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a  b  s  t  r  a  c  t

Image  reconstruction  from  projections  is an  important  problem  in the  areas  of  microscopy,  geophysics,
astrophysics,  satellite  and  medical  imaging.  The  problem  of  image  reconstruction  from  projections  is
considered  as  an optimization  problem  where  a  meta-heuristic  technique  can  be  used  to solve  it. In this
paper,  we  propose  a  new  method  based  on  harmony  search  (HS)  meta-heuristic  for  image  reconstruction
from  projections.  The  HS  method  is combined  then  with  a local  search  method  (LS)  to  improve  the  quality
of reconstructed  images  in  tomography.  The  two  proposed  methods  (HS  and  hybrid  HS)  are  validated  on
eywords:
armony search meta-heuristic

mage reconstruction from projections
nverse problem
ptimization problem
ocal search

some  images  and  compared  with  both  the  filtered  back-projection  (FBP)  and  the simultaneous  iterative
reconstruction  technique  (SIRT)  methods.  The  numerical  results  are  encouraging  and  demonstrate  the
benefits  of the  proposed  methods  for image  reconstruction  in tomography.

©  2016  Elsevier  B.V.  All  rights  reserved.
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ybrid meta-heuristics

. Introduction

Image reconstruction from projections is an important problem
hat has been handled by a large number of scientists. This tech-
ical has found widespread application in many scientific fields,

ncluding microscopy, geophysics, astrophysics and medical imag-
ng [1–3].

Let us consider a set of measures produced by unknown object,
mage reconstruction from projections is an inverse problem that
onsists in finding the original object from its projections. The prob-
em is also ill-posed because the solution could be unique, could not
xist, or different solutions could exist for the same problem [4].

The X-ray computed tomography (CT) is the most familiar appli-
ation of image reconstruction from projections. The X scanners
re used in different areas such as medical routine, metallurgy,
aterial structure analysis and others [5]. The principle of CT has

xpanded to other physical phenomena that X-rays as radioac-
ive emission (tomographic emission to a single photon (SPECT)
r positron emission tomography (PET)), ultrasound, microwave,
lectrical impedance and magnetic resonance imaging (MRI).
Please cite this article in press as: A. Ouaddah, D. Boughaci, Harmony s
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.02.031

The problem of image reconstruction from projections is an
mportant problem in tomography. Several methods for image
econstruction are proposed in CT. Among them, we mention the
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67
following ones: filtered back-projection method (FBP) [6], alge-
braic reconstruction techniques (ART) [7], maximum likelihood
expectation maximization (MLEM) [8] and simultaneous iterative
reconstruction technique (SIRT) [9]. However, till now there is no
method able to give satisfactory results. Other iterative methods
were recently proposed as model-based iterative reconstruction
(MBIR) [10] or iterative reconstruction in image space (IRIS) [11].

Some researchers [12,13,1,14–18] consider this problem as an
optimization problem where the aim is to minimize a certain objec-
tive function referred to the projections.

The meta-heuristic is a kind of methods that have been used
with success in solving several optimization problems in many
search areas such as geophysics, astrophysics, medical imaging
and microscopy [19–22]. However, to the best of our knowledge,
there are only a few researches on tomographic reconstruction
by using meta-heuristics based approaches. We  can cite, for
example the genetic and fly algorithms for tomographic recon-
struction [23,17,13,14,16]. These methods are till now in the
experimental stage. Nonetheless, it is possible to further improve
the reconstruction.

The aim of the current work is to open a new field by using
harmony search based meta-heuristic in image reconstruction.
Further, we hope to improve the quality of reconstruction and
find a method able to solve efficiently the considered problem of
earch algorithm for image reconstruction from projections, Appl.

image reconstruction. First, we propose a new method based on
harmony search (HS) meta-heuristic for image reconstruction in
tomography. Then, we combine HS with a local search method (LS)
to enhance the performance for image reconstruction with low
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Fig. 1. Example of process of measuring

esolution [18]. The two proposed methods are compared with
BP analytical method which is till now largely implemented in CT
linical routine [24,25] and with the iterative technique SIRT.

The rest of the paper is organized as follows: Section 2 presents a
ackground on some basic principles of reconstruction from projec-
ions with an overview of standard methods for reconstruction in
omography. Section 3 details the proposed approaches for image
econstruction from projections. Section 4 gives experiments and
ome numerical results. Finally, we conclude in Section 5 and give
ome future works.

. Background

Tomography is an imaging technique that permits to visualize
he internal structure of an object. Tomography is performed in two
teps. The first step is the process of data acquisition for recording
rojections. The set of angular projections is called sinogram. This
inogram is used in the second step to reconstruct the image. There
re two main groups of reconstruction methods: the analytic and
he iterative reconstruction methods.

The aim of this section is to give a background on basic princi-
les of tomographic reconstruction followed by a brief description of
tandards methods applied in this field.

