execute the local search solver on the original PMS instance with α as its initial
assignment. Note that the instance is modified in the PrioUP procedure, but we use the original instance for local search.

3 For this, we only need to perform minor modifications to the initialization of the given local search procedure.

14 S. Cai et al. / Artificial Intelligence 240 (2016) 1–18
Table 10
Comparative results for DistUP and Dist on the industrial PMS benchmark from the MaxSAT Evaluation 2014.

Instance set #ins. Dist DistUP

aes 7 134.21(6) 166.48(4)
atcoss/mesat 18 0(0) 0(0)
atcoss/sugar 19 131.94(1) 148.08(6)
bcp/fir 32 56.05(26) 35.43(30)
bcp/hipp-yRa1/simp 10 79.02(10) 20.08(7)
bcp/hipp-yRa1/su 38 68.35(35) 45.83(32)
bcp/msp 40 0.28(22) 42.95(30)
bcp/mtg 30 51.35(13) 42.66(27)
bcp/syn 38 63.76(30) 74.19(34)
circuit-trace-compaction 4 0(0) 0(0)
close_solutions 50 52.90(29) 28.64(42)
des 50 89.04(9) 153.50(16)
haplotype-assembly 6 1.26(1) 75.04(5)
hs-timetabling 2 0(0) 232.53(1)
mbd 46 121.29(24) 21.90(25)
packup-pms 40 57.34(9) 65.56(38)
pbo/mqc/nencdr 25 89.97(4) 121.38(8)
pbo/mqc/nlogencdr 25 133.61(14) 100.62(11)
pbo/routing 15 7.14(11) 25.46(15)
protein_ins 12 2.19(12) 3.40(12)
tpr/Multiple_path 36 78.62(15) 71.14(9)
tpr/One_path 25 161.41(16) 87.71(10)

Total 568 287 362

That is, we do not fix the value of any variable and all variables are treated equally during the local search. In this way,
variables which are assigned incorrectly by PrioUP have a chance to be corrected.

6.3. Empirical evaluations of DistUP

In this subsection, we evaluate the performance of DistUP on industrial PMS instances from the MaxSAT Evaluation
2014. We observe that almost all these industrial PMS instances have unit clauses. Indeed, as stated in [39], most industrial
MaxSAT and SAT instances have a non-negligible number of unit clauses, and researchers have pointed out the importance
of such clauses. The PrioUP procedure can be considered as a step towards exploiting unit clauses in local search solvers for
PMS.

We first compare DistUP with the Dist solver from Section 4, and then compare DistUP with state-of-the-art complete
solvers on industrial PMS instances. Additionally, we also compare DistUP with Dist and a state-of-the-art complete solver
on industrial Weighted PMS instances from the MaxSAT Evaluation 2014. The experimental environment and protocol in
this section are the same as those used in Section 5. Also note that, the run time for DistUP always includes the time for
PrioUP. Indeed, PrioUP terminates in one second for all the instances in our experiments.

6.3.1. Experiments of DistUP on industrial PMS instances
The experimental results comparing Dist and DistUP on the industrial PMS benchmark are presented in Table 10, which

clearly demonstrate the significant improvement of DistUP over Dist. Among the 568 industrial PMS instances, DistUP have
362 “winning” instances, compared to 287 for Dist. DistUP has better performance than Dist on 13 instance families, and
has worse performance on 7 families. According to these experimental results, the performance of local search solvers on
industrial PMS instances can be improved by using the PrioUP procedure to generate the initial assignment.

We also compare DistUP with complete solvers on industrial PMS instances, and the experiment results are presented in
Table 11. Although DistUP usually finds better solutions than Dist on industrial PMS instances, the solution quality returned
by DistUP is still worse than complete solvers on many instances, and thus DistUP does not show an obvious increase in the
number of “winning” instances. Nevertheless, DistUP does have 24 more “winning” instances than Dist when compared to
the same complete solvers. Indeed, like the case for SAT, improving local search solvers on industrial benchmarks of PMS (or
other MaxSAT variants) remains a big challenge. This has been emphasized in a recent paper [24]. Although DistUP cannot
yet rival complete solvers on industrial benchmarks, experiments comparing DistUP with Dist and previous local search
solvers show significant progress in this direction.