.1. Basic principles of reconstruction from projections

The first step in tomography is the data acquisition process that
an be modeled by Radon transform [5]. This transform converts a
D function f(x,y) to 1D projection following a Cartesian coordinates
s,�) [15]. In continuous cases, projections P(s,�) with s the distance
etween each point crossed by the projection ray and the center of

 angle, such as (1), is to measure the integral of an infinite domain
f all points (x, y) of the function or the object f(x, y) [26,27]. These
oints contribute in P projection such as (2).

 = x cos(�) + y sin(�) (1)

(s, �) =
∫ +∞

−∞
f (x, y)dv (2)

The set of these projections acquired at different angles � are
ecorded into a certain format so-called sinogram. A sinogram is
imply the 2D array of data containing the projections. Each column
Please cite this article in press as: A. Ouaddah, D. Boughaci, Harmony s
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.02.031

f the sinogram corresponds to the set of acquired projections for
he same radial value s at different angles.

The two images depicted in Fig. 1 explain the process of data
cquisition. The left image corresponds to the acquisition of the
ctions and recording as sinogram [28].

projections from the objects and the right one corresponds to pro-
jections collected as sinogram.

By analogy, in the discrete case, Radon transform is the sum of
the values of all pixels (x, y) that contribute in each projection Pi
as given in formula (3); rij is the value of pixel contribution j at the
projection Pi; fj is the value of this pixel [29].

Pi =
m∑

j=1

rijfj (3)

Added to this transform, John Radon has proved in 1917, that the
reconstruction of the object from its projections is possible and
could be exact if we  have an infinite number of projections, and in
reality it is impossible [30].

The reconstruction step is to back-project for each (x, y) the value
of the projection at � angle in which (x, y) is crossed by the ray of
projection.

i = x cos(�) + y sin(�) (4)

f ′
�(x, y) = p�(i) (5)

The back-projection of all projections can be given as

f ′(x, y) =
∫ �

0

p�(i)d� (6)

By analogy, in discrete case the back-projection is computed
such that

f ′(x, y) =
�∑

�=0

p(i, �) (7)

With f′ is the reconstructed object.
In overall, the image reconstruction in tomography can be sum-

marized into two  main steps:

1. Produce the projections from the image. The projections are col-
lected as sinogram mode, see Fig. 2.

2. From these projections (sinogram) we reconstruct the image [5],
see Fig. 3.

Several methods for image reconstruction are studied in CT. These
earch algorithm for image reconstruction from projections, Appl.

methods can be divided into two  main categories: analytical and
iterative methods. The next subsection gives an overview on some
well-known standard methods for image reconstruction in tomo-
graphy.

140

141

142

143

dx.doi.org/10.1016/j.asoc.2016.02.031


ARTICLE ING Model
ASOC 3490 1–12

A. Ouaddah, D. Boughaci / Applied Soft

Fig. 2. Example of an object (a) and its sinogram (b).

F
r

2

m

2

c
c
j
T
b
m
i
w
[
l
q
o
i

2

e

p

W
c
b
a

q
S
[
t
p
a
c

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224
ig. 3. Illustration of the principle of reconstruction: from sinogram, we  try to
econstruct the object.

.2. Standards methods

This section describes briefly the two main categories of standard
ethods of image reconstruction from projections.

.2.1. Analytical methods
The analytical methods are based on continuous modeling; it

onsists of inverse measurement equations. Among the analyti-
al methods, we cite the simple back projection method that is
ust reversing the projection operation which gave rise to the data.
he Fourier transformation method that estimates the distribution
y inverting Fourier transform theorem. The back-projection (BPF)
ethod where the projection data are first back-projected, filtered

n Fourier space. Finally, the filtered back-projection (FBP) method
here projection data are first filtered and then back projected

31,32]. Filtered back-projection (FBP) [6] is the most used ana-
ytical method, and in general, analytical methods are fast but the
uality of reconstruction is largely disputed. The iterative meth-
ds have been introduced to improve the quality of reconstructed
mages.

.2.2. Iterative methods
The iterative methods aim to find a solution f that minimizes the

rror between p and p′ [8,7,9,33].

′ = M · f (8)

ith p is the measured projections. p′ is the estimated one. M is the
oefficient (system) matrix. It represents the probability of contri-
ution of each pixel in each projection. The iterative method uses

 specific error correction to minimize error between p and p′.
The iterative methods have been introduced to improve the

uality of reconstructed images. Among these methods, we can find
IRT method or ordered subset expectation maximization (OSEM)
33]. In general, iterative methods provide better quality images
Please cite this article in press as: A. Ouaddah, D. Boughaci, Harmony s
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.02.031

han analytical methods. However, these methods need heavy com-
uting power, the noises increase with the number of iterations and
fter a number of iterations the solution starts to diverge signifi-
antly.
 PRESS
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2.3. Others methods

As already said in the introduction, there are only few meta-
heuristics based methods for image reconstruction in tomography
such as: the genetic and fly algorithms for image reconstruction
[23,17,13,14,16]. The problem is still open, because there is no
exact solution for this problem and the quality of the reconstructed
images could be still enhanced.

In the next section, we propose two meta-heuristics for image
reconstruction from projections. The first is a harmony search (HS)
and the second is a hybrid HS with a local search method to enhance
the quality of reconstructed images with low resolution. The pro-
posed methods are compared with the most used analytical method
in CT which is FBP and the iterative SIRT method.