6.3.2. Experiments of DistUP on industrial weighted PMS instances
In order to study the effectiveness of the PrioUP procedure on Weighted PMS industrial instances, we also compare Dist

and DistUP on Weighted PMS industrial instances from the MaxSAT Evaluation 2014. We utilize the automatic configuration
tool SMAC [30] to tune the parameter settings for Dist on the Weighted PMS industrial benchmark from the MaxSAT Evalu-
ation 2014, and the suggested setting is: t = 18, wp = 0.1 and sp = 0.013. We use this parameter setting for both Dist and
DistUP.

S. Cai et al. / Artificial Intelligence 240 (2016) 1–18 15
Table 11
Comparative results for DistUP and complete solvers on the industrial PMS benchmark.

Instance set #ins. #prov. by Eva DistUP Open-WBO-In scip-maxsat WPM-2014-in

aes 7 1 180.83(3) 24.43(1) 131.44(5) 0(0)
atcoss/mesat 18 8 0(0) 150.12(9) 0(0) 160.91(10)
atcoss/sugar 19 11 71.38(1) 45.82(14) 0(0) 118.80(13)
bcp/fir 32 29 26.45(14) 7.50(32) 45.29(28) 15.96(29)
bcp/hipp-yRa1/simp 10 8 21.21(5) 30.95(9) 0(0) 46.29(10)
bcp/hipp-yRa1/su 38 31 45.98(27) 6.00(31) 0(0) 49.86(31)
bcp/msp 40 16 42.95(30) 98.86(9) 87.32(15) 90.36(13)
bcp/mtg 30 30 32.46(19) 0.09(30) 126.45(14) 0.16(30)
bcp/syn 38 17 35.29(15) 32.03(13) 20.56(35) 49.11(6)
circuit-trace-compaction 4 3 0(0) 27.47(4) 114.91(1) 46.29(4)
close_solutions 50 29 30.96(38) 32.47(46) 67.27(6) 64.02(42)
des 50 29 15.39(1) 51.79(30) 0(0) 178.69(41)
haplotype-assembly 6 5 0(0) 1.35(5) 195.07(1) 0.32(5)
hs-timetabling 2 1 232.53(1) 56.44(1) 0(0) 18.21(1)
mbd 46 42 0(0) 12.33(46) 281.01(2) 50.54(34)
packup-pms 40 40 0.82(6) 38.62(40) 15.00(38) 6.26(40)
pbo/mqc/nencdr 25 25 0(0) 61.57(21) 0(0) 65.63(21)
pbo/mqc/nlogencdr 25 25 45.02(2) 35.18(25) 286.42(1) 11.69(25)
pbo/routing 15 15 25.46(15) 0.36(15) 86.17(11) 0.77(15)
protein_ins 12 4 3.40(12) 111.73(10) 8.05(1) 164.11(5)
tpr/Multiple_path 36 30 146.72(2) 73.06(28) 0(0) 129.46(22)
tpr/One_path 25 25 0(0) 38.27(24) 278.13(3) 140.41(24)

Total 568 424 191 443 161 421

Table 12
Comparative results for Dist and DistUP on the industrial Weighted PMS benchmark.

Instance class #ins. Dist DistUP

dustrial/haplotyping-pedigrees 100 62.19(35) 123.76(93)
hs-timetabling 14 190.12(3) 0.00(0)
packup-wpms 99 115.38(20) 81.04(79)
industrial/preference_planning 29 0.00(1) 36.99(25)
timetabling 26 140.47(7) 115.07(1)
ustrial/upgradeability-problem 100 0.23(3) 0.09(97)
wcsp/spot5/dir 21 65.81(14) 45.67(12)
wcsp/spot5/log 21 94.29(16) 61.39(18)

Total 410 99 325

Table 13
Comparative results for DistUP and WPM-2014-in on the industrial Weighted PMS benchmark.

Instance class #ins. #prov. by Eva DistUP WPM-2014-in

dustrial/haplotyping-pedigrees 100 97 12.13(30) 29.55(100)
hs-timetabling 14 0 0.00(0) 241.10(14)
packup-wpms/ 99 99 0.03(2) 17.81(99)
industrial/preference_planning 29 28 13.93(7) 16.41(29)
timetabling 26 10 38.74(2) 134.02(21)
ustrial/upgradeability-problem 100 100 0.00(0) 1.07(100)
wcsp/spot5/dir 21 14 13.16(6) 73.79(21)
wcsp/spot5/log 21 14 78.38(17) 50.51(9)

Total 410 362 64 393

The experimental results are summarized in Table 12, which show that DistUP obtains better solutions than Dist on
most of the instances. Overall, DistUP finds a better or equal quality solution on 325 instances among the 410 instances.
Specifically, DistUP performs better on 5 instance families, and worse on the other 3 families. These experimental results
indicate that the PrioUP procedure is also beneficial for solving Weighted PMS in most cases.