3. Proposed approaches

In this section, we propose two  methods for image reconstruc-
tion in tomography. The first is based on the recent harmony search
(HS) meta-heuristic. The second is a combination of HS and the
local search method (LS) [18]. In following we  start with the prin-
ciples of HS. Then we give the two  proposed methods for image
reconstruction in tomography.

3.1. Classical definition of harmony search meta-heuristic

Geem et al. [34] have developed in 2001, a new algorithm based
on the improvisation process of musicians which want to find the
perfect harmony in a musical orchestra where each musician plays
a musical note seeking a better harmony. Especially those who
never played together before, they search rapidly to improve their
individual contributions in order to find the best harmony [34].
This algorithm is called “harmony search HS”. This method was
applied in some fields [35–37] but not yet in tomographic recon-
struction. The six main steps of the harmony search method are
given as follows.

Step 1. The initialization of the problem and algorithm parameters
The first step is to initialize the algorithm parameters. We

note that the optimization problem is to optimize a certain
objective function R(x) subject to xi ∈ M,  i = 1, 2, 3, . . .,  N. x
is a possible solution to the problem, it is the set of decision
variables (called also solution vector); N is the number of
decision variables; M is a list of sets, each set Mi containing
the possible values of a variable xi within its bounds.

Step 2. The initialization of the harmony memory (HM)
HM is the set of solutions (harmonies). Each solution is

a row vector of N numbers xi. Thus, HM can be noted as a
matrix, where the rows contains harmonies and the number
of rows are bounded by the harmony memory size (HMS).
Thus, a column within this matrix contains all estimated
solution values for one variable xi.

HM =

⎛
⎜⎜⎜⎜⎝

x1
1 x1

2 · · · x1
N

x2
1 x2

2 · · · x2
N

...
...

...
...

xHMS
1 xHMS

2 · · · xHMS
N

⎞
⎟⎟⎟⎟⎠
earch algorithm for image reconstruction from projections, Appl.

Once the problem is specified and the HM is initialized, the
parameters have to be specified also. These HS parameters
are:
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• HMS: which is the harmony memory size that represents
the number of solution vectors in the harmony memory
(HM).

• HMCR: is the harmony memory considering rate, HMCR ∈
[0, 1].

• PAR: is the pitch adjusting rate, PAR ∈ [0, 1].
• NI: is the number of improvisations or stopping criterion.

tep 3. The objective function computation
The objective function permits to measure the quality

of the generated solutions. The definition of the objective
function depends to the considered optimization problem.

tep 4. The improvisation of a new harmony from the HM
A new HM vector X ′ = x′

1, x′
2, . . .,  x′

N is produced based on
three rules: (1) memory consideration, (2) random selection
and (3) pitch adjustment. The harmony memory consider-
ing rate, HMCR ∈ [0, 1] is the probability of choosing a value
from the i-th column within HM,  while the (1 − HMCR)  is the
probability of randomly selecting one value of the possible
range of values.

x′
i =

{
xi ∈ {x1

i
, x2

i
, . . .,  xHMS

i
} w.p. HMCR

xL
i

+ rand() · (xU
i

− xL
i
) w.p. (1 − HMCR)

(9)

With L and U the lower and upper bounds for the given
problem. rand() is a uniform distribution random number
between 0 and 1.

The value of each decision variable obtained by the mem-
ory consideration is examined to determine whether it
should be pitch-adjusted. Pitch adjustment means chang-
ing the value of x′

i
. This operation uses the PAR parameter.

PAR is the probability of choosing a neighboring solution
x′

i
= xi ± rand() · BW . Where BW is a random number in the

feasible space between the lower and upper bound values
(L and U), [38–40]. The value of (1 − PAR) sets the rate of
performing nothing.

x′
i =

{
xi ± rand() · BW w.p. PAR

x′
i

w.p. (1 − PAR)
(10)

tep 5. Update of the HM
The new generated harmony vector is inserted into HM

when it is better than the worst harmony in the HM.  The
worst harmony is then removed from the HM.  The update
of HS depends highly on the search experience. The quality
of a harmony is measured by using the objective function.

tep 6. Repeat Steps 3 and 4 until satisfaction of stopping criterion
The Steps 3 and 4 are repeated until the maximum num-

ber of improvisations is satisfied.

.2. Adaptation of HS to our problem

The problem of image reconstruction from projections is consid-
red as an optimization problem. It aims to improve the quality of
econstructed images with low resolution. We  attempt to find the
est image by minimizing a certain objective function. In our case,
he objective function measures the distance between estimated
nd measured projections.

In the following, we adapt HS to the problem of image reconstruc-
ion from projections. HS is an iterative method aiming to minimize
he distance between estimated and measured projections.

.2.1. Creation of the initial population called HM
Please cite this article in press as: A. Ouaddah, D. Boughaci, Harmony s
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.02.031

The HS method starts with an initial population HM generated
andomly. In our case, the initial solution represents the initial
econstruction of the image from the projections using a standard
nalytical method.
 PRESS
 Computing xxx (2016) xxx–xxx

3.2.2. Generation of new harmonies
The generation of new harmonies at each iteration called also

neighborhood solutions generation permits to explore the search
space and locate new solutions. We produced three different new
solutions as follows.

1. If HMCRi < HMCR then a new solution is produced from the HM,
for each new harmony, we  choose the value of the solution St(t ∈
[1, HMS], randomly chosen from HM.

S′ = Sc · Sq (11)

With S′ the first neighborhood solution (image). Sc the current
solution. Sq the produced solution from estimated projections
using a simple back-projection. These estimated projections are
produced by estimating the quotient from measured projections
and estimated one, from the factor of correction used in [41].
We note that HMCR is the harmony memory considering rate
specified at the beginning of HS. HMCRi is a probability computed
at each iteration of HS process.

2. If PARi < PAR then we produce from the value of the current solu-
tion Sc three new neighbors solutions, such as (11) and (12).

S′′ = Sc + Sd (12)

With S′′ the second neighborhood solution. Sc the current solu-
tion. Sd the produced solution from estimated projections. These
estimated projections are produced by estimating the distance
between measured projections and estimated one, from the fac-
tor of correction used in [7]. We note that PAR is the Pitch
Adjusting Rate fixed when HS is started. PARi is a probability
computed at each iteration of HS method.

3. The third neighborhood solution S′′′ is given by a simple move.
The move is an operator that represents a modification applied
on a candidate solution Sc to produce new ones S′′′. In our case
the modification is the direct change of grayscale value of one or
some pixels by another value.

3.2.3. The objective function
The objective function permits to measure the quality of a solu-

tion x. In our case, the objective function is the distance between
all measured projections (sinogram) and the estimated projections
from the current solution x.

City block distance [42], is used because it gives a high quality
of precision and it is a fast method.

The projection is recorded into sinogram H(s,�). We  compute
the sum of the distances (R) between each estimated projection of
changed point that recorded into sinogram Hc(s,�)  and each mea-
sured projection for the same angle � from the same point recorded
into sinogram Hm(s,�), such (13):

R =
∑
s,�

|Hc(s, �) − Hm(s, �)| (13)

3.2.4. Update HM
From the produced solutions, the best solution which has the

smallest distance is chosen. This solution is added in the HM and
the historical solution with the maximum value (the worst one) of
distance is removed.

3.2.5. NI
earch algorithm for image reconstruction from projections, Appl.

The algorithm stops when the convergence criteria referred to
the computed objective function R converge to a fixed value V or if
the time bound is elapsed. Otherwise the HS is applied to all points
(pixels) of the image.
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Table 1
The gap and the computation time needed for each reconstruction from Fig. 4 using Q4
HS and FBP methods.

Image test Size HS FBP

Gap Time (s) Gap  Time (s)

Image test 01 10 × 10 0 0.97 0.27 0.175
Image test 02 20 × 20 0 1.36 0.82 0.14
Image test 03 10 × 10 0 0.30 0.25 0.084
Image test 04 10 × 10 0 0.3 0.28 0.085
Image test 05 20 × 20 0 0.19 0.05 0.10
Image test 06 30 × 30 0 1.58 1.05 0.10

Table 2
Comparison of reconstructed images from Fig. 4 by using HS and FBP methods.

Image test HS FBP

PSNR

Image test 01 ∞ 59.1709
Image test 02 ∞ 62.3217
Image test 03 ∞ 64.7573
Image test 04 ∞ 61.1984
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.3. The LS algorithm

Local search is an iterative meta-heuristic that moves from one
olution to the next one by applying local changes until the optimal
olution is found or the time bound is elapsed [18]. The adapted LS
s based on the following steps.

Step0:  Initialization: produce an initial solution.
Step2:  each point of the solution is changed with different
grayscale values, projections data are estimated for the all mod-
ifications.
Step3: Objective function: this function estimates the distance
between current projection and measured one for a specific angle
� and the same point that contribute in this projection.

For each point that contributes in each projection, we compute
this function and proceed to a selection of the best new solutions.
Step4:  Selection: we select the solution having the minimum dis-
tance value between the current estimated projection and the
measured one.
Step5: Stopping condition: the algorithm is stopped when the cur-
rent solution converge to the previous one. Otherwise the local
search algorithm is applied for all points of the images for all
measured projections.

.4. Hybrid HS

We  combine HS and LS methods to enhance further the per-
ormance of our method for reconstructing images with low
esolution. First we call HS to reconstruct an image and estimate
he reconstruction quality. When HS fails to find a good solution
nd there is no satisfactory reconstruction, we call LS algorithm to
nhance the quality of solution produced initially by HS. The overall
ethod is given as follows:

. Call HS algorithm.

. if R > V and T < Ts then call LS algorithm.
Where T is the image resolution. The aim is to apply the hybrid

method only for images with low resolution. Ts represents the
maximum image resolution (number of unknowns), which is
fixed empirically to 2500. R is the objective function already
given in Section 3.2.3. The LS method is called when HS fails
to improve significantly the quality of reconstructed images.