However, the performance of DistUP on industrial instances of Weighted PMS is still much worse than complete solvers.
For example, we compared DistUP with WPM-2014-in on these Weighted PMS industrial instances, and the results (Table 13)
show that the number of “winning” instances of WPM-2014-in is much more than that of DistUP. Nevertheless, we would
like to note that DistUP performs much better than WPM-2014-in on one family namely “wcsp/spot5/log”. In this sense, it
could be complementary to some extent to complete solvers for solving Weighted PMS industrial instances.

16 S. Cai et al. / Artificial Intelligence 240 (2016) 1–18
6.4. Related work and discussions on PrioUP

There is some work on improving local search algorithms by constructing effective initial solutions, most of which are
studied in the context of the Most Probable Explanation (MPE) in Bayesian networks [32,28,42]. With regard to MaxSAT,
Hains et al. transformed MaxSAT to Walsh polynomials and compute the hyperplane averages, which are then used to gener-
ate the initial assignment [21]. Their experiments on unweighted industrial MaxSAT benchmark from the MaxSAT Evaluation
2012 show that, by replacing the randomized initialization with the hyperplane-based initialization, better solutions can be
obtained.

Unit propagation preserves the satisfiability of the instance but does not preserve the number of falsified clauses for
every assignment. Due to this fact, the use of UP was mainly restricted to the SAT problem, and UP was not applied to
local search algorithms for MaxSAT until recently. To the best of our knowledge, there are only two studies using UP in
local search algorithms for MaxSAT in the literature [22,1], and we are not aware of any work using UP in local search
algorithms for PMS. Heras and Bañeres [22] proposed several preprocessors for MaxSAT and applied them before local
search algorithms. One of the preprocessors is the UP preprocessor, which iteratively performs the following operations
until no more non-propagated unit clause remains: it first executes a simulation of unit propagation (i.e., the consequences
are not applied to the formula) to find a conflicting clause, and then builds the corresponding refutation tree,4 and finally
it applies MaxSAT resolution as indicated by the refutation tree to transform the formula. Abramé and Habet [1] integrated
the UP technique into a local search algorithm, by applying UP after each flip step to dynamically build refutation trees and
detect conflicts. The processing technique in [1] is similar to the one in [22], but it is used dynamically during the search
process. Both of these two methods are mainly evaluated on random and crafted unweighted MaxSAT instances.

7. Conclusions and future work

In this work, we proposed a number of novel ideas for local search for Partial MaxSAT, which exploit the distinction
between hard and soft clauses. Specifically, we proposed a clause weighting scheme that works only for hard clauses, the
idea of separating hard and soft score, and a variable selection heuristic based on hard score and soft score. We then used
these ideas to develop a local search algorithm for PMS called Dist. Experimental results show that Dist dramatically outper-
forms previous local search algorithms. Also, Dist outperforms complete algorithms on random and crafted benchmarks, but
is still worse on industrial instances. Further, we proposed an initialization procedure that makes use of unit propagation
and puts priority on hard unit clauses, and applied it to improve Dist on industrial instances, resulting in the DistUP solver.
Experimental results show that DistUP significantly improves Dist on industrial PMS and WPMS instances, yet it cannot rival
state-of-the-art complete solvers.

This work made a breakthrough in local search for PMS, which was also confirmed by the excellent performance of Dist
in the MaxSAT Evaluation 2014. The strong experimental results suggested that local search based on hard and soft score
is a promising direction for solving PMS and deserves further research, and we would like to extend these methods to
weighted Partial MaxSAT. Another interesting direction is to study the initialization methods for MaxSAT problems.

Acknowledgements

This work is supported in part by the China National 973 Program under Project 2014CB340301 and National Natural
Science Foundation of China 61502464, 61370072 and 61572234. Chuan Luo is also supported by the Open Project Program
of the State Key Laboratory of Mathematical Engineering and Advanced Computing (Grant 2016A06), and Kaile is also
supported by ARC DP150101618. We would like to thank the anonymous reviewers for their helpful comments on the
earlier versions of this paper.

References

[1] André Abramé, Djamal Habet, Inference rules in local search for Max-SAT, in: IEEE 24th International Conference on Tools with Artificial Intelligence,
ICTAI, Athens, Greece, 2012, pp. 207–214.

[2] André Abramé, Djamal Habet, Ahmaxsat: description and evaluation of a branch and bound Max-SAT solver, J. Satisf. Boolean Model. Comput. 9 (2015)
89–128.

[3] Carlos Ansótegui, Joel Gabàs, Solving (weighted) partial MaxSAT with ILP, in: Proceedings of the 10th International Conference of Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR, Yorktown Heights, NY, USA, 2013, pp. 403–409.

[4] Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, Jordi Levy, Improving WPM2 for (weighted) partial MaxSAT, in: Proceedings of the 19th International
Conference of Principles and Practice of Constraint Programming, CP, Uppsala, Sweden, 2013, pp. 117–132.

[5] Carlos Ansótegui, Maria Luisa Bonet, Jordi Levy, SAT-based MaxSAT algorithms, Artif. Intell. 196 (2013) 77–105.
[6] Carlos Ansótegui, Yuri Malitsky, Meinolf Sellmann, MaxSAT by improved instance-specific algorithm configuration, in: Proceedings of the 28th AAAI

Conference on Artificial Intelligence, AAAI, Québec City, Québec, Canada, 2014, pp. 2594–2600.
[7] Josep Argelich, Chu Min Li, Felip Manyà, Jordi Planes, The MaxSAT evaluations 2010–2015, http://www.maxsat.udl.cat.

4 A refutation tree for an unsatisfiable clause set is a resolution process that derives an empty clause, where every clause is used exactly once during the
resolution process.

http://refhub.elsevier.com/S0004-3702(16)30083-2/bib416272616D65483132s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib416272616D65483132s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib416272616D653135s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib416272616D653135s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib416E736F7465677569473133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib416E736F7465677569473133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib416E736F746567756942474C3133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib416E736F746567756942474C3133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib416E736F7465677569424C3133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib416E736F74656775694D533134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib416E736F74656775694D533134s1
http://www.maxsat.udl.cat

S. Cai et al. / Artificial Intelligence 240 (2016) 1–18 17
[8] Adrian Balint, Andreas Fröhlich, Improving stochastic local search for SAT with a new probability distribution, in: Proceedings of the 13th International
Conference of Theory and Applications of Satisfiability Testing, SAT, Edinburgh, UK, 2010, pp. 10–15.

[9] Daniel Le Berre, Anne Parrain, The Sat4j library, release 2.2, J. Satisf. Boolean Model. Comput. 7 (2–3) (2010) 59–64.
[10] Shaowei Cai, Kaile Su, Local search for Boolean Satisfiability with configuration checking and subscore, Artif. Intell. 204 (2013) 75–98.
[11] Shaowei Cai, Kaile Su, Abdul Sattar, Local search with edge weighting and configuration checking heuristics for minimum vertex cover, Artif. Intell.

175 (9–10) (2011) 1672–1696.
[12] Shaowei Cai, Chuan Luo, John Thornton, Kaile Su, Tailoring local search for partial MaxSAT, in: Proceedings of the 28th AAAI Conference on Artificial

Intelligence, AAAI, Québec City, Québec, Canada, 2014, pp. 2623–2629.
[13] Shaowei Cai, Chuan Luo, Kaile Su, CCAnr: a configuration checking based local search solver for non-random satisfiability, in: Proceedings of 18th

International Conference of Theory and Applications of Satisfiability Testing, SAT, Austin, TX, USA, 2015, pp. 1–8.
[14] Shaowei Cai, Balance between complexity and quality: local search for minimum vertex cover in massive graphs, in: Proceedings of the 24th Interna-

tional Joint Conference on Artificial Intelligence, IJCAI, Buenos Aires, Argentina, 2015, pp. 747–753.
[15] Byungki Cha, Kazuo Iwama, Yahiko Kambayashi, Shuichi Miyazaki, Local search algorithms for partial MaxSAT, in: Proceedings of the 14th National

Conference on Artificial Intelligence, AAAI, Providence, Rhode Island, 1997, pp. 263–268.
[16] Jessica Davies, Fahiem Bacchus, Solving MAXSAT by solving a sequence of simpler SAT instances, in: Proceedings of the 17th International Conference

of Principles and Practice of Constraint Programming, CP, Perugia, Italy, 2011, pp. 225–239.
[17] Jessica Davies, Jeremy Cho, Fahiem Bacchus, Using learnt clauses in MaxSAT, in: Proceedings of the 16th International Conference Principles and