. Experimental study

The proposed methods are implemented on machine and com-
ared with some well-known methods for image reconstruction.
he aim of this section is to give some results and to show the
ffectiveness of the proposed methods for image reconstruction in
omography.

.1. The used machine

All experiments are run on a personal computer with Intel(R)
ore(TM), 2.4GHZ 2.4 i7 CPU GHZ with 6.00GB of RAM under Win-
ows 7 system. The codes are implemented in MATLAB.

.2. Parameter tuning
Please cite this article in press as: A. Ouaddah, D. Boughaci, Harmony s
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The adjustment of the parameter of the proposed approaches is
xed by an empirical study. The HS parameters are: Z = 4, V = 0.05
nd CPU time for HS = 500 s.
Image test 05 ∞ 61.1059
Image test 06 ∞ 66.7509

4.3. Numerical results

The aim of this section is to evaluate the proposed approaches on
some datasets. We developed synthetic images with low resolution
on which we applied HS and hybrid HS algorithms.

The proposed methods are also validated on the famous
Shepp–Logan and Hoffman models. The results obtained from the
series of tests are presented in this section.

The quality of the image reconstruction is measured by comput-
ing the peak signal to noise ratio (PSNR) between the reconstructed
image and the original one [43,44]. PSNR is an expression for the
dispersion between the reconstructed image and the original one
as given in the following formula.

PSNR = 10lg

(
d2

MSE

)
(14)

MSE  = 1
mn

m−1∑
i=0

n−1∑
j=0

‖I0(i, j) − Ir(i, j)‖2 (15)

With d is the maximum possible pixel value of the image. I0: is the
original image. Ir: is the reconstructed image. For MSE  = 0, PSNR
becomes infinite.

We  computed also, the gap that represents the error between
each reconstructed image with the original one. For this, Manhattan
distance is computed as given in the following formula.

gap =
m−1∑
i=0

n−1∑
j=0

I0(i, j) − Ir(i, j) (16)

I0: is the original image. Ir: is the reconstructed image.

4.4. Test1: results on six synthetic images

Fig. 4 compares the performance of HS and FBP methods on six
synthetic images. We  give also the original image to shows clearly
the effectiveness of HS compared to FBP.

The obtained PSNR, the gap and the CPU time in second needed
earch algorithm for image reconstruction from projections, Appl.

for the reconstruction process by each method are given in this
section. Table 1 gives a quantitative comparison using the gap met-
ric while Table 2 gives a quantitative comparison based on PSNR
metric. The tests are done on some images from Fig. 4.
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Fig. 5. Example of the worst reconstruction with HS in 10 runs. (a) Original image.
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ig. 4. Example of reconstructed images. (a) Original image. (b) Reconstructed
mage by FBP method. (c) Reconstructed image by HS method.

We  can see from Table 2 that HS succeeds in giving a high
uality of reconstructed images. Indeed, the PSNR values of recon-
tructed images by HS method are slightly better than PSNR of FBP
econstruction. The search process in HS is not a time consuming
ompared to the reconstruction process in FBP method, as shown
n Table 1.

.5. Test2: the worst solution found

In this test, we study the quality of reconstructed images test
f Fig. 5. We  produce the worst solution found by the proposed
Please cite this article in press as: A. Ouaddah, D. Boughaci, Harmony s
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.02.031

ethod during 10 runs and we compare this solution with the one
reated by FBP.

Fig. 5 shows clearly that HS method succeeds in providing good
uality of reconstructed images.

442

443
(b)  Reconstructed image by FBP method. (c) Reconstructed image by HS method.

The numerical results in Table 3 indicate that the PSNR values of
the produced solutions, for all tests, are still better than the PSNR
values of the reconstructed image by FBP method.

4.6. Test3: importance of the hybrid method

Test3 gives the results obtained for images of Fig. 6. Here the
aim is to show the importance of the hybrid method when the HS
method lunched alone fails to give a good image reconstruction.
We  cite the cases of Image test 02 and Image test 03 from Fig. 6.
Here the hybrid method succeeds to improve the quality of image
earch algorithm for image reconstruction from projections, Appl.

reconstruction. The hybrid method finds better solutions than both
HS and FBP.
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Table  3
Comparison of reconstructed images from Fig. 5 by using FBP and HS methods.

Image test HS FBP

PSNR

Image test 01 74.8387 59.1709
Image test 02 76.5673 62.3217
Image test 03 81.0638 64.7573
Image test 04 71.0369 61.1984
Image test 05 104.0399 61.1059
Image test 06 84.2095 66.7509
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Table 4
The gap and the computation time needed for each reconstruction of images from
Fig. 7 by using HS and FBP methods.

Image test HS FBP

Gap Time (s) Gap Time (s)

Image test 01 0.01 0.046 0.38 0.002
Image test 02 0.19 0.05 0.18 0.002
Image test 03 0 0.05 0.23 0.002

Table 5
The gap and the computation time needed for each reconstruction of images (c) and
(d) from Fig. 8 using the HS method.

Image test HS

Gap (c) Gap (d) Time (c) Time (d)

Image test 01 0.15 0.01 0.012 0.046
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Fig. 6. Images test for test 03.

.6.1. Comparison between HS and FBP
We  depicted in Fig. 7 the reconstructed image by both FBP and

S methods. We can see that HS method enhances the quality of
econstructed images for Images test 01 and Image test 03 from Fig. 6.

We can see from Table 4 that the quality of the reconstructed
mage test 01 and Image test 03 of Fig. 6 by using HS method is better
han the quality of FBP reconstruction in term of gap point of view.
onetheless the gap value of reconstructed Image test 02 by using
BP method is weaker than the gap value of reconstructed image by
sing HS. Therefore, HS fails to improve the quality of reconstructed

mage test 02.
Please cite this article in press as: A. Ouaddah, D. Boughaci, Harmony s
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ig. 7. Example of reconstructed images from Fig. 6. (a) Original image. (b) Recon-
tructed image by FBP method. (c) Reconstructed image by HS method.
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Image test 02 0.19 0.19 0.045 0.07
Image test 03 0.09 0 0.31 0.05

4.6.2. The best versus the worst produced solutions
In this section, we study the quality of the image reconstruc-

tion for each image test from Fig. 6 by displaying the best and the
worst solutions obtained by using the same proposed method. Fig. 8
gives an example of the best and the worst reconstructed images
produced by HS method.

According to the results from Table 5 and Fig. 8, we can say that
HS method when lunched alone improves the quality of recon-
structed images for Image test 01 and Image test 03.  The gap of
both reconstructed images is better than the gap of reconstructed
image by using FBP. Unlike the Image test 02 where the gap of the
two produced solutions could be rounded to the gap value of FBP
reconstruction.

The worst and the best solutions shown in Fig. 8 indicate that HS
method cannot reach the global optimum on every run. HS some-
times loses its way  at a local optimum for a few tests, as in Image
test 01 from Fig. 6.

4.6.3. Comparative study between HS, FBP and LS methods
As given in Tables 1 and 6, the gap of reconstructed images by

HS is mostly better than the gap of reconstructed image using FBP.
Let us focus on Image test 01 from Fig. 6, the worst gap con-

cerns image (c) from Table 5, the gap = 0.15 which is still better
than the gap of reconstructed image by FBP method (gap = 0.38),
which means that the quality of reconstructed image by HS method
is much better than reconstructed image by FBP method.

The gap concerning the Image test 02 is the same for FBP and HS
reconstruction, which means no improvement.

To improve the quality of reconstructed image, we combined HS
and LS meta-heuristics. The hybrid algorithm succeeds to improve
the quality of reconstructed image.

For Image test 03,  the quality of the produced image by using
earch algorithm for image reconstruction from projections, Appl.

HS method is slightly better than the reconstructed image by using
FBP method as shown in both Table 4 and Fig. 7, we  do not need
hybridization with LS method.

Table 6
The gap and the computation time needed for each reconstruction of images from
Fig. 9 using HS and LS methods.

Image test HS LS

Gap Time (s) Gap Time (s)

Image test 01 0.01 0.046 0 0.55
Image test 02 0.19 0.07 0 1.02
Image test 03 0 0.05 0 9.71
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ig. 8. Example of the worst and the best obtained images by HS method. (a) Origi
ethod. (d) The best obtained image by HS method.

Table 6 and Fig. 9 show clearly that LS method is better for recon-
truction than HS method. The gap of reconstructed images by the
S method is better than the gap of reconstructed images by HS
Please cite this article in press as: A. Ouaddah, D. Boughaci, Harmony s
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ethod. However, as shown in Table 6, the computation time of
he HS is largely better than the computation time of LS method,
hich is an important parameter.

ig. 9. Example of reconstructed images from Fig. 7. (a) Original image. (b) Reconstructe
mage  by LS method.
age. (b) Reconstructed image by FBP method. (c) The worst obtained image by HS

We  note that the gap of Image test 03 is the same for the two
methods. However, the number of the misplaced pixels (NMP)
of reconstructed Image test 03 using HS method is NMP  = 0 while
earch algorithm for image reconstruction from projections, Appl.

NMP = 4 when it is reconstructed by LS method.
The gap of Image test 01 when using HS method (gap = 0.01) is

close to 0 values and the time of computation is smaller than time

d image by FBP method. (c) Reconstructed image by HS method. (d) Reconstructed
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Fig. 10. Example of reconstructed images using a hybrid HS. (a) Original image. (b) Reconstructed image by FBP method. (c) Reconstructed image by HS  method. (d)
Reconstructed image by HS/LS method.

Table 7
The gap and the computation time needed for each reconstruction of images from
Fig. 10 using the HS and hybrid HS with LS methods.

Image test HS HS/LS
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Gap Time (s) Gap Time (s)

Image test 02 0.19 0.07 0 1.21

alculation of LS method. Accordingly, HS approach is better than
he LS method.

.6.4. Hybridization between HS and LS methods
The gap concerning the Image test 02 is better with LS method,

nd for these reasons we apply a hybrid HS to reconstruct this
mage. The obtained results are shown in Fig. 10 (Table 7).

.7. Further comparison with FBP method

The aim of this section is to show the performance of HS method
ompared to FBP method by using Shepp–Logan model, noisy pro-
ections and the ANOVA statistical test.