Practice of Constraint Programming, CP, St. Andrews, Scotland, UK, 2010, pp. 176–190.
[18] Jessica Davies, Solving MaxSAT by decoupling optimization and satisfaction, PhD thesis, 2013.
[19] Zhaohui Fu, Sharad Malik, On solving the partial MAX-SAT problem, in: Proceedings of the 9th International Conference of Theory and Applications of

Satisfiability Testing, SAT, Seattle, WA, USA, 2006, pp. 252–265.
[20] Ana Graça, João Marques-Silva, Inês Lynce, Arlindo L. Oliveira, Haplotype inference with pseudo-Boolean optimization, Ann. Oper. Res. 184 (1) (2011)

137–162.
[21] Doug Hains, Darrell Whitley, Adele E. Howe, Wenxiang Chen, Hyperplane initialized local search for MAXSAT, in: Proceedings of Genetic and Evolu-

tionary Computation Conference, GECCO, Amsterdam, The Netherlands, 2013, pp. 805–812.
[22] Federico Heras, David Bañeres, The impact of Max-SAT resolution-based preprocessors on local search solvers, J. Satisf. Boolean Model. Comput. 7 (2–3)

(2010) 89–126.
[23] Federico Heras, Javier Larrosa, Albert Oliveras, MiniMaxSAT: an efficient weighted Max-SAT solver, J. Artif. Intell. Res. 31 (2008) 1–32.
[24] Marijn J.H. Heule, Torsten Schaub, What’s hot in the SAT and ASP competitions, in: Proceedings of the 29th AAAI Conference on Artificial Intelligence,

AAAI, Austin, Texas, USA, 2015, pp. 4322–4323.
[25] Holger H. Hoos, Thomas Stützle, Stochastic Local Search: Foundations & Applications, Elsevier/Morgan Kaufmann, 2005.
[26] Holger H. Hoos, On the run-time behaviour of stochastic local search algorithms for SAT, in: Proceedings of the 16th National Conference on Artificial

Intelligence, AAAI, Orlando, Florida, USA, 1999, pp. 661–666.
[27] Frank Hutter, Dave A.D. Tompkins, Holger H. Hoos, Scaling and probabilistic smoothing: efficient dynamic local search for SAT, in: Proceedings of the

8th International Conference of Principles and Practice of Constraint Programming, CP, Ithaca, NY, USA, Springer, 2002, pp. 233–248.
[28] Frank Hutter, Holger H. Hoos, Thomas Stützle, Efficient stochastic local search for MPE solving, in: Proceedings of the 19th International Joint Confer-

ence on Artificial Intelligence, IJCAI, Edinburgh, Scotland, UK, 2005, pp. 169–174.
[29] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, Thomas Stützle, ParamILS: an automatic algorithm configuration framework, J. Artif. Intell. Res. 36

(2009) 267–306.
[30] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in: Proceedings of the

5th International Conference of Learning and Intelligent Optimization, LION, Rome, Italy, 2011, pp. 507–523.
[31] Yuejun Jiang, Henry Kautz, Bart Selman, Solving problems with hard and soft constraints using a stochastic algorithm for MAX-SAT, in: First Interna-

tional Joint Workshop on Artificial Intelligence and Operations Research, 1995.
[32] K. Kask, R. Dechter, Stochastic local search for Bayesian networks, in: Proceedings of the 7th International Workshop on Artificial Intelligence and

Statistics, AISTATS, Fort Lauderdale, Florida, US, 1999.
[33] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, Ryuzo Hasegawa, QMaxSat: a partial Max-SAT solver, J. Satisf. Boolean Model. Comput. 8 (1/2) (2012)

95–100.
[34] Chu Min Li, Yu Li, Satisfying versus falsifying in local search for satisfiability – (poster presentation), in: Alessandro Cimatti, Roberto Sebastiani (Eds.),

Proceedings of the 15th International Conference of Theory and Applications of Satisfiability Testing, SAT, Trento, Italy, 2012, pp. 477–478.
[35] Chu Min Li, Felip Manyà, Jordi Planes, New inference rules for Max-SAT, J. Artif. Intell. Res. 30 (2007) 321–359.
[36] Chu Min Li, Felip Manyà, Nouredine Ould Mohamedou, Jordi Planes, Exploiting cycle structures in Max-SAT, in: Proceedings of the 12th International

Conference of Theory and Applications of Satisfiability Testing, SAT, Swansea, UK, 2009, pp. 467–480.
[37] Han Lin, Kaile Su, Chu Min Li, Within-problem learning for efficient lower bound computation in Max-SAT solving, in: Proceedings of the 23rd AAAI

Conference on Artificial Intelligence, AAAI, Chicago, Illinois, USA, 2008, pp. 351–356.
[38] Chuan Luo, Shaowei Cai, Wei Wu, Zhong Jie, Kaile Su, CCLS: an efficient local search algorithm for weighted maximum satisfiability, IEEE Trans. Comput.

64 (7) (2015) 1830–1843.
[39] Zoltán Ádám Mann, Typical-case complexity and the SAT competitions, in: Proceedings of the 5th Pragmatics of SAT Workshop, POS@SAT, Vienna,

Austria, 2014, pp. 72–87.
[40] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, Inês Lynce, Incremental cardinality constraints for MaxSAT, in: Proceedings of the 20th Interna-

tional Conference of Principles and Practice of Constraint Programming, CP, Lyon, France, 2014, pp. 531–548.
[41] Ruben Martins, Vasco M. Manquinho, Inês Lynce, Open-WBO: a modular MaxSAT solver, in: Proceedings of the 17th International Conference of Theory

and Applications of Satisfiability Testing, Vienna, Austria, 2014, pp. 438–445.
[42] Ole J. Mengshoel, David C. Wilkins, Dan Roth, Initialization and restart in stochastic local search: computing a most probable explanation in Bayesian

networks, IEEE Trans. Knowl. Data Eng. 23 (2) (2011) 235–247.
[43] António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, Joao Marques-Silva, Iterative and core-guided MaxSAT solving: a survey and assessment,

Constraints 18 (4) (2013) 478–534.
[44] António Morgado, Carmine Dodaro, Joao Marques-Silva, Core-guided maxsat with soft cardinality constraints, in: Proceedings of the 20th International

Conference of Principles and Practice of Constraint Programming, CP, Lyon, France, 2014, pp. 564–573.
[45] Nina Narodytska, Fahiem Bacchus, Maximum satisfiability using core-guided MaxSAT resolution, in: Proceedings of the 28th AAAI Conference on

Artificial Intelligence, AAAI, Québec City, Québec, Canada, 2014, pp. 2717–2723.
[46] Duc Nghia Pham, John Thornton, Charles Gretton, Abdul Sattar, Advances in local search for satisfiability, in: Proceedings of the 20th Australian Joint

Conference on Artificial Intelligence, AI, Gold Coast, Australia, Springer, 2007, pp. 213–222.
[47] Olivier Roussel, Controlling a solver execution with the runsolver tool, J. Satisf. Boolean Model. Comput. 7 (4) (2011) 139–144.
[48] Masahiro Sakai, scip-maxsat, https://github.com/msakai/scip-maxsat.

http://refhub.elsevier.com/S0004-3702(16)30083-2/bib42616C696E74463130s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib42616C696E74463130s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4265727265503130s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib436169533133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib43616953533131s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib43616953533131s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4361694C54533134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4361694C54533134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4361694C533135s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4361694C533135s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4361693135s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4361693135s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib436861494B4D3937s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib436861494B4D3937s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib446176696573423131s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib446176696573423131s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib44617669657343423130s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib44617669657343423130s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4461766965733133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib46754D3036s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib46754D3036s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib47726163614D4C4F3131s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib47726163614D4C4F3131s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4861696E735748433133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4861696E735748433133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4865726173423130s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4865726173423130s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib48657261734C4F3038s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4865756C65533135s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4865756C65533135s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib486F6F73533035s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib486F6F733939s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib486F6F733939s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4854483032s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4854483032s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib48757474657248533035s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib48757474657248533035s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib487574746572484C5332303039s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib487574746572484C5332303039s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib487574746572484C32303131s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib487574746572484C32303131s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4A69616E674B533935s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4A69616E674B533935s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4B61736B3939s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4B61736B3939s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4B6F7368696D7572615A46483132s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4B6F7368696D7572615A46483132s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4C694C3132s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4C694C3132s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4C694D503037s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4C694D4D503039s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4C694D4D503039s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4C696E534C3038s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4C696E534C3038s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4C756F43574A5332303134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4C756F43574A5332303134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D616E6E3134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D616E6E3134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D617274696E734A4D4C3134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D617274696E734A4D4C3134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D617274696E734D4C3134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D617274696E734D4C3134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D656E6773686F656C57523131s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D656E6773686F656C57523131s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D6F726761646F484C504D3133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D6F726761646F484C504D3133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D6F726761646F444D3134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4D6F726761646F444D3134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4E61726F647974736B614232303134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib4E61726F647974736B614232303134s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib5068616D5447533037s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib5068616D5447533037s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib526F757373656C3131s1
https://github.com/msakai/scip-maxsat