.7.1. Test4: HS versus FBP on Shepp–Logan model
Test4 presents the HS reconstruction results applied on a famous

hepp–Logan model, see Fig. 11. We  compare the reconstructed
mage by HS with the reconstructed one using FBP method. The
alues cited in Fig. 11 show the peak signal to noise ratio (PSNR)
f each reconstructed image by HS and FBP methods. The PSNR
esulting for the FBP and HS is given in Fig. 11. The value of PSNR
f the reconstructed image using our method is better than the
alue of PSNR of the reconstructed image by FBP. According to the
umerical results, we can say that HS method is able to find high
uality solutions.

.7.2. Test5: the effectiveness of HS when introducing noises
Test5 describes the efficiency of our method when introducing
Please cite this article in press as: A. Ouaddah, D. Boughaci, Harmony s
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oises. Fig. 12 shows the results obtained by using our approach
nd FBP method on a famous Shepp–Logan model with noises.
e compare the reconstructed image by our method with the

econstructed one with FBP method. The value of PSNR of the

ig. 11. Shepp and Logan model for Test4. (a) Original model. (b) Reconstructed
mage by FBP method. (c) Reconstructed image by HS method.

550
Fig. 12. HS reconstruction, including noises. (a) Original model. (b) Reconstructed
image by FBP method. (c) Reconstructed image by HS method.

reconstructed image by using HS method is better than the value
of PSNR of the reconstructed image by using FBP method. We
deduce that HS is able to find good quality solutions in spite the
introduction of noises.

4.7.3. ANOVA statistical analysis: test 01
Analysis of variance (ANOVA) is a statistical tool used to ana-

lyze the differences between groups on some variable. ANOVA is
available for both score data and ranking data.

The purpose of one-way ANOVA is to determine whether dif-
ferent groups of an independent variable have different effects on
the response variable. The purpose of one-way ANOVA is to deter-
mine whether data from several groups (levels) of a factor have a
common mean. In our test, we  want to determine if our method
improves the quality of reconstructed images more than the FBP
standard method. In this case, the independent variable is PSNR
values for a set of reconstructed images by each FBP and HS method
(Table 8).

In this section, we  draw the table that shows the value of the
F-statistic and p-value. The boxplot of the quality of reconstruction
between FBP and HS reconstruction is given in Fig. 13. The ANOVA
results of the image quality measures (out of 20 tested) in each
earch algorithm for image reconstruction from projections, Appl.

image obtained from FBP reconstruction and our proposed method
is given in Table 9 and Fig. 13.

Table 8
The one-way ANOVA test1: quality of reconstruction between FBP and HS recon-
struction. Only for variance source between groups (columns).

SS df MS  F-statistic p-Value

2.04e+006 1 2,038,400.3 18.3 0.0001

Table 9
The one-way ANOVA test: quality of reconstruction between SIRT and HS
reconstruction.

SS df MS  F-statistic p-Value

2728 1 2728.02 12.28 0.0012
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Fig. 13. Boxplot of one-way ANOVA: The quality of reconstruction between FBP and
HS reconstruction. (1) FBP reconstruction. (2) HS method.

F
i
H

o
c

i
P
s
r
t
u
c
o
F

4

m
o
a

4
c

o
o
h
r
r

m

Fig. 15. HS reconstruction from noisy projections compared with SIRT. (a) Original
model. (b) Reconstructed image by SIRT method. (c) Reconstructed image by HS
method.

Fig. 16. ANOVA boxplots: the quality of reconstruction between SIRT and HS
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ig. 14. HS reconstruction from noiseless projections compared with SIRT. (a) Orig-
nal model. (b) Reconstructed image by SIRT method. (c) Reconstructed image by
S method.

Table 9 describes the ANOVA table. The column SS is the Sum
f squares. The column df represents the degree of freedom. The
olumn MS  is the mean square.

The p-value from the ANOVA table is around 0.0001. This result
ndicates that the values of column number 2, which represents the
SNR values of reconstructed images produced by HS method, are
ignificantly different from the values of column number 1, which
epresents the PSNR values of images produced by FBP reconstruc-
ion. The Fig. 13 shows that PSNR values of reconstructed images
sing our method have a wider dispersion of the data. The boxplot
onfirms graphically that the quality of reconstructed images using
ur method is statistically better than those reconstructed by using
BP method.

.8. Further comparison with SIRT method

The aim of this section is to show the performance of the HS
ethod compared to the SIRT method. We  validate the two  meth-

ds on the famous Hoffman model. We  consider noisy projections
nd we give the ANOVA statistical test.

.8.1. Test6: comparison between SIRT and HS without noise
onsideration

We present in Fig. 14 the performance of reconstruction
btained by HS method, SIRT method and the original image with-
ut introducing noise. We  can see that HS succeeds in giving a
igh quality of reconstructed images. Indeed, the PSNR values of
Please cite this article in press as: A. Ouaddah, D. Boughaci, Harmony s
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econstructed images by HS method are better than PSNR of the
econstructed one by using SIRT method.

The PSNR value is obtained from a random running of HS
ethod. Because, as proven previously HS succeeds largely to

603
reconstruction. (1) SIRT reconstruction. (2) HS method. (For interpretation of the
references to color in text near the reference citation, the reader is referred to the
web  version of this article.)

improve the reconstruction, at least for 10 runs even that is a non-
deterministic method.

4.8.2. Test7: comparison between SIRT and HS with noise
consideration

Fig. 15 gives the performance of reconstruction obtained by
HS method, SIRT method and the original one introducing Pois-
son noises. The value of PSNR of the reconstructed image using HS
method is better than the value of PSNR of the reconstructed image
by using SIRT method, which means that our method succeeds in
finding high quality images even noises are introduced.

4.8.3. ANOVA statistical analysis: test 02
This section tries to determine whether the proposed method

improves the quality of reconstructed images more than the SIRT
standard method. In this test, the independent variable is the qual-
ity of reconstruction using the methods of reconstruction (SIRT and
HS).

The ANOVA table shows the value of the F-statistic and p-value.
The boxplot of two different groups is given in Fig. 16. The ANOVA
results of the image quality measures (out of 20 tested) in each
image obtained from SIRT reconstruction and our proposed method
is given in Table 9 and Fig. 16. Fig. 16 shows boxplots of two different
groups (columns).

The column number 1 represents the PSNR values of the 20
earch algorithm for image reconstruction from projections, Appl.

reconstructed images using SIRT method. The column number 2
represents the PSNR values of the 20 reconstructed images using
HS method.

604

605

606

dx.doi.org/10.1016/j.asoc.2016.02.031


ARTICLE ING Model
ASOC 3490 1–12

A. Ouaddah, D. Boughaci / Applied Soft

i
f
u
p
b
s
r
t
S

4

m
c
r

s
o
w
t

4

i
o
r

u
l
c
A
r

q
w
a
a
o
t
r

S

[

[

[ Q7

[

[

[

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715
Fig. 17. The reconstruction time (s) needed by FBP, SIRT and HS methods.

The p-value from the ANOVA table is around 0.0012 which
ndicates that the PSNR values between groups are significantly dif-
erent. The boxplot shows that PSNR values of reconstructed images
sing our method have a wider dispersion of the data. The box-
lot confirms this result graphically. We  can see that the difference
etween the column means (mean is given in red line) is highly
ignificant. The boxplot and the p-value confirm that the quality of
econstructed images using harmony search meta-heuristic is sta-
istically better than the quality of reconstructed images by using
IRT method.

.9. The reconstruction time

We  computed the running time consumed by the different
ethods (FBP, SIRT and HS) for image reconstruction. We  draw the

urves in Fig. 17 that represent the number of unknowns (images
esolution) versus time taken for reconstruction.

According to the curves, the time of computation of the recon-
tructed images by using HS is higher than the time needed by SIRT
r FBP method. The curve of HS computation time increase greatly
ith the increase in required resolution and hence parallelism of

he algorithm becomes necessary in such case.

.10. Discussion

As shown in Fig. 4, our method based on HS improves the qual-
ty of reconstructed images compared to FBP method. Indeed, all
bjects, even different, were reconstructed with high quality of
econstruction.

Added to this, Image test 01 and Image test 02 from Fig. 6, was
sed to perform our method for some reconstructed images with

ower quality than those compared to others. The improvement
onsists of hybridization between HS method with LS algorithm.
s shown, the hybrid method succeeds to perform quality of some
econstructed images by the HS method with low quality.

The numerical results, confirm that our method improves the
uality of reconstruction compared to FBP approach for images
ith small resolution, even noises are introduced. Indeed, the gap of

ll reconstructed images with FBP method >0 unlike our HS method,
s we see in Tables 1 and 4. The values also of PSNR confirm that
ur method is more efficient than FBP method. However, it is more
Please cite this article in press as: A. Ouaddah, D. Boughaci, Harmony s
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ime consuming than FBP method which is the fastest method of
econstruction.

HS was also applied to reconstruct some famous model as
hepp–Logan and Hoffman model. The obtained quantitative and
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qualitative results prove the efficiency of HS for reconstruction
from projections even noises are introduced.

The obtained results using statistical ANOVA test to compare
our method with the analytical FBP and the iterative SIRT meth-
ods demonstrate that the difference in performance is statistically
significant. Nonetheless HS reconstruction time is higher than com-
putation time needed by SIRT or FBP method.

5. Conclusion

In this paper, we  proposed two meta-heuristics for image recon-
struction in tomography. The first is harmony search algorithm (HS)
for the problem of image reconstruction. The second is hybrid HS
with LS algorithm for the considered problem. The two  proposed
methods are evaluated on some images and compared to both the
analytical FBP and the iterative SIRT methods. The obtained results
are competitive and demonstrate the benefit of our methods. The
results prove the applicability and the efficiency of the developed
approaches. Further, the hybrid HS with LS is able to find good
results compared to the other considered methods. We  plan to add
diversification to prevent hybrid HS losing its way  at local opti-
mum and also include noises correction. Further refinements will
introduce the parallelism under GPU to reduce computation time.
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