18 S. Cai et al. / Artificial Intelligence 240 (2016) 1–18
[49] Kevin Smyth, Holger H. Hoos, Thomas Stützle, Iterated robust tabu search for MAX-SAT, in: Proceedings of the 16th Canadian Conference on AI, Halifax,
Canada, 2003, pp. 129–144.

[50] John Thornton, Abdul Sattar, Dynamic constraint weighting for over-constrained problems, in: Proceedings of the 5th Pacific Rim International Confer-
ence on Artificial Intelligence, PRICAI, Singapore, 1998, pp. 377–388.

[51] John Thornton, Stuart Bain, Abdul Sattar, Duc Nghia Pham, A two level local search for MAX-SAT problems with hard and soft constraints, in: Proceed-
ings of the 15th Australian Joint Conference on Artificial Intelligence, AI, Canberra, Australia, 2002, pp. 603–614.

[52] John Thornton, Duc Nghia Pham, Stuart Bain, Valnir Ferreira Jr., Additive versus multiplicative clause weighting for SAT, in: Proceedings of the 19th
National Conference on Artificial Intelligence, AAAI, San Jose, California, USA, AAAI Press/The MIT Press, 2004, pp. 191–196.

[53] Dave A.D. Tompkins, Holger H. Hoos, UBCSAT: an implementation and experimentation environment for SLS algorithms for SAT & MAX-SAT, in: Pro-
ceedings of the 7th International Conference on Theory and Applications of Satisfiability Testing, SAT, Vancouver, BC, Canada, 2004, pp. 37–46.

[54] Darrell Whitley, Adele E. Howe, Doug Hains, Greedy or not? Best improving versus first improving stochastic local search for MAXSAT, in: Proceedings
of the 27th AAAI Conference on Artificial Intelligence, AAAI, Bellevue, Washington, USA, 2013, pp. 940–946.

[55] Shlomo Zilberstein, Using anytime algorithms in intelligent systems, AI Mag. 17 (3) (1996) 73–83.

http://refhub.elsevier.com/S0004-3702(16)30083-2/bib536D79746848533033s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib536D79746848533033s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib54686F726E746F6E533938s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib54686F726E746F6E533938s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib54686F726E746F6E4253503032s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib54686F726E746F6E4253503032s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib545042463034s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib545042463034s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib546F6D706B696E73483034s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib546F6D706B696E73483034s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib576869746C657948483133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib576869746C657948483133s1
http://refhub.elsevier.com/S0004-3702(16)30083-2/bib5A696C626572737465696E3936s1

	New local search methods for partial MaxSAT
	1 Introduction
	1.1 The problem
	1.2 Related work
	1.3 Main contributions
	1.4 Structure of the paper

	2 Preliminaries
	3 Exploiting the distinction between hard and soft clauses
	3.1 Weighting for hard clauses
	3.2 Separating hard score and soft score
	3.3 Variable selection based on hard and soft scores

	4 The Dist algorithm
	4.1 Description of Dist

	5 Experimental evaluation of Dist
	5.1 Parameter setting and experiment setup
	5.2 Comparing Dist with local search solvers
	5.3 Performance variability of local search solvers
	5.4 Comparing Dist with complete solvers
	5.5 Comparing Dist with portfolio solver
	5.6 Effectiveness of the underlying ideas in Dist

	6 Improving Dist on industrial PMS instances
	6.1 Initialization via priority unit propagation
	6.2 The DistUP solver
	6.3 Empirical evaluations of DistUP
	6.3.1 Experiments of DistUP on industrial PMS instances
	6.3.2 Experiments of DistUP on industrial weighted PMS instances

	6.4 Related work and discussions on PrioUP

	7 Conclusions and future work
	Acknowledgements
	References